JPH024942A - Permanent magnetic alloy - Google Patents

Permanent magnetic alloy

Info

Publication number
JPH024942A
JPH024942A JP1029610A JP2961089A JPH024942A JP H024942 A JPH024942 A JP H024942A JP 1029610 A JP1029610 A JP 1029610A JP 2961089 A JP2961089 A JP 2961089A JP H024942 A JPH024942 A JP H024942A
Authority
JP
Japan
Prior art keywords
alloy
weight
rare earth
permanent magnet
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1029610A
Other languages
Japanese (ja)
Other versions
JPH0583627B2 (en
Inventor
Akihiko Tsutai
津田井 昭彦
Isao Sakai
勲 酒井
Tetsuhiko Mizoguchi
徹彦 溝口
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1029610A priority Critical patent/JPH024942A/en
Publication of JPH024942A publication Critical patent/JPH024942A/en
Publication of JPH0583627B2 publication Critical patent/JPH0583627B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title alloy having high coercive force and energy product value by incorporating specific amounts of Ga and O2 into a permanent magnetic alloy constituted of an Fe-rare earth-B alloy. CONSTITUTION:At the time of manufacturing an Fe-rare earth-B magnetic alloy, by weight, <13% Ga (where <=90% Ga can be substituted by Al) and 0.005 to 0.03% O2 are incorporated into an alloy having the compsn. contg. Y and at least one kind among rare earth elements, particularly 10 to 40% Nd, 1 to 8% B and the balance Fe and contg., at need, <=30% Co. After that, the molten metal of the alloy is cooled in an Ar gas atmosphere, is soldified and is thereafter finely pulverized. The fine powder is subjected to press forming in a magnetic field, is thereafter sintered in an oxidizing atmosphere, is rapidly cooled, is furthermore subjected to aging treatment in vacuum and is thereafter rapidly cooled to the room temp. The permanent magnetic alloy having improved coercive force by the addition of Ga, in which the fine pulverization of the material alloy can be facilitated by the addition of O2, and having excellent energy product value by the equalization of the grain size can be obtd.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は永久磁石合金に関し、特に希土類鉄系の永久磁
石の製造に使用されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Field of Application) The present invention relates to a permanent magnet alloy, and is particularly used for producing rare earth iron permanent magnets.

(従来の技術) 従来から知られている希土類磁石としては、RCo  
型、R(Co、  Cu、  F e、  M) 17
型(ただし、RはSm、Ce等の希土類元素、MはTi
、Zr、Hf等の遷移元素)等の希土類コノくルト系の
ものが知られている。しかしながら、この系の永久磁石
では、最大エネルギー積か30M G Oe程度であり
、また比較的高価なCoを大量に使用しなければならな
いという問題点があった。
(Prior art) As a conventionally known rare earth magnet, RCo
Type, R (Co, Cu, Fe, M) 17
type (where R is a rare earth element such as Sm or Ce, M is Ti
, transition elements such as Zr, Hf, etc.) are known. However, this type of permanent magnet has the problem that the maximum energy product is about 30 M G Oe and that a large amount of relatively expensive Co must be used.

近年、上記希土類コバルト系の代わりに、比較的安価な
希土類鉄系の永久磁石が研究されている(特開昭59−
46008号、特開昭59−647333号等)。
In recent years, instead of the above-mentioned rare earth cobalt-based permanent magnets, relatively inexpensive rare-earth iron-based permanent magnets have been studied (Japanese Unexamined Patent Publication No. 1983-1999).
No. 46008, JP-A-59-647333, etc.).

これはNd−Fe−B系等の構成元素からなるものであ
り、Fe使用によるコスト低下に加え、最大エネルギー
積が30MGOeを超えるものが得られるため非常に有
効な材料である。
This is made of constituent elements such as Nd-Fe-B, and is a very effective material because it not only reduces cost by using Fe, but also provides a maximum energy product exceeding 30 MGOe.

しかしながら、この希土類鉄系永久磁石は製造条件によ
り磁石特性、特に保磁力が3000eから10kOeを
超えるものまで現われるというように大きなバラツキを
示し、安定した磁石特性を得ることができないという問
題点がある。このことは工業上非常に重要な問題であり
、再現性よく安定な磁石特性を有する希土類鉄系の永久
磁石を得ることができれば、その実用性は大きく向上す
る。
However, this rare earth iron-based permanent magnet exhibits large variations in magnetic properties, particularly coercive force, ranging from 3000e to over 10 kOe depending on manufacturing conditions, and has the problem that stable magnetic properties cannot be obtained. This is a very important problem industrially, and if rare earth iron permanent magnets with stable magnetic properties with good reproducibility can be obtained, their practicality will be greatly improved.

また、高保磁力かつ高(BH)   の要求は強ax く、より高性能に向けて研究が進められている。In addition, the requirements for high coercive force and high (BH) are strong Research is progressing toward higher performance.

(発明が解決しようとする問題点) 本発明は以上の点を考慮してなされたものであり、高い
保磁力、高い(BH)   等の良好なl1aX 磁石特性を有する永久磁石を再現性良く得ることができ
る永久磁石合金を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made in consideration of the above points, and provides a permanent magnet having good l1aX magnetic properties such as high coercive force and high (BH) with good reproducibility. The purpose is to provide a permanent magnet alloy that can

[発明の構成コ (問題点を解決するための手段及び作用)本発明者らは
上記問題点を解消すべく鋭意研究を重ねた結果、希土類
鉄系の永久磁石においてはGaの添加及び酸素重量が磁
石特性、特に保磁力が顕著な影響を与えるという事実を
見出した。
[Structure of the Invention (Means and Effects for Solving the Problems) The inventors of the present invention have conducted extensive research to solve the above problems, and have found that rare earth iron permanent magnets do not require the addition of Ga or the weight of oxygen. found that magnetic properties, especially coercive force, have a significant effect.

本願発明はこれに基づいてなされたものであり、10〜
40重量%のR(ただし、RはY及び希土類元素から選
ばれた少なくとも1種)、0.1〜8重量%の硼素、1
3重量%以下のガリウム、0.005〜0.03重量%
の酸素及び不可避的不純物を含有し、残部が主として鉄
からなる組成を有することを特徴とする永久磁石合金で
ある。
The present invention was made based on this, and 10-
40% by weight of R (R is at least one selected from Y and rare earth elements), 0.1 to 8% by weight of boron, 1
Gallium up to 3% by weight, 0.005-0.03% by weight
It is a permanent magnetic alloy characterized by containing oxygen and unavoidable impurities, with the remainder mainly consisting of iron.

本願発明において、各元素の含有率を上記範囲に限定し
たののはそれぞれ以下のような理由による。
In the present invention, the content of each element is limited to the above range for the following reasons.

Rが10重量%未満ではiHcの増大が得られず、40
重量%を超えるとBrが低下するため、いずれの場合で
も(BH)   が低下してしまう。
If R is less than 10% by weight, no increase in iHc can be obtained;
If the weight percentage is exceeded, Br decreases, and therefore (BH) decreases in either case.

max したがって、Rの含有率は10〜40重量%とする。好
ましくは25〜35重量%である。なお、希土類元素の
うちでもNd及びPrは特に高い(BH)maxを得る
のに有効な元素であり、Rとしてこの2元素の−うち少
なくとも1種を必須元素として含有することが好ましい
。このNd、PrのRffi中の割合は70%以上(R
ffi全部でもよい)であることが望ましい。特にNd
がR全体の90重量%以上であることが好ましい。
max Therefore, the content of R is set to 10 to 40% by weight. Preferably it is 25 to 35% by weight. Note that among the rare earth elements, Nd and Pr are particularly effective elements for obtaining a high (BH)max, and it is preferable that R contains at least one of these two elements as an essential element. The proportion of Nd and Pr in Rffi is 70% or more (R
ffi) is desirable. Especially Nd
It is preferable that R accounts for 90% by weight or more of the entire R.

