JPS6393841A - Rare-earth permanent magnet alloy - Google Patents

Rare-earth permanent magnet alloy

Info

Publication number
JPS6393841A
JPS6393841A JP61236886A JP23688686A JPS6393841A JP S6393841 A JPS6393841 A JP S6393841A JP 61236886 A JP61236886 A JP 61236886A JP 23688686 A JP23688686 A JP 23688686A JP S6393841 A JPS6393841 A JP S6393841A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
coercive force
permanent magnet
saturation magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61236886A
Other languages
Japanese (ja)
Other versions
JPH0621324B2 (en
Inventor
Toshiichi Yokoyama
横山 敏一
Takeshi Ohashi
健 大橋
Yoshio Tawara
俵 好夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP61236886A priority Critical patent/JPH0621324B2/en
Publication of JPS6393841A publication Critical patent/JPS6393841A/en
Publication of JPH0621324B2 publication Critical patent/JPH0621324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve saturation magnetization and coercive force at room temp., by constituting by specifying the ratio of a low rare earth-B-Fe alloy with a specific composition to an alloy prepared by rapidly cooling a molten substance of high rare earth-Fe. CONSTITUTION:An alloy I consisting of, by weight, 20-35% R (Y, rare earth elements), 0.5-1.0% B, and the balance M (Fe, a mixture of Fe and Co) is prepared. On the other hand, an alloy II obtained by subjecting a molten substance consisting of 35-80% R and the balance X (Fe, a mixture of Fe and one or more elements among B, Al, Ti, V, Co, Zr, Nb, and Mo) to rapid cooling is prepared. Subsequently, the alloy I and the alloy II are blended in a ratio of 99.9:0.1-80:20, which is crushed and mixed and then is subjected to compacting and sintering to be formed into a permanent magnet. The alloy II provides a magnet having high saturation magnetization since it functions as a sintering auxiliary and causes reduction in oxygen content. Moreover, the alloy II has a coercive force-increasing effect and, when heavy rare earth elements are selected as the above R, the coercive force-increasing effect can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種電気・電子a器材料として有用な磁気特
性、とくには飽和磁化と保磁力にすぐれた希土類永久磁
石合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rare earth permanent magnet alloy that is useful as a material for various electrical and electronic appliances and has excellent magnetic properties, particularly excellent saturation magnetization and coercive force.

(従来技術とその問題点) 近年、Coを必要としない希土類永久磁石としてNd*
Fe・B系磁石が開発され、粉末や合法により残留磁束
密度Brが12.3kG、最大エネルギー積(BH) 
 が35)IG拳Oeの特性を持つ鵬ax 磁石が量産されている。ところが、この磁石の磁性をに
なう筈のNd2Fe、B相の飽和磁化4πMsは18k
Gであるのに対し、上記のNd−Fe−B系磁石ではこ
れに比べてかなり低い値となっている。その理由は実際
の磁石組成が化学量論比組成のNd2F014Bよりも
Nd、Bが多く、Feが少ない組成、例えばN d 1
s F e 7−t B sになっているためである。
(Prior art and its problems) In recent years, Nd* has been used as a rare earth permanent magnet that does not require Co.
Fe/B magnets have been developed, and the residual magnetic flux density Br is 12.3 kG and the maximum energy product (BH) is due to powder or legal methods.
35) Peng ax magnets with the characteristics of IG fist Oe are being mass produced. However, the saturation magnetization 4πMs of the B phase of Nd2Fe, which is supposed to have the magnetism of this magnet, is 18k.
In contrast, the above Nd-Fe-B magnet has a considerably lower value than this. The reason is that the actual magnet composition has more Nd and B and less Fe than the stoichiometric composition of Nd2F014B, for example, Nd1
This is because s Fe 7 - t B s.

このNdが多くなる要因には2つあって、そのlはこの
磁石がNdの多い液相を必要とする液相焼結によってち
密化されていることであり、他の1は製造工程中にNd
が酸化して無駄になるにを見越してあらかじめNdを多
くしているためである。したがって、より高い磁気特性
のものを得るには工程中における合金粉の酸化を最小限
に抑え、組成を本来のNd2Fe1.Hに近付けること
が必要となる。ところでNd11Fe−B系磁石の製造
工程中における酸化の大きな原因は合金粉中に体積百分
比で約20%存在するNdに富んだ部分が非常に酸化さ
れ易いことにある。そこでNd2Fe1.母相とNdに
富んだ相とを別々の工程により製造することが考えられ
るが、Ndに富んだ相は磁石粉以上に酸化され易いため
、これを抑制する方法を見出すことが先決となる。
There are two reasons why this amount of Nd increases; one is that this magnet is densified by liquid phase sintering, which requires a liquid phase rich in Nd, and the other is that the magnet is densified during the manufacturing process. Nd
This is because the amount of Nd is increased in advance in anticipation of it being oxidized and wasted. Therefore, in order to obtain higher magnetic properties, the oxidation of the alloy powder during the process should be minimized, and the composition should be changed from the original Nd2Fe1. It is necessary to bring it close to H. Incidentally, a major cause of oxidation during the manufacturing process of Nd11Fe-B magnets is that the Nd-rich portion, which is present in the alloy powder at a volume percentage of about 20%, is very easily oxidized. Therefore, Nd2Fe1. It is conceivable to produce the matrix phase and the Nd-rich phase in separate processes, but since the Nd-rich phase is more easily oxidized than magnet powder, the first step is to find a method to suppress this.

一方、NdaFe@B系磁石はキュリ一点Tcが約31
0℃と低いため、磁気特性の温度による影響が大きく、
使用温度に制約がある。とりわけ保磁力iHcの温度に
よる影1は−O0B%/℃と大きく、最も聞届になって
いる。このため、高温時に保磁力の値が低下しても使用
に耐えられるように、Tb、Dy、Hoなどの重希土類
元素やTi、V、Zr、Nb、Moなどの遷移金属やA
Iの添加によって、室温での保磁力の値を高める方法が
提案されている。しかし、これらの保磁力増大元素の配
合罎が増加すると、得られる磁石の飽和磁化を減少させ
るので、その添加量には限界がある。このため少騒で保
磁力増大の効果のある添加元素を見出し、実用的な希土
類永久磁石合金を開発することが必要である。
On the other hand, the Curie point Tc of NdaFe@B magnets is approximately 31
Because it is as low as 0℃, the magnetic properties are greatly affected by temperature.
There are restrictions on the operating temperature. In particular, the shadow 1 of the coercive force iHc due to temperature is as large as -00B%/°C and is the most noticeable. For this reason, heavy rare earth elements such as Tb, Dy, and Ho, transition metals such as Ti, V, Zr, Nb, and Mo, and A
A method of increasing the coercive force value at room temperature by adding I has been proposed. However, as the content of these coercive force increasing elements increases, the saturation magnetization of the resulting magnet decreases, so there is a limit to the amount they can be added. Therefore, it is necessary to find additive elements that are less noisy and have the effect of increasing coercive force, and to develop a practical rare earth permanent magnet alloy.

(問題点を解決するための手段) 本発明は、高い飽和磁化を有し、室温においても高い保
磁力を保持する希土類永久磁石合金の提供を目的とし、
重量百分比で20〜35%のR(ただし、RはYを含む
希土類元素の少なくとも1種以上)と、0.5〜1.5
%のBと、残部M(ただし、MはFeまたはFeとCo
との混合物)からなる合金Iと、35〜80%のR(た
だし、Rは上記と同じ)と残部X(ただし、XはFeま
たはFeとB、Al、Ti、V、Co。
(Means for Solving the Problems) The present invention aims to provide a rare earth permanent magnet alloy that has high saturation magnetization and maintains high coercive force even at room temperature.
R of 20 to 35% by weight percentage (however, R is at least one kind of rare earth element including Y) and 0.5 to 1.5
% of B and the balance M (however, M is Fe or Fe and Co
Alloy I consisting of 35 to 80% R (where R is the same as above) and the balance X (where X is Fe or a mixture of Fe and B, Al, Ti, V, Co.

Zr、Nb、Moの内の少なくとも1種以上との混合物
)からなる溶融物の急冷により得られた合金I!とが、
99.5:0.1〜80:20の割合でなる希土類永久
磁石合金に関するものである。
Alloy I obtained by rapid cooling of a melt consisting of a mixture of Zr, Nb, and at least one of Mo! Toga,
The present invention relates to a rare earth permanent magnet alloy having a ratio of 99.5:0.1 to 80:20.

これを説明すると、本発明者らは前記問題点の解決のた
め種々検討の結果、(1)FeまたはFe、!:Coと
の混合物を主成分とし母相を形成する前記合金Iと、Y
を含む希土類元素を主成分とする焼結助剤としての前記
合金!Iとを個別に溶融・固化・粉砕したのち混合舎焼
結する、いわゆる二余生法により永久磁石合金の製造を
行なうと、焼結助剤としての合金IIが母相を形成する
合金lのR,、Ml、母相の結晶粒内の粒界近傍とRリ
ッチ相内に偏在して分布する不均一組織を形成すること
を、電子プローブ微小分析器による結晶粒組織中の元素
分布のLll定によって確認し、そのことによって保磁
力を従来量−Lに効果的に向上させるとともに、添加元
素としての重希土類元素や遷移金属の使用rjが少なく
て済むことのために、これらの使用によってもたらされ
る飽和磁化の低下を抑v1できること、また(2)溶融
合金IIを急冷固化することによって製造工程中におけ
る希土類元素の酸化を抑制し、全磁石合金中の酸素量を
低減させて、従来のものよりも化学量論比に近い組成の
ものとし、飽和磁化の向上が図れること、さらには(3
)この永久磁石合金に用いられる希土類元素として、前
述したNd以外のすべての希土類元素とYにも同様に適
用し得ることを見出し、本発明に到達したものである。
To explain this, the present inventors have conducted various studies to solve the above-mentioned problems, and as a result, (1) Fe or Fe! : The above-mentioned alloy I whose main component is a mixture with Co to form a matrix, and Y
The above-mentioned alloy as a sintering aid whose main component is a rare earth element containing! When a permanent magnetic alloy is produced by the so-called two-reserve method, in which alloy I and I are individually melted, solidified, and pulverized, and then sintered in a mixing chamber, alloy II, which serves as a sintering aid, is mixed with alloy I, which forms the matrix. Lll of the element distribution in the crystal grain structure using an electron probe microanalyzer revealed that R,,Ml, forms a heterogeneous structure unevenly distributed near the grain boundaries in the crystal grains of the parent phase and in the R-rich phase. As a result, the coercive force can be effectively improved to the conventional amount -L, and the use of heavy rare earth elements and transition metals as additive elements can be reduced. (2) By rapidly cooling and solidifying the molten alloy II, the oxidation of rare earth elements during the manufacturing process is suppressed, and the amount of oxygen in the entire magnetic alloy is reduced, making it possible to reduce the amount of oxygen in the entire magnetic alloy. It is possible to improve the saturation magnetization by making the composition closer to the stoichiometric ratio than (3).
) As the rare earth elements used in this permanent magnet alloy, we have discovered that all rare earth elements other than the above-mentioned Nd and Y can be similarly applied, and have arrived at the present invention.

本発明において用いられる合金Iは前述したように、重
陽百分比で20〜35%のRで示されるYを含む希土類
元素の少なくとも1種以上と、0.5〜1.5%のBと
、残部MがFeまたはFeとCoとの混合物とから構成
されるものであるが、この組成においてRが20%以下
では保磁力が低く、またRが35%以上であるか、Bが
上記範囲外のときは、−合金法で得られた磁石と同等の
保磁力および飽和磁化の低いものしか得られない。
As described above, the alloy I used in the present invention contains at least one rare earth element containing Y represented by R of 20 to 35% in deuterium percentage, 0.5 to 1.5% of B, and the balance. M is composed of Fe or a mixture of Fe and Co, but if R is 20% or less in this composition, the coercive force is low, and if R is 35% or more or B is outside the above range. In this case, only magnets with low coercive force and saturation magnetization equivalent to those obtained by the -alloy method can be obtained.

この希土類元素としてはLa、Ce、Pr、Nd、Sm
、Euの内の少なくとも1種以−Lの軽希土類元素とく
にはNdまたはPr元素を選択することが好ましく、そ
れにより醋終製品としての永久磁石の飽和磁化を一層向
上させるという利点がある。
These rare earth elements include La, Ce, Pr, Nd, and Sm.
It is preferable to select at least one of -L light rare earth elements, especially Nd or Pr elements, which has the advantage of further improving the saturation magnetization of the permanent magnet as the final product.

この合金Iの調製は成分中に占める希土類元素の割合が
低く、この酸化による影りが少ないため、上記成分を通
常採用されている高周波炉への投入、溶解、鋳型への鋳
込み、粗粉砕、微粉砕等を行なうことにより達成される
In preparing this alloy I, the ratio of rare earth elements in the ingredients is low, and there is little influence from this oxidation, so the above ingredients are put into a commonly used high frequency furnace, melted, poured into a mold, coarsely pulverized, This is achieved by fine pulverization or the like.

一方、合金IIは重量百分比で35〜80%のRで示さ
れるYを含む希土類元素の少なくともi!i以上と、残
部XがFeまたはFeとB、AI、Ti、V、Co、Z
r、Nb、Mo(7)内の少なくとも1種以上との混合
物とから構成されるが、ここでRが35%以下では焼結
温度域での液相量が少なく焼結助剤としての効果が小さ
くなり、また80%以上では急冷時においても酸化が激
しく取扱いが困難となる。
On the other hand, Alloy II contains at least i! i or more, and the remainder X is Fe or Fe and B, AI, Ti, V, Co, Z
It is composed of a mixture with at least one of r, Nb, and Mo (7), but if R is 35% or less, the amount of liquid phase in the sintering temperature range is small and it is effective as a sintering aid. becomes small, and if it exceeds 80%, oxidation will be severe even during rapid cooling, making handling difficult.

さらに、この合金I!において希土類元素として重連し
たのと同様の軽希土類元素を選択するときは、これが磁
石組織内において焼結助剤としてafflL、酸素量の
低下をもたらすので、飽和磁化の高い磁石奢与える。
Furthermore, this alloy I! When selecting a light rare earth element similar to that used as a rare earth element in the above, it serves as a sintering aid in the magnet structure, resulting in a decrease in the amount of oxygen, thereby providing a magnet with high saturation magnetization.

一方この希土類元素としてGd、Tb%D?、Ho、E
r、Tm、Yb、LuおよびY(7)少なくも1種以上
の重希土類元素を選択するときは、焼結助剤としての効
果のほかに保磁力増大効果を有する。
On the other hand, as this rare earth element, Gd, Tb%D? ,Ho,E
r, Tm, Yb, Lu, and Y (7) When at least one heavy rare earth element is selected, it has an effect of increasing coercive force in addition to the effect as a sintering aid.

また、重連のXで定義される成分はFeまたはFeとB
、Al、Ti、V、Co、Zr、Nb、Moの内の少な
くも1種以上の混合物が用いられ、これにより合金II
の保磁力を増大する効果がある。
In addition, the component defined by the multiple X is Fe or Fe and B
, Al, Ti, V, Co, Zr, Nb, Mo.
This has the effect of increasing the coercive force of.

この酸化し易い希土類元素を多く含有する焼結助剤とし
ての溶融合金は、粉砕をし易くするためと、表面に耐酸
化性を付与することによって希土類元素の酸化を抑制す
るために、急冷固化することが必要であるが、この場合
の冷却速度としては1000℃/see以上が好ましく
、また薄帯状または粉末状に固化することが望ましい、
冷却速度がこれ未満のときは薄帯が厚くなったり、粉末
が粗くなったりするほか、粉砕または合金Iとの混合の
際の吸着酸素量が増大するため好ましくない。
This molten alloy, which is used as a sintering aid and contains a large amount of rare earth elements that are easily oxidized, is rapidly solidified to make it easier to crush and to suppress the oxidation of rare earth elements by imparting oxidation resistance to the surface. However, in this case, the cooling rate is preferably 1000°C/see or higher, and it is desirable to solidify into a ribbon or powder.
If the cooling rate is less than this, the ribbon becomes thick, the powder becomes coarse, and the amount of oxygen adsorbed during pulverization or mixing with Alloy I increases, which is not preferable.

1−記急冷による薄帯状または粉末状への固化は、単ロ
ール法、双ロール法等により薄帯状に、またガスアトマ
イズ法、ロールによる粉体化法等により粉末状に、いず
れも容易に達成することができる。
1- Solidification into a thin strip or powder by rapid cooling can be easily achieved by forming a thin strip by a single roll method, a twin roll method, etc., or into a powder by a gas atomization method, a powdering method using a roll, etc. be able to.

このようにして1!)られる合金IIは焼結温度領域で
溶融し、焼結助剤として働くので合金Iと同程度(〜3
終鳳)の微粒にする必要はなく、その粉末粒度が余生工
よりも粗くてもよいために、合金IIの酸化を抑制でき
るという利点がある。
In this way, 1! ) Alloy II melts in the sintering temperature range and acts as a sintering aid, so it has a melting temperature similar to that of Alloy I (~3
It is not necessary to make the powder into fine particles, and the particle size of the powder may be coarser than that of the residual powder, which has the advantage of suppressing the oxidation of Alloy II.

また合金■およびIIは、99.5:0−1〜80:2
0の割合で配合し、常法により粉砕混合、成形、焼結し
て永久磁石とすることができる。この配合の際の合金I
Iの添加楡が0.1%以下では焼結助剤としての効果が
なく、また20%以上では飽和磁化が大きく低下するた
め好ましくない。
In addition, alloys Ⅰ and II are 99.5:0-1 to 80:2
A permanent magnet can be obtained by mixing, pulverizing, mixing, molding, and sintering using a conventional method. Alloy I in this formulation
If the amount of I added is less than 0.1%, it will not be effective as a sintering aid, and if it is more than 20%, the saturation magnetization will decrease significantly, which is not preferable.

