JP2002285276A - R-t-b-c based sintered magnet and production method therefor - Google Patents

R-t-b-c based sintered magnet and production method therefor

Info

Publication number
JP2002285276A
JP2002285276A JP2001087146A JP2001087146A JP2002285276A JP 2002285276 A JP2002285276 A JP 2002285276A JP 2001087146 A JP2001087146 A JP 2001087146A JP 2001087146 A JP2001087146 A JP 2001087146A JP 2002285276 A JP2002285276 A JP 2002285276A
Authority
JP
Japan
Prior art keywords
sintered magnet
weight
oil
rtbc
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001087146A
Other languages
Japanese (ja)
Other versions
JP2002285276A5 (en
Inventor
Hisato Tokoro
久人 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001087146A priority Critical patent/JP2002285276A/en
Publication of JP2002285276A publication Critical patent/JP2002285276A/en
Publication of JP2002285276A5 publication Critical patent/JP2002285276A5/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Abstract

PROBLEM TO BE SOLVED: To provide a high performance R-T-B-C based sintered magnet (wherein R is at least one rare earth element; and T is Fe, or Fe and Co), and a production method therefor. SOLUTION: An R-T-B-C based alloy having the main componential composition of, by weight, 28 to 33% R (wherein R is at least one rare earth element) and 0.9 to 1.1% B+C (wherein the content of B is 0.6 to 0.9%, and the content of C is 0.15 to 0.3) and the balance T (wherein T is Fe, or Fe and Co) and having a main phase consisting of an R2 T14 (B, C) phase is pulverized. The obtained fine powder is recovered into a nonoxidizing solution consisting of oil such as mineral oil and at least one kind of lubricant selected from the monovalent alcohol ester of a polybasic acid, the fatty acid ester of polyhydric alcohol, and their derivatives, and is then subjected to forming, degreasing, sintering, and heat treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、R−T−B−C系
合金(但しRは希土類元素の少なくとも1種であり、T
はFe、又はFe及びCoである)からなる焼結磁石及
びその製造方法に関する。
The present invention relates to an RTBC-based alloy (where R is at least one rare earth element,
Is Fe, or Fe and Co) and a method for manufacturing the same.

【0002】[0002]

【従来の技術】Nd−Fe−B系焼結磁石は、所定組成
のNd−Fe−B系合金を粗粉砕し、次いでN等の不
活性ガス中で微粉砕し、得られた平均粒径1〜10μmの
微粉末を磁場中成形し、焼結し、熱処理することにより
製造され、各種磁石応用製品分野で多用されている。
BACKGROUND OF THE INVENTION Nd-Fe-B based sintered magnet, coarsely crushed Nd-Fe-B based alloy having a predetermined composition, then finely pulverized in an inert gas such as N 2, the resulting average particle It is produced by molding a fine powder having a diameter of 1 to 10 μm in a magnetic field, sintering and heat-treating it, and is widely used in various magnet applied product fields.

【0003】Nd−Fe−B系焼結磁石の磁気特性を高
めるために、一般的に不可避的不純物元素であるCの含
有量は極力低いことがよいとされている。特許第273133
7号公報には、Nd−Fe−B系焼結磁石用原料微粉末
と鉱油又は合成油とを混合してスラリー化し、次いで湿
式成形し、得られた成形体を脱油し、焼結し、熱処理す
る高性能Nd−Fe−B系焼結磁石の製造方法が開示さ
れている。この方法によると従来に比べて酸素含有量が
顕著に低減されるとともに焼結性が向上し、高い残留磁
束密度Br、高い最大エネルギー積(BH)max、及び高い固
有保磁力iHcを有するNd−Fe−B系焼結磁石を製造
することができる。これらの高い磁気特性は、成形体中
に上記油分が極力残留しないように焼結の前に脱油(脱
C)処理を行い、最終的に得られるNd−Fe−B系焼
結磁石のC含有量を0.1重量%以下に低減することによ
って達成されている。
In order to enhance the magnetic properties of the Nd—Fe—B sintered magnet, it is generally said that the content of C, which is an unavoidable impurity element, should be as low as possible. Patent No. 273133
No. 7 discloses that a raw material powder for a Nd-Fe-B-based sintered magnet is mixed with a mineral oil or a synthetic oil to form a slurry, then wet-molded, and the obtained molded body is deoiled and sintered. Discloses a method for producing a high-performance Nd-Fe-B sintered magnet to be subjected to heat treatment. According to this method, the sinterability is improved while the oxygen content is significantly reduced as compared with the conventional method, and Nd- having a high residual magnetic flux density Br, a high maximum energy product (BH) max, and a high intrinsic coercive force iHc is obtained. An Fe-B based sintered magnet can be manufactured. These high magnetic properties are obtained by performing a de-oiling (de-C) treatment before sintering so that the oil does not remain in the compact as much as possible, and the Cd of the finally obtained Nd-Fe-B-based sintered magnet is reduced. This has been achieved by reducing the content to below 0.1% by weight.

【0004】特開平9−17677号公報は、R(但し
RはYを含む希土類元素の少なくとも1種である)12〜
18原子%、B+C=6〜10原子%(但しB:2〜6原子
%、C:4〜8原子%である)、残部Fe(但しFeの
1部をCo、Niの1種又は2種にて置換できる)及び
不可避的不純物からなる合金溶湯を、ストリップキャス
ティング法にて板厚0.03〜10mmの薄板で、Rリッチ相
が10μm以下に微細に分離した組織を有する鋳片に鋳造
後、該鋳片を粗粉砕して得た平均粒度10〜500μmの粗
粉砕粉に液状潤滑剤又は固状潤滑剤を0.02〜5.0重量%
添加混合して微粉砕し、得られた平均粒径1〜10μmの
微粉末をモールド内に充填密度1.4〜3.5Mg/m3に充填
し、瞬間的に795.8kA/m(10kOe)以上のパルス磁場をか
けて配向後、成形、焼結、時効処理することにより耐食
性のすぐれたR−Fe−B−C系永久磁石材料を製造す
る方法を開示している。しかし、この永久磁石材料は
C:4〜8原子%という高C含有量の点で本発明の焼結
磁石とは組成が異なる。具体例を挙げれば、特開平9−
17677号公報の表1の組成1の永久磁石はNd:1
2.8原子%、Dy:1.5原子%、Co:10原子%、B:3.
2原子%、C:4.4原子%、及びFe:68.1原子%(N
d:28.2重量%、Dy:3.7重量%、Co:9.0重量%、
B:0.5重量%、C:0.8重量%、及びFe:57.9重量
%)の組成を有している。又本発明者らの検討から、
(B,C)主相は酸化されやすく、もって酸
化により R14(B,C)主相比率が低下し、室
温において安定して350.1kJ/m3(44MGOe)以上の(BH)ma
xでかつ1.1MA/m(14kOe)以上のiHcを得られないことが
わかった。
JP-A-9-17677 discloses R (where R is at least one kind of rare earth element including Y)
18 at%, B + C = 6 to 10 at% (B: 2 to 6 at%, C: 4 to 8 at%), balance Fe (1 part of Fe is one or two of Co and Ni) The alloy melt consisting of unavoidable impurities) was cast into a thin plate having a thickness of 0.03 to 10 mm by a strip casting method and cast into a slab having a structure in which the R-rich phase was finely separated to 10 μm or less. 0.02 to 5.0% by weight of liquid lubricant or solid lubricant in coarsely pulverized powder having an average particle size of 10 to 500 μm obtained by coarsely pulverizing a slab
Was added and mixed and pulverized, resulting filled with fine powder having an average particle size of 1~10μm the packing density 1.4~3.5Mg / m 3 in a mold, momentarily 795.8kA / m (10kOe) or more pulse It discloses a method of producing an R-Fe-BC-based permanent magnet material having excellent corrosion resistance by performing orientation, applying a magnetic field, forming, sintering, and aging. However, the composition of this permanent magnet material differs from that of the sintered magnet of the present invention in that the C content is as high as 4 to 8 atomic%. A specific example is described in
The permanent magnet of composition 1 in Table 1 of Japanese Patent No. 17677 has Nd: 1.
2.8 atomic%, Dy: 1.5 atomic%, Co: 10 atomic%, B: 3.
2 at%, C: 4.4 at%, and Fe: 68.1 at% (N
d: 28.2% by weight, Dy: 3.7% by weight, Co: 9.0% by weight,
B: 0.5% by weight, C: 0.8% by weight, and Fe: 57.9% by weight). Also, from the study of the present inventors,
R 2 T 1 4 (B, C) the main phase is easily oxidized, with R 2 T 14 by oxidation (B, C) main phase ratio is reduced, stable 350.1kJ / m 3 (44MGOe) or more at room temperature (BH) ma
It was found that iHc of x and 1.1 MA / m (14 kOe) or more could not be obtained.