硼素(B)が0,1重皿%未満ではiHcが低下し、8
重量%を超えるとBrの低下が顕著となる。
When boron (B) is less than 0.1%, iHc decreases and 8
When the weight percentage is exceeded, the Br decreases significantly.

よって、硼素の含有率は0.1〜8重量%とする。Therefore, the boron content is set to 0.1 to 8% by weight.

高保磁力化のためには1.2重量%以上であることが好
ましい。なお、Bの一部をC,N、S i、P。
In order to obtain a high coercive force, the content is preferably 1.2% by weight or more. In addition, a part of B is C, N, Si, P.

Ge等で置換してもよい。これにより焼結性の向上、ひ
いてはBr、(BH)   の増大を図るこmax とができる。この場合の置換量はBの80%程度までと
することが望ましい。
It may be replaced with Ge or the like. This makes it possible to improve the sinterability and, in turn, to increase Br and (BH). In this case, it is desirable that the amount of substitution is up to about 80% of B.

ガリウム(Ga)は保磁力(iHc)の向上に有効な元
素である。少量の添加で効果があるが、0.1重量%以
上、好ましくは0.2重量%以上でiHcの増大か顕著
である。13重量%を超えるとBrの低下が顕著となる
。よって、ガリウムの含有率は13重量%以下とする。
Gallium (Ga) is an element effective in improving coercive force (iHc). Although it is effective when added in small amounts, the iHc increases significantly when it is 0.1% by weight or more, preferably 0.2% by weight or more. If it exceeds 13% by weight, the Br decreases significantly. Therefore, the content of gallium is set to 13% by weight or less.

このGaの90重置火までをAAで置換することが可能
である。
It is possible to replace up to 90 layers of Ga with AA.

所定の組成の永久磁石合金を用いて永久磁石を製造する
際の酸素量は重要である。酸素が0.005重量%未満
では永久磁石の製造時に要求される2〜10μm程度の
粉砕粉が困難となる。このため、粒径が不均一となり磁
場中成形時の配向性が悪くなり、Brの低下、ひいては
(BH)   の低下ax をもたらす。また、製造コストも大幅に上昇する。
The amount of oxygen is important when manufacturing a permanent magnet using a permanent magnet alloy with a predetermined composition. If the oxygen content is less than 0.005% by weight, it will be difficult to produce pulverized powder of about 2 to 10 μm, which is required in the production of permanent magnets. As a result, the grain size becomes non-uniform, resulting in poor orientation during molding in a magnetic field, resulting in a decrease in Br and, in turn, a decrease in (BH) ax . Furthermore, manufacturing costs also increase significantly.

一方、0.03重量%を超えると保磁力が低下し、高(
BH)   を得ることができない。よって、永■aX 久磁石合金中の酸素の含有率は0.005〜0.03重
量%が好ましい。焼結後の永久磁石中においては若干増
量することがある。
On the other hand, if it exceeds 0.03% by weight, the coercive force decreases and high (
BH) cannot be obtained. Therefore, the oxygen content in the permanent magnet alloy is preferably 0.005 to 0.03% by weight. The amount may increase slightly in the permanent magnet after sintering.

永久磁石合金中における酸素の働きは明らかではないも
のの、以下のような振舞により高性能の永久磁石を得る
ことができるものと推測される。
Although the function of oxygen in a permanent magnet alloy is not clear, it is presumed that a high-performance permanent magnet can be obtained by the following behavior.

