JPS63216307A - Alloy powder for magnet - Google Patents

Alloy powder for magnet

Info

Publication number
JPS63216307A
JPS63216307A JP62050582A JP5058287A JPS63216307A JP S63216307 A JPS63216307 A JP S63216307A JP 62050582 A JP62050582 A JP 62050582A JP 5058287 A JP5058287 A JP 5058287A JP S63216307 A JPS63216307 A JP S63216307A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
atomic
particle size
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62050582A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Koji Akioka
宏治 秋岡
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62050582A priority Critical patent/JPS63216307A/en
Publication of JPS63216307A publication Critical patent/JPS63216307A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/066Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by liquid dynamic compaction

Abstract

PURPOSE:To offer low-cost and high-performance alloy powder for a magnet, composed of a rare-earth element, iron and boron, which can be used for sintering and for resin bonding by a method wherein the alloy powder which has been finely pulverized by a gas atomizing method are classified and they are then annealed while their heat-treatment condition is changed according to the range of their particle size. CONSTITUTION:Alloy powder for a magnet by this invention are composed of 8-30 atomic % of R (R contains at least more than one rare-earth element including Y), 2-28 atomic % of B, less than 50 atomic % of Co and less than 16 atomic % of Al; their remaining part is composed of Fe. Because the alloy powder is produced by using a gas atomizing method, their particle sizes are distributed widely. The powder of a big particle size whose particles are constituted by a crystal phase and where an amorphous phase is hardly detected are annealed at a high temperature and for long hours such as at 1000 deg.C and for 24 hours so that their coercive force can be increased. The powder of a small particle size which contains the amporphous phase are annealed at a low temperature and for short hours such as at 700 deg.C and for 10 minutes so that their high coercive force can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類−鉄一ボロン化合物をペースとした磁
石用合金粉末尾関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an alloy powder tail for magnets based on a rare earth-iron-boron compound.

〔従来の技術〕[Conventional technology]

従来、希土類−鉄一ボロン系磁石の製造に用いられる合
金粉末としては、特公昭61−34242に示される様
な焼結用に合金インゴットを粉砕しtもの、または特開
昭59−64739に示される様にメルトスピニング法
によって得られた導帯を粉砕したもの、そして特開昭6
O−j7905に示される様なガスアトマイズ法によっ
て得られる粉末などh″−知られてい比。ま九、上記の
様な粉末に対して磁気性能を高めるために、一様な熱処
理を施しtものも知られてい次。
Conventionally, alloy powders used in the production of rare earth-iron-boron magnets include those prepared by crushing alloy ingots for sintering as shown in Japanese Patent Publication No. 61-34242, or those shown in Japanese Patent Application Laid-Open No. 59-64739. The conductive band obtained by the melt spinning method was pulverized, and the JP-A-6
Powders obtained by gas atomization such as those shown in O-j7905 are well known. Next known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

1、かしながら、上述した従来の技術による希土類−鉄
一ポロン系磁石用合金粉末は次のような欠点を有してい
る。まず1合金インゴットを粉砕し几粉末は、焼結磁石
用としては有効であるh;、粉末伏態での伏磁力はIK
Og程度であり樹脂ボンド磁石用粉末としては使えない
。また、メルトスピニング法を用いる場合にけ焼結磁石
、樹脂ボンド磁石の双方に有効な粉末bt得られるbt
、この粉末は本質的に等方性でありその最大エネルギー
積は10MGOg程度(樹脂ポンド磁石)と希土類−鉄
一ボロン系磁石の性能メリットを生かしきっているとは
言い難いし、アトマイズ法に比べると粉砕という余計な
工程が必要となる。そして、アトマイズ法による粉末で
あるが、この粉末を単純に熱処理し之場合に樹脂ポンド
磁石として得られる性能はメルトスピニング法による場
合より悪(+ (BH)WLZ = 5 MG Oe程
度であり、高性能化のためにはやはり粉砕工程が必要と
なりコスト高及び酸化の危険性といつ几問題を有してい
る。
1. However, the above-mentioned conventional rare earth-iron-poron alloy powder for magnets has the following drawbacks. First, an alloy ingot is crushed and the resulting powder is effective for use in sintered magnets; the magnetic force in the powder state is IK.
It is about Og and cannot be used as powder for resin bonded magnets. In addition, when using the melt spinning method, it is possible to obtain bt powder that is effective for both sintered magnets and resin bonded magnets.
This powder is essentially isotropic, and its maximum energy product is about 10 MGOg (resin pound magnet), so it cannot be said that the performance advantages of rare earth-iron-boron magnets are fully utilized, and compared to the atomization method. This requires an extra step of grinding. Although the powder is obtained by the atomization method, when this powder is simply heat treated, the performance obtained as a resin pound magnet is worse than that obtained by the melt spinning method (+(BH)WLZ = 5 MG Oe), and the performance is high. In order to improve the performance, a pulverization process is still required, resulting in high costs, a risk of oxidation, and problems with processing times.