余生工、IIの混合に当って、合金11が8帯状物のと
きは、まず粗粉砕により粗粒状にしたのち合金Iの粉末
と混合するか、pJ帯状のまま合金Iの粉末と混合した
のち(または混合しながら)粉砕すればよく、また合金
IIが粒径約20メツシユ以下の粉末状物のときは、そ
のまま余生工の粉末と混合すれば良く、この場合には改
めて粉砕の必要がないためそれだけ酸素の吸着を抑制で
きる利点がある。
When mixing the remaining material II, when Alloy 11 is in the form of 8 strips, it is first mixed with the powder of Alloy I made into coarse particles by coarse pulverization, or mixed with the powder of Alloy I in the form of a pJ strip, and then mixed with the powder of Alloy I. (or while mixing), and if Alloy II is a powder with a particle size of about 20 mesh or less, it can be mixed with the remaining powder as it is, and in this case there is no need to grind it again. Therefore, it has the advantage of suppressing oxygen adsorption.

(fi明の効果) 本発明によれば、 「1.二余生法による母相形成合金中における焼結助剤
合金の偏在組織の形成によって、1)(すられる永久磁
石の保磁力を従来以上に効果的に向上できる。
(Effect of fi light) According to the present invention, "1) (by forming a unevenly distributed structure of the sintering aid alloy in the matrix forming alloy by the second life method, the coercive force of the permanent magnet to be rubbed is This can be improved even more effectively.

2)添加元素としの重希土類元素や遷移金属の使用μが
少なく、飽和磁化の低下を抑制できる。
2) The use of heavy rare earth elements and transition metals as additive elements is small, and a decrease in saturation magnetization can be suppressed.

2、製造工程中の酸化量を低減することによって、 l)永久磁石合金の組成を化学端−writ、のR2M
14B相に近ずけることを可能とし、その結果飽和磁化
を高め、より高い最大エネルギー積を持つ永久磁石が得
られる。
2. By reducing the amount of oxidation during the manufacturing process, l) the composition of the permanent magnet alloy can be changed to the R2M
14B phase, resulting in increased saturation magnetization and a permanent magnet with a higher maximum energy product.

2)R,Fe、Hの主要3元素の内、最も高価なR元素
の酸化によるロスが減少する。
2) Loss due to oxidation of R element, which is the most expensive of the three main elements R, Fe, and H, is reduced.

3)従来1合金粉を空気中で取扱う時間の制約が緩和さ
れ、製造コストが下がる。
3) The time constraints for handling conventional 1-alloy powder in air are relaxed, reducing manufacturing costs.

4)合金粉の着火の危険性が低くなり、歩留りが向上す
る。」 等の効果を奏する。
4) The risk of alloy powder ignition is lowered, and the yield is improved. ” and other effects.

(実施例) 次に、本発明の具体的態様を実施例により説明する。(Example) Next, specific aspects of the present invention will be explained using examples.

実施例1 出発原料として電解鉄、純度93.5%以上のBまたは
フェロポロン、純度99.5%以上のNdを用い、それ
ぞれ第1表に示す合金lおよびIIの組成および混合比
となるように秤量し、それぞれの合金を高周波溶解炉に
投入し、真空またはAr雰囲気中で溶解し、sI鋳型に
流して冷却してインゴットを得た0合金■はディスクミ
ルにより 500μ鳳以下の粒状にし、ボールミル粉砕
用とした0合金Ifは同様にして溶解後、約301/s
eeの速度で回転している銅ロール上に噴出させて急速
に急冷し、(急冷速度:約10,000℃/5ec)薄
帯状にした。こうして得られた合金IおよびIIのモ均
粒径がそれぞれ1〜10棒1および1〜500 B m
になるように、合金Iの粉砕途中で合金IIを加えてそ
れぞれの粉砕時間を調整しながら、n−ヘキサン中でボ
ールミルにて混合粉砕した。n−へキサンを除去乾燥後
、1Okoeの磁場中で1 t /crn’のプレス圧
にて成形し、1000〜1200℃で焼結し、さらに6
oo℃にて1時間熱処理を加えて永久磁石とし、それぞ
れの磁気特性を測定したところ、表に示す結果が得られ
た。
Example 1 Using electrolytic iron, B or ferropolone with a purity of 93.5% or more, and Nd with a purity of 99.5% or more as starting materials, the compositions and mixing ratios of alloys I and II were respectively shown in Table 1. Alloys were weighed, put into a high frequency melting furnace, melted in vacuum or in an Ar atmosphere, poured into an SI mold, and cooled to obtain an ingot. Alloy 0 was pulverized into particles of 500μ or less using a disk mill, and then melted in a ball mill. 0 alloy If used for pulverization was melted in the same manner, and the melting rate was approximately 301/s.
It was rapidly quenched by jetting it onto a copper roll rotating at a speed of ee (quenching rate: about 10,000°C/5ec) to form a thin strip. The average particle diameters of alloys I and II thus obtained were 1 to 10 bar 1 and 1 to 500 B m, respectively.
Alloy II was added during the grinding of Alloy I, and the mixture was mixed and ground in a ball mill in n-hexane while adjusting the respective grinding times. After removing n-hexane and drying, it was molded at a press pressure of 1 t/crn' in a magnetic field of 1 koe, sintered at 1000 to 1200°C, and further
They were heat-treated at 0°C for 1 hour to form permanent magnets, and their magnetic properties were measured, and the results shown in the table were obtained.