すなわち、溶融合金中の酸素の一部は主成分元素である
R、Fe原子と結合して酸化物となり、残りの酸素とと
もに合金結晶粒界等に偏析して存在していると考えられ
る。R−Fe−B系磁石が微粒子磁石であり、その保磁
力が主として逆磁区発生磁場により決定されることを考
慮すると、酸化物、偏析等の欠陥が多い場合、これらが
逆磁区発生源として作用することにより保磁力が低下し
てしまうと考えられる。また、欠陥が少ない場合は粒界
破壊等が起りにくくなるため、粉砕性が劣化すると予想
される。
That is, it is considered that a part of the oxygen in the molten alloy combines with R and Fe atoms, which are the main component elements, to form an oxide, and exists segregated at alloy grain boundaries and the like along with the remaining oxygen. Considering that R-Fe-B magnets are fine particle magnets and their coercive force is mainly determined by the magnetic field that generates reversed magnetic domains, if there are many defects such as oxides and segregation, these may act as sources of reversed magnetic domains. It is thought that this causes the coercive force to decrease. Furthermore, if there are few defects, grain boundary fracture etc. will be less likely to occur, so it is expected that the crushability will deteriorate.

永久磁石合金中の酸素量は高純度の原料を用いるととも
に、原料合金溶融時の炉中酸素量を厳密に調節すること
により制御することができる。
The amount of oxygen in the permanent magnet alloy can be controlled by using high-purity raw materials and by strictly adjusting the amount of oxygen in the furnace during melting of the raw material alloy.

本願発明合金を構成する上記の各元素以外の残部は主と
して鉄であるが、Feの一部をCo。
The balance other than the above-mentioned elements constituting the alloy of the present invention is mainly iron, and some of the Fe is Co.

AJ7.Cr、Ti、Zr、Hf、Nb、Ta、V。AJ7. Cr, Ti, Zr, Hf, Nb, Ta, V.

M n −、M o XW s Ru −、Rh % 
Re −、P d % OS %1r等で置換すること
もできる。その量は30重量%程度までであり、多すぎ
ると(BH)   のax 低下等特性劣化の要因となる。特にCoはキュリー温度
上昇に有効であり、永久磁石中では1〜30重二%置火
に10〜20重二%の置火が好ましい。その他年可避的
不純物が含まれることはいうまでもない。
Mn-, MoXWsRu-, Rh%
It can also be replaced with Re −, P d % OS % 1r, etc. The amount is up to about 30% by weight, and if it is too large, it will cause deterioration of properties such as a decrease in ax of (BH). In particular, Co is effective in raising the Curie temperature, and in a permanent magnet, it is preferably set at 1 to 30 times 2%, or preferably 10 to 20 times 2%. It goes without saying that other inevitable impurities are also included.

本発明合金を用いて各種の方法で永久磁石を製造するこ
とができる。例えば本発明組成を有する永久磁石を鋳造
により得て熱処理する方法、粉砕粉をバインダーで結合
するボンド磁石にする方法。
Permanent magnets can be manufactured by various methods using the alloy of the present invention. For example, a method in which a permanent magnet having the composition of the present invention is obtained by casting and then heat treated, and a method in which pulverized powder is bonded with a binder to form a bonded magnet.

粉砕粉を焼結する焼結磁石にする方法等が挙げられる。Examples include a method of sintering pulverized powder into a sintered magnet.

特に酸素量が0.005〜0.03重量%の永久磁石合
金を用いた場合は良好である。以下に焼結方法を用いた
場合について説明する。
Particularly good results are obtained when a permanent magnet alloy with an oxygen content of 0.005 to 0.03% by weight is used. The case where the sintering method is used will be explained below.

まず、所定量のFe、R5Ga、Bを含有する永久磁石
合金を製造する。次に、ボールミル等の粉砕手段を用い
て永久磁石合金を粉砕する。この際、後工程の成形と焼
結を容易にし、かつ磁気特性を良好にするために、粉末
の平均粒径が2〜10μmとなるように微粉砕すること
が望ましい。
First, a permanent magnet alloy containing predetermined amounts of Fe, R5Ga, and B is manufactured. Next, the permanent magnet alloy is crushed using a crushing means such as a ball mill. At this time, in order to facilitate molding and sintering in the subsequent steps and to improve magnetic properties, it is desirable to pulverize the powder so that the average particle size is 2 to 10 μm.

粒径が10μmを超えるとiHcの低下をもたらし、一
方2μm未満にまで粉砕することは困難であるうえに、
Br等の磁気特性の低下を招く。
If the particle size exceeds 10 μm, the iHc decreases, and on the other hand, it is difficult to grind the particles to less than 2 μm.
This causes deterioration of magnetic properties such as Br.

次いで、微粉砕された永久磁石合金粉末を所望の形状に
プレス成形する。成形の際には通常の焼結磁石を製造す
るとと同様に、例えば15 k Oe程度の磁場を印加
し、配向処理を行なう。つづいて、例えば1000〜1
140℃、0.5〜5時間程度の条件で成形体を焼結す
る。この焼結は合金中の酸素濃度を増加させないように
、Arガス等の不活性ガス雰囲気中、もしくは真空中で
行なうことが望ましい。
Next, the finely pulverized permanent magnet alloy powder is press-molded into a desired shape. At the time of molding, a magnetic field of, for example, about 15 k Oe is applied to perform orientation treatment in the same way as when manufacturing a normal sintered magnet. Next, for example, 1000 to 1
The molded body is sintered at 140° C. for about 0.5 to 5 hours. This sintering is desirably carried out in an inert gas atmosphere such as Ar gas or in a vacuum so as not to increase the oxygen concentration in the alloy.

こうして得られた焼結体に必要に応じ550〜750℃
の温度範囲で0.1〜10時間程度の時効処理を行なう
The sintered body thus obtained is heated to 550 to 750°C as necessary.
Aging treatment is performed at a temperature range of 0.1 to 10 hours.

時効処理温度が550℃未満又は750℃を超えると、
iHcの減少又は角形性の劣化を招き、磁気特性は大1
1]に低下する。よって、時効処理温度は550〜75
0℃の範囲が好ましい。
When the aging treatment temperature is less than 550°C or more than 750°C,
This leads to a decrease in iHc or deterioration of squareness, and the magnetic properties are
1]. Therefore, the aging treatment temperature is 550 to 75
A range of 0°C is preferred.

以上のような方法よれば、B r、i He。According to the above method, B r, i He.

(BH)   等の磁気特性に優れた永久磁石を特ax 性のバラツキを招くことなく、再現性よく製造すること
かできる。
Permanent magnets such as (BH) with excellent magnetic properties can be manufactured with good reproducibility without causing variations in the ax properties.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1 所定の組成で原料を混合し、Ar雰囲気中で水冷銅ボー
トを用いてアーク溶解した。得られた磁石合金(酸素濃
度0.02wt%)をAr雰囲気中で粗粉砕し、更にジ
ェットミルにより約3.0μmの粒度まで微粉砕した。
Example 1 Raw materials were mixed with a predetermined composition and arc melted using a water-cooled copper boat in an Ar atmosphere. The obtained magnetic alloy (oxygen concentration: 0.02 wt%) was coarsely ground in an Ar atmosphere, and further finely ground to a particle size of about 3.0 μm using a jet mill.

この微粉末を所定の押型に充填して201c Oeの磁
界を印加しつつ、2ton/c−の圧力で圧縮成形した
。この成形体をAr雰囲気中、1020〜1120で1
h焼結し、室温まで急冷した後、真空中で550〜75
0℃・3〜10時間時効処理を行ない、室温まで急冷し
た。
This fine powder was filled into a predetermined mold and compression molded at a pressure of 2 ton/c- while applying a magnetic field of 201 c Oe. This molded body was heated to 1 at 1020 to 1120 in an Ar atmosphere.
h After sintering and quenching to room temperature, the temperature is 550-75 in vacuum.
Aging treatment was performed at 0° C. for 3 to 10 hours, and then rapidly cooled to room temperature.

その結果を第1表に示す。The results are shown in Table 1.

以下余白 第  1 表 実施例2 組成がネオジウム30.8重量%、ボロン0,86重置
火、ガリウム1.0重量%、残部鉄となるように各元素
を配合し、2 kgをアルゴン雰囲気下、水冷銅ボート
中でアーク溶融した。その際、炉中の酸素量を厳密に調
節することにより、調整合金中の酸素を増減させた。
Table 1 Example 2 Each element was mixed so that the composition was 30.8% by weight of neodymium, 0.86% by weight of boron, 1.0% by weight of gallium, and the balance was iron, and 2 kg was placed in an argon atmosphere. , arc melted in a water-cooled copper boat. At that time, the amount of oxygen in the prepared alloy was increased or decreased by strictly controlling the amount of oxygen in the furnace.

得られた永久磁石合金をAr雰囲気中で粗粉砕し、更に
ステンレスボールミルにて3〜5μmの粒径まで微粉砕
した。
The obtained permanent magnet alloy was coarsely ground in an Ar atmosphere, and further finely ground to a particle size of 3 to 5 μm using a stainless steel ball mill.

この微粉砕を所定の押し型に充填して200000eの
粒界を印加しつつ、2ton/c♂の圧力で圧縮成形し
た、得られた成形体をアルゴン雰囲気中、1080℃で
1時間焼結し、室温まで急冷した。その後、真空中、6
00℃で1時間時効処理を行ない、室温まで急冷した。
This finely pulverized material was filled into a predetermined pressing die and compression molded at a pressure of 2 tons/c♂ while applying a grain boundary of 200,000 e.The obtained molded body was sintered at 1,080°C for 1 hour in an argon atmosphere. , and quenched to room temperature. Then in vacuum, 6
Aging treatment was performed at 00°C for 1 hour, and then rapidly cooled to room temperature.

得られた永久磁石について、永久磁石合金中の酸素濃度
と、粗粉を3〜5μmの粒度まで微粉砕するに必要な時
間、残留磁束密度(Br)、保磁力(iHc)及び最大
エネルギー積((BH)   )ax との関係を第1図に示す。
Regarding the obtained permanent magnet, the oxygen concentration in the permanent magnet alloy, the time required to pulverize coarse powder to a particle size of 3 to 5 μm, residual magnetic flux density (Br), coercive force (iHc), and maximum energy product ( The relationship with (BH) )ax is shown in FIG.

第1図から明らかなように、合金の粉砕性及び永久磁石
の磁石特性は合金中の酸素濃度に大きく依存している。
As is clear from FIG. 1, the grindability of the alloy and the magnetic properties of the permanent magnet are largely dependent on the oxygen concentration in the alloy.

すなわち、酸素濃度が0.005重量%未満では粉砕性
が極端に悪くなり、この結果磁場中成形時の配向性も悪
くなるためBrか低下している。一方、酸素濃度が0.
03重量%を超えると保磁力が極端に低下している。
That is, if the oxygen concentration is less than 0.005% by weight, the crushability becomes extremely poor, and as a result, the orientation during molding in a magnetic field also becomes poor, resulting in a decrease in Br. On the other hand, the oxygen concentration is 0.
If it exceeds 0.3% by weight, the coercive force is extremely reduced.

実施例3 実施例2と同様な方法により、組成がネオジウム31.
0重量%、ボロン0,84重量%、コバルト14.6重
量%、ガリウム1.1重皿%、酸素0.03重量%、残
部鉄からなる組成を有する永久磁石合金を得た。
Example 3 By the same method as in Example 2, a composition of neodymium 31.
A permanent magnet alloy having a composition of 0% by weight, 0.84% by weight of boron, 14.6% by weight of cobalt, 1.1% by weight of gallium, 0.03% by weight of oxygen, and the balance iron was obtained.

得られた永久磁石合金を用い実施例1と同様にして粉砕
、圧縮成形、焼結を行なった。
The obtained permanent magnet alloy was pulverized, compression molded, and sintered in the same manner as in Example 1.

焼結後の試料を300〜900℃の各温度で1時間時効
処理した後、急浴して保磁力を調べた。
After the sintered samples were aged for 1 hour at each temperature of 300 to 900°C, they were bathed in a quick bath and the coercive force was examined.

この結果を第2図に示す。The results are shown in FIG.

第3図から明らかなように、時効温度は保磁力に大きく
影響し、550〜750℃で最も優れた特性が得られる
ことがわかる。
As is clear from FIG. 3, the aging temperature greatly affects the coercive force, and it can be seen that the best characteristics are obtained at 550 to 750°C.

希土類鉄系永久磁石はN d  F e 14Bの正方
晶系の強磁性Feリッチ相を主相とし、その他Nd F
e 1Nd95Fe5等のR成分を80重量%以上含有
する立方晶系の非磁性Rリッチ相、Nd2Fe7B6等
の正方品の非磁性Bリッチ相、更に酸化物等を含有する
ことか知られている。本願発明のガリウムはRリッチ相
に濃縮して存在しているようである。
Rare earth iron permanent magnets have a tetragonal ferromagnetic Fe-rich phase of NdFe14B as the main phase, and other NdF
It is known to contain a cubic non-magnetic R-rich phase containing 80% by weight or more of an R component such as e1Nd95Fe5, a tetragonal non-magnetic B-rich phase such as Nd2Fe7B6, and further oxides. The gallium of the present invention appears to be present in a concentrated manner in the R-rich phase.

[発明の効果] 以上詳述した如く本発明によれば高い保磁力、(BH)
   を有する希土類鉄系の永久磁石を安aX 定して得ることができ、工業的価値が極めて大なるもの
である。
[Effects of the Invention] As detailed above, according to the present invention, high coercive force (BH)
It is possible to stably obtain a rare earth iron-based permanent magnet having aX, which is of extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の永久磁石における酸素濃度
と、粉砕時間、残留磁束密度、保磁力及び最大エネルギ
ー積との関係を示す特性図、第2図は本発明の実施例2
の永久磁石における時効温度と保磁力との関係を示す特
性図である。
Figure 1 is a characteristic diagram showing the relationship between oxygen concentration, grinding time, residual magnetic flux density, coercive force, and maximum energy product in the permanent magnet of Example 1 of the present invention, and Figure 2 is Example 2 of the present invention.
FIG. 2 is a characteristic diagram showing the relationship between aging temperature and coercive force in a permanent magnet.

Claims (4)

【特許請求の範囲】[Claims] (1)10〜40重量%のR(ただし、RはY及び希土
類元素から選ばれた少なくとも1種)、0.1〜8重量
%の硼素、13重量%以下のガリウム、0.005〜0
.03重量%の酸素及び不可避的不純物を含有し、残部
が主として鉄からなる組成を有することを特徴とする永
久磁石合金。
(1) 10-40% by weight of R (R is at least one selected from Y and rare earth elements), 0.1-8% by weight boron, 13% by weight or less gallium, 0.005-0
.. 1. A permanent magnetic alloy characterized in that it contains 0.3% by weight of oxygen and unavoidable impurities, with the remainder mainly consisting of iron.
(2)Coを30重量%以下含有することを特徴とする
特許請求の範囲第1項記載の永久磁石合金。
(2) The permanent magnet alloy according to claim 1, which contains 30% by weight or less of Co.
(3)Gaの90重量%以下をAlで置換することを特
徴とする特許請求の範囲1記載の永久磁石合金。
(3) The permanent magnet alloy according to claim 1, wherein 90% by weight or less of Ga is replaced with Al.
(4)Rの内90重量%以上がNdであることを特徴と
する特許請求の範囲第1項記載の永久磁石合金。
(4) The permanent magnet alloy according to claim 1, wherein 90% by weight or more of R is Nd.
JP1029610A 1989-02-10 1989-02-10 Permanent magnetic alloy Granted JPH024942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029610A JPH024942A (en) 1989-02-10 1989-02-10 Permanent magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029610A JPH024942A (en) 1989-02-10 1989-02-10 Permanent magnetic alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62041364A Division JP2577373B2 (en) 1986-06-12 1987-02-26 Sintered permanent magnet

Publications (2)

Publication Number Publication Date
JPH024942A true JPH024942A (en) 1990-01-09
JPH0583627B2 JPH0583627B2 (en) 1993-11-26

Family

ID=12280836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029610A Granted JPH024942A (en) 1989-02-10 1989-02-10 Permanent magnetic alloy

Country Status (1)

Country Link
JP (1) JPH024942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673508A (en) * 1987-10-08 1994-03-15 Kawasaki Steel Corp Rare earth-transition metal magnetic alloy
WO2002103719A1 (en) * 2001-06-19 2002-12-27 Mitsubishi Denki Kabushiki Kaisha Rare earth element permanent magnet material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221549A (en) * 1984-04-18 1985-11-06 Seiko Epson Corp Rare earth permanent magnet
JPS6139362A (en) * 1984-07-27 1986-02-25 Kanai Hiroyuki Separator for alkaline battery
JPS6213655A (en) * 1986-07-05 1987-01-22 阿部 正志 Method and jig for clamping concrete mold frame
JPS6329610A (en) * 1986-05-01 1988-02-08 ル−ベン マ−ゼル Grilling instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221549A (en) * 1984-04-18 1985-11-06 Seiko Epson Corp Rare earth permanent magnet
JPS6139362A (en) * 1984-07-27 1986-02-25 Kanai Hiroyuki Separator for alkaline battery
JPS6329610A (en) * 1986-05-01 1988-02-08 ル−ベン マ−ゼル Grilling instrument
JPS6213655A (en) * 1986-07-05 1987-01-22 阿部 正志 Method and jig for clamping concrete mold frame

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673508A (en) * 1987-10-08 1994-03-15 Kawasaki Steel Corp Rare earth-transition metal magnetic alloy
JP2553278B2 (en) * 1987-10-08 1996-11-13 川崎製鉄株式会社 Rare earth-transition metal magnet alloy
WO2002103719A1 (en) * 2001-06-19 2002-12-27 Mitsubishi Denki Kabushiki Kaisha Rare earth element permanent magnet material
US7175718B2 (en) 2001-06-19 2007-02-13 Mitsubishi Denki Kabushiki Kaisha Rare earth element permanent magnet material

Also Published As

Publication number Publication date
JPH0583627B2 (en) 1993-11-26

Similar Documents

Publication Publication Date Title
KR101451430B1 (en) Rare earth permanent magnet and its preparation
JPH0216368B2 (en)
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
JPS6393841A (en) Rare-earth permanent magnet alloy
JPS6181606A (en) Preparation of rare earth magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS6348805A (en) Manufacture of rare-earth magnet
JPS6181607A (en) Preparation of rare earth magnet
JPH024942A (en) Permanent magnetic alloy
JP2868062B2 (en) Manufacturing method of permanent magnet
WO2021095630A1 (en) R-fe-b sintered magnet
JP2577373B2 (en) Sintered permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH0568841B2 (en)
JP2002088451A (en) Rare earth magnet and its manufacturing method
JPS61143553A (en) Production of material for permanent magnet
JPH055362B2 (en)
JPH0897022A (en) Manufacture of rare-earth magnet
JPS61227151A (en) Manufacture of permanent magnet alloy and permanent magnet
JPH0472903B2 (en)
JPH08279406A (en) R-tm-b permanent magnet and manufacture thereof
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPH0524226B2 (en)
JPH0547964B2 (en)
JPS5848607A (en) Production of rare earth cobalt magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term