JP2018060997A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2018060997A
JP2018060997A JP2017054790A JP2017054790A JP2018060997A JP 2018060997 A JP2018060997 A JP 2018060997A JP 2017054790 A JP2017054790 A JP 2017054790A JP 2017054790 A JP2017054790 A JP 2017054790A JP 2018060997 A JP2018060997 A JP 2018060997A
Authority
JP
Japan
Prior art keywords
alloy
mass
hydrogen
powder
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017054790A
Other languages
Japanese (ja)
Other versions
JP6760160B2 (en
Inventor
康太 齋藤
Kota Saito
康太 齋藤
倫太郎 石井
Rintaro Ishii
倫太郎 石井
鉄兵 佐藤
Teppei Sato
鉄兵 佐藤
國吉 太
Futoshi Kuniyoshi
太 國吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2018060997A publication Critical patent/JP2018060997A/en
Application granted granted Critical
Publication of JP6760160B2 publication Critical patent/JP6760160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an R-T-B based sintered magnet having a high coercive force H.SOLUTION: A method for manufacturing an R-T-B based sintered magnet including 28.5-33.5 mass% of a rare earth element including at least one kind of Nd and Pr, 0.84-0.92 mass% of B, 0.3-0.7 mass% of Ga, 0.05-0.35 mass% of Cu, 0.02-0.50 mass% of Al, and 61.0 mass% or more of Fe+Co, and satisfying an expression given by 14[B]/10.8<[Fe+Co]/55.85 comprises the steps of: heating at least one or more kinds of R-Ga alloys in a hydrogen atmosphere at a temperature of 200-450°C to obtain a hydrogen-occluding R-Ga alloy; mixing the hydrogen-occluding R-Ga alloy with one or more kinds of primary alloys to obtain a mixed alloy powder; molding and sintering the resultant mixture alloy; and performing a thermal treatment on the resultant mixture alloy. In the step of obtaining the mixed alloy powder, the hydrogen-occluding R-Ga alloy is pulverized with hydrogen occluded by the alloy, and the mass ratio of the R-Ga alloy powder to a mass of the mixed alloy powder is 1-5%.SELECTED DRAWING: Figure 1A

Description

本開示は、R−T−B系焼結磁石の製造方法に関する。   The present disclosure relates to a method for manufacturing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種であり、NdおよびPrの少なくとも1種を含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は、R14B型結晶構造を有する化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されており、永久磁石の中で最も高性能な磁石として知られている。 R-T-B based sintered magnet (R is at least one of rare earth elements and includes at least one of Nd and Pr, T is at least one of transition metal elements and must contain Fe) It consists of a main phase composed of a compound having a 2 T 14 B-type crystal structure and a grain boundary phase located at the grain boundary portion of this main phase, and is known as the most powerful magnet among permanent magnets. Yes.

このため、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車(EV、HV、PHV)用モータ、産業機器用モータなどの各種モータや家電製品など多種多様な用途に用いられている。   For this reason, it is used for various applications such as various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV), motors for industrial equipment, and home appliances.

このように用途が広がるにつれ、例えば電気自動車用モータで用いられた場合は、100℃〜160℃のような高温下に曝される場合があり、高温下においても安定した動作が要求されている。   As the application expands in this way, for example, when used in an electric vehicle motor, it may be exposed to a high temperature such as 100 ° C. to 160 ° C., and stable operation is required even at a high temperature. .

しかし、従来のR−T−B系焼結磁石は、高温になると保磁力HcJ(以下、単に「HcJ」と記載する場合がある)が低下し、不可逆熱減磁が起こるという問題がある。電気自動車用モータにR−T−B系焼結磁石が使用される場合、高温下での使用によりHcJが低下し、モータの安定した動作が得られない恐れがある。そのため、室温において高いHcJを有し、かつ高温においても高いHcJを有するR−T−B系焼結磁石が求められている。 However, the conventional RTB -based sintered magnet has a problem that the coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) decreases at a high temperature and irreversible thermal demagnetization occurs. is there. When an R-T-B sintered magnet is used for a motor for an electric vehicle, HcJ decreases due to use at a high temperature, and there is a possibility that stable operation of the motor cannot be obtained. Therefore, an RTB -based sintered magnet having high H cJ at room temperature and high H cJ even at high temperature is required.

室温におけるHcJ向上のために、従来R−T−B系焼結磁石に重希土類元素RH(主としてDy)を添加していたが、残留磁束密度B(以下、単に「B」と記載する場合がある)が低下するという問題があった。さらに、Dyは、産出地が限定されている等の理由から、供給が不安定であり、また価格が大きく変動することがあるなどの問題を有している。そのため、Dyなどの重希土類元素RHをできるだけ使用せずにR−T−B系焼結磁石のHcJを向上させる技術が求められている。 In order to improve HcJ at room temperature, a heavy rare earth element RH (mainly Dy) has been added to a conventional RTB-based sintered magnet, but the residual magnetic flux density B r (hereinafter simply referred to as “B r ”). There is a problem that it may decrease). Furthermore, Dy has problems such as supply being unstable and price fluctuating due to the limited production area. Therefore, there is a demand for a technique for improving HcJ of an R-T-B based sintered magnet without using a heavy rare earth element RH such as Dy as much as possible.

このような技術として、例えば特許文献1は、通常のR−T−B系合金よりもB量を低くするとともに、Al、GaおよびCuのうちから選ばれる1種以上である金属元素Mを含有させることによりR17相を生成させ、当該R17相を原料として生成させた遷移金属リッチ相(R−T−Ga相)の体積率を充分に確保することにより、Dyの含有量を抑制しつつ、保磁力の高いR−T−B系焼結磁石が得られることを開示している。 As such a technique, for example, Patent Document 1 contains a metal element M that is one or more selected from Al, Ga, and Cu while lowering the B amount than a normal RTB-based alloy. The R 2 T 17 phase is generated by making the R 2 T 17 phase a raw material, and the volume ratio of the transition metal rich phase (R-T-Ga phase) generated using the R 2 T 17 phase as a raw material is sufficiently ensured. It discloses that an RTB-based sintered magnet having a high coercive force can be obtained while suppressing the amount.

国際公開第2013/008756号公報International Publication No. 2013/008756

しかし、特許文献1に記載されるR−T−B系焼結磁石はHcJが向上しているものの、近年の要求を満足するには不十分である。 However, although the RTB -based sintered magnet described in Patent Document 1 has improved HcJ , it is insufficient to satisfy recent requirements.