【0005】特許第2739502号公報は、R−Fe−B−
C系合金磁石(但しRはYを含む希土類元素の少なくと
も1種である)において、該合金の磁性結晶粒の各々が
耐酸化性保護膜で覆われており、この耐酸化性保護膜は
該磁性結晶粒を構成している合金元素の実質上全てを含
みかつその0.1〜16原子%がCである耐酸化性の優れた
ものを開示している。しかし、本発明の焼結磁石と比較
し、この公報の各実施例のR−Fe−B−C系合金磁石
は高R−低B−高C組成であったり、又は低R−低B−
高C組成のものである。具体例を挙げれば、特許第2739
502号公報の実施例1の磁石組成はNd:18原子%、F
e:71原子%、B:1原子%、及びC:10原子%(N
d:38.8重量%、Fe:59.3重量%、B:0.1重量%、
及びC:1.8重量%)であり、実施例11の磁石組成は
Nd:10原子%、Fe:79原子%、B:1原子%、及び
C:10原子%(Nd:24.1重量%、Fe:73.7重量%、
B:0.2重量%、及びC:2.0重量%)である。さらに得
られている磁気特性は非常に低く、又本発明者らの検討
から、これらの組成を選択した場合、室温において350.
1kJ/m3(44MGOe)以上の(BH)maxで、かつ1.1MA/m(14kO
e)以上のiHcを得られないことがわかった。
[0005] Japanese Patent No. 2739502 discloses R-Fe-B-
In a C-based alloy magnet (where R is at least one rare earth element including Y), each of the magnetic crystal grains of the alloy is covered with an oxidation-resistant protective film. It discloses an excellent oxidation resistance containing substantially all of the alloying elements constituting the magnetic crystal grains and containing 0.1 to 16 atomic% of C. However, as compared with the sintered magnet of the present invention, the R-Fe-BC-based alloy magnets of the embodiments of this publication have a high R-low B-high C composition or a low R-low B-
It has a high C composition. For specific examples, see Patent No. 2739.
No. 502, the magnet composition of Example 1 is Nd: 18 atomic%, F
e: 71 at%, B: 1 at%, and C: 10 at% (N
d: 38.8% by weight, Fe: 59.3% by weight, B: 0.1% by weight,
And C: 1.8 wt%), and the magnet composition of Example 11 was Nd: 10 at%, Fe: 79 at%, B: 1 at%, and C: 10 at% (Nd: 24.1 wt%, Fe: 73.7% by weight,
B: 0.2% by weight, and C: 2.0% by weight). Furthermore, the obtained magnetic properties are very low, and from the study of the present inventors, when these compositions are selected, 350.
(BH) max of 1 kJ / m 3 (44MGOe) or more and 1.1 MA / m (14 kOe)
e) It was found that the above iHc could not be obtained.

【0006】[0006]

【発明が解決しようとする課題】したがって本発明が解
決しようとする課題は、主要成分として所定量のCを含
有した高C含有型であっても高い磁気特性を有するR−
T−B−C系焼結磁石(但しRは希土類元素の少なくと
も1種であり、TはFe、又はFe及びCoである)及
びその製造方法を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an R-type semiconductor having a high magnetic property even if it has a high C content containing a predetermined amount of C as a main component.
An object of the present invention is to provide a TBC based sintered magnet (where R is at least one kind of rare earth element and T is Fe, or Fe and Co) and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記課題を解決した本発
明のR−T−B−C系焼結磁石の製造方法は、重量%で
R(但しRは希土類元素の少なくとも1種である):28
〜33%、B+C:0.9〜1.1%(但しB:0.6〜0.9%であ
り、C:0.15〜0.3%である)、及び残部:T(但しT
はFe、又はFe及びCoである)の主要成分組成を有
し、R14(B,C)相を主相とするR−T−B−
C系合金を非酸化性雰囲気中で平均粒径1〜10μmに微
粉砕し、得られた微粉を鉱油、合成油及び植物油から選
択される少なくとも1種の油と、多塩基酸の1価アルコ
ールエステル、多価アルコールの脂肪酸エステル及びそ
れらの誘導体から選択される少なくとも1種の潤滑剤と
からなる非酸化性液中に回収してスラリー化し、次いで
前記スラリーを成形し、得られた成形体を脱油し、焼結
し、熱処理することを特徴とする。本発明のR−T−B
−C系焼結磁石の製造に際し、Cの添加時期は合金の溶
解段階か、あるいは溶解以前の段階(溶解用原料中にあ
らかじめ所定量のCを含有させておく)とする必要があ
る。この理由は不可避的不純物レベルのCを含有するR
14B相を主相とするR−T−B系合金を溶製後、
例えばカーボンブラック等の形で粗粉砕時又は微粉砕時
に所定量のCを添加し、次いで磁場中成形し、焼結し、
熱処理してなる焼結磁石では、粗粉砕時又は微粉砕時に
添加したCがR14B主相中へほとんどとり込まれ
ず、Rリッチ相中にCが濃縮される傾向が顕著であり、
14(B,C)相による磁気特性の向上効果を期
待できないからである。
In order to solve the above-mentioned problems, the method for producing an RTBC sintered magnet according to the present invention is characterized in that R is expressed by weight% (where R is at least one rare earth element). : 28
~ 33%, B + C: 0.9 ~ 1.1% (B: 0.6 ~ 0.9%, C: 0.15 ~ 0.3%), and the balance: T (T
Is a main component composition of Fe, or Fe and Co), and has an R 2 T 14 (B, C) phase as a main phase.
C-based alloy is finely pulverized in a non-oxidizing atmosphere to an average particle size of 1 to 10 μm, and the obtained fine powder is mixed with at least one oil selected from mineral oil, synthetic oil and vegetable oil, and a monohydric alcohol of polybasic acid Ester, a fatty acid ester of a polyhydric alcohol and at least one lubricant selected from a derivative thereof and recovering the slurry into a non-oxidizing liquid to form a slurry. It is characterized by deoiling, sintering and heat treatment. RTB of the present invention
In the production of a -C sintered magnet, it is necessary to add C at a stage of melting the alloy or at a stage before melting (a predetermined amount of C is previously contained in the raw material for melting). The reason for this is that R containing unavoidable impurity levels of R
After smelted R-T-B type alloy of the 2 T 14 B phase as a main phase,
For example, at the time of coarse pulverization or fine pulverization in the form of carbon black or the like, a predetermined amount of C is added, then molded in a magnetic field, sintered,
In the sintered magnet obtained by heat treatment, C added during rough pulverization or fine pulverization is hardly taken into the R 2 T 14 B main phase, and the tendency of C to be concentrated in the R-rich phase is remarkable,
This is because the effect of improving the magnetic properties by the R 2 T 14 (B, C) phase cannot be expected.

【0008】又本発明のR−T−B−C系焼結磁石の製
造方法は、重量%でR(但しRは希土類元素の少なくと
も1種である):28〜33%、B+C:0.9〜1.1%(但し
B:0.6〜0.9%であり、C:0.15〜0.3%である)、及
び残部:T(但しTはFe、又はFe及びCoである)
の主要成分組成を有する合金溶湯をストリップキャスト
法により凝固し、R14(B,C)主相及びRリッ
チ相から実質的になるとともに前記主相の短軸方向の平
均結晶粒径が3〜20μmである板厚0.05〜3mmのR−
T−B−C系合金を得、次にこの合金を粗粉化し、次い
で非酸化性雰囲気中で平均粒径1〜10μmに微粉砕し、
得られた微粉を鉱油、合成油及び植物油から選択される
少なくとも1種の油と、多塩基酸の1価アルコールエス
テル、多価アルコールの脂肪酸エステル及びそれらの誘
導体から選択される少なくとも1種の潤滑剤とからなる
非酸化性液中に回収してスラリー化し、次いで前記スラ
リーを成形し、得られた成形体を脱油し、焼結し、熱処
理することを特徴とする。
Further, the method for producing the RTBC sintered magnet of the present invention is as follows: R (where R is at least one rare earth element): 28-33% by weight, B + C: 0.9- 1.1% (B: 0.6 to 0.9%, C: 0.15 to 0.3%) and the balance: T (where T is Fe, or Fe and Co)
Is solidified by a strip casting method, and is substantially composed of an R 2 T 14 (B, C) main phase and an R-rich phase, and has an average crystal grain size in the minor axis direction of the main phase. R- having a plate thickness of 0.05 to 3 mm, which is 3 to 20 μm
Obtaining a TBC based alloy, then coarsely pulverizing the alloy, and then pulverizing it in a non-oxidizing atmosphere to an average particle size of 1 to 10 μm,
At least one oil selected from mineral oil, synthetic oil and vegetable oil, and at least one lubrication selected from monohydric alcohol esters of polybasic acids, fatty acid esters of polyhydric alcohols and derivatives thereof are obtained. It is characterized in that it is recovered in a non-oxidizing liquid consisting of an agent and turned into a slurry, then the slurry is formed, the obtained molded body is deoiled, sintered and heat-treated.

【0009】本発明のR−T−B−C系焼結磁石の製造
方法において、鉱油、合成油及び植物油から選択される
少なくとも1種の油と、多塩基酸の1価アルコールエス
テル,多価アルコールの脂肪酸エステル及びそれらの誘
導体から選択される少なくとも1種の潤滑剤との混合比
率を99.7〜99.99重量部:0.3〜0.01重量部とすると成形
体の配向度が向上するので好ましく、もってBr及び(BH)
maxが向上する。混合比率が前記特定範囲を外れると成
形体の配向度向上効果を得られなかったり、あるいは粒
界相に納入されるC量が増大してRが希土類炭化物を形
成し、焼結不良を招来する。
In the method for producing an RTBC sintered magnet of the present invention, at least one oil selected from mineral oil, synthetic oil and vegetable oil, a monohydric alcohol ester of a polybasic acid, and a polyhydric acid When the mixing ratio with at least one lubricant selected from fatty acid esters of alcohols and their derivatives is 99.7 to 99.99 parts by weight: 0.3 to 0.01 parts by weight, the degree of orientation of the molded article is improved, and thus Br and (BH)
max improves. If the mixing ratio is out of the specific range, the effect of improving the degree of orientation of the compact cannot be obtained, or the amount of C delivered to the grain boundary phase increases, and R forms rare earth carbides, leading to poor sintering. .