同表において実験No、 1〜3は本発明、No、 4
〜5は組成の異なる比較例、No、 6〜7は合金II
を急冷しなかったときの比較例、No−8〜9は表に示
す組成のものを一余生法により上記の合金Iと同様の条
件で溶解、固化、粉砕後、上記と同様にして永久磁石と
した比較例である。 なお、表中の組成は原子百分率、
混合比は重騒百分率を表わす。
In the same table, Experiment No. 1 to 3 are the present invention, No. 4
-5 are comparative examples with different compositions, No. 6-7 are alloy II
Comparative examples No. 8 to No. 9 are those of the compositions shown in the table, which were not quenched. They were melted, solidified, and pulverized by the over-life method under the same conditions as Alloy I above, and then permanently cured in the same manner as above. This is a comparative example using a magnet. The compositions in the table are expressed as atomic percentages,
The mixing ratio represents the percentage of heavy noise.

実施例2 出発原料として電解鉄、純度39.5%以上のB、Co
、Al、Nb、Ce、Pr、Nd、Td、Dyの各成分
を用い、それぞれ第2表に示す合金IおよびIIの組成
および混合比となるように秤量し、実施例1と同様にし
て溶解、固化、混合粉砕して得られた微粉を用いて、異
方性焼結体(実験No、10〜14)を作成した。それ
ぞれの焼結体の磁気特性を測定したところ、同表に示す
結果が得られた。
Example 2 Electrolytic iron as a starting material, B, Co with a purity of 39.5% or more
, Al, Nb, Ce, Pr, Nd, Td, and Dy were weighed so as to have the compositions and mixing ratios of Alloys I and II shown in Table 2, respectively, and melted in the same manner as in Example 1. Anisotropic sintered bodies (experiment Nos. 10 to 14) were created using the fine powder obtained by solidification, mixing, and pulverization. When the magnetic properties of each sintered body were measured, the results shown in the table were obtained.

比較のため、実験No−13の焼結体の最終組成(Nd
13−3Fe72.8CO8,OB5.9 )と同一の
組成のインゴットを作り、−合金法によりn−へキサン
中でボールミルを用いて湿式粉砕し、平均粒3.5μ騰
の粉末とした。これを実施例1と同じ条件でプレス、焼
結、熱処理し、磁気特性を調べたところ、残留磁化が1
.5kG以下、保磁力が0.2 kG以下、最大エネル
ギー積が1)IC・08未満と非常に低い偵であった。
For comparison, the final composition of the sintered body of Experiment No. 13 (Nd
An ingot having the same composition as 13-3Fe72.8CO8, OB5.9) was prepared and wet-pulverized using a ball mill in n-hexane according to the -alloy method to obtain a powder with an average grain size of 3.5μ. When this was pressed, sintered, and heat treated under the same conditions as Example 1, and its magnetic properties were examined, the residual magnetization was 1.
.. It was very low, with a coercive force of 5 kG or less, a coercive force of 0.2 kG or less, and a maximum energy product of 1) less than IC.08.

この原因は一余生法で作成した試料は充分に焼き締って
おらず見掛密度が8.23/cc以下と低いためと考え
られる。これに対し2合金法で作成した実験No−13
による試料は、その見掛密度が7.433/ccで、真
密度の38%以上まで焼き締っていることが確認された
The reason for this is thought to be that the samples prepared by the after-life method were not sufficiently sintered and had a low apparent density of 8.23/cc or less. On the other hand, Experiment No. 13 created using the 2-alloy method
It was confirmed that the sample according to the above had an apparent density of 7.433/cc and was baked to 38% or more of the true density.