そこで本発明は、高い保磁力HcJを有するR−T−B系焼結磁石の製造方法を提供することを目的とする。 Then, an object of this invention is to provide the manufacturing method of the RTB system sintered magnet which has high coercive force HcJ .

本発明の態様1は、
R1:28.5〜33.5質量%(R1は、希土類元素のうち少なくとも1種でありNdおよびPrの少なくとも1種を含む)、
B:0.84〜0.92質量%、
Ga:0.3〜0.7質量%、
Cu:0.05〜0.35質量%、
Al:0.02〜0.50質量%、
T:61.0質量%以上(Tは、FeとCoでありTの90質量%以上がFeである)を含み、下記式(1)を満足するR−T−B系焼結磁石の製造方法であって、

14[B]/10.8<[T]/55.85 (1)
([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である)

R2:80〜95質量%(R2は、希土類元素のうち少なくとも1種)、
Ga:5〜20質量%(Gaの40質量%以下をCuで置換できる)、
Fe:0〜1質量%(Feの一部または全部をCoで置換できる)を含む1種以上のR−Ga合金と、1種以上の主合金とを準備する工程と、
前記R−Ga合金を水素雰囲気で200℃以上450℃以下の温度に加熱して、水素吸蔵R−Ga合金を得る水素吸蔵工程と、
前記1種以上の水素吸蔵R−Ga合金と前記1種以上の主合金とを用いて、R−Ga合金粉末と主合金粉末を含む混合合金粉末を得る工程と、
前記混合合金粉末を成形して成形体を得る成形工程と、
前記成形体を焼結し焼結体を得る焼結工程と、
前記焼結体に熱処理を施す熱処理工程と、
を含み、
前記混合合金粉末を得る工程において、少なくとも前記1種以上の水素吸蔵R−Ga合金は水素を吸蔵している状態で粉砕され、
前記混合合金粉末の質量に対する前記R−Ga合金粉末の質量の比が、1〜5%である、R−T−B系焼結磁石の製造方法である。
Aspect 1 of the present invention
R1: 28.5-33.5% by mass (R1 is at least one of rare earth elements and includes at least one of Nd and Pr),
B: 0.84 to 0.92 mass%,
Ga: 0.3-0.7 mass%,
Cu: 0.05 to 0.35 mass%,
Al: 0.02-0.50 mass%,
Production of RTB-based sintered magnet including T: 61.0% by mass or more (T is Fe and Co, and 90% by mass or more of T is Fe) and satisfies the following formula (1) A method,

14 [B] /10.8 <[T] /55.85 (1)
([B] is the B content in mass%, and [T] is the T content in mass%)

R2: 80 to 95% by mass (R2 is at least one of rare earth elements),
Ga: 5 to 20% by mass (40% by mass or less of Ga can be replaced with Cu),
Preparing one or more R-Ga alloys including Fe: 0 to 1% by mass (part or all of Fe can be replaced with Co) and one or more main alloys;
A hydrogen storage step of heating the R-Ga alloy to a temperature of 200 ° C. or higher and 450 ° C. or lower in a hydrogen atmosphere to obtain a hydrogen storage R-Ga alloy;
Using the one or more hydrogen storage R-Ga alloys and the one or more main alloys to obtain a mixed alloy powder including the R-Ga alloy powder and the main alloy powder;
A molding step of molding the mixed alloy powder to obtain a molded body;
A sintering step of sintering the molded body to obtain a sintered body;
A heat treatment step for heat-treating the sintered body;
Including
In the step of obtaining the mixed alloy powder, at least the one or more hydrogen storage R-Ga alloys are pulverized in a state of storing hydrogen,
It is a manufacturing method of the RTB system sintered magnet whose ratio of the mass of the R-Ga alloy powder to the mass of the mixed alloy powder is 1 to 5%.

本発明の態様2は、前記混合合金粉末を得る工程は、以下の(条件a)または(条件b)により混合合金粉末を得る、態様1に記載のR−T−B系焼結磁石の製造方法である。
(条件a)前記水素吸蔵R−Ga合金が水素を吸蔵している状態で、前記水素吸蔵R−Ga合金を粉砕して得たR−Ga合金粉末と、前記主合金を粉砕して得た主合金粉末と、を混合する。
(条件b)前記水素吸蔵R−Ga合金と前記主合金の粗粉砕粉とを混合した混合合金を得て、前記水素吸蔵R−Ga合金が水素を吸蔵している状態で、前記混合合金を粉砕する。
Aspect 2 of the present invention is the production of the RTB-based sintered magnet according to aspect 1, wherein the step of obtaining the mixed alloy powder obtains the mixed alloy powder according to the following (Condition a) or (Condition b). Is the method.
(Condition a) Obtained by pulverizing the main alloy with R-Ga alloy powder obtained by pulverizing the hydrogen-occluded R-Ga alloy in a state where the hydrogen-occlusion R-Ga alloy occludes hydrogen. Main alloy powder is mixed.
(Condition b) Obtaining a mixed alloy obtained by mixing the hydrogen storage R-Ga alloy and the coarsely pulverized powder of the main alloy, and in the state where the hydrogen storage R-Ga alloy stores hydrogen, Smash.

本発明の態様3は、前記水素吸蔵R−Ga合金における水素含有量は2600ppm以上である、態様1または2に記載のR−T−B系焼結磁石の製造方法である。   Aspect 3 of the present invention is the method for producing an RTB-based sintered magnet according to aspect 1 or 2, wherein the hydrogen content in the hydrogen storage R-Ga alloy is 2600 ppm or more.

本発明の態様4は、
R1:28.5〜33.5質量%(R1は、希土類元素のうち少なくとも1種でありNdおよびPrの少なくとも1種を含む)、
B:0.84〜0.92質量%、
Ga:0.3〜0.7質量%、
Cu:0.05〜0.35質量%、
Al:0.02〜0.50質量%、
を含み、
残部がT(Tは、FeとCoでありTの90質量%以上がFeである)および不可避的不純物であり、下記式(1)を満足するR−T−B系焼結磁石の製造方法であって、

14[B]/10.8<[T]/55.85 (1)
([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である)

R2:80〜95質量%(R2は、希土類元素のうち少なくとも1種)、
Ga:5〜20質量%(Gaの40質量%以下をCuで置換できる)、
Fe:0〜1質量%(Feの一部または全部をCoで置換できる)を含む1種以上のR−Ga合金と、1種以上の主合金とを準備する工程と、
前記R−Ga合金を水素雰囲気で200℃以上450℃以下の温度に加熱して、水素吸蔵R−Ga合金を得る水素吸蔵工程と、
以下の(条件a)または(条件b)により、R−Ga合金粉末と主合金粉末を含む混合合金粉末を得る工程と、
(条件a)前記水素吸蔵R−Ga合金が水素を吸蔵している状態で、前記水素吸蔵R−Ga合金を粉砕して得たR−Ga合金粉末と、前記主合金を粉砕して得た主合金粉末と、を混合する
(条件b)前記水素吸蔵R−Ga合金と前記主合金の粗粉砕粉とを混合した混合合金を得て、前記水素吸蔵R−Ga合金が水素を吸蔵している状態で、前記混合合金を粉砕する
前記混合合金粉末を成形して成形体を得る成形工程と、
前記成形体を焼結し焼結体を得る焼結工程と、
前記焼結体に熱処理を施す熱処理工程と、
を含み、前記混合合金粉末の質量に対する前記R−Ga合金粉末の質量の比が、1〜5%である、R−T−B系焼結磁石の製造方法である。
Aspect 4 of the present invention
R1: 28.5-33.5% by mass (R1 is at least one of rare earth elements and includes at least one of Nd and Pr),
B: 0.84 to 0.92 mass%,
Ga: 0.3-0.7 mass%,
Cu: 0.05 to 0.35 mass%,
Al: 0.02-0.50 mass%,
Including
The balance is T (T is Fe and Co, and 90% by mass or more of T is Fe) and inevitable impurities, and the manufacturing method of the RTB-based sintered magnet satisfying the following formula (1) Because

14 [B] /10.8 <[T] /55.85 (1)
([B] is the B content in mass%, and [T] is the T content in mass%)

R2: 80 to 95% by mass (R2 is at least one of rare earth elements),
Ga: 5 to 20% by mass (40% by mass or less of Ga can be replaced with Cu),
Preparing one or more R-Ga alloys including Fe: 0 to 1% by mass (part or all of Fe can be replaced with Co) and one or more main alloys;
A hydrogen storage step of heating the R-Ga alloy to a temperature of 200 ° C. or higher and 450 ° C. or lower in a hydrogen atmosphere to obtain a hydrogen storage R-Ga alloy;
A step of obtaining a mixed alloy powder containing an R-Ga alloy powder and a main alloy powder according to the following (condition a) or (condition b);
(Condition a) Obtained by pulverizing the main alloy with R-Ga alloy powder obtained by pulverizing the hydrogen-occluded R-Ga alloy in a state where the hydrogen-occlusion R-Ga alloy occludes hydrogen. (Condition b) A mixed alloy obtained by mixing the hydrogen storage R-Ga alloy and the coarsely pulverized powder of the main alloy is obtained, and the hydrogen storage R-Ga alloy stores hydrogen. In a state where the mixed alloy is pulverized, a forming step of forming the mixed alloy powder to obtain a formed body,
A sintering step of sintering the molded body to obtain a sintered body;
A heat treatment step for heat-treating the sintered body;
And the ratio of the mass of the R-Ga alloy powder to the mass of the mixed alloy powder is 1 to 5%.

本発明の態様5は、前記水素吸蔵R−Ga合金における水素含有量は2600ppm以上である、態様4に記載のR−T−B系焼結磁石の製造方法である。   Aspect 5 of the present invention is the method for producing an RTB-based sintered magnet according to aspect 4, wherein the hydrogen content in the hydrogen storage R—Ga alloy is 2600 ppm or more.

本発明の態様6は、
前記混合合金粉末を得る工程の(条件a)において、前記水素吸蔵工程の後、前記水素吸蔵R−Ga合金を450℃を超える温度に加熱することなく、前記水素吸蔵R−Ga合金を粉砕することを特徴とする、態様2または4に記載のR−T−B系焼結磁石の製造方法である。
Aspect 6 of the present invention
In (condition a) in the step of obtaining the mixed alloy powder, after the hydrogen storage step, the hydrogen storage R-Ga alloy is pulverized without heating the hydrogen storage R-Ga alloy to a temperature exceeding 450 ° C. The method for producing an RTB-based sintered magnet according to aspect 2 or 4, characterized in that:

本発明の態様7は、前記混合合金粉末を得る工程の(条件a)において、前記水素吸蔵工程の後、前記水素吸蔵R−Ga合金を加熱することなく、前記水素吸蔵R−Ga合金を粉砕することを特徴とする、態様2または4に記載のR−T−B系焼結磁石の製造方法である。   In aspect 7 of the present invention, in the step (condition a) of obtaining the mixed alloy powder, the hydrogen storage R-Ga alloy is pulverized without heating the hydrogen storage R-Ga alloy after the hydrogen storage step. It is a manufacturing method of the RTB type | system | group sintered magnet of aspect 2 or 4 characterized by these.

本発明の態様8は、前記混合合金粉末を得る工程の(条件b)において、前記水素吸蔵工程の後、前記水素吸蔵R−Ga合金を450℃を超える温度に加熱することなく、前記混合合金を粉砕することを特徴とする、態様2または4に記載のR−T−B系焼結磁石の製造方法である。   Aspect 8 of the present invention provides the mixed alloy powder without heating the hydrogen storage R—Ga alloy to a temperature exceeding 450 ° C. after the hydrogen storage step in the condition (b) of obtaining the mixed alloy powder. The method for producing an RTB-based sintered magnet according to the aspect 2 or 4, characterized in that:

本発明の態様9は、前記混合合金粉末を得る工程の(条件b)において、前記水素吸蔵工程の後、前記水素吸蔵R−Ga合金を加熱することなく、前記混合合金を粉砕することを特徴とする、態様2または4に記載のR−T−B系焼結磁石の製造方法である。   Aspect 9 of the present invention is characterized in that, in (condition b) of the step of obtaining the mixed alloy powder, after the hydrogen storage step, the mixed alloy is pulverized without heating the hydrogen storage R-Ga alloy. It is a manufacturing method of the RTB type sintered magnet of the aspect 2 or 4.

本発明によれば、高い保磁力HcJを有するR−T−B系焼結磁石の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the RTB type | system | group sintered magnet which has high coercive force HcJ can be provided.

図1Aは、(条件a)における本発明の工程の例を示すフローチャートである。FIG. 1A is a flowchart showing an example of the process of the present invention under (condition a). 図1Bは、(条件b)における本発明の工程の例を示すフローチャートである。FIG. 1B is a flowchart showing an example of the process of the present invention in (Condition b).

以下に示す実施形態は、本発明の技術思想を具体化するためのR−T−B系焼結磁石の製造方法を例示するものであって、本発明を以下に限定するものではない。   Embodiment shown below illustrates the manufacturing method of the RTB type sintered magnet for materializing the technical idea of this invention, Comprising: This invention is not limited below.