本発明による磁石用合金はこのような問題点を解決する
もので、その目的とするところは、低コストでしかも一
高性能かつ焼結用にも樹脂ポンド用にも使用可能な希土
類−鉄一ボロン系磁石用合金粉末を提供するところにあ
る。
The alloy for magnets according to the present invention solves these problems, and its purpose is to create a rare earth-iron alloy that is low cost, has high performance, and can be used for both sintering and resin ponds. The purpose of the present invention is to provide alloy powder for boron-based magnets.

【問題点を解決するtめの手段〕[Tth method to solve the problem]

本発明の磁石用合金粉末は、R(RけYを含む希土類元
素の少くとも一種以上)8〜30原子係。
The alloy powder for magnets of the present invention has 8 to 30 atoms of R (at least one kind of rare earth element including R and Y).

B(ポロン)2〜28原子チ、Co(コバルト)50原
子チ以下、a(アルミニウム)15原子チ以下及び残部
hZ ’Fe (鉄)及びその他の製造上不可避な不純
物からなる合金を溶解し、ガスアトマイズ法によって微
粒子化させ九合金粉末を分級し、その粒径範囲により熱
処理条件を変えてアニールを施したことを特徴とする。
Melting an alloy consisting of 2 to 28 atoms of B (poron), 50 atoms or less of Co (cobalt), 15 atoms or less of a (aluminum), the balance hZ 'Fe (iron) and other impurities unavoidable in manufacturing, It is characterized in that the nine alloy powder is made into fine particles by gas atomization, classified, and annealed by changing the heat treatment conditions depending on the particle size range.

以下、本発明による磁石用合金粉末の組成限定理由を説
BAする。希土類元素としては、 Y、 La。
The reasons for limiting the composition of the alloy powder for magnets according to the present invention will be explained below. Rare earth elements include Y and La.

Oe、 P’r 、 Nd 、 Sm 、 Bu′、 
Gd 、 Tb、 Dy 、 Ho 、 Hr 、 T
m 。
Oe, P'r, Nd, Sm, Bu',
Gd, Tb, Dy, Ho, Hr, T
m.

yb、 Lu  が候補として挙げられ、これらのうち
1種あるいけ2種以上を組み合わせて用いる。最も高い
磁気性能はNd、Prで得られ、従って実用的にけNd
、pr、  yd −pr金合金Nd−Pr−0g金合
金用いられる。R−Fe −B系磁石の主相けR47g
、4Bである。従りてRh”−8原子係未満ではもはや
上記化合物を形成せず、α鉄と同一構造の立方晶組織と
なってしまい高磁気特性は得られない。−力Rが30原
子俤を越えると非磁性のRrich相が多くなり磁気特
性は著しく低下する。
yb and Lu are listed as candidates, and one or a combination of two or more of these may be used. The highest magnetic performance is obtained with Nd and Pr, so it is practical to use Nd.
, pr, yd -pr gold alloy Nd-Pr-0g gold alloy is used. Main phase R47g of R-Fe-B magnet
, 4B. Therefore, if the Rh"-8 atoms are less than 8 atoms, the above compound will no longer be formed, and it will become a cubic crystal structure with the same structure as α-iron, making it impossible to obtain high magnetic properties. -When the force R exceeds 30 atoms, The amount of non-magnetic Rrich phase increases, and the magnetic properties deteriorate significantly.

BはR,Fe、、B相を形成するための必須元素であり
、2原子チ未満では菱面体のR−Fe系溝構造なる・t
め高保磁力は望めない。ま7t2B原子係を越えるとB
 richの非磁性相が多くなり、残留磁束密度は著し
く低下するのでそれ以下が望ましboCoは水系磁石の
キュリ一点を上昇させるのに効果、htあり、それに伴
って磁石の温度特性も改善される。基本的にけCoばR
2Fe、、 B相の7gサイトを置換しR,(PaCo
 )1. B相となるのだ/+t、添加g hz増すに
従ってR(FeOo)というrrav g s相を形成
して保磁力の低下をもたらす。そのために添加量として
け50w、子チまでht適当である。
B is an essential element for forming R, Fe, and B phases, and when it is less than two atoms, it forms a rhombohedral R-Fe system groove structure.
High coercive force cannot be expected. If you go beyond the 7t2B atomic group, B
Rich's non-magnetic phase increases and the residual magnetic flux density decreases significantly, so it is desirable that it be lower than that. boCo is effective in raising the Curie point of a water-based magnet, and the temperature characteristics of the magnet are also improved accordingly. . Basically KeCobaR
2Fe,, the 7g site of phase B was replaced with R, (PaCo
)1. As the added g hz increases, an rrav g s phase called R (FeOo) is formed, resulting in a decrease in coercive force. For this reason, the appropriate amount to add is 50w and h to the baby.

klはzhang Maocaiら(Zhanq Ma
ocas 、 MaDoging 、 :Jiang 
Xtuling and Liu EJhigiang
 。
kl was developed by Zhang Maocai et al.
ocas, MaDoging, :Jiang
Xturing and Liu EJhigiang
.

proceeding  of  the  Bth 
 工nternational  Worksんopo
n Rare−F、arth Magtutts (1
985) P、 541  )によって示されているよ
うに保磁力増加に効果htある。
proceeding of the Bth
International Works opo
n Rare-F,arth Magtutts (1
985) P, 541) has the effect of increasing coercive force.

しかしAtは非磁性元素であるため、その添加量が増す
と残留磁束密度が低下してしま5ので15原子チまでの
添加が望ましい。
However, since At is a non-magnetic element, as the amount of At is increased, the residual magnetic flux density decreases5, so it is desirable to add up to 15 atoms.

本発明の磁石用合金粉末は、ガスアトマイズ法を用いて
作られるのでその粉末は広い粒度分布を持っている。そ
してその粒径忙て依存して冷却速度/l”−異なりその
ために粉末の微細組織も変化している。本発明の発明者
らによる特碩昭61−29501に示される様にこの合
金組成においては鋳造法においても熱処理によって高保
磁力を得ることができる。そこで1粒子が結晶相で構成
され、アモルファス相がほとんど見られないような大き
な粒径の粉末に対しては、1000℃、24時間という
ような高温で長時間のアニールを施こし、その保磁力を
増加させろ。また、アモルファス相を含むよちな小さな
粒径の粉末に対しては700’C110分というような
低温で短時間の7ニールを施して高保磁力を得る。この
場合、アモルファス相を完全に結晶化させないことが、
高稼磁力のポイントになるので注意しなければならない
Since the alloy powder for magnets of the present invention is produced using a gas atomization method, the powder has a wide particle size distribution. The cooling rate/l'' differs depending on the particle size, and the fine structure of the powder changes accordingly. A high coercive force can also be obtained by heat treatment in the casting method.Therefore, for powders with large particle sizes where each particle is composed of a crystalline phase and almost no amorphous phase can be seen, it is possible to obtain a high coercive force by heat treatment at 1000℃ for 24 hours. To increase the coercive force, apply annealing at a high temperature for a long time such as to obtain a high coercive force.In this case, it is important not to completely crystallize the amorphous phase.
This is the point of high operating magnetic force, so you must be careful.

なお、上述の様に粒度別に熱処理され高保磁力を有する
声うKなった合金粉末はまた混合されて樹脂ボンド磁石
用合金粉末として使用されるわけであるが、その磁石成
形性の問題から最大粒径としてけ200μm程度が要求
されるのでガスアトマイズの条件として粒径h″−20
0μmぐらいまでになることh;望ましい。焼結磁石用
合金粉末としては、粒径が小さいことが要求されるので
7トマイズの条件も粒径が小さい粉末がで磁石ように調
整されろ。
As mentioned above, the high coercive force alloy powder that has been heat-treated according to particle size is also mixed and used as alloy powder for resin bonded magnets, but due to the problem of magnet formability, the largest particle Since a diameter of about 200 μm is required, the particle diameter h″-20 is required as a condition for gas atomization.
It is desirable that the thickness be down to about 0 μm. Since the alloy powder for sintered magnets is required to have a small particle size, the conditions for 7 totomization must be adjusted so that the powder has a small particle size.

〔実施例〕〔Example〕

以下1本発明について実施例に基づいて詳細に親切す乙
The following is a detailed description of the present invention based on examples.

(実施例1) まず、所望の組成の合金をげ雰囲気中で高周波溶解し、
Arガスによる超音速ガスアトマイズを行なって、20
0μm以下の球形粉末を作製した。この粉末を気流分級
機を用いて40μmの以上と以下の2種類に分級し、4
0μm以上の粉末に対しては。
(Example 1) First, an alloy of a desired composition is melted by high frequency in an atmosphere,
By performing supersonic gas atomization using Ar gas, 20
A spherical powder of 0 μm or less was produced. This powder was classified into two types, 40 μm or more and 40 μm or less, using an air classifier.
For powders larger than 0 μm.

1000℃×24時間のアニール処理を40μm以下の
粉末に対しては700℃×10分のアニール処理をAr
中で行ない、再び混合し、エボ千シ樹脂2.5wtc4
と混合し、15KOg の磁場中で成形した後に150
゛Cで焼成して樹脂ポンド磁石と成しその磁気性能を測
定し之。
Annealing at 1000°C for 24 hours, and for powders smaller than 40 μm, annealing at 700°C for 10 minutes in Ar
Mix again and add 2.5 wtc4 Evo Chishi resin.
After mixing and molding in a 15KOg magnetic field,
A resin pound magnet was made by firing at C and its magnetic performance was measured.

第1表に上記の工程によって作製した種々の磁石用合金
粉末の組成を示す。この時、]′l′eとCOとαは9
99チ以上の純度のもの、Bとしては7工ロボロン合金
(16,32チB、0.15% A1..0.68憾F
!?:、 0.1240  、残部Fe)、希土類金属
と12.では純度95チ(不純物は主として他の希土類
金稿)のものを使用した。
Table 1 shows the compositions of various alloy powders for magnets produced by the above steps. At this time, ]'l'e, CO, and α are 9
Purity of 99% or higher, B is 7-engineered roboron alloy (16.32% B, 0.15% A1..0.68% F)
! ? :, 0.1240, balance Fe), rare earth metal and 12. In this case, we used one with a purity of 95% (the impurities were mainly other rare earth metals).

第2表には第1表に示し比組成粉末を前述の方法で樹脂
ボンド化し九時の磁気性能を示す。ha場醍向の効果が
アモルファス粉末の場合と異なって現われ、明らかに高
い磁気性能が得られた。
Table 2 shows the magnetic performance at 9 o'clock when the powder with the specific composition shown in Table 1 was resin-bonded by the method described above. The HA field effect appeared differently from that of amorphous powder, and clearly high magnetic performance was obtained.

第1表 第2表 (試料/%23,24はそれぞれ試料417.21の組
成の粉末を粒度の区別をせず1c1000’cX24時
間の熱処理を施した場合) (実施例2) 第1表に示した組成のうち42.10.17.21の4
種類の粉末をスタンプミルにより80メツシエアンダー
まで粗粉砕し1次にボールミル粉砂な4時間行ない、平
均粒径4μ毒の微粉末を得之。この微粉末を田界中で配
向させ、2t/cm”の圧力で成形し、  11(jO
℃×2時間の焼結をAf中で行ない、その後700℃×
1 時間の時効処理を施した。これによって得られた焼
結磁石の磁気性能を第3表に示す。
Table 1 Table 2 (Samples/% 23 and 24 are cases where powders with the composition of sample 417.21 were heat-treated for 1 c 1000' c x 24 hours without distinguishing the particle size) (Example 2) Table 1 Of the compositions shown, 42.10.17.21
The various types of powder were coarsely pulverized to 80 mesh under using a stamp mill, and then subjected to ball milling for 4 hours to obtain a fine powder with an average particle size of 4 μm. This fine powder was oriented in Takai, molded at a pressure of 2t/cm'', and 11(jO
Sintering was carried out in Af for 2 hours at 700°C.
Aging treatment was performed for 1 hour. The magnetic performance of the sintered magnet thus obtained is shown in Table 3.

第3表 〔発明の効果〕 以上述べてきたように本発明によれば、ガスアトマイズ
粉末の粒度に応じ比熱処理を施すことにより粉末の磁気
特性を高めることが可能となり、特に樹脂結合磁石にこ
の粉末を用い次場合にその磁気性能hZ従来の単純熱処
理あるいけアモルファス粉末のものに比べて明らかに増
加するという効果がある。ま之焼結磁石に用いた場合に
もその磁気性能は十分に高く、低コストで樹脂ポンド用
にも焼結法にも使用できる磁石合金用粉末として工業的
に宵月なものである。
Table 3 [Effects of the Invention] As described above, according to the present invention, it is possible to improve the magnetic properties of the powder by subjecting the gas atomized powder to specific heat treatment according to the particle size. When using HZ, the magnetic performance hZ has the effect of clearly increasing compared to that of conventional simple heat-treated amorphous powder. Even when used in sintered magnets, its magnetic performance is sufficiently high, and it is industrially useful as a powder for magnet alloys that can be used for both resin ponds and sintering at low cost.

以  上that's all

Claims (1)

【特許請求の範囲】[Claims] (1)R(RはYを含む希土類元素の少なくとも一種以
上)8〜30原子%、B(ボロン)2〜28原子%、C
o(コバルト)50原子%以下、Al(アルミニウム)
15原子%以下、及び残部がFe(鉄)及びその他の製
造上不可避な不純物からなる合金を溶解し、ガスアトマ
イズ法によって微粒子化させた合金粉末を分級し、その
粒径範囲により熱処理条件を変えてアニールを施したこ
とを特徴とする磁石用合金粉末。
(1) R (R is at least one kind of rare earth element including Y) 8 to 30 atom%, B (boron) 2 to 28 atom%, C
o (cobalt) 50 atomic% or less, Al (aluminum)
An alloy consisting of 15 atomic % or less, the balance being Fe (iron) and other impurities unavoidable in manufacturing, is melted, the alloy powder is made into fine particles by gas atomization, and the alloy powder is classified, and the heat treatment conditions are changed depending on the particle size range. An alloy powder for magnets that is characterized by being annealed.
JP62050582A 1987-03-05 1987-03-05 Alloy powder for magnet Pending JPS63216307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050582A JPS63216307A (en) 1987-03-05 1987-03-05 Alloy powder for magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050582A JPS63216307A (en) 1987-03-05 1987-03-05 Alloy powder for magnet

Publications (1)

Publication Number Publication Date
JPS63216307A true JPS63216307A (en) 1988-09-08

Family

ID=12862972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050582A Pending JPS63216307A (en) 1987-03-05 1987-03-05 Alloy powder for magnet

Country Status (1)

Country Link
JP (1) JPS63216307A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994109A (en) * 1989-05-05 1991-02-19 Crucible Materials Corporation Method for producing permanent magnet alloy particles for use in producing bonded permanent magnets
JPH03214604A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH03214603A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994109A (en) * 1989-05-05 1991-02-19 Crucible Materials Corporation Method for producing permanent magnet alloy particles for use in producing bonded permanent magnets
JPH03214604A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH03214603A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet

Similar Documents

Publication Publication Date Title
US5963774A (en) Method for producing cast alloy and magnet
JPH06346101A (en) Magnetically anisotropic powder and its production
JPH03236202A (en) Sintered permanent magnet
JPS6393841A (en) Rare-earth permanent magnet alloy
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH06207203A (en) Production of rare earth permanent magnet
US4099995A (en) Copper-hardened permanent-magnet alloy
JPH06207204A (en) Production of rare earth permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPH0146575B2 (en)
JPH0146574B2 (en)
JPH06112019A (en) Nitride magnetic material
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPS6037602B2 (en) Permanent magnet material and its manufacturing method
JPH08148315A (en) Production of rare earth magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JPS63216308A (en) Alloy powder for permanent magnet
JPH08148317A (en) Production of rare earth magnet
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPH01146308A (en) Manufacture of rare-earth magnet
JPH05339683A (en) Permanent matnet alloy and its manufacture
JPS6347907A (en) Manufacture of rare earth magnet
JPS6230845A (en) Production of anisotropic permanent magnet material