Claims (1)

【特許請求の範囲】[Claims] 1、重量百分比で20〜35%のR(ただし、RはYを
含む希土類元素の少なくとも1種以上)と、0.5〜1
.5%のBと、残部M(ただし、MはFeまたはFeと
Coとの混合物)からなる合金Iと、35〜80%のR
(ただし、Rは上記と同じ)と残部X(ただし、XはF
eまたはFeとB、Al、Ti、V、Co、Zr、Nb
、Moの内の少なくとも1種以上との混合物)からなる
溶融物の急冷により得られた合金IIとが、95.5:
0.1〜80:20の割合でなる希土類永久磁石合金。
1. R of 20 to 35% by weight percentage (however, R is at least one kind of rare earth element including Y) and 0.5 to 1
.. Alloy I consisting of 5% B, the balance M (where M is Fe or a mixture of Fe and Co), and 35 to 80% R
(However, R is the same as above) and the remainder X (However, X is F
e or Fe and B, Al, Ti, V, Co, Zr, Nb
, a mixture with at least one or more of the following:
A rare earth permanent magnet alloy having a ratio of 0.1 to 80:20.
JP61236886A 1986-10-04 1986-10-04 Rare earth permanent magnet alloy composition Expired - Lifetime JPH0621324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61236886A JPH0621324B2 (en) 1986-10-04 1986-10-04 Rare earth permanent magnet alloy composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61236886A JPH0621324B2 (en) 1986-10-04 1986-10-04 Rare earth permanent magnet alloy composition

Publications (2)

Publication Number Publication Date
JPS6393841A true JPS6393841A (en) 1988-04-25
JPH0621324B2 JPH0621324B2 (en) 1994-03-23

Family

ID=17007234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61236886A Expired - Lifetime JPH0621324B2 (en) 1986-10-04 1986-10-04 Rare earth permanent magnet alloy composition

Country Status (1)