特許文献1に記載されているように一般的なR−T−B系焼結磁石よりもB量を少なく(R14B型化合物の化学量論比のB量よりも少なく)し、Ga等を添加することにより、遷移金属リッチ相(R−T−Ga相)を生成させてHcJを向上させることができる。しかし、本発明者らが鋭意検討した結果、R−T−Ga相は若干の磁化を有しており、R−T−B系焼結磁石における2つの主相間に存在する第一の粒界(以下、「二粒子粒界」と記載する場合がある)と、3つ以上の主相間に存在する第二の粒界(以下、「三重点粒界」と記載する場合がある)のうち、特にHcJに主に影響すると考えられる二粒子粒界にR−T−Ga相が多く存在すると、HcJ向上の妨げになることが分かった。また、R−T−Ga相の生成とともに、二粒子粒界にR−T−Ga相よりも磁化が低いと考えられるR−Ga相が生成されていることが分かった。そこで、高いHcJを有するR−T−B系焼結磁石を得るためには、R−T−Ga相を生成する必要はあるものの、二粒子粒界にR−Ga相を多く生成させることが重要であると想定した。 As described in Patent Document 1, the amount of B is smaller than that of a general RTB-based sintered magnet (less than the amount of B in the stoichiometric ratio of the R 2 T 14 B type compound), By adding Ga or the like, a transition metal rich phase (RT-Ga phase) can be generated and HcJ can be improved. However, as a result of intensive studies by the present inventors, the RT-Ga phase has a slight magnetization, and the first grain boundary existing between the two main phases in the RTB-based sintered magnet. (Hereinafter sometimes referred to as “two-grain grain boundaries”) and second grain boundaries existing between three or more main phases (hereinafter sometimes referred to as “triple-grain grain boundaries”) , especially when R-T-Ga phase is often present in the second grain boundaries that would mainly affect H cJ, it was found to hinder H cJ increased. Further, it was found that, along with the generation of the R—T—Ga phase, an R—Ga phase considered to have a magnetization lower than that of the R—T—Ga phase was generated at the grain boundary. Therefore, in order to obtain an RTB -based sintered magnet having high HcJ , it is necessary to generate an RT-Ga phase, but a large amount of R-Ga phase is generated at the grain boundary. Was assumed to be important.

本発明者らは、二粒子粒界にR−Ga相を多く生成させるためには、R−Ga合金粉末と主合金粉末とを準備し、それらの合金粉末を混合する、いわゆるブレンド法によりR−T−B系焼結磁石を製造することが有効であると考えた。   In order to produce a large amount of R-Ga phase at the two-particle grain boundary, the present inventors prepare R-Ga alloy powder and main alloy powder, and mix these alloy powders by a so-called blending method. It was considered effective to produce a -T-B based sintered magnet.

しかし、R−Ga合金は粉砕性が悪く、ブレンド法において、R−Ga合金粉末を得るために通常の水素粉砕等の方法を用いて粉砕しても、D50(気流分散式レーザー回折法による測定で得られる体積中心値(体積基準メジアン径)をいう。以下において同じ。)が20μm程度の大きさまでしか粉砕することができなかった。このような大きさのR−Ga合金を用いてブレンド法によりR−T−B系焼結磁石を製造した場合、R−T−B系焼結磁石の二粒子粒界にR−Ga相を十分に生成させることができず、さらには、そもそも粒径が大きすぎる(高いHcJ及び高いBを得るには8μm以下に粉砕する必要がある)ため高い保磁力HcJと残留磁束密度Bとを有するR−T−B系焼結磁石を得ることができなかった。R−Ga合金に対してFeを過多に添加することにより粉砕性を高めることができたが、この場合、得られたR−T−B系焼結磁石の二粒子粒界において、磁化を有するFe濃度が上昇し、やはり高いHcJを得ることができなかった。 However, the R-Ga alloy has poor grindability, and even in the blending method, even when the R-Ga alloy is ground using a normal method such as hydrogen grinding to obtain the R-Ga alloy powder, D 50 (according to the air flow dispersion type laser diffraction method). It could only be pulverized to a volume median value (volume reference median diameter) obtained by measurement, which is the same hereinafter) of about 20 μm. When an R-T-B system sintered magnet is manufactured by a blend method using an R-Ga alloy having such a size, an R-Ga phase is formed at the two-particle grain boundary of the R-T-B system sintered magnet. It can not be sufficiently produced, and further, the first place the particle size is too large (high H cJ and high to obtain a B r has to be ground to 8μm or less) for high coercivity H cJ and remanence B An RTB -based sintered magnet having r could not be obtained. Although the grindability could be improved by adding excessive Fe to the R-Ga alloy, in this case, it has magnetization at the two-grain boundary of the obtained RTB-based sintered magnet. The Fe concentration increased and it was still impossible to obtain high HcJ .

本発明者らはさらに鋭意検討した結果、ブレンド法において、特定組成のR−Ga合金に対して特定の温度で水素を吸蔵させ、水素が吸蔵された状態(水素含有量が2600ppm以上)のR−Ga合金を粉砕することにより、得られるR−Ga合金粉末の大きさをD50が8μm以下まで小さくできることを見出した。これにより、HcJを低下させる原因となるFeを過多に添加することなく、R−Ga合金を8μm以下に粉砕することができる。そして、本発明の特定組成のR−Ga合金と主合金粉末とを用いてR−T−B系焼結磁石を作製することにより、二粒子粒界に多くのR−Ga相が生成されると考えられる。これにより高い保磁力HcJをおよび高い残留磁束密度Bを有するR−T−B系焼結磁石を得ることができる。
以下に本発明の実施形態に係る製造方法について詳述する。
As a result of further intensive studies, the present inventors have determined that in the blending method, hydrogen is occluded at a specific temperature with respect to an R—Ga alloy having a specific composition, and hydrogen is occluded (hydrogen content is 2600 ppm or more). It was found that by pulverizing the —Ga alloy, the size of the obtained R—Ga alloy powder can be reduced to D 50 of 8 μm or less. Accordingly, the R—Ga alloy can be pulverized to 8 μm or less without excessively adding Fe that causes HcJ to decrease. And many R-Ga phases are produced | generated in a two-particle grain boundary by producing a RTB system sintered magnet using the R-Ga alloy of the specific composition of this invention, and the main alloy powder. it is conceivable that. This makes it possible to obtain the R-T-B based sintered magnet having a high coercive force H cJ of and high residual magnetic flux density B r.
The manufacturing method according to the embodiment of the present invention will be described in detail below.