【0010】本発明のR−T−B−C系焼結磁石の製造
方法において、ストリップキャストして得られたR−T
−B−C系合金を実質的な真空中あるいは不活性ガス雰
囲気中において800〜1100℃で熱処理し、次いで粗粉化
し、微粉砕すると粒径分布のシャープな微粉になり、も
って最終的に得られるR−T−B−C系焼結磁石のBr、
(BH)max及び減磁曲線の角形性を向上することができ
る。
In the method for producing an RTBC-based sintered magnet of the present invention, the RT cast obtained by strip casting is used.
-Heat treatment of the BC alloy in a substantial vacuum or in an inert gas atmosphere at 800 to 1100 ° C, then coarsening and pulverizing to a fine powder with a sharp particle size distribution, and finally obtain Br-based RTBC based sintered magnet,
(BH) max and the squareness of the demagnetization curve can be improved.

【0011】本発明のR−T−B−C系焼結磁石は、重
量%でR(但しRは希土類元素の少なくとも1種であ
る):28〜33%、B+C:0.9〜1.1%(但しB:0.6〜
0.9%であり、C:0.15〜0.3%である)、及び残部:T
(但しTはFe、又はFe及びCoである)の主要成分
組成を有し、R14(B,C)相を主相とすること
を特徴とする。本発明のR−T−B−C系焼結磁石にお
いて、R14(B,C)主相の格子定数比:c/a
=1.375〜1.385(ただし、cは正方晶の一軸異方性方向
の格子定数であり、aは残りの2辺の格子定数である)
のときに高いBr及び(BH)maxを得られる。又本発明のR
−T−B−C系焼結磁石において、重量%でR:28〜33
%,B+C:0.9〜1.1%(但しB:0.6〜0.9%であり、
C:0.15〜0.3%である)、M:0.01〜0.3%(但しMは
Cu,Al,Ga,Nb及びMnからなる群から選択さ
れる少なくとも1種である)及び残部:T(但しTはF
e及びCoであり、Co:0.5〜5%である)の主要成
分組成を選択すると磁気特性や、耐食性を向上できるの
で好ましい。
The RTBC based sintered magnet of the present invention has a weight percentage of R (where R is at least one rare earth element): 28 to 33%, and B + C: 0.9 to 1.1% (provided that it is 0.9 to 1.1%). B: 0.6-
0.9%, C: 0.15 to 0.3%), and the balance: T
(Where T is Fe, or Fe and Co), and is characterized in that the main phase is an R 2 T 14 (B, C) phase. In the RTBC-based sintered magnet of the present invention, the lattice constant ratio of the R 2 T 14 (B, C) main phase: c / a.
= 1.375 to 1.385 (where c is the lattice constant in the uniaxial anisotropy direction of the tetragonal system, and a is the lattice constant of the remaining two sides)
And high Br and (BH) max can be obtained. The R of the present invention
-In a TBC-based sintered magnet, R: 28 to 33 by weight%
%, B + C: 0.9 to 1.1% (B: 0.6 to 0.9%,
C: 0.15 to 0.3%), M: 0.01 to 0.3% (where M is at least one selected from the group consisting of Cu, Al, Ga, Nb and Mn) and the balance: T (where T is F
(e and Co, Co: 0.5 to 5%) is preferable because magnetic properties and corrosion resistance can be improved.

【0012】又本発明のR−T−B−C系焼結磁石は、
重量%でR(但しRは希土類元素の少なくとも1種であ
る):28〜32%、B+C:0.9〜1.1%(但しB:0.6〜
0.9%であり、C:0.15〜0.3%である)、及び残部:T
(但しTはFe、又はFe及びCoである)の主要成分
組成を有し、R14(B,C)主相の格子定数比:
c/a(ただし、cは正方晶の一軸異方性方向の格子定
数であり、aは残りの2辺の格子定数である)が1.375
〜1.385であるR−T−B−C系焼結磁石であって、前
記R−T−B−C系焼結磁石の単位重量あたりの含有酸
素量が0.3重量%以下であり、かつ焼結体密度が7.56Mg/
m以上であることを特徴とする。
Further, the RTBC-based sintered magnet of the present invention comprises:
R by weight (where R is at least one rare earth element): 28 to 32%, B + C: 0.9 to 1.1% (B: 0.6 to
0.9%, C: 0.15 to 0.3%), and the balance: T
(Where T is Fe, or Fe and Co), and has a lattice constant ratio of R 2 T 14 (B, C) main phase:
c / a (where c is the lattice constant in the uniaxial anisotropy direction of the tetragonal crystal and a is the lattice constant of the remaining two sides) is 1.375
1. An RTBC-based sintered magnet having an oxygen content of 0.3% by weight or less per unit weight of the RTBC-based sintered magnet. Body density 7.56Mg /
m 3 or more.

【0013】又本発明のR−T−B−C系焼結磁石は、
重量%でR(但しRは希土類元素の少なくとも2種であ
ってNd及びDyを必須に含み、Dy含有量が0.3〜15
%である):28〜32%、B+C:0.9〜1.1%(但しB:
0.6〜0.9%であり、C:0.15〜0.3%である)、及び残
部:T(但しTはFe、又はFe及びCoである)の主
要成分組成を有し、R14(B,C)主相の格子定
数比:c/a(但しcは正方晶の一軸異方性方向の格子
定数であり、aは残りの2辺の格子定数である)が1.37
5〜1.385であるR−T−B−C系焼結磁石であって、前
記希土類焼結磁石の単位重量あたりに含有される酸素量
が0.3重量%以下であり、かつ焼結体密度が7.60Mg/m
以上であることを特徴とする。
Further, the RTBC-based sintered magnet of the present invention comprises:
% By weight of R (where R is at least two kinds of rare earth elements, which essentially contains Nd and Dy, and has a Dy content of 0.3 to 15%).
%): 28-32%, B + C: 0.9-1.1% (B:
0.6 to 0.9%, C: 0.15 to 0.3%), and the balance: T (where T is Fe, or Fe and Co), and R 2 T 14 (B, C ) The lattice constant ratio of the main phase: c / a (where c is the lattice constant in the uniaxial anisotropy direction of the tetragonal system, and a is the lattice constant of the remaining two sides) is 1.37.
An RTBC-based sintered magnet having a sintering density of 5 to 1.385, wherein the amount of oxygen contained per unit weight of the rare-earth sintered magnet is 0.3% by weight or less, and the sintered body density is 7.60%. Mg / m 3
It is characterized by the above.

【0014】本発明のR−T−B−C系焼結磁石におい
て、R成分の酸化物化及び炭化物化を抑制してR成分に
富んだ粒界相を確保し、R14(B,C)主相比率
を極力高め、もってBr、(BH)max及びiHcを高めるため
に、含有酸素量を0.2重量%以下にするのがより好まし
く、0.18重量%以下にするのがさらに好ましい。
In the R-T-B-C sintered magnet of the present invention, the R component is suppressed from being oxidized and carbided to secure a grain boundary phase rich in the R component, and R 2 T 14 (B, C) In order to increase the main phase ratio as much as possible and thereby increase Br, (BH) max and iHc, the oxygen content is more preferably 0.2% by weight or less, even more preferably 0.18% by weight or less.

【0015】[0015]

【発明の実施の形態】本発明のR−T−B−C系焼結磁
石の組成限定理由を以下に説明する。以下単に%と記す
のは重量%を意味するものとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the composition of the RTBC sintered magnet of the present invention will be described below. Hereinafter, simply writing% means weight%.

【0016】R量は28〜33%が好ましい。良好な耐食性
を具備し、(BH)maxを高めるために、R量は28〜32%が
より好ましく、28〜31%が特に好ましい。R量が28%未
満では実用に耐えるiHcを得られず、33%超ではBr、(B
H)maxの低下が顕著になる。不可避的R成分を除いて、
R=Nd+Dy、Nd+Dy+Pr、Nd+Pr、又は
Pr+Dyの場合の実用性が高い。実用に耐える保磁力
(耐熱性)を付与するために、Dy含有量は0.3〜10%
が好ましく、0.5〜8%にするのがより好ましい。Dy
含有量が0.3%未満では保磁力の向上効果を得られず、1
0%超ではBr、(BH)maxが大きく低下する。
The R content is preferably 28 to 33%. In order to provide good corrosion resistance and increase (BH) max, the R amount is more preferably from 28 to 32%, particularly preferably from 28 to 31%. If the R content is less than 28%, iHc that can withstand practical use cannot be obtained, and if it exceeds 33%, Br and (B
H) The decrease in max becomes remarkable. Except for the unavoidable R component,
The utility in the case of R = Nd + Dy, Nd + Dy + Pr, Nd + Pr, or Pr + Dy is high. Dy content is 0.3 to 10% to provide practical coercive force (heat resistance)
Is more preferable, and it is more preferable to make it 0.5 to 8%. Dy
If the content is less than 0.3%, the effect of improving the coercive force cannot be obtained.
If it exceeds 0%, Br and (BH) max decrease significantly.

【0017】B及びCは必須元素であり、(B+C)量
は0.9〜1.1%が好ましく、0.95〜1.1%がより好まし
い。B量は0.6〜0.9%が好ましく、0.65〜0.85%がより
好ましい。C量は0.15〜0.3%が好ましく、0.18〜0.28
%がより好ましい。B量が0.6%未満ではたとえC量が
上記特定含有量範囲内でもRFe17金属間化合物の
生成を伴い、Br及びiHcが大きく低下する。又B量が0.9
%超ではCが主相中にほとんど入る余地がなくなり、粒
界相に不純物として濃縮されるのでBr及びiHcが大きく
低下する。C量が0.15%未満ではR14(B,C)
相の生成量が過少なのでR (B,C)相による
磁気特性向上効果を事実上得られず、0.3%超では粒界
相にCが濃縮され、焼結不良を招来するとともに磁気特
性が急激に低下する。即ち、上記特定(B+C)量範囲
のときにR14(B,C)相が主相として生成し、
もって従来の高C含有型Nd−Fe−B焼結磁石では得
られなかった高い磁気特性を得ることができる。
B and C are essential elements, and the (B + C) content is preferably 0.9 to 1.1%, more preferably 0.95 to 1.1%. The B content is preferably from 0.6 to 0.9%, more preferably from 0.65 to 0.85%. The C content is preferably 0.15 to 0.3%, and 0.18 to 0.28
% Is more preferred. When the amount of B is less than 0.6%, even if the amount of C is within the above-mentioned specific content range, the formation of R 2 Fe 17 intermetallic compound is accompanied, and the Br and iHc are greatly reduced. B amount is 0.9
%, There is almost no room for C to enter the main phase, and it is concentrated as impurities in the grain boundary phase, so that Br and iHc are greatly reduced. If the C content is less than 0.15%, R 2 T 14 (B, C)
Since the phase generation amount is too small for R 2 T 1 4 (B, C) not be obtained virtually magnetic characteristics improving effect by the phase, with 0.3 percent C in the grain boundary phase is concentrated, as well as lead to sintering failure The magnetic properties decrease sharply. That is, the R 2 T 14 (B, C) phase is generated as the main phase in the above specific (B + C) amount range,
Accordingly, high magnetic properties that cannot be obtained with the conventional high C content type Nd-Fe-B sintered magnet can be obtained.

【0018】Cu,Al,Ga,Nb及びMnからなる
群から選択される少なくとも1種の元素Mを0.01〜0.3
%含有することにより磁気特性や、耐食性を高めること
ができる。Alを0.01〜0.3%含有することによりiHcが
向上し、耐食性が改善される。しかし、Al含有量が0.
3%超ではBrの低下が顕著になり、0.01%未満ではiHc及
び耐食性を高める効果を得られない。より好ましいAl
含有量は0.05〜0.3%である。Gaを0.01〜0.3%含有す
ることによりiHcが顕著に向上するが、Ga含有量が0.3
%超ではBrの低下が大きくなり、0.01%未満ではiHcを
高める効果を得られない。より好ましいGa含有量は0.
05〜0.3%である。Cuを0.01〜0.3%含有することによ
り耐食性及びiHcが向上するが、Cu含有量が0.3%超で
はBrの低下が顕著になり、0.01%未満では耐食性及びiH
cを高める効果を得られない。より好ましいCu含有量
は0.05〜0.3%である。
At least one element M selected from the group consisting of Cu, Al, Ga, Nb and Mn is used in an amount of 0.01 to 0.3.
%, Magnetic properties and corrosion resistance can be improved. By containing Al in an amount of 0.01 to 0.3%, iHc is improved and corrosion resistance is improved. However, when the Al content is 0.
If it exceeds 3%, the decrease of Br becomes remarkable, and if it is less than 0.01%, the effect of increasing iHc and corrosion resistance cannot be obtained. More preferred Al
The content is 0.05-0.3%. By containing 0.01 to 0.3% of Ga, iHc is remarkably improved.
%, The decrease of Br becomes large, and if it is less than 0.01%, the effect of increasing iHc cannot be obtained. A more preferable Ga content is 0.1.
It is between 05 and 0.3%. Corrosion resistance and iHc are improved by containing 0.01 to 0.3% of Cu, but when the Cu content exceeds 0.3%, the decrease of Br becomes remarkable, and when the Cu content is less than 0.01%, the corrosion resistance and iHc are reduced.
The effect of increasing c cannot be obtained. A more preferred Cu content is 0.05 to 0.3%.

【0019】Coを0.5〜5%含有することにより耐食
性が向上し、キュリー点が上昇し、もって耐熱性が向上
する。しかしCo含有量が5%超では磁気特性に有害な
Fe−Co相が生成し、Br及びiHcが大きく低下する。
又Co含有量が0.5%未満では耐食性及び耐熱性を向上
する効果を得られない。又Coを0.5〜5%及びCuを
0.01〜0.3%含有するときに1.1MA/m(14kOe)以上の室
温のiHcを得られる第2次熱処理温度の許容範囲が広が
る効果を得られ、特に好ましい。
By containing 0.5 to 5% of Co, the corrosion resistance is improved, the Curie point is increased, and the heat resistance is improved. However, if the Co content exceeds 5%, a Fe—Co phase harmful to magnetic properties is formed, and Br and iHc are greatly reduced.
If the Co content is less than 0.5%, the effect of improving corrosion resistance and heat resistance cannot be obtained. Also, 0.5 to 5% of Co and Cu
When the content is 0.01 to 0.3%, the effect of widening the allowable range of the second heat treatment temperature at which room temperature iHc of 1.1 MA / m (14 kOe) or more can be obtained is obtained, which is particularly preferable.

【0020】不可避に含まれる酸素量は0.3%以下が好
ましく、0.2%以下がより好ましく、0.18%以下が特に
好ましい。酸素含有量を0.3%以下に低減することによ
りR14(B,C)主相比率が高まり、焼結体密度
を略理論密度まで高めることができる結果、室温におい
て350.1kJ/m3(44MGOe)以上の(BH)maxで、かつ1.1MA/m
(14kOe)以上のiHcを安定して得ることができる。焼結
体密度は例えばNd−Pr−T−B−C系焼結磁石で7.
56Mg/m以上になり、Nd−Dy−T−B−C系焼結磁
石で7.60Mg/m以上になる。又良好な耐食性及び高い磁
気特性を具備するために、不可避に含まれる窒素量を0.
15%以下にするのが好ましく、0.002〜0.15%にするの
がより好ましい。窒素量が0.15%を超えるとBrの低下が
顕著になる。
The amount of oxygen unavoidably contained is preferably 0.3% or less, more preferably 0.2% or less, and particularly preferably 0.18% or less. By reducing the oxygen content to 0.3% or less, the ratio of the R 2 T 14 (B, C) main phase is increased, and the density of the sintered body can be increased to approximately the theoretical density. As a result, 350.1 kJ / m 3 ( (BH) max of 44MGOe) or more and 1.1MA / m
IHc of (14 kOe) or more can be obtained stably. The density of the sintered body is, for example, 7.Nd-Pr-TBC-based sintered magnet.
Becomes 56 mg / m 3 or more, the 7.60Mg / m 3 or more Nd-Dy-T-B- C sintered magnet. In addition, in order to provide good corrosion resistance and high magnetic properties, the amount of unavoidable nitrogen is reduced to 0.
Preferably it is 15% or less, more preferably 0.002 to 0.15%. When the amount of nitrogen exceeds 0.15%, the reduction of Br becomes remarkable.

【0021】本発明のR−T−B−C系焼結磁石は例え
ば以下のようにして製造できる。まず、所定組成に調整
したR−T−B−C系合金溶湯を単ロール法又は双ロー
ル法によりストリップキャストし、板厚:0.05〜3mm
の薄板でかつR14(B,C)主相と微細なRリッ
チ相とから実質的になるR−T−B−C系合金を得る。
この合金中のR14(B,C)主相の短軸方向の平
均結晶粒径は3〜20μm程度であり、αFeのない組織
であり、もって高い磁気特性のR−T−B−C系焼結磁
石を得ることができる。必要に応じて前記薄板合金を不
活性ガス雰囲気中で800〜1100℃×0.5〜10時間加熱する
熱処理を行うことが好ましい。この熱処理により、微粉
砕粉の粒径分布がシャープになり、Br及び(BH)maxを高
めることができる。なお、熱処理条件が800℃×0.5時間
未満では熱処理の効果が認められず、1100℃×10時間超
では酸化による組成ずれ等の問題を生じる。前記薄板状
R−T−B−C系合金中のCは主相中に取り込まれてい
る。これはR−T−B−C系合金の溶解温度から室温に
冷却されるまでの過程でR14Cが安定に形成する
800℃〜1100℃の温度領域を経て、CがR14B相
中に取り込まれるからである。即ちR14Bの化学
量論組成対比でBがやや不足している組成に調整したR
−T−B系合金溶湯中に適量のCを存在させると、R
14(B,C)相が生成され、高い磁気特性を発現す
ると考えられる。次に、前記薄板状R−T−B−C系合
金に水素を吸蔵させて自然崩壊させ、次いで脱水素処理
を行った後これを粗粉化する。次いで微粉砕する。微粉
砕は不活性ガスを粉砕媒体とするジェットミルにより、
例えば酸素濃度が0.1体積%未満、より好ましくは0.01
体積%以下の不活性ガス雰囲気中で平均粒径1〜10μm
に微粉砕する。こうして得られた微粉を鉱油、合成油及
び植物油から選択される少なくとも1種の油と、多塩基
酸の1価アルコールエステル、多価アルコールの脂肪酸
エステル及びそれらの誘導体から選択される少なくとも
1種の潤滑剤とからなる非酸化性液中に回収してスラリ
ー化する。次いで前記スラリーを磁場中成形し、得られ
た成形体を脱油し、焼結し、熱処理する。前記微粉の平
均粒径は1〜10μmが好ましく、3〜6μmがより好ま
しい。平均粒径が1μm未満では粉砕効率が大きく低下
し、10μm超ではiHc及びBrの低下が顕著になる。成形
体の酸化による磁気特性の劣化を阻止するために、成形
直後から脱油までの間前記油中で成形体を保存するのが
望ましい。成形体を室温から焼結温度まで急激に昇温す
ると成形体の内部温度が急激に上昇し、成形体に残留す
る油と成形体を構成する希土類元素とが反応して希土類
炭化物を生成し磁気特性が劣化する。この対策として、
温度100〜500℃、真空度13.3Pa(10−1Torr)以下で30
分間以上加熱する脱油処理を施すことが望ましい。脱油
処理により成形体中の油が十分に除去される。なお、脱
油処理の加熱温度は100〜500℃であれば1点である必要
はなく2点以上でもよい。また13.3Pa(10 Torr)以
下で室温から500℃までの昇温速度を10℃/分以下、より
好ましくは5℃/分以下とする脱油処理を施すことによ
っても脱油を効率よく行うことができる。鉱油、合成油
又は植物油として、脱油及び成形性の点から、分留点が
350℃以下のものがよい。又室温の動粘度が10cSt以下の
ものがよく、5cSt以下のものがさらに好ましい。
The RTBC sintered magnet of the present invention is, for example,
It can be manufactured as follows. First, adjust to the prescribed composition
The RTB-C-based alloy melt that has been
By strip casting, plate thickness: 0.05-3mm
And R2T14(B, C) Main phase and fine R
An RTBC-based alloy consisting essentially of the H phase is obtained.
R in this alloy2T14(B, C) Flatness in the short axis direction of the main phase
Uniform crystal grain size is about 3 ~ 20μm, microstructure without αFe
And an RTBC based sintered magnet having high magnetic properties.
You can get stones. If necessary, remove the sheet alloy.
Heat in an active gas atmosphere at 800-1100 ° C x 0.5-10 hours
It is preferable to perform a heat treatment. By this heat treatment, fine powder
The particle size distribution of the crushed powder becomes sharp, and Br and (BH) max are increased.
Can be Note that the heat treatment condition is 800 ° C × 0.5 hour
If it is less than 1, the effect of heat treatment is not recognized, and it exceeds 1100 ° C × 10 hours
In this case, problems such as a composition shift due to oxidation occur. The thin plate
C in the RTBC alloy is taken into the main phase.
You. This is from the melting temperature of the RTBC alloy to room temperature.
R in the process until it is cooled2T14C forms stably
After passing through the temperature range from 800 ° C to 1100 ° C, C becomes R2T14Phase B
Because it is taken in. That is, R2T14Chemistry of B
R adjusted to a composition where B is slightly less than the stoichiometric composition
-When an appropriate amount of C is present in the TB alloy, 2
T14(B, C) phase is generated and expresses high magnetic properties
It is thought that. Next, the lamellar RTBC combination
Absorbs hydrogen in gold and causes it to collapse naturally, followed by dehydrogenation
After that, this is coarsened. Then it is pulverized. Fine powder
Crushing is performed by a jet mill using inert gas as a grinding medium.
For example, the oxygen concentration is less than 0.1% by volume, more preferably 0.01% by volume.
Average particle size of 1 to 10 μm in an atmosphere of inert gas of volume% or less
Finely pulverize. Fine powder obtained in this way is converted to mineral oil, synthetic oil and
At least one oil selected from oil and vegetable oils;
Monohydric alcohol esters of acids, fatty acids of polyhydric alcohols
At least selected from esters and their derivatives
Slurry recovered in non-oxidizing liquid consisting of one kind of lubricant
- Next, the slurry is molded in a magnetic field to obtain
The compact is deoiled, sintered and heat treated. Flat of said fine powder
The average particle size is preferably 1 to 10 μm, more preferably 3 to 6 μm.
New When the average particle size is less than 1 μm, the grinding efficiency is greatly reduced.
However, if it exceeds 10 μm, the decrease in iHc and Br becomes remarkable. Molding
Molding to prevent magnetic properties from deteriorating due to body oxidation
Immediately before deoiling, it is necessary to store the compact in the oil.
desirable. Rapidly raise the temperature of the compact from room temperature to the sintering temperature
Then, the internal temperature of the compact rapidly rises and remains in the compact.
Oil reacts with the rare earth elements that make up the compact
Carbides are formed and magnetic properties are degraded. As a measure against this,
Temperature 100-500 ℃, degree of vacuum 13.3Pa (10-130 Torr)
It is desirable to perform a deoiling treatment in which heating is performed for more than one minute. Deoiling
By the treatment, the oil in the compact is sufficiently removed. In addition,
The heating temperature of oil treatment must be 1 point if it is 100-500 ℃
And two or more points may be used. 13.3Pa (10 1Torr)
Under the heating rate from room temperature to 500 ℃ below 10 ℃ / min, more
By performing a deoiling treatment at preferably 5 ° C./min or less.
Even so, deoiling can be performed efficiently. Mineral oil, synthetic oil
Or, as a vegetable oil, from the point of deoiling and moldability, fractionation point
It should be 350 ℃ or less. The kinematic viscosity at room temperature is 10 cSt or less.
And those having 5 cSt or less are more preferable.

【0022】本発明のR−T−B−C系焼結磁石に対
し、CuKα線を線源として2θ/θ法により2θ=30〜
50°の範囲でX線回折すると、(105)面と(00
6)面からの強いX線回折ピークを得られる。これら2
本のx線回折ピーク位置(2θ)から求めた面間隔d(d
=X線波長/(2sine))と面指数とを式(1)に代入し、
14B相(正方晶)の格子定数aとcを求めるこ
とができる。 1/d2=(h+k)/a+l2/c (1)
With respect to the RTBC-based sintered magnet of the present invention,
And 2θ = 30 to 2θ / θ method using CuKα ray as a radiation source.
X-ray diffraction in the range of 50 ° shows (105) plane and (00)
6) A strong X-ray diffraction peak from the surface can be obtained. These two
Plane distance d (d obtained from the x-ray diffraction peak positions (2θ)
= X-ray wavelength / (2sine)) and the surface index are substituted into equation (1),
R 2T14Find the lattice constants a and c of the B phase (tetragonal)
Can be. 1 / dTwo= (H2+ k2) / A2+ lTwo/ c2 (1)

【0023】[0023]

【実施例】以下、実施例により本発明を詳細に説明する
が、それら実施例により本発明が限定されるものではな
い。 (実施例1)重量%で、Nd:23.90%,Pr:6.60
%,B:0.80%,C:0.18%,Co:2.00%,Ga:0.1
0%,Cu:0.10%及び残部:Feの主要成分組成を有
し、板厚約0.3mm、短軸方向の平均結晶粒径が3μm
のストリップキャスト合金を粗粉化し、次いで酸素濃度
約1ppm(体積比)に調整した窒素ガス雰囲気中でジェ
ットミル微粉砕した。得られた平均粒径4.0μmの微粉
をこの窒素ガス雰囲気中で大気に触れることなく鉱油
(出光興産(株)製、商品名:出光スーパーゾルPA−3
0)中に回収しスラリー化した。平均粒径はSympatec社
製レーザー回折型粒径分布測定装置(商品名:ヘロス・
ロードス)により測定した。次にスラリーに所定量のオ
レイン酸メチルを添加し、攪拌機により混合した。スラ
リーの配合内訳は、前記微粉:70重量部、鉱油:29.9重
量部、オレイン酸メチル:0.10重量部とした。次にスラ
リーを圧縮成形用金型のキャビティに注入し、次いで配
向磁場強度:1.0MA/m(13kOe)、及び成形圧力: 98MPa
(1.0ton/cm2)の条件で横磁場圧縮成形し、15mm×25
mm×10mmの直方体状成形体を得た。次に、成形体を
真空度約66.5Pa(5×10−1Torr)、200℃の条件で3時
間加熱して脱油し、次いで同雰囲気中で1050℃まで昇温
し、次いで1050℃で2時間焼結し、その後室温まで冷却
した。次に焼結体をアルゴン雰囲気中で900℃で2時間
加熱し、次いで室温まで急冷する第1次熱処理を行っ
た。次にアルゴン雰囲気中で500℃で1時間加熱し、次
いで室温まで冷却する第2次熱処理を行い本発明の焼結
磁石を得た。得られた焼結磁石の組成分析結果を表1に
示す。又得られた焼結磁石を10mm角に加工し、密度を
測定した後、室温(20℃)の磁気特性を測定した結果を
表2に示す。又得られた焼結磁石を7mm角に加工し、
室温(20℃)において11.9MA/m(150kOe)のパルス磁場
を印加し、磁化測定を行った。この測定によりBr及び磁
化の最大値(4πI)maxを求め、算出したBr/(4πI)ma
x =97.2%であった。又得られた焼結磁石に対し、以下
の要領でX線回折(線源:CuKα線)を行った。異方
性付与方向に垂直な面が測定面となるように得られた焼
結磁石をセットし、2θ/θ法により2θ=30~50°を走査
した。結果を図1に示す。いずれもNd Fe14B相
と同様のX線回折パターンのみが認められた。後述する
比較例1のX線回折パターン(図1中)との対比から、
実施例1の焼結磁石の(006)面のX線回折ピークが高
角度側にシフトしていることがわかる。これは添加した
Cが主相中に存在していることを示す証拠であり、図1
中の回折パターンは(Nd,Pr)(Fe,Co)
14(B,C)相を表している。(006)面と(105)面の
回折ピーク位置より求めた格子定数c,a及びc/aを
表3に示す。又得られた焼結磁石をパーミアンス係数Pc
=2.0;縦8.3mm×横7.0mm×長さ5.9mm(長さ方向
が磁化方向)の直方体状に加工し、熱減磁率測定用試料
とした。この試料の磁化方向に4.1MA/m(52kOe)の磁場
を印加して着磁後、室温(25℃)で着磁方向のフラック
ス量(Φ1)を測定した。次いで試料を恒温槽に入れ、
120℃で1時間加熱後、室温(25℃)まで冷却し、フラ
ックス量(Φ2)を測定した。Φ1及びΦ2より、式
(2)により算出した熱減磁率を図2に示す。図2より
熱減磁率が非常に小さく、耐熱性に富むことがわかる。 (Φ1−Φ2)÷Φ1×100(%) (2)
The present invention will be described below in detail with reference to examples.
However, the present invention is not limited by these examples.
No. (Example 1) By weight%, Nd: 23.90%, Pr: 6.60
%, B: 0.80%, C: 0.18%, Co: 2.00%, Ga: 0.1
0%, Cu: 0.10% and balance: Fe
With a thickness of about 0.3 mm and an average crystal grain size of 3 μm in the minor axis direction.
Of the strip cast alloy of
In a nitrogen gas atmosphere adjusted to about 1 ppm (volume ratio),
Milled finely. Fine powder with average particle size of 4.0μm obtained
The nitrogen gas atmosphere in the atmosphere without touching the mineral oil
(Product name: Idemitsu Super Sol PA-3, manufactured by Idemitsu Kosan Co., Ltd.)
In 0), it was collected and slurried. Average particle size is from Sympatec
Laser diffraction particle size distribution analyzer (trade name: HEROS
Rhodes). Next, a predetermined amount of powder is added to the slurry.
Methyl oleate was added and mixed with a stirrer. Sura
The composition of Lee is as follows: 70 parts by weight of the above fine powder, 29.9 parts by weight of mineral oil
Parts by weight, methyl oleate: 0.10 parts by weight. Next
Into the cavity of the compression mold and then distribute.
Directional magnetic field strength: 1.0 MA / m (13 kOe) and molding pressure: 98 MPa
(1.0ton / cmTwo15mm x 25mm)
A rectangular parallelepiped molded product of mm × 10 mm was obtained. Next, the compact
Vacuum degree 66.5Pa (5 × 10-1Torr), 3 o'clock at 200 ° C
Heat to remove oil, then raise temperature to 1050 ° C in the same atmosphere
And then sintered at 1050 ° C for 2 hours, then cooled to room temperature
did. Next, the sintered body is heated at 900 ° C for 2 hours in an argon atmosphere.
First heat treatment of heating and then quenching to room temperature
Was. Next, heat at 500 ° C for 1 hour in an argon atmosphere.
The second heat treatment for cooling to room temperature
I got a magnet. Table 1 shows the composition analysis results of the obtained sintered magnet.
Show. The obtained sintered magnet is processed into a 10 mm square to reduce the density.
After measuring, the results of measuring the magnetic properties at room temperature (20 ° C)
It is shown in Table 2. Also, the obtained sintered magnet is processed into 7mm square,
11.9 MA / m (150 kOe) pulsed magnetic field at room temperature (20 ° C)
Was applied and magnetization was measured. Based on this measurement, Br and magnetic
The maximum value (4πI) max of the conversion is calculated, and the calculated Br / (4πI) ma
x = 97.2%. Also, for the obtained sintered magnet,
X-ray diffraction (ray source: CuKα ray) was performed in the same manner as described above. Anisotropic
The firing was performed so that the plane perpendicular to the
Set the magnets and scan 2θ = 30 ~ 50 ° by 2θ / θ method
did. The results are shown in FIG. Both are Nd 2Fe14Phase B
Only the same X-ray diffraction pattern was observed. See below
From comparison with the X-ray diffraction pattern of Comparative Example 1 (in FIG. 1),
The X-ray diffraction peak of the (006) plane of the sintered magnet of Example 1 was high.
It turns out that it has shifted to the angle side. This was added
FIG. 1 shows that C is present in the main phase.
The diffraction pattern inside is (Nd, Pr)2(Fe, Co)
14The (B, C) phase is shown. (006) plane and (105) plane
The lattice constants c, a and c / a obtained from the diffraction peak positions are
It is shown in Table 3. Further, the obtained sintered magnet is used as a permeance coefficient Pc.
= 2.0; length 8.3mm x width 7.0mm x length 5.9mm (length direction
Is processed into a rectangular parallelepiped shape with magnetization direction
And 4.1MA / m (52kOe) magnetic field in the magnetization direction of this sample
After applying magnetization, the flux in the magnetization direction at room temperature (25 ° C)
(Φ1) was measured. Then put the sample in a thermostat,
After heating at 120 ° C for 1 hour, cool to room temperature (25 ° C)
The amount of particles (Φ2) was measured. From Φ1 and Φ2, the equation
FIG. 2 shows the thermal demagnetization rate calculated by (2). From FIG.
It can be seen that the thermal demagnetization rate is very small and the heat resistance is high. (Φ1-Φ2) ÷ Φ1 × 100 (%) (2)

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】(比較例1)重量%で、Nd:23.90%,
Pr:6.60%,B:0.90%,C:0.03%,Co:2.00
%,Ga:0.10%,Cu:0.10%及び残部:Feの主要
成分組成を有する合金粗粉とした以外は実施例1と同様
にして焼結磁石を作製した。組成分析結果を表1に、磁
気特性及び密度の測定結果を表2に、格子定数比(c/
a)の測定結果を表3に、X線回折パターンを図1に、
熱減磁率を図2にそれぞれ示す。表2より比較例1の焼
結磁石の(BH)max及びiHcは実施例1のものよりやや低
く、又図2より熱減磁率が実施例1より劣ることがわか
る。
Comparative Example 1 Nd: 23.90% by weight,
Pr: 6.60%, B: 0.90%, C: 0.03%, Co: 2.00
%, Ga: 0.10%, Cu: 0.10%, and balance: A sintered magnet was prepared in the same manner as in Example 1 except that the alloy was a coarse powder having a main component composition of Fe. Table 1 shows the composition analysis results, and Table 2 shows the measurement results of the magnetic properties and the densities.
Table 3 shows the measurement results of a) and FIG. 1 shows the X-ray diffraction pattern.
FIG. 2 shows the thermal demagnetization rates. Table 2 shows that (BH) max and iHc of the sintered magnet of Comparative Example 1 were slightly lower than those of Example 1, and that the thermal demagnetization rate was inferior to Example 1 from FIG.

【0028】(比較例2)重量%で、Nd:23.90%,
Pr:6.60%,B:0.80%,C:0.03%,Co:2.00
%,Ga:0.10%,Cu:0.10%及び残部:Feの主要
成分組成の合金粗粉とした以外は実施例1と同様にして
焼結磁石を作製した。組成分析結果を表1に、磁気特性
及び密度の測定結果を表2に、格子定数比(c/a)の
測定結果を表3にそれぞれ示す。 (比較例3)重量%で、Nd:23.90%,Pr:6.60
%,B:0.45%,C:0.50%,Co:2.00%,Ga:0.1
0%,Cu:0.10%及び残部:Feの主要成分組成の合金
粗粉とした以外は実施例1と同様にして焼結磁石を作製
した。組成分析結果を表1に、磁気特性及び密度の測定
結果を表2に、格子定数比(c/a)の測定結果を表3
にそれぞれ示す。比較例2、3の焼結磁石はいずれも保
磁力が極めて低く、実用に耐えないものである。この理
由として、比較例2、3のものはBが化学量論組成(約
0.90重量%)よりも不足しているので主相及びRリッチ
相以外の第3相(RFe17相)が生成し、磁気特性
が低下したことがわかった。これに対し、実施例1のも
のは化学量論組成よりもBが不足している分を溶解時点
で添加したCが補い、R(Fe,Co)14(B,
C)相を形成し、もって磁気特性の改善がなされたこと
がわかった。関連した検討から実施例1の磁石の高いiH
cは異方性磁界Haの増加によることがわかった。
(Comparative Example 2) By weight%, Nd: 23.90%,
Pr: 6.60%, B: 0.80%, C: 0.03%, Co: 2.00
%, Ga: 0.10%, Cu: 0.10%, and balance: An alloy coarse powder having a main component composition of Fe was prepared in the same manner as in Example 1 to prepare a sintered magnet. Table 1 shows the composition analysis results, Table 2 shows the measurement results of the magnetic properties and the density, and Table 3 shows the measurement results of the lattice constant ratio (c / a). (Comparative Example 3) By weight%, Nd: 23.90%, Pr: 6.60
%, B: 0.45%, C: 0.50%, Co: 2.00%, Ga: 0.1
A sintered magnet was produced in the same manner as in Example 1, except that the alloy was a coarse powder having a main component composition of 0%, Cu: 0.10% and the balance: Fe. Table 1 shows the composition analysis results, Table 2 shows the measurement results of the magnetic properties and the density, and Table 3 shows the measurement results of the lattice constant ratio (c / a).
Are shown below. The sintered magnets of Comparative Examples 2 and 3 all have extremely low coercive force and are not practical. The reason for this is that in Comparative Examples 2 and 3, B had a stoichiometric composition (about
(0.90% by weight), a third phase (R 2 Fe 17 phase) other than the main phase and the R-rich phase was formed, and it was found that the magnetic properties were reduced. On the other hand, in the case of Example 1, C added at the time of dissolution compensates for the deficiency of B from the stoichiometric composition, and R 2 (Fe, Co) 14 (B,
C) It was found that a phase was formed and the magnetic properties were improved. From a related study, the high iH of the magnet of Example 1 was obtained.
c was found to be due to an increase in the anisotropic magnetic field Ha.

【0029】(実施例2)実施例1で作製した板厚約0.
3mmのストリップキャスト合金を真空炉中に装入し、
約6.7Pa(5×10−2Torr)の真空度で1000℃×2時間
熱処理後室温まで冷却した。この熱処理済みの合金を用
い、以降は実施例1と同様にして粗粉化、微粉砕、スラ
リー化、横磁場圧縮成形、脱油、焼結及び熱処理を行
い、焼結磁石を作製した。室温(20℃)の磁気特性及び
密度は下記の通りであり、実施例1に比べてiHc及び(B
H)maxが向上していた。 (BH)max:389kJ/m3(48.8MGOe) Br:1.42T (14.2kG) iHc:1.19MA/m (14.9kOe) 密度:7.59Mg/m
(Example 2) The thickness of the sheet manufactured in Example 1 was about 0.
Charge a 3mm strip cast alloy into a vacuum furnace,
After heat treatment at 1000 ° C. for 2 hours at a degree of vacuum of about 6.7 Pa (5 × 10 −2 Torr), the resultant was cooled to room temperature. Using this heat-treated alloy, subsequent coarsening, fine pulverization, slurrying, transverse magnetic field compression molding, deoiling, sintering and heat treatment were performed in the same manner as in Example 1 to produce a sintered magnet. The magnetic properties and densities at room temperature (20 ° C.) are as follows, and iHc and (B
H) max had improved. (BH) max: 389 kJ / m 3 (48.8 MGOe) Br: 1.42 T (14.2 kG) iHc: 1.19 MA / m (14.9 kOe) Density: 7.59 Mg / m 3

【0030】(実施例3、4)ストリップキャスト合金
の溶解主要成分組成を変えた以外は実施例1と同様にし
て、最終的に表4の組成の焼結磁石を作製し、室温(20
℃)の磁気特性及び密度を測定した。結果を表5に示
す。
(Examples 3 and 4) A sintered magnet having the composition shown in Table 4 was finally produced in the same manner as in Example 1 except that the composition of the main components of the strip cast alloy was changed.
C) magnetic properties and density. Table 5 shows the results.

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】表4、5より実施例1対比でCo及びCu
を含有しない実施例4の焼結磁石で実施例1と同等の室
温の磁気特性が得られた。又Dyを含有する実施例5の
焼結磁石で350.1kJ/m3(44MGOe) 超の(BH)max及び1.1MA/
m(14kOe)超のiHcが得られることがわかる。
Tables 4 and 5 show that Co and Cu were used in comparison with Example 1.
With the sintered magnet of Example 4 containing no, the same magnetic properties at room temperature as in Example 1 were obtained. Also in the sintered magnet of Example 5 containing Dy 350.1kJ / m 3 (44MGOe) greater than (BH) max and 1.1 MA /
It can be seen that iHc exceeding m (14 kOe) can be obtained.

【0034】[0034]

【発明の効果】以上記述の通り、本発明によれば、主要
成分として所定量のCを含有した高C含有型であっても
高い磁気特性を有するR−T−B−C系焼結磁石(但し
Rは希土類元素の少なくとも1種であり、TはFe、又
はFe及びCoである)及びその製造方法を提供するこ
とができる。又高C含有量のR−T−B系焼結磁石のス
クラップを用いてリメルトしR−T−B−C系焼結磁石
用原料合金をリサイクルするに際し、許容C含有量の上
限が従来のR−T−B系焼結磁石よりも引き上げられる
分リメルトにおけるスクラップ比率を増大できるという
コストメリットも得られる。
As described above, according to the present invention, an R-T-B-C sintered magnet having high magnetic properties even with a high C-containing type containing a predetermined amount of C as a main component. (Where R is at least one rare earth element and T is Fe, or Fe and Co) and a method for producing the same. Also, when re-melting a scrap of RTB-based sintered magnet having a high C content and recycling a raw material alloy for the RTBC-based sintered magnet, the upper limit of the allowable C content is the conventional value. There is also a cost advantage that the scrap ratio in the remelt can be increased by an amount that is higher than that of the RTB-based sintered magnet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の焼結磁石のX線回折パターンの一例を
示す図であり、縦軸はX線回強度(任意スケール)、横
軸は回折角度である。
FIG. 1 is a diagram showing an example of an X-ray diffraction pattern of a sintered magnet of the present invention, in which the vertical axis indicates the X-ray intensity (arbitrary scale), and the horizontal axis indicates the diffraction angle.

【図2】本発明の焼結磁石の熱減磁率の一例を示す図で
ある。
FIG. 2 is a diagram showing an example of the thermal demagnetization rate of the sintered magnet of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/053 H01F 1/08 B 1/08 41/02 G 41/02 1/04 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/053 H01F 1/08 B 1/08 41/02 G 41/02 1/04 H

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%でR(但しRは希土類元素の少な
くとも1種である):28〜33%、B+C:0.9〜1.1%
(但しB:0.6〜0.9%であり、C:0.15〜0.3%であ
る)、及び残部:T(但しTはFe、又はFe及びCo
である)の主要成分組成を有し、R14(B,C)
相を主相とするR−T−B−C系合金を非酸化性雰囲気
中で平均粒径1〜10μmに微粉砕し、得られた微粉を鉱
油、合成油及び植物油から選択される少なくとも1種の
油と、多塩基酸の1価アルコールエステル、多価アルコ
ールの脂肪酸エステル及びそれらの誘導体から選択され
る少なくとも1種の潤滑剤とからなる非酸化性液中に回
収してスラリー化し、次いで前記スラリーを成形し、得
られた成形体を脱油し、焼結し、熱処理することを特徴
とするR−T−B−C系焼結磁石の製造方法。
1. R in weight% (where R is at least one rare earth element): 28 to 33%, B + C: 0.9 to 1.1%.
(B: 0.6 to 0.9%, C: 0.15 to 0.3%) and the balance: T (where T is Fe, or Fe and Co
Which is a main component composition of R 2 T 14 (B, C)
The RTBC-based alloy having a main phase as a main phase is finely pulverized in a non-oxidizing atmosphere to an average particle size of 1 to 10 μm, and the obtained fine powder is at least one selected from mineral oil, synthetic oil and vegetable oil. Oil in a non-oxidizing liquid composed of a monohydric alcohol ester of a polybasic acid, a fatty acid ester of a polyhydric alcohol, and at least one lubricant selected from the derivatives thereof to form a slurry, A method for producing an RTBC-based sintered magnet, comprising molding the slurry, deoiling, sintering, and heat-treating the obtained compact.
【請求項2】 鉱油、合成油及び植物油から選択される
少なくとも1種の油と、多塩基酸の1価アルコールエス
テル、多価アルコールの脂肪酸エステル及びそれらの誘
導体から選択される少なくとも1種の潤滑剤との混合比
率が99.7〜99.99重量部:0.3〜0.01重量部である請求項
1に記載のR−T−B−C系焼結磁石の製造方法。
2. At least one oil selected from mineral oil, synthetic oil and vegetable oil, and at least one lubrication selected from monohydric alcohol esters of polybasic acids, fatty acid esters of polyhydric alcohols and derivatives thereof. The method for producing a sintered R-T-B-C magnet according to claim 1, wherein the mixing ratio with the agent is 99.7 to 99.99 parts by weight: 0.3 to 0.01 parts by weight.
【請求項3】 重量%でR(但しRは希土類元素の少な
くとも1種である):28〜33%、B+C:0.9〜1.1%
(但しB:0.6〜0.9%であり、C:0.15〜0.3%であ
る)、及び残部:T(但しTはFe、又はFe及びCo
である)の主要成分組成を有する合金溶湯をストリップ
キャスト法により凝固し、R14(B,C)主相及
びRリッチ相から実質的になるとともに前記主相の短軸
方向の平均結晶粒径が3〜20μmである板厚0.05〜3m
mのR−T−B−C系合金を得、次にこの合金を粗粉化
し、次いで非酸化性雰囲気中で平均粒径1〜10μmに微
粉砕し、得られた微粉を鉱油、合成油及び植物油から選
択される少なくとも1種の油と、多塩基酸の1価アルコ
ールエステル、多価アルコールの脂肪酸エステル及びそ
れらの誘導体から選択される少なくとも1種の潤滑剤と
からなる非酸化性液中に回収してスラリー化し、次いで
前記スラリーを成形し、得られた成形体を脱油し、焼結
し、熱処理することを特徴とするR−T−B−C系焼結
磁石の製造方法。
3. In% by weight, R (where R is at least one rare earth element): 28 to 33%, B + C: 0.9 to 1.1%.
(B: 0.6 to 0.9%, C: 0.15 to 0.3%) and the balance: T (where T is Fe, or Fe and Co
) Is solidified by a strip casting method, and is substantially composed of an R 2 T 14 (B, C) main phase and an R-rich phase, and the average crystal of the main phase in the minor axis direction. Sheet thickness 0.05-3m with a particle size of 3-20μm
m of an RTBC-based alloy, and then coarsely pulverized, and then pulverized in a non-oxidizing atmosphere to an average particle size of 1 to 10 μm. And a non-oxidizing liquid comprising at least one oil selected from vegetable oils and at least one lubricant selected from monohydric alcohol esters of polybasic acids, fatty acid esters of polyhydric alcohols and derivatives thereof. And producing a slurry, and then forming the slurry, deoiling, sintering, and heat-treating the obtained molded body.
【請求項4】 鉱油、合成油及び植物油から選択される
少なくとも1種の油と、多塩基酸の1価アルコールエス
テル、多価アルコールの脂肪酸エステル及びそれらの誘
導体から選択される少なくとも1種の潤滑剤との混合比
率が99.7〜99.99重量部:0.3〜0.01重量部である請求項
3に記載のR−T−B−C系焼結磁石の製造方法。
4. At least one oil selected from mineral oil, synthetic oil and vegetable oil, and at least one lubrication selected from monohydric alcohol esters of polybasic acids, fatty acid esters of polyhydric alcohols and derivatives thereof. The method for producing an RTBC-based sintered magnet according to claim 3, wherein the mixing ratio with the agent is 99.7 to 99.99 parts by weight: 0.3 to 0.01 parts by weight.
【請求項5】 ストリップキャスト法により凝固して得
られたR−T−B−C系合金を800〜1100℃で熱処理
し、次いで粗粉化する請求項3又は4に記載のR−T−
B−C系焼結磁石の製造方法。
5. The RT-C alloy according to claim 3, wherein the RT-B-C-based alloy obtained by solidification by a strip casting method is heat-treated at 800 to 1100 ° C. and then coarsened.
A method for producing a BC sintered magnet.
【請求項6】 重量%でR(但しRは希土類元素の少な
くとも1種である):28〜33%、B+C:0.9〜1.1%
(但しB:0.6〜0.9%であり、C:0.15〜0.3%であ
る)、及び残部:T(但しTはFe、又はFe及びCo
である)の主要成分組成を有し、R14(B,C)
相を主相とすることを特徴とするR−T−B−C系焼結
磁石。
6. R in weight% (where R is at least one rare earth element): 28 to 33%, B + C: 0.9 to 1.1%.
(B: 0.6 to 0.9%, C: 0.15 to 0.3%) and the balance: T (where T is Fe, or Fe and Co
Which is a main component composition of R 2 T 14 (B, C)
An RTBC-based sintered magnet characterized in that the main phase is a phase.
【請求項7】 R14(B,C)主相の格子定数
比:c/a(ただし、cは正方晶の一軸異方性方向の格
子定数であり、aは残りの2辺の格子定数である)が1.
375〜1.385である請求項6に記載のR−T−B−C系焼
結磁石。
7. A lattice constant ratio of a main phase of R 2 T 14 (B, C): c / a (where c is a lattice constant in a uniaxial anisotropy direction of a tetragonal crystal, and a is The lattice constant is 1.
7. The RTBC based sintered magnet according to claim 6, wherein the ratio is from 375 to 1.385.
【請求項8】 重量%でR:28〜33%、B+C:0.9〜
1.1%(但しB:0.6〜0.9%であり、C:0.15〜0.3%で
ある)、M:0.01〜0.3%(但しMはCu,Al,G
a,Nb及びMnからなる群から選択される少なくとも
1種である)及び残部:T(但しTはFe及びCoであ
り、Co:0.5〜5%である)の主要成分組成を有する
請求項6又は7に記載のR−T−B−C系焼結磁石。
8. R: 28-33% by weight%, B + C: 0.9-%
1.1% (B: 0.6 to 0.9%, C: 0.15 to 0.3%), M: 0.01 to 0.3% (where M is Cu, Al, G
7. A main component composition of at least one selected from the group consisting of a, Nb, and Mn) and the balance: T (where T is Fe and Co, and Co is 0.5 to 5%). Or an RTBC-based sintered magnet according to 7.
【請求項9】 重量%でR(但しRは希土類元素の少な
くとも1種である):28〜32%、B+C:0.9〜1.1%
(但しB:0.6〜0.9%であり、C:0.15〜0.3%であ
る)、及び残部:T(但しTはFe、又はFe及びCo
である)の主要成分組成を有し、R14(B,C)
主相の格子定数比:c/a(ただし、cは正方晶の一軸
異方性方向の格子定数であり、aは残りの2辺の格子定
数である)が1.375〜1.385であるR−T−B−C系焼結
磁石であって、前記R−T−B−C系焼結磁石の単位重
量あたりの含有酸素量が0.3重量%以下であり、かつ焼
結体密度が7.56Mg/m以上であることを特徴とするR−
T−B−C系焼結磁石。
9. R by weight (where R is at least one rare earth element): 28 to 32%, B + C: 0.9 to 1.1%.
(B: 0.6 to 0.9%, C: 0.15 to 0.3%) and the balance: T (where T is Fe, or Fe and Co
Which is a main component composition of R 2 T 14 (B, C)
R-T in which the lattice constant ratio of the main phase: c / a (where c is the lattice constant in the direction of uniaxial anisotropy of tetragonal crystal and a is the lattice constant of the remaining two sides) is 1.375 to 1.385 A BC-based sintered magnet, wherein the RTBC-based sintered magnet has an oxygen content per unit weight of 0.3% by weight or less and a sintered body density of 7.56 Mg / m 2. R- characterized by being 3 or more
TBC sintered magnet.
【請求項10】 重量%でR(但しRは希土類元素の少
なくとも2種であってNd及びDyを必須に含み、Dy
含有量が0.3〜15%である):28〜32%、B+C:0.9〜
1.1%(但しB:0.6〜0.9%であり、C:0.15〜0.3%で
ある)、及び残部:T(但しTはFe、又はFe及びC
oである)の主要成分組成を有し、R14(B,
C)主相の格子定数比:c/a(但しcは正方晶の一軸
異方性方向の格子定数であり、aは残りの2辺の格子定
数である)が1.375〜1.385であるR−T−B−C系焼結
磁石であって、前記希土類焼結磁石の単位重量あたりの
含有酸素量が0.3重量%以下であり、かつ焼結体密度が
7.60Mg/m以上であることを特徴とするR−T−B−C
系焼結磁石。
10. R in weight% (where R is at least two kinds of rare earth elements, which essentially contains Nd and Dy, and Dy
Content is 0.3 to 15%): 28 to 32%, B + C: 0.9 to
1.1% (B: 0.6 to 0.9%, C: 0.15 to 0.3%) and the balance: T (where T is Fe or Fe and C
o), and R 2 T 14 (B,
C) R- having a lattice constant ratio of the main phase: c / a (where c is a lattice constant in a uniaxial anisotropy direction of a tetragonal crystal and a is a lattice constant of the remaining two sides) is 1.375 to 1.385. A TBC sintered magnet, wherein the rare earth sintered magnet has an oxygen content per unit weight of 0.3% by weight or less and a sintered body density of
And characterized in that 7.60Mg / m 3 or more R-T-B-C
Series sintered magnet.
JP2001087146A 2001-03-26 2001-03-26 R-t-b-c based sintered magnet and production method therefor Pending JP2002285276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087146A JP2002285276A (en) 2001-03-26 2001-03-26 R-t-b-c based sintered magnet and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087146A JP2002285276A (en) 2001-03-26 2001-03-26 R-t-b-c based sintered magnet and production method therefor

Publications (2)

Publication Number Publication Date
JP2002285276A true JP2002285276A (en) 2002-10-03
JP2002285276A5 JP2002285276A5 (en) 2008-04-03

Family

ID=18942427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087146A Pending JP2002285276A (en) 2001-03-26 2001-03-26 R-t-b-c based sintered magnet and production method therefor

Country Status (1)

Country Link
JP (1) JP2002285276A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081954A1 (en) * 2003-03-12 2004-09-23 Neomax Co., Ltd. R-t-b sintered magnet and process for producing the same
US7534311B2 (en) 2003-08-12 2009-05-19 Hitachi Metals, Ltd. R-t-b sintered magnet and rare earth alloy
JPWO2013191276A1 (en) * 2012-06-22 2016-05-26 Tdk株式会社 Sintered magnet
CN108695036A (en) * 2017-03-31 2018-10-23 Tdk株式会社 R-T-B systems permanent magnet
JP2020164925A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Alloy for r-t-b-based permanent magnet and manufacturing method of r-t-b-based permanent magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355050A (en) * 2001-06-29 2001-12-25 Sumitomo Special Metals Co Ltd R-t-b-c based rare earth magnet powder and bond magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355050A (en) * 2001-06-29 2001-12-25 Sumitomo Special Metals Co Ltd R-t-b-c based rare earth magnet powder and bond magnet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081954A1 (en) * 2003-03-12 2004-09-23 Neomax Co., Ltd. R-t-b sintered magnet and process for producing the same
EP1562203A1 (en) * 2003-03-12 2005-08-10 Neomax Co., Ltd. R-t-b sintered magnet and process for producing the same
JPWO2004081954A1 (en) * 2003-03-12 2006-06-15 株式会社Neomax R-T-B system sintered magnet and manufacturing method thereof
EP1562203A4 (en) * 2003-03-12 2009-08-05 Hitachi Metals Ltd R-t-b sintered magnet and process for producing the same
US7534311B2 (en) 2003-08-12 2009-05-19 Hitachi Metals, Ltd. R-t-b sintered magnet and rare earth alloy
JPWO2013191276A1 (en) * 2012-06-22 2016-05-26 Tdk株式会社 Sintered magnet
US9997284B2 (en) 2012-06-22 2018-06-12 Tdk Corporation Sintered magnet
CN108695036A (en) * 2017-03-31 2018-10-23 Tdk株式会社 R-T-B systems permanent magnet
CN108695036B (en) * 2017-03-31 2020-08-21 Tdk株式会社 R-T-B permanent magnet
JP2020164925A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Alloy for r-t-b-based permanent magnet and manufacturing method of r-t-b-based permanent magnet
JP7315889B2 (en) 2019-03-29 2023-07-27 Tdk株式会社 Alloy for RTB Permanent Magnet and Method for Producing RTB Permanent Magnet

Similar Documents

Publication Publication Date Title
JP5729051B2 (en) R-T-B rare earth sintered magnet
WO2012002060A1 (en) R-t-b based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP2021533557A (en) Ce-containing sintered rare earth permanent magnet with high durability and high coercive force, and its preparation method
WO2010113371A1 (en) Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP2012015168A (en) R-t-b-based rare earth permanent magnet, motor, vehicle, generator and wind power generator
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2007134417A (en) Manufacturing method of rare earth sintered magnet
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2011014631A (en) R-t-b-based rare-earth permanent magnet, and motor, automobile, generator and wind turbine generator
JP4900085B2 (en) Rare earth magnet manufacturing method
JP5299737B2 (en) Quenched alloy for RTB-based sintered permanent magnet and RTB-based sintered permanent magnet using the same
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
US7390369B2 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2005288493A (en) Method and apparatus for producing alloy strip, and method for producing alloy powder
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4415551B2 (en) Rare earth alloy, rare earth sintered magnet and manufacturing method thereof
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2002088451A (en) Rare earth magnet and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100702