Country Link
JP (1) JPH0621324B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252403A (en) * 1987-04-09 1988-10-19 Tokin Corp Liquisol quenching alloy composite type rare earth permanent magnet and manufacture thereof
JPS63254703A (en) * 1987-04-11 1988-10-21 Tokin Corp Manufacture of rare earth permanent magnet with excellent anti-oxidation
JPS63278208A (en) * 1987-01-30 1988-11-15 Tokin Corp Manufacture of rare earth permanent magnet
JPH01177335A (en) * 1988-01-06 1989-07-13 Tokin Corp Manufacture of rare earth permanent magnetic material having excellent mechanical properties, its manufacture and its testing method
JPH0231402A (en) * 1988-07-21 1990-02-01 Tokin Corp Rare-earth permanent magnet having excellent restance to oxidation and manufacture thereof
WO1991006107A1 (en) * 1989-10-12 1991-05-02 Kawasaki Steel Corporation Corrosion-resistant, rare earth-transition metal magnet and method of production thereof
US5447578A (en) * 1989-10-12 1995-09-05 Kawasaki Steel Corporation Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same
JP2003045710A (en) * 2001-07-27 2003-02-14 Tdk Corp Permanent magnet and manufacturing method therefor
WO2005001856A1 (en) * 2003-06-30 2005-01-06 Tdk Corporation R-t-b based rare earth permanent magnet and method for production thereof
JP2006237168A (en) * 2005-02-23 2006-09-07 Tdk Corp R-t-b-based sintered magnet and manufacturing method thereof
JP2007294917A (en) * 2006-03-27 2007-11-08 Tdk Corp R-t-b-based sintered magnet and manufacturing method therefor
US7390369B2 (en) 2003-04-22 2008-06-24 Neomax Co., Ltd. Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
WO2013080605A1 (en) * 2011-11-29 2013-06-06 Tdk株式会社 Rare-earth sintered magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123853A (en) * 1982-01-18 1983-07-23 Fujitsu Ltd Rare earth metal-iron type permanent magnet and its manufacture
JPS5964733A (en) * 1982-09-27 1984-04-12 Sumitomo Special Metals Co Ltd Permanent magnet
JPS5989401A (en) * 1982-11-15 1984-05-23 Sumitomo Special Metals Co Ltd Permanent magnet
JPS61207545A (en) * 1985-03-09 1986-09-13 Sumitomo Special Metals Co Ltd Manufacture of permanent magnet material
JPS61207546A (en) * 1985-03-12 1986-09-13 Tohoku Metal Ind Ltd Manufacture of magnet containing rare earth element
JPS63197305A (en) * 1986-05-17 1988-08-16 Tokin Corp Rare-earth permanent magnet and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123853A (en) * 1982-01-18 1983-07-23 Fujitsu Ltd Rare earth metal-iron type permanent magnet and its manufacture
JPS5964733A (en) * 1982-09-27 1984-04-12 Sumitomo Special Metals Co Ltd Permanent magnet
JPS5989401A (en) * 1982-11-15 1984-05-23 Sumitomo Special Metals Co Ltd Permanent magnet
JPS61207545A (en) * 1985-03-09 1986-09-13 Sumitomo Special Metals Co Ltd Manufacture of permanent magnet material
JPS61207546A (en) * 1985-03-12 1986-09-13 Tohoku Metal Ind Ltd Manufacture of magnet containing rare earth element
JPS63197305A (en) * 1986-05-17 1988-08-16 Tokin Corp Rare-earth permanent magnet and manufacture thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278208A (en) * 1987-01-30 1988-11-15 Tokin Corp Manufacture of rare earth permanent magnet
JPS63252403A (en) * 1987-04-09 1988-10-19 Tokin Corp Liquisol quenching alloy composite type rare earth permanent magnet and manufacture thereof
JPS63254703A (en) * 1987-04-11 1988-10-21 Tokin Corp Manufacture of rare earth permanent magnet with excellent anti-oxidation
JPH01177335A (en) * 1988-01-06 1989-07-13 Tokin Corp Manufacture of rare earth permanent magnetic material having excellent mechanical properties, its manufacture and its testing method
JPH0637693B2 (en) * 1988-01-06 1994-05-18 株式会社トーキン Rare earth permanent magnet material excellent in mechanical properties, manufacturing method thereof and inspection method thereof
JPH0231402A (en) * 1988-07-21 1990-02-01 Tokin Corp Rare-earth permanent magnet having excellent restance to oxidation and manufacture thereof
WO1991006107A1 (en) * 1989-10-12 1991-05-02 Kawasaki Steel Corporation Corrosion-resistant, rare earth-transition metal magnet and method of production thereof
US5447578A (en) * 1989-10-12 1995-09-05 Kawasaki Steel Corporation Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same
EP0447567B1 (en) * 1989-10-12 1996-05-29 Kawasaki Steel Corporation Corrosion-resistant tm-b-re type magnet and method of production thereof
JP4547840B2 (en) * 2001-07-27 2010-09-22 Tdk株式会社 Permanent magnet and method for manufacturing the same
JP2003045710A (en) * 2001-07-27 2003-02-14 Tdk Corp Permanent magnet and manufacturing method therefor
US7390369B2 (en) 2003-04-22 2008-06-24 Neomax Co., Ltd. Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
US7618497B2 (en) 2003-06-30 2009-11-17 Tdk Corporation R-T-B based rare earth permanent magnet and method for production thereof
WO2005001856A1 (en) * 2003-06-30 2005-01-06 Tdk Corporation R-t-b based rare earth permanent magnet and method for production thereof
JP4702522B2 (en) * 2005-02-23 2011-06-15 Tdk株式会社 R-T-B system sintered magnet and manufacturing method thereof
JP2006237168A (en) * 2005-02-23 2006-09-07 Tdk Corp R-t-b-based sintered magnet and manufacturing method thereof
JP2007294917A (en) * 2006-03-27 2007-11-08 Tdk Corp R-t-b-based sintered magnet and manufacturing method therefor
WO2013080605A1 (en) * 2011-11-29 2013-06-06 Tdk株式会社 Rare-earth sintered magnet
JP2013138170A (en) * 2011-11-29 2013-07-11 Tdk Corp Rare-earth sintered magnet
CN103959404A (en) * 2011-11-29 2014-07-30 Tdk株式会社 Rare-earth sintered magnet
US8961712B2 (en) 2011-11-29 2015-02-24 Tdk Corporation Rare earth based sintered magnet
CN103959404B (en) * 2011-11-29 2015-08-05 Tdk株式会社 Rare-earth sintered magnet
DE112012004991B4 (en) 2011-11-29 2022-03-24 Tdk Corporation Rare earth based sintered magnet

Also Published As

Publication number Publication date
JPH0621324B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US5034146A (en) Rare earth-based permanent magnet
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JPS6393841A (en) Rare-earth permanent magnet alloy
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3222482B2 (en) Manufacturing method of permanent magnet
JPH04338605A (en) Manufacture of metallic bonded magnet and metallic bonded magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP3037917B2 (en) Radial anisotropic bonded magnet
JPH045739B2 (en)
JP3178848B2 (en) Manufacturing method of permanent magnet
JP3254232B2 (en) Manufacturing method of rare earth permanent magnet
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH02138707A (en) Rare-earth magnet powder annealing method
JPS63216307A (en) Alloy powder for magnet
JPH044384B2 (en)
JPH024942A (en) Permanent magnetic alloy
JPH0477066B2 (en)
KR100394992B1 (en) Fabricating Method of NdFeB Type Sintered Magnet
JPS63252403A (en) Liquisol quenching alloy composite type rare earth permanent magnet and manufacture thereof
JP2002088451A (en) Rare earth magnet and its manufacturing method
JPH0524226B2 (en)
JPH0897022A (en) Manufacture of rare-earth magnet
JPH1088273A (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet and production of rare earth permanent magnet
JPH055362B2 (en)