[R−T−B系焼結磁石]
まず、本発明の実施形態に係る製造方法により得られるR−T−B系焼結磁石について説明する。
[RTB-based sintered magnet]
First, the RTB system sintered magnet obtained by the manufacturing method according to the embodiment of the present invention will be described.

[R−T−B系焼結磁石の組成]
本実施形態に係るR−T−B系焼結磁石の組成は、
R1:28.5〜33.5質量%(R1は、希土類元素のうち少なくとも1種でありNdおよびPrの少なくとも1種を含む)、
B:0.84〜0.92質量%、
Ga:0.3〜0.7質量%、
Cu:0.05〜0.35質量%、
Al:0.02〜0.50質量%、
T:61.0質量%以上(Tは、FeとCoでありTの90質量%以上がFeである)を含み、下記式(1)を満足する。

14[B]/10.8<[T]/55.85 (1)
([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である。)
[Composition of RTB-based sintered magnet]
The composition of the RTB-based sintered magnet according to this embodiment is
R1: 28.5-33.5% by mass (R1 is at least one of rare earth elements and includes at least one of Nd and Pr),
B: 0.84 to 0.92 mass%,
Ga: 0.3-0.7 mass%,
Cu: 0.05 to 0.35 mass%,
Al: 0.02-0.50 mass%,
T: 61.0 mass% or more (T is Fe and Co, and 90 mass% or more of T is Fe), and satisfies the following formula (1).

14 [B] /10.8 <[T] /55.85 (1)
([B] is the B content in mass%, and [T] is the T content in mass%.)

また、本発明の好ましい実施形態に係るR−T−B系焼結磁石の組成は、
R1:28.5〜33.5質量%(R1は、希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む)、
B:0.84〜0.92質量%、
Ga:0.3〜0.7質量%、
Cu:0.05〜0.35質量%、
Al:0.02〜0.50質量%、
を含み、
残部がT(Tは、FeとCoでありTの90質量%以上がFeである)および不可避的不純物であり、下記式(1)を満足する。

14[B]/10.8<[T]/55.85 (1)
([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である)
In addition, the composition of the RTB-based sintered magnet according to a preferred embodiment of the present invention is:
R1: 28.5 to 33.5 mass% (R1 is at least one rare earth element and includes at least one of Nd and Pr),
B: 0.84 to 0.92 mass%,
Ga: 0.3-0.7 mass%,
Cu: 0.05 to 0.35 mass%,
Al: 0.02-0.50 mass%,
Including
The balance is T (T is Fe and Co, 90% by mass or more of T is Fe) and inevitable impurities, and satisfies the following formula (1).

14 [B] /10.8 <[T] /55.85 (1)
([B] is the B content in mass%, and [T] is the T content in mass%)

上記組成により、一般的なR−T−B系焼結磁石よりもB量を少なくするとともに、Ga等を含有させているので、二粒子粒界にR−T−Ga相が生成して、高いHcJを有することができる。ここで、R−T−Ga相とは、代表的にはNdFe13Ga化合物である。R13Ga化合物は、LaCo11Ga型結晶構造を有する。また、R13Ga化合物は、その状態によっては、R13−δGa1+δ化合物(δは典型的には2以下)になっている場合がある。例えば、R−T−B系焼結磁石中に比較的多くCu、Alが含有される場合、R13−δ(Ga1−x−yCuAl1+δになっている場合がある。
以下に、各組成について詳述する。
With the above composition, the amount of B is smaller than that of a general RTB-based sintered magnet, and Ga and the like are contained. Therefore, an RT-Ga phase is generated at the two-grain grain boundary, Can have a high H cJ . Here, the R—T—Ga phase is typically an Nd 6 Fe 13 Ga compound. The R 6 T 13 Ga compound has a La 6 Co 11 Ga 3 type crystal structure. Moreover, the R 6 T 13 Ga compound may be an R 6 T 13-δ Ga 1 + δ compound (δ is typically 2 or less) depending on the state. For example, relatively large Cu in R-T-B based sintered magnet, if the Al is contained, may have been the R 6 T 13-δ (Ga 1-x-y Cu x Al y) 1 + δ is there.
Below, each composition is explained in full detail.

(R1:28.5〜33.5質量%)
R1は、希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む。R1の含有量は、28.5〜33.5質量%である。R1が28.5質量%未満であると焼結時の緻密化が困難となるおそれがあり、33.5質量%を超えると主相比率が低下して高いBを得られないおそれがある。R1の含有量は、好ましくは29.5〜32.5質量%である。R1がこのような範囲であれば、より高いBを得ることができる。
(R1: 28.5-33.5% by mass)
R1 is at least one of rare earth elements and includes at least one of Nd and Pr. Content of R1 is 28.5-33.5 mass%. R1 is may become difficult to densification during sintering is less than 28.5% by mass, there is a possibility that the main phase proportion exceeds 33.5% by weight can not be obtained a high B r drops . The content of R1 is preferably 29.5 to 32.5% by mass. If R1 is in such a range, higher Br can be obtained.

(B:0.84〜0.92質量%)
Bの含有量は、0.84〜0.92質量%である。Bが0.84質量%未満であるとR17相が生成されて高いHcJが得られないおそれがあり、0.92質量%を超えるとR−T−Ga相の生成量が少なすぎて高いHcJが得られないおそれがある。Bの含有量は、好ましくは0.85〜0.92質量%である。Bの一部はCと置換することができる。
(B: 0.84-0.92 mass%)
Content of B is 0.84-0.92 mass%. If B is less than 0.84% by mass, R 2 T 17 phase may be produced and high H cJ may not be obtained. If it exceeds 0.92% by mass, the amount of R—T—Ga phase produced is small. Therefore, there is a possibility that high HcJ cannot be obtained. The content of B is preferably 0.85 to 0.92% by mass. A part of B can be replaced with C.

Bの含有量は下記式(1)を満たす。

14[B]/10.8<[T]/55.85 (1)

式(1)を満足することにより、Bの含有量が一般的なR−T−B系焼結磁石よりも少なくなる。一般的なR−T−B系焼結磁石は、主相であるR14B相以外に軟磁性相であるR17相が生成しないように、[T]/55.85(Feの原子量)は14[B]/10.8(Bの原子量)よりも少ない組成となっている([T]は、質量%で示すFeの含有量である)。本発明のR−T−B系焼結磁石は、一般的なR−T−B系焼結磁石と異なり、[T]/55.85が14[B]/10.8よりも多くなるように式(1)で規定している。なお、本発明のR−T−B系焼結磁石におけるTの主成分はFeであるため、Feの原子量を用いた。
The content of B satisfies the following formula (1).

14 [B] /10.8 <[T] /55.85 (1)

By satisfying the formula (1), the content of B becomes smaller than that of a general RTB-based sintered magnet. A general R-T-B type sintered magnet has [T] /55.85 (so that an R 2 T 17 phase, which is a soft magnetic phase, is not generated in addition to an R 2 T 14 B phase, which is a main phase. The atomic weight of Fe is less than 14 [B] /10.8 (the atomic weight of B) ([T] is the Fe content expressed in mass%). The R-T-B system sintered magnet of the present invention is different from a general R-T-B system sintered magnet in that [T] /55.85 is larger than 14 [B] /10.8. Is defined by equation (1). Since the main component of T in the RTB-based sintered magnet of the present invention is Fe, the atomic weight of Fe was used.

(Ga:0.3〜0.7質量%)
Gaの含有量は、0.3〜0.7質量%である。Gaが0.3質量%未満であると、R−T−Ga相の生成量が少なすぎて、R17相を消失させることができず、高いHcJを得ることができないおそれがあり、0.7質量%を超えると不要なGaが存在することになり、主相比率が低下してBが低下するおそれがある。
(Ga: 0.3-0.7 mass%)
The Ga content is 0.3 to 0.7% by mass. If Ga is less than 0.3% by mass, the amount of R—T—Ga phase produced is so small that the R 2 T 17 phase cannot be lost and high H cJ may not be obtained. It will be present unnecessary Ga exceeds 0.7 weight%, there is a possibility that B r decreases to decrease the main phase proportion.

(Cu:0.05〜0.35質量%)
Cuの含有量は、0.05〜0.35質量%である。Cuが0.05質量%未満であると高いHcJを得ることができないおそれがあり、0.35質量%を超えると焼結性が悪化して高いHcJが得られないおそれがある。
(Cu: 0.05 to 0.35 mass%)
The content of Cu is 0.05 to 0.35 mass%. If Cu is less than 0.05% by mass, high H cJ may not be obtained, and if it exceeds 0.35% by mass, sinterability may deteriorate and high H cJ may not be obtained.

(Al:0.02〜0.50質量%)
Alの含有量は、0.02〜0.50質量%である。Alを含有することによりHcJを向上させることができる。Alは通常、製造工程で不可避的不純物として0.02質量%以上含有されるが、不可避的不純物で含有される量と意図的に添加した量の合計で0.50質量%以下含有してもよい。
(Al: 0.02-0.50 mass%)
The Al content is 0.02 to 0.50 mass%. By containing Al, HcJ can be improved. Al is usually contained in an amount of 0.02% by mass or more as an inevitable impurity in the production process, but it may be contained in an amount of 0.50% by mass or less in total of the amount contained in the inevitable impurity and the amount intentionally added. Good.

(T:61.0質量%以上(Tは、FeとCoでありTの90質量%以上がFe))
Tは、遷移金属元素のうち少なくとも1種でありFeを必ず含む。また、Feの10質量%以下をCoで置換できる。つまり、Tの90質量%以上がFeである。Coを含有することにより耐食性を向上させることができるが、Coの置換量がFeの10質量%を超えると、高いBが得られないおそれがある。Tの含有量は、61.0質量%以上であり、且つ、上述した式(1)を満足する。Tの含有量が61.0質量%未満であると、大幅にBが低下する恐れがある。好ましくは、Tが残部である。
(T: 61.0 mass% or more (T is Fe and Co, and 90 mass% or more of T is Fe))
T is at least one of transition metal elements and necessarily contains Fe. In addition, 10% by mass or less of Fe can be replaced with Co. That is, 90% by mass or more of T is Fe. Although the corrosion resistance can be improved by containing Co, if the substitution amount of Co exceeds 10% by mass of Fe, high Br may not be obtained. The content of T is 61.0% by mass or more and satisfies the above-described formula (1). When the content of T is less than 61.0% by mass may greatly B r drops. Preferably, T is the balance.

さらに、本発明のR−T−B系焼結磁石は、ジジム合金(Nd−Pr)、電解鉄、フェロボロンなどに通常含有される不可避的不純物としてCr、Mn、Si、La、Ce、Sm、Ca、Mgなどを含有することができる。さらに、製造工程中の不可避的不純物として、O(酸素)、N(窒素)およびC(炭素)などを例示できる。また、本発明のR−T−B系焼結磁石は、1種以上の他の元素(不可避的不純物以外の意図的に加えた元素)を含んでもよい。例えば、このような元素として、少量(各々0.1質量%程度)のV、Ni、Mo、Hf、Ta、W、Nb、Zrなどを含有してもよい。このような元素は、合計で例えば0.5質量%以下含まれてもよい。この程度であれば、高いHcJを有するR−T−B系焼結磁石を得ることが十分に可能である。 Furthermore, the RTB-based sintered magnet of the present invention includes Cr, Mn, Si, La, Ce, Sm, unavoidable impurities normally contained in didymium alloy (Nd-Pr), electrolytic iron, ferroboron, and the like. Ca, Mg and the like can be contained. Furthermore, O (oxygen), N (nitrogen), C (carbon), etc. can be illustrated as an inevitable impurity in a manufacturing process. In addition, the RTB-based sintered magnet of the present invention may contain one or more other elements (elements intentionally added other than unavoidable impurities). For example, as such an element, a small amount (each about 0.1% by mass) of V, Ni, Mo, Hf, Ta, W, Nb, Zr and the like may be contained. Such elements may be included in a total amount of 0.5% by mass or less, for example. If it is this grade, it is fully possible to obtain the RTB system sintered magnet which has high HcJ .

上述した本実施形態に係る組成を有するR−T−B系焼結磁石は、1種以上の主合金と1種以上のR−Ga合金とを用いてブレンド法により製造することができる。具体的には、主合金とR−Ga合金とを準備する工程、水素吸蔵R−Ga合金を得る水素吸蔵工程、R−Ga合金粉末と、主合金粉末と、を含む混合合金粉末を得る工程、混合合金粉末を成形して成形体を得る成形工程、成形体を焼結し焼結体を得る焼結工程、焼結体に熱処理を施す熱処理工程を含んで製造される。
以下に、本発明の実施形態に係るR−T−B系焼結磁石の製造方法の詳細を説明する。
The RTB-based sintered magnet having the composition according to the present embodiment described above can be manufactured by a blend method using one or more main alloys and one or more R-Ga alloys. Specifically, a step of preparing a main alloy and an R—Ga alloy, a hydrogen storage step of obtaining a hydrogen storage R—Ga alloy, and a step of obtaining a mixed alloy powder including the R—Ga alloy powder and the main alloy powder. In addition, the manufacturing process includes a forming step of forming a mixed alloy powder to obtain a formed body, a sintering step of sintering the formed body to obtain a sintered body, and a heat treatment step of applying a heat treatment to the sintered body.
Below, the detail of the manufacturing method of the RTB type | system | group sintered magnet which concerns on embodiment of this invention is demonstrated.

1.主合金およびR−Ga合金を準備する工程
[主合金]
本発明の態様に係る主合金は、R(Rは、希土類元素の少なくとも1種であり、NdおよびPrの少なくとも1種を含む)が27.5質量%以上である。Rは、後述するR−Ga合金と混合して上述した組成を有するR−T−B系焼結磁石となるように調整した任意の組成であってよい。典型的には、Rが27.5質量%以上の既知のR−T−B系焼結磁石用合金を用いることができる。Rが27.5質量%未満であると本発明のR−T−B系焼結磁石の焼結時における緻密化が困難となるおそれがある。なお、主合金は1種の合金でもよいし、組成が異なる2種以上の合金から構成されていてもよい。
1. Step of preparing main alloy and R-Ga alloy [main alloy]
In the main alloy according to an aspect of the present invention, R m (R m is at least one rare earth element and includes at least one of Nd and Pr) is 27.5% by mass or more. R m can be any composition which is adjusted so that the R-T-B based sintered magnet having a composition described above was mixed with R-Ga alloy to be described later. Typically, R m it is possible to use a 27.5 wt% or more of the known R-T-B based sintered magnet alloys. R m there is a possibility that the densification becomes difficult at the time of sintering of the R-T-B based sintered magnet of the present invention is less than 27.5 wt%. The main alloy may be one type of alloy, or may be composed of two or more types of alloys having different compositions.

上述した組成からなる主合金は、例えば、金型鋳造によるインゴット法や、冷却ロールを用いて合金溶湯を急冷するストリップキャスト法等により得ることができる、フレーク状の合金鋳片である。   The main alloy having the above-described composition is, for example, a flaky alloy slab that can be obtained by an ingot method by die casting, a strip cast method in which a molten alloy is rapidly cooled using a cooling roll, or the like.

[R−Ga合金]
本発明の態様に係るR−Ga合金の組成は、
R2:80〜95質量%(R2は、希土類元素のうち少なくとも1種)、
Ga:5〜20質量%(Gaの40質量%以下をCuで置換できる)、
Fe:0〜1質量%(Feの一部またはすべてをCoで置換できる)を含む。
[R-Ga alloy]
The composition of the R—Ga alloy according to an embodiment of the present invention is as follows:
R2: 80 to 95% by mass (R2 is at least one of rare earth elements),
Ga: 5 to 20% by mass (40% by mass or less of Ga can be replaced with Cu),
Fe: 0 to 1% by mass (some or all of Fe can be replaced with Co).

このような組成を有するR−Ga合金を特定の温度に加熱して水素を吸蔵させ、水素を吸蔵した状態のまま粉砕することにより、D50が8μm以下である微細なR−Ga合金粉末を得ることができる。このようにして得られるR−Ga合金粉末と、上述した主合金を粉砕して得られる主合金粉末とを特定の質量比率で含む混合合金粉末を、成形、焼結および熱処理することにより、高いHcJを有するR−T−B系焼結磁石を得ることができる。 Such an R-Ga alloy having a composition by heating to a specific temperature to occlude hydrogen, by grinding remain occluded hydrogen, fine R-Ga alloy powder D 50 is 8μm or less Can be obtained. The mixed alloy powder containing the R-Ga alloy powder thus obtained and the main alloy powder obtained by pulverizing the main alloy described above in a specific mass ratio is molded, sintered and heat treated to increase the An RTB -based sintered magnet having HcJ can be obtained.

また、このような組成を有するR−Ga合金を特定の温度に加熱して水素を吸蔵させて得られる水素吸蔵R−Ga合金と、主合金の粗粉砕粉と、を混合した混合合金を得て、水素吸蔵R−Ga合金が水素を吸蔵した状態のまま、混合合金を粉砕することにより、D50が8μm以下である微細なR−Ga合金粉末を含む混合合金粉末が得られる。そしてこの混合合金粉末を、成形、焼結および熱処理することにより、高いHcJを有するR−T−B系焼結磁石を得ることができる。
以下に、各元素の限定理由を記載する。
In addition, a mixed alloy obtained by mixing a hydrogen storage R-Ga alloy obtained by heating an R-Ga alloy having such a composition to a specific temperature to occlude hydrogen and a coarsely pulverized powder of the main alloy is obtained. Te, hydrogen storage R-Ga alloy remain occluded hydrogen, by grinding a mixed alloy, mixing the alloy powder containing fine R-Ga alloy powder D 50 is 8μm or less is obtained. An RTB -based sintered magnet having high HcJ can be obtained by molding, sintering and heat-treating the mixed alloy powder.
The reason for limitation of each element is described below.

(R2:80〜95質量%)
R2は、希土類元素の少なくとも1種である。R2の含有量は、80〜95質量%である。R2が80質量%未満であると、高いHcJを有するR−T−B系焼結磁石を得ることができないおそれがあり、95質量%を超えるとR2量が多すぎるため、酸化の問題が発生して、磁気特性の低下や発火の危険等を招き、生産上問題となるおそれがある。
(R2: 80 to 95% by mass)
R2 is at least one rare earth element. The content of R2 is 80 to 95% by mass. If R2 is less than 80% by mass, an R-T-B system sintered magnet having high HcJ may not be obtained, and if it exceeds 95% by mass, the amount of R2 is too large, which causes oxidation problems. Occurring may cause a decrease in magnetic properties, a risk of ignition, and the like, which may cause production problems.

(Ga:5〜20質量%)
Gaの含有量は、5〜20質量%である。Gaが5質量%未満であると、高いHcJを有するR−T−B系焼結磁石を得ることができないおそれがあり、20質量%を超えるとHcJが低下するおそれがある。Gaの40質量%以下をCuで置換できる。
(Ga: 5 to 20% by mass)
The Ga content is 5 to 20% by mass. If Ga is less than 5% by mass, an R—T—B-based sintered magnet having high H cJ may not be obtained, and if it exceeds 20% by mass, H cJ may decrease. 40% by mass or less of Ga can be replaced with Cu.

(Fe:0〜1質量%)
Feの含有量は0〜1質量%である。Feが1質量%を超えると高いHcJを得ることができない。また、Feの一部またはすべてをCoで置換できる。好ましくは、R−Ga合金には、FeおよびCoを含有しない。
(Fe: 0 to 1% by mass)
The content of Fe is 0 to 1% by mass. When Fe exceeds 1 mass%, high HcJ cannot be obtained. Also, some or all of Fe can be replaced with Co. Preferably, the R—Ga alloy does not contain Fe and Co.

R−Ga合金は、R2、GaおよびFeを上述した範囲で含み、残部が不可避的不純物からなることが好ましい。不可避的不純物としては、例えばCr、Mn、Si、La、Ce、Sm、Ca、Mgなどを含有することができる。さらに、製造工程中の不可避的不純物として、O(酸素)、N(窒素)およびC(炭素)などを例示できる。また、少量(0.1質量%程度)のV、Ni、Mo、Hf、Ta、W、Nb、Zrなどを含有してもよい。   The R—Ga alloy preferably contains R2, Ga, and Fe in the above-described range, and the balance is made of inevitable impurities. As unavoidable impurities, for example, Cr, Mn, Si, La, Ce, Sm, Ca, Mg and the like can be contained. Furthermore, O (oxygen), N (nitrogen), C (carbon), etc. can be illustrated as an inevitable impurity in a manufacturing process. Moreover, you may contain a small amount (about 0.1 mass%) of V, Ni, Mo, Hf, Ta, W, Nb, Zr, etc.

上述した組成からなるR−Ga合金は、既知のR−T−B系焼結磁石の製造方法と同様の方法により製造することができる。例えば、金型鋳造によるインゴット法や、冷却ロールを用いて合金溶湯を急冷するストリップキャスト法等によりフレーク状の合金鋳片を作製する。なお、R−Ga合金は1種の合金でもよいし、組成が異なる2種以上の合金から構成されていてもよい。   The R—Ga alloy having the above-described composition can be manufactured by the same method as the manufacturing method of the known RTB-based sintered magnet. For example, a flake-shaped alloy slab is produced by an ingot method using die casting, a strip casting method in which a molten alloy is rapidly cooled using a cooling roll, or the like. Note that the R—Ga alloy may be one type of alloy or may be composed of two or more types of alloys having different compositions.

2.水素吸蔵R−Ga合金を得る水素吸蔵工程
[水素吸蔵工程]
上述した組成からなるR−Ga合金を、水素雰囲気で200℃以上450℃以下の温度に加熱して、水素吸蔵R−Ga合金(粗粉砕粉末)を得る。具体的には、フレーク状のR−Ga合金鋳片を水素炉の内部へ収容し、水素吸蔵処理を行う。水素吸蔵処理は、水素炉内を真空引きした後、炉内温度を200℃以上450℃以下に設定し、圧力が30kPa〜1.0MPaの水素ガスを水素炉内に供給し(すなわち、炉内を水素雰囲気にして)、R−Ga合金鋳片に水素を吸蔵させることによって行う。なお、R−Ga合金への加熱温度は、R−Ga合金に熱電対をとりつけることにより確認することができる。水素の吸蔵によってR−Ga合金鋳片は自然崩壊して脆化(一部は粉化)し、例えば1.0mm以下の粗粉末状の水素吸蔵R−Ga合金を得る。200℃未満の温度で水素吸蔵処理を行うと、水素の吸蔵量が少なすぎるため、脆化させることができない。また450℃を超える温度に加熱するとR−Ga合金が溶融してしまい、粉砕することができない。従って、R−Ga合金を200℃以上450℃以下の温度で水素吸蔵処理を行う。このような温度範囲で水素吸蔵処理を行うことにより、後述する粉砕工程において、D50が8μm以下の微細なR−Ga合金粉末を得ることができ、当該R−Ga合金粉末を用いて製造したR−T−B系焼結磁石は高いHcJを有することができる。
なお本明細書において、「水素吸蔵R−Ga合金」とは、R−Ga合金を水素吸蔵処理することにより得られる粗粉末状のR−Ga合金を意味する。
2. Hydrogen storage process for obtaining a hydrogen storage R-Ga alloy [hydrogen storage process]
The R—Ga alloy having the above composition is heated to a temperature of 200 ° C. or more and 450 ° C. or less in a hydrogen atmosphere to obtain a hydrogen storage R—Ga alloy (coarse pulverized powder). Specifically, a flaky R-Ga alloy slab is accommodated in a hydrogen furnace and a hydrogen storage process is performed. In the hydrogen storage treatment, the inside of the hydrogen furnace is evacuated, the furnace temperature is set to 200 ° C. or higher and 450 ° C. or lower, and hydrogen gas having a pressure of 30 kPa to 1.0 MPa is supplied into the hydrogen furnace (that is, In a hydrogen atmosphere), and hydrogen is occluded in the R—Ga alloy slab. The heating temperature for the R—Ga alloy can be confirmed by attaching a thermocouple to the R—Ga alloy. Due to the occlusion of hydrogen, the R-Ga alloy slab spontaneously collapses and becomes brittle (partially pulverized) to obtain a coarsely powdered hydrogen occlusion R-Ga alloy of, for example, 1.0 mm or less. When the hydrogen occlusion treatment is performed at a temperature lower than 200 ° C., the hydrogen occlusion amount is too small, so that it cannot be embrittled. Moreover, if it heats to the temperature over 450 degreeC, a R-Ga alloy will fuse | melt and it cannot grind | pulverize. Accordingly, the R—Ga alloy is subjected to hydrogen storage treatment at a temperature of 200 ° C. or higher and 450 ° C. or lower. By performing the hydrogen occlusion treatment in such a temperature range, a fine R—Ga alloy powder having a D 50 of 8 μm or less can be obtained in the pulverization step described later, and the R—Ga alloy powder is used for the production. The RTB -based sintered magnet can have a high HcJ .
In the present specification, the “hydrogen storage R—Ga alloy” means a coarse powdered R—Ga alloy obtained by hydrogen storage treatment of an R—Ga alloy.

3.混合合金粉末を得る工程
次に、前記1種以上の水素吸蔵R−Ga合金(粗粉砕粉末)と前記1種以上の主合金とを用いて、R−Ga合金粉末(微粉砕粉末)と主合金粉末(微粉砕粉末)を含む混合合金粉末(微粉砕粉末)を得る。混合合金粉末(微粉砕粉末)を得る工程において、少なくとも前記1種以上の水素吸蔵R−Ga合金(粗粉砕粉末)は水素を吸蔵している状態で粉砕(微粉砕)される。混合合金粉末(微粉砕粉末)は、水素吸蔵R−Ga合金(粗粉砕粉末)と主合金とを混合してから粉砕することