JPS61143553A - Production of material for permanent magnet - Google Patents

Production of material for permanent magnet

Info

Publication number
JPS61143553A
JPS61143553A JP59264875A JP26487584A JPS61143553A JP S61143553 A JPS61143553 A JP S61143553A JP 59264875 A JP59264875 A JP 59264875A JP 26487584 A JP26487584 A JP 26487584A JP S61143553 A JPS61143553 A JP S61143553A
Authority
JP
Japan
Prior art keywords
atomic
permanent magnet
ingot
alloy
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59264875A
Other languages
Japanese (ja)
Other versions
JPH0477066B2 (en
Inventor
Yutaka Matsuura
裕 松浦
Masato Sagawa
佐川 真人
Setsuo Fujimura
藤村 節夫
Hitoshi Yamamoto
日登志 山本
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59264875A priority Critical patent/JPS61143553A/en
Publication of JPS61143553A publication Critical patent/JPS61143553A/en
Publication of JPH0477066B2 publication Critical patent/JPH0477066B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the mateial for a permanent magnet having improved orientative properties of a magner alloy by annealing an alloy ingot mainly composed of rare earth elements, B, and Fe under specific conditions, by crush ing and pulverizing the ingot, and by subjecting the obtained alloy powder to compacting, sintering and heat treatment. CONSTITUTION:The alloy ingot mainly composed of 10-30atomic% R (where R is >=1 kind among rare earth elements contg. Y), 2-28atomic% B, and 65-82atomic% Fe is annealed at 1,000-1,150 deg.C for 0.5-50hr. The ingot is crushed and pulverized to form alloy powder, which is subjected to compacting, sintering and heat treatment to form the material for permanent magnet.

Description

【発明の詳細な説明】 利用産業分野 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種)、B、Feを主成分とする焼結永久磁石材料
の製造方法に係り、合金鋳塊製造時の成分偏析に基づく
磁気特性の劣化を防止して磁石合金の配向性の改善を計
った永久磁石材料の製造方法に関する。
Detailed Description of the Invention Field of Application The present invention relates to a method for manufacturing a sintered permanent magnet material whose main components are R (R is at least one rare earth element including Y), B, and Fe. The present invention relates to a method for producing a permanent magnet material that prevents deterioration of magnetic properties due to component segregation during ingot production and improves the orientation of a magnet alloy.

背景技術 現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石である。
BACKGROUND ART Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets.

近年のコバルトの原料事情の不安定化に伴ない、コバル
トを20〜35wt%含むアルニコ磁石の需要は減り、
鉄の酸化物を主成分とする安価なハードフェライトが磁
石材料の主流を占めるようになった。
As the raw material situation for cobalt has become unstable in recent years, demand for alnico magnets containing 20 to 35 wt% cobalt has decreased.
Inexpensive hard ferrite, whose main component is iron oxide, has come to dominate magnet materials.

一方、希土類コバルト磁石はコバルトを50〜60wt
%も含むうえ、希土類鉱石中にあまり含まれていないシ
を使用するため大変高価であるが、他の磁石に比べて、
磁気特性が格段に高いため、主として小型で付加価値の
高い磁気回路に多用されるようになった。
On the other hand, rare earth cobalt magnets contain 50 to 60wt of cobalt.
It is very expensive because it contains % and is not included in rare earth ores, but it is very expensive compared to other magnets.
Due to its extremely high magnetic properties, it has come to be used mainly in small, high-value-added magnetic circuits.

そこで、本発明者は先に、高価な軸や6を含有しない新
しい高性能永久磁石としてFe−B−R系(RはYを含
む希土類元素のうち少なくとも1種)永久磁石を提案し
た(特願昭57−145072号)。さらに、Fe−B
R系の磁気異方性焼結体からなる永久磁石の温度特性を
改善するために、Feの一部を6で置換することにより
、生成合金のキュリ−点を上昇させて温度特性を改善し
たFs  Co  B−R光磁気異方性焼結体からなる
永久磁石を提案した(特願昭57−166663号)。
Therefore, the present inventor previously proposed a Fe-B-R-based permanent magnet (R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive shafts or 6 (specially (Gan Sho 57-145072). Furthermore, Fe-B
In order to improve the temperature characteristics of a permanent magnet made of an R-based magnetically anisotropic sintered body, some of the Fe was replaced with 6 to raise the Curie point of the resulting alloy and improve the temperature characteristics. We proposed a permanent magnet made of Fs Co BR magneto-optical anisotropic sintered body (Japanese Patent Application No. 166663/1982).

これらの永久磁石は、Rとして陶や円を中心とする資源
的に豊富な軽希土類を用い、Feを主成分として25M
GOe以上の極めて高いエネルギー積を示す、すぐれた
永久磁石である。
These permanent magnets use resource-rich light rare earth materials such as ceramics and circles as R, and 25M magnets with Fe as the main component.
It is an excellent permanent magnet that exhibits an extremely high energy product exceeding GOe.

上記の新規なFe−B−R系、Fe  Co  B  
R系永久磁石を、製造するための出発原料の希土類金属
は、一般に偽還元法、電解法により製造され、例えば、
以下の工程により製造される。
The above novel Fe-B-R system, FeCoB
Rare earth metals as starting materials for producing R-based permanent magnets are generally produced by a pseudo reduction method or an electrolytic method, for example,
It is manufactured by the following steps.

■出発原料として、前記希土類金属、電解鉄、フェロボ
ロン合金あるいはさらに電解6を高周波溶解して鋳塊を
鋳造する。
(2) As a starting material, the rare earth metal, electrolytic iron, ferroboron alloy, or further electrolytic 6 is melted by high frequency to cast an ingot.

■鋳塊をスタンプミルにより粗粉砕後、ボールミルによ
り湿式粉砕して、1.5JJn〜10AMの微細粉とす
る。
(2) After coarsely pulverizing the ingot using a stamp mill, the ingot is wet-pulverized using a ball mill to obtain a fine powder of 1.5 JJn to 10 AM.

■磁界中配向にて成型する。■Mold with orientation in a magnetic field.

■真空中にて焼結後放冷する。■After sintering in vacuum, let it cool.

■Ar雰囲気中にて時効処理する。■Aging treatment in an Ar atmosphere.

上記の如く、この永久磁石用合金粉末は、所要の組成の
鋳塊を機械的粗粉砕及び微粉砕を行なって得られるが、
例えば、Fs−Nd−B鋳塊の場合、その凝固時に組成
偏析が起りやすく、Feや陶の金属相の析出した状態と
なり、このような鋳塊を粉砕して磁界中で配向すると、
これらの析出相により、配向が邪魔され、また鋳塊の鋳
型に接触していた部分は、冷却速度が速いために微細な
結晶粒が生成しやすく、Fe−Nd  B正方晶は結晶
成長方向が磁化容易方向と一致していないため、鋳造合
金を粉砕し、磁界中配向すると、配向方向が不規則な複
数個の結晶粒を粉末中に含むために配向度が低下する問
題があった。
As mentioned above, this alloy powder for permanent magnets is obtained by mechanically crushing and finely crushing an ingot of the desired composition.
For example, in the case of Fs-Nd-B ingots, compositional segregation is likely to occur during solidification, resulting in a state where Fe and ceramic metal phases are precipitated, and when such an ingot is crushed and oriented in a magnetic field,
These precipitated phases hinder the orientation, and the portion of the ingot that was in contact with the mold tends to generate fine crystal grains due to the fast cooling rate, and the crystal growth direction of Fe-NdB tetragonal crystals is Since it does not coincide with the direction of easy magnetization, when the cast alloy is crushed and oriented in a magnetic field, there is a problem that the degree of orientation decreases because the powder contains a plurality of crystal grains with irregular orientation directions.

発明の目的 この発明は、合金鋳塊製造時の成分偏析に基づく磁気特
性の劣化を防止して磁石合金の配向性の改善を計ったF
e  B  R系焼結永久磁石材料の製造方法を目的と
している。
Purpose of the Invention The present invention aims to improve the orientation of a magnetic alloy by preventing deterioration of magnetic properties due to component segregation during production of an alloy ingot.
The purpose of the present invention is to provide a method for manufacturing eBR-based sintered permanent magnet materials.

発明の構成と効果 ゛ この発明は、Fe−BRR系永久磁石合金−境内の成分
偏析防止を目的に種々検討した結果、焼鈍処理を施すこ
とにより、成分偏析防止と結晶粒の粗大化が得られて、
配向度の改善、磁気特性の向上、機械的性質の向上に実
効あることを知見したものである。
Structure and Effects of the Invention ゛As a result of various studies aimed at preventing component segregation within the Fe-BRR permanent magnet alloy, the present invention has revealed that by applying an annealing treatment, component segregation can be prevented and crystal grains can be coarsened. hand,
It was discovered that this method is effective in improving the degree of orientation, magnetic properties, and mechanical properties.

すなわち、この発明は、 R(但しRはYを含む希土類元素のうち少なくとも1種
)10原子%〜30原子%、B2原子%〜28原子%、
Fe65原子%〜82原子%を主成分とする合金鋳塊を
、1000℃〜1150℃で0.5〜50時間の焼鈍処
理を施した後、該鋳塊を粗粉砕、微粉砕し、得られた平
均粒度が0.3〜80ρの合金粉末を、磁場成型後、例
えば、真空中にて900℃〜1200℃で焼結し、その
後350℃〜焼結温度の温度範囲にて熱処理を施すこと
を特徴とする永久磁石材料の製造方法である。
That is, this invention includes: R (wherein R is at least one kind of rare earth elements including Y) 10 atomic % to 30 atomic %, B 2 atomic % to 28 atomic %,
An alloy ingot whose main component is Fe 65 atomic % to 82 atomic % is annealed at 1000° C. to 1150° C. for 0.5 to 50 hours, and then the ingot is coarsely crushed and finely crushed. After forming the alloy powder with an average particle size of 0.3 to 80ρ in a magnetic field, it is sintered in a vacuum at, for example, 900°C to 1200°C, and then heat-treated in a temperature range of 350°C to the sintering temperature. A method for producing a permanent magnet material characterized by:

この発明における永久磁石用合金粉末の限定理由は下記
するとおりである。
The reasons for limiting the alloy powder for permanent magnets in this invention are as follows.

また、この発明において、焼鈍処理温度を1000℃〜
1150℃としたのは、1000℃未満では拡散速度が
非常に遅くなり、結晶粒の粗大化及び偏析解消に多大の
時間を要し、1150℃を越えると、鋳塊が局部的に溶
解し、Faまたは陶の偏析を防止することができないた
めである。
In addition, in this invention, the annealing treatment temperature is 1000°C ~
The reason for setting the temperature to 1150°C is that below 1000°C, the diffusion rate becomes very slow and it takes a long time to coarsen the crystal grains and eliminate segregation. This is because segregation of Fa or ceramic cannot be prevented.

また焼鈍処理時間は、0.5時間未満であると、結晶粒
の粗大化及び偏析解消効果が十分得られなく、50時間
を越えると、偏析防止、結晶粒の粗大化に有効であるが
、量産性が悪いため、0.5〜50時間とする。
In addition, if the annealing treatment time is less than 0.5 hours, the effect of coarsening the crystal grains and eliminating segregation will not be sufficiently obtained, and if the annealing treatment time exceeds 50 hours, it will be effective in preventing segregation and coarsening the crystal grains. Since mass productivity is poor, the time is set at 0.5 to 50 hours.

一般に、希土類コバルト磁石合金の製造において、鋳塊
の溶体化処理が提案(特開昭58−126944号公報
)されているが、希土類コバルト磁石合金鋳塊の溶体化
処理の効果は、R2T+7型化合物(R;希土類元素、
T;遷移金属)において、顕著であり、R2T+7型永
久磁石鋳塊の溶体化処理の目的は、室温で不安定相(R
T7型構造)を形成させることにあり、溶体化処理後、
オイルクエンチあるいは液体窒素中への急冷が必要であ
る。
Generally, in the production of rare earth cobalt magnet alloys, solution treatment of ingots has been proposed (Japanese Unexamined Patent Publication No. 126944/1983), but the effect of solution treatment of rare earth cobalt magnet alloy ingots is (R; rare earth element,
The purpose of solution treatment of R2T+7 type permanent magnet ingots is to transform the unstable phase (R
After solution treatment,
Oil quenching or rapid cooling into liquid nitrogen is required.

しかし、この発明における鋳塊の焼鈍処理は、上記の希
土類コバルト磁石の場合と異なり、低温で安定な化合物
であるRzFII4B化合物の単相状態を得ることにあ
り、上記のごとき焼鈍処理後の急冷は、施してもよいが
必ずしも必要でない。
However, unlike the rare earth cobalt magnet mentioned above, the annealing treatment of the ingot in this invention is to obtain a single phase state of the RzFII4B compound, which is a compound stable at low temperatures, and the rapid cooling after the above annealing treatment is , may be applied, but is not necessarily required.

好ましい実施態様 この発明による製造方法において、出発原料を所要量配
合して、真空ないし不活性ガス雰囲気中で溶解して合金
化し、鋳塊となし、さらにこの発明の特徴である焼鈍処
理を施し、粗粉砕するのがよい。
Preferred Embodiment In the production method according to the present invention, the required amount of starting materials are blended, melted and alloyed in a vacuum or inert gas atmosphere to form an ingot, and then subjected to an annealing treatment, which is a feature of the present invention, It is best to coarsely grind it.

粗粉砕はスタンプミル、ショークラッシャー等の機械的
粉砕で行ない、さらにジェットミル、ボールミル等によ
り微粉砕する。また、微粉砕は不活性ガス雰囲気中で実
施する乾式粉砕あるいはアセトン、トルエン等の有機溶
媒を用いる湿式粉砕によって行なう。
Coarse pulverization is performed by mechanical pulverization using a stamp mill, show crusher, etc., and further fine pulverization is performed using a jet mill, ball mill, etc. Fine pulverization is carried out by dry pulverization in an inert gas atmosphere or wet pulverization using an organic solvent such as acetone or toluene.

微粉砕によって得られる合金粉末の平均粒度は、0.3
−〜80ρであり、すぐれた磁気特性を得るためには、
平均粒度1〜20部の微粉末が好ましく、最も好ましい
のは平均粒度2〜10屡の微粉末である。
The average particle size of the alloy powder obtained by fine pulverization is 0.3
−~80ρ, and in order to obtain excellent magnetic properties,
Fine powders with an average particle size of 1 to 20 parts are preferred, and most preferred are fine powders with an average particle size of 2 to 10 parts.

焼結は、10−2 Torr以下の真空中あるいは1〜
760Torrの圧力雰囲気などの少なくとも非酸化性
ないし純度99.9%以上の不活性あるいは還元性雰囲
気中で、900℃〜1200℃の温度で、0.5〜4時
間の条件で焼結するのが好ましい。
Sintering is carried out in a vacuum of 10-2 Torr or less or in a
Sintering is performed at a temperature of 900°C to 1200°C for 0.5 to 4 hours in an inert or reducing atmosphere of at least non-oxidizing or purity of 99.9% or more, such as a pressure atmosphere of 760 Torr. preferable.

この発明における焼結後の時効処理条件としては、磁石
体の結晶粒の過剰成長を抑制してすぐれた磁気特性を発
現させるために、時効処理温度は450℃〜700℃の
範囲が好ましく、また、時効処理時間は5分〜40時間
が好ましい。時効処理時間は時効処理温度と密接に関係
するが、5分未満では時効処理効果が少なく、得られる
磁石材料の磁気特性のばらつきが大きくなり、40時間
を越えると工業的に長時間を要しすぎ実用的でない。磁
気特性の好ましい発現と実用的な面から時効処理時間は
30分から8時間が好ましい。
As for the aging treatment conditions after sintering in this invention, in order to suppress excessive growth of crystal grains in the magnet body and develop excellent magnetic properties, the aging treatment temperature is preferably in the range of 450°C to 700°C; The aging treatment time is preferably 5 minutes to 40 hours. The aging treatment time is closely related to the aging treatment temperature, but if it is less than 5 minutes, the aging treatment effect will be small and the magnetic properties of the obtained magnet material will vary widely, and if it exceeds 40 hours, it will take a long time for industrial purposes. Too impractical. From the viewpoint of desirable development of magnetic properties and practical aspects, the aging treatment time is preferably 30 minutes to 8 hours.

また、時効処理は2段以上の多段時効処理を用いること
もできる。例えば、 1060℃にて焼結した焼結体を
、1段目として、150℃〜i ooo℃で30分ない
し6時間の初段時効処理し、さらに、2段目以降に、4
50℃〜150℃で2〜30時間の1段以上の時効処理
を行なうことにより、残留磁束密度。
Moreover, multi-stage aging treatment of two or more stages can also be used for the aging treatment. For example, a sintered body sintered at 1060°C is subjected to an initial aging treatment at 150°C to ioooo°C for 30 minutes to 6 hours as the first stage, and then in the second and subsequent stages,
The residual magnetic flux density is reduced by performing one or more stages of aging treatment at 50°C to 150°C for 2 to 30 hours.

保磁力、減磁曲線の角形性のいずれにも極めてすぐれた
磁石特性を有する磁石材料を得ることができる。
A magnetic material having extremely excellent magnetic properties in both coercive force and squareness of the demagnetization curve can be obtained.

また、多段時効処理に代えて、450℃〜700℃の時
効処理温度から室温までを空冷あるいは水冷などの冷却
方法で、0.2℃/lll1n〜20℃/minの冷却
速度で冷却する方法によっても、上記時効処理と同等の
磁気特性を有する永久磁石材料を得ることができる。′ 永久磁石用合金粉末の限定理由 この発明の永久磁石材料に用いる希土類元素Rは、10
原子%〜30原子%のNd 、 Pr 、 DV 。
In addition, instead of multi-stage aging treatment, a cooling method such as air cooling or water cooling from the aging treatment temperature of 450°C to 700°C to room temperature at a cooling rate of 0.2°C/lll1n to 20°C/min can be used. Also, it is possible to obtain a permanent magnet material having magnetic properties equivalent to those obtained by the above-mentioned aging treatment. ' Reason for limitation of alloy powder for permanent magnet The rare earth element R used in the permanent magnet material of this invention is 10
atomic% to 30 atomic% Nd, Pr, DV.

Ho 、Tbのうち少なくとも1種、あるいはさらに、
La、Ce、Sm、Gd、Er、Eu、PIIl。
At least one of Ho, Tb, or further,
La, Ce, Sm, Gd, Er, Eu, PIIl.

Tm、Yb、Yのうち少なくとも1種を含むものが好ま
しい。
Those containing at least one of Tm, Yb, and Y are preferred.

又、通例Rのうち1種をもって足りるが、実用上は2種
以上の混合物(ミツシュメタル、ジジム等)を入手上の
便宜等の理由により用いることができる。
Further, one type of R is usually sufficient, but in practice, a mixture of two or more types (Mitsuhmetal, dididium, etc.) can be used for reasons such as convenience of availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

R(Yを含む希土類元素のうち少なくとも1種)は、新
規な上記系永久磁石を製造する合金鋳塊における、必須
元素であって、10原子%未満では、結晶構造がα−鉄
と同一構造の立方晶組織となるため、高磁気袴性、特に
高保磁力が得られず、30原子%を越えると、Rリッチ
な非磁性相が多くなり、残留磁束密度(Sr )が低下
して、すぐれた特性の永久磁石が得られない。よって、
希土類元素は、10原子%〜30原子%の範囲とする。
R (at least one rare earth element including Y) is an essential element in the alloy ingot for manufacturing the new above-mentioned permanent magnet, and if it is less than 10 at%, the crystal structure is the same as α-iron. Because of the cubic crystal structure, high magnetic properties, especially high coercive force, cannot be obtained.If it exceeds 30 at%, the R-rich nonmagnetic phase increases, and the residual magnetic flux density (Sr) decreases, making it difficult to obtain excellent magnetic properties. A permanent magnet with the same characteristics cannot be obtained. Therefore,
The rare earth element is in the range of 10 atomic % to 30 atomic %.

Bは、新規な上記系永久磁石用合金鋳塊における、必須
元素であって、2原子%未満では、菱面体組織となり、
高い保磁力(iHC)は得られず、28原子%を越える
と、Bリッチな非磁性相が多くなり、残留磁束密度(B
r )が低下するため、すぐれた永久磁石が得られない
。よって、Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the above-mentioned new alloy ingot for permanent magnets, and when it is less than 2 atomic %, it becomes a rhombohedral structure,
A high coercive force (iHC) cannot be obtained, and if it exceeds 28 at %, the B-rich nonmagnetic phase increases and the residual magnetic flux density (B
r ) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 2 atomic % to 28 atomic %.

Feは、新規な上記系永久磁石用合金鋳塊において、必
須元素であり、65原子%未満では残留磁束密度(Br
)が低下し、82原子%を越えると、高い保磁力が得ら
れないので、Feは65原子%〜82原子%の含有とす
る。
Fe is an essential element in the above-mentioned new alloy ingot for permanent magnets, and if it is less than 65 at%, the residual magnetic flux density (Br
) decreases, and if it exceeds 82 atom %, high coercive force cannot be obtained, so Fe is contained in a range of 65 atom % to 82 atom %.

また、この発明による永久磁石用合金において、Feの
一部を6で置換することは、得られる磁石の磁気特性を
損うことなく、温度特性を改善することができるが、ら
置換量がFeの50%を越えると、逆に磁気特性が劣化
するため、好ましくない。
In addition, in the alloy for permanent magnets according to the present invention, replacing a part of Fe with 6 can improve the temperature characteristics without impairing the magnetic properties of the obtained magnet, but the amount of Fe replaced is If it exceeds 50%, the magnetic properties will deteriorate, which is not preferable.

この発明の合金粉末において、高い残留磁束密度と高保
磁力を得るためには、R12,5原子%〜15原子%、
B66原子〜14原子%、l” e7171原子82原
子%が好ましい。
In the alloy powder of this invention, in order to obtain high residual magnetic flux density and high coercive force, R12.5 to 15 at%,
Preferably B66 to 14 atom % and l'' e7171 atom 82 atom %.

また、この発明による永久磁石用合金鋳塊は、R,B、
 Feの他、工業的生産上不可避的不純物の存在を許容
できるが、Bの 一部を2.0原子%以下のC,2,0
原子%以下のR12,0原子%以下のS、2.0原子%
以下のCLIのうち少なくとも1種、合計量で2.0原
子%以下で置換することにより、永久磁石の製造性改善
、低価格化が可能である。
Moreover, the alloy ingot for permanent magnets according to the present invention has R, B,
In addition to Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a portion of B can be
R12 at % or less, S at 0 at % or less, 2.0 at %
By replacing at least one of the following CLIs in a total amount of 2.0 atomic % or less, it is possible to improve the manufacturability and reduce the cost of permanent magnets.

また、下記添加元素のうち少なくとも1種は、R−F3
−Fe系あるいはR−B−Go−FI系永久磁石に対し
てその保磁力等を改善あるいは製造性の改善、低価格化
に効果があるため添加する。しかし、保磁力改善のため
の添加に伴ない残留磁束密度(Br )の低下を招来す
るので、下記範囲での添加が望ましい。
In addition, at least one of the following additional elements is R-F3
-It is added to Fe-based or R-B-Go-FI-based permanent magnets because it is effective in improving the coercive force, etc., improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in the following range.

5.0原子%以下のAt、3.0原子%以下のTi15
.5原子%以下のV、4.5原子%以下のCr。
At 5.0 atomic % or less, Ti15 3.0 atomic % or less
.. 5 at% or less of V, 4.5 at% or less of Cr.

5.0原子%以下のMn15原子%以下のB119.0
原子%以下のNb、7.0原子%以下のTa。
Mn not more than 5.0 at % B119.0 not more than 15 at %
Nb at % or less, Ta at 7.0 atomic% or less.

5.2原子%以下のM615.0原子%以下のWll、
0原子%以下のSb、3.5原子%以下のGe11.5
原子%以下のSn、3.3原子%以下のZr16.0原
子%以下のNi、5.0原子%以下の3i、3.3原子
%以下のHfのうち少なくとも1種を添加含有、但し、
2種以上含有する場合は、その最大含有量は当該添加元
素のうち最大値を有するものの原子%以下の含有させる
ことにより、永久磁石の高保磁力化が可能になる。
M6 of 5.2 atomic % or less, Wll of 5.0 atomic % or less,
0 at% or less Sb, 3.5 at% or less Ge11.5
Contains at least one of Sn at % or less, Zr at 3.3 atomic% or less, Ni at 16.0 atomic% or less, 3i at 5.0 atomic% or less, and Hf at 3.3 atomic% or less, however,
When two or more elements are contained, the maximum content is at most atomic % of the one having the maximum value among the added elements, thereby making it possible to increase the coercive force of the permanent magnet.

この発明における合金粉末の結晶相は主相が少なくとも
50 vo1%以上の正方晶、少なくとも1■01%以
上の非磁性金属間化合物であることが、すぐれた磁気特
性を有する焼結永久磁石を作製するのに不可欠である。
The crystalline phase of the alloy powder in this invention is such that the main phase is at least 50% tetragonal and at least 1% non-magnetic intermetallic compound to produce a sintered permanent magnet with excellent magnetic properties. It is essential to

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

この発明による磁気異方性永久磁石材料は、残留磁束密
度Br >10.5KG、を示し、最大エネルギー積(
B H) max≧25MGOeを示し、最大値は40
M G Os以上に達する。
The magnetically anisotropic permanent magnet material according to the present invention exhibits a residual magnetic flux density Br >10.5KG, and has a maximum energy product (
B H) max≧25MGOe, the maximum value is 40
Reach more than MG Os.

また、この発明°永久磁石用合金鋳塊の組成が、R12
原子%〜16原子%、84原子%〜15原子%、Co4
5原子%以下、Fs  残部の場合、得られる磁気異方
性永久磁石合金は、上記磁石合金と同等の磁気特性を示
し、残留磁束密度の温度係数が、0.1%/℃以下とな
り、すぐれた特性が得られる。
Further, the composition of the alloy ingot for permanent magnets of this invention is R12.
atomic% to 16 atomic%, 84 atomic% to 15 atomic%, Co4
In the case of 5 atomic % or less and the remainder being Fs, the obtained magnetically anisotropic permanent magnet alloy exhibits magnetic properties equivalent to those of the above magnet alloy, and the temperature coefficient of residual magnetic flux density is 0.1%/℃ or less, which is excellent. characteristics can be obtained.

また、この発明永久磁石用合金粉末のRの主成分がその
50%以上を軽希土類金属が占める場合で、R12,5
原子%〜15原子%、B66原子〜14原子%、F・ 
71原子%〜82原子%の場合、あるいはさらにCo5
原子%〜45原子%、を主成分とするとき、焼結磁石の
場合量もすぐれた磁気特性を示し、特に軽希土類金属が
陶の場合には、(B H) l1axはその最大値が4
0MGOs以上に達する。
In addition, when the main component of R in the alloy powder for permanent magnets of this invention is light rare earth metals accounting for 50% or more, R12.5
atomic% to 15 atomic%, B66 atomic to 14 atomic%, F.
In the case of 71 atomic % to 82 atomic %, or even Co5
When the main component is from atomic% to 45 atomic%, sintered magnets exhibit excellent magnetic properties, and especially when the light rare earth metal is ceramic, the maximum value of (B H) l1ax is 4.
Reach 0MGOs or more.

実施例 !五匠工 原子百分率で、77F・8B15t&lの組成からなる
1−の合金鋳塊を、出発原料をにガス中で高周波溶解し
、その後水冷銅鋳造して得た。
Example! A 1- alloy ingot having a composition of 77F/8B15t&l in terms of atomic percentage was obtained by high-frequency melting of the starting raw material in a gas, followed by water-cooled copper casting.

この合金鋳塊を、1050℃で20時間の焼鈍処理した
のち、ショークラッシャーにて40メツシユスルー以下
に粗粉砕し、さらにボールミルにて微粉砕した。
This alloy ingot was annealed at 1050° C. for 20 hours, then coarsely crushed in a show crusher to a mesh throughput of 40 or less, and further finely crushed in a ball mill.

得られた平均粒度1〜20umの合金粉末を、10 k
−の磁界中で、2 ton4の圧力で加圧成型したのち
、1xio−+ Torrの真空中で、1100℃、2
時間焼結して焼結体を得た。
The obtained alloy powder with an average particle size of 1 to 20 um was heated at 10 k
- After pressure molding at a pressure of 2 tons4 in a magnetic field of
A sintered body was obtained by sintering for a period of time.

ついで、600℃で1時間の時効処理を施したのち、密
度と磁気特性を測定した。その結果は第1表に示すとお
りである。
Then, after aging treatment at 600° C. for 1 hour, the density and magnetic properties were measured. The results are shown in Table 1.

また、比較のため、鋳塊に焼鈍処理を施さない以外は上
記製造方法で製造した比較磁石材料(比較1)を作製し
、同様に密度と磁気特性を測定し、第1表にその結果を
示す。
In addition, for comparison, a comparative magnet material (Comparison 1) was manufactured using the above manufacturing method except that the ingot was not annealed, and its density and magnetic properties were similarly measured. Table 1 shows the results. show.

哀直九え 原子百分率で、79Fe 7B 0.25 Dy13.
75 Ndの組成からなる1鞠の合金鋳塊を、出発原料
をにガス中で高周波溶解し、その後水冷銅鋳造して得た
In terms of atomic percentage, 79Fe 7B 0.25 Dy13.
One alloy ingot having a composition of 75 Nd was obtained by high-frequency melting of a starting material in a gas, followed by water-cooled copper casting.

この合金鋳塊を、1100℃で1011IJの焼鈍処理
したのち、ショークラッシャーにて40メツシユスルー
以下に粗粉砕し、さらにボールミルにて微粉砕した。
This alloy ingot was annealed at 1100° C. for 1011 IJ, then coarsely crushed in a show crusher to 40 mesh through or less, and further finely crushed in a ball mill.

得られた平均粒度1〜20slの合金粉末を、10kO
eの磁界中で、1.8 ton4の圧力で加圧成型した
のち、1xio −’ Torrの真空中で、1120
℃、2時間焼結して焼結体を得た。
The obtained alloy powder with an average particle size of 1 to 20 sl was heated to 10 kO
After pressure molding at a pressure of 1.8 ton4 in a magnetic field of
℃ for 2 hours to obtain a sintered body.

ついで、600℃で2時間の時効処理を施したのち、密
度と磁気特性を測定した。その結果は第2表に示すとお
りである。
Then, after aging treatment at 600°C for 2 hours, the density and magnetic properties were measured. The results are shown in Table 2.

また、比較のため、鋳塊に焼鈍処理を施さない以外は上
記製造方法で製造した比較磁石材料(比較2)を作製し
、同様に密度と磁気特性を測定し、第2表にその結果を
示す。
In addition, for comparison, a comparative magnet material (Comparison 2) was manufactured using the above manufacturing method except that the ingot was not annealed, and its density and magnetic properties were similarly measured. Table 2 shows the results. show.

以下余白 第1表 第2表 第1表、第2表の結果から明らかなように、この発明方
法による永久磁石材料は、組成の偏析防止、高密度化に
伴なって、磁気特性の改善向上が得られたことが分る。
As is clear from the results in Tables 1 and 2 in the margin below, the permanent magnet material produced by the method of this invention has improved magnetic properties due to prevention of compositional segregation and increased density. It turns out that was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 R(但しRはYを含む希土類元素のうち少なくとも
1種)10原子%〜30原子%、B2原子%〜28原子
%、Fe65原子%〜82原子%を主成分とする合金鋳
塊を、1000℃〜1150℃で0.5〜50時間の焼
鈍処理を施した後、該鋳塊を粗粉砕、微粉砕し、得られ
た合金粉末を成型後、焼結し、その後熱処理を施すこと
を特徴とする永久磁石材料の製造方法。
1 An alloy ingot whose main components are 10 at% to 30 at% of R (where R is at least one kind of rare earth elements including Y), B2 at% to 28 at%, and Fe65 at% to 82 at%, After annealing at 1000°C to 1150°C for 0.5 to 50 hours, the ingot is roughly crushed and finely crushed, and the resulting alloy powder is molded and sintered, followed by heat treatment. A method for producing a characteristic permanent magnet material.
JP59264875A 1984-12-14 1984-12-14 Production of material for permanent magnet Granted JPS61143553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59264875A JPS61143553A (en) 1984-12-14 1984-12-14 Production of material for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264875A JPS61143553A (en) 1984-12-14 1984-12-14 Production of material for permanent magnet

Publications (2)

Publication Number Publication Date
JPS61143553A true JPS61143553A (en) 1986-07-01
JPH0477066B2 JPH0477066B2 (en) 1992-12-07

Family

ID=17409435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264875A Granted JPS61143553A (en) 1984-12-14 1984-12-14 Production of material for permanent magnet

Country Status (1)

Country Link
JP (1) JPS61143553A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147473A (en) * 1989-08-25 1992-09-15 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US5183630A (en) * 1989-08-25 1993-02-02 Dowa Mining Co., Ltd. Process for production of permanent magnet alloy having improved resistence to oxidation
US5269855A (en) * 1989-08-25 1993-12-14 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147473A (en) * 1989-08-25 1992-09-15 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US5183630A (en) * 1989-08-25 1993-02-02 Dowa Mining Co., Ltd. Process for production of permanent magnet alloy having improved resistence to oxidation
US5269855A (en) * 1989-08-25 1993-12-14 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance

Also Published As

Publication number Publication date
JPH0477066B2 (en) 1992-12-07

Similar Documents

Publication Publication Date Title
US4597938A (en) Process for producing permanent magnet materials
US4684406A (en) Permanent magnet materials
EP0126802A1 (en) Process for producing of a permanent magnet
JPH0216368B2 (en)
JPH01219143A (en) Sintered permanent magnet material and its production
JP4170468B2 (en) permanent magnet
JP3222482B2 (en) Manufacturing method of permanent magnet
JPS6348805A (en) Manufacture of rare-earth magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JPS61143553A (en) Production of material for permanent magnet
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH045739B2 (en)
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPS61264133A (en) Permanent magnet alloy and its manufacture
JPS61139638A (en) Manufacture of sintered permanent magnet material
JPS5852019B2 (en) Rare earth cobalt permanent magnet alloy
JPH0320048B2 (en)
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP3254232B2 (en) Manufacturing method of rare earth permanent magnet
JPS61147504A (en) Rare earth magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JP2002088451A (en) Rare earth magnet and its manufacturing method
JP3143182B2 (en) Manufacturing method of rare earth permanent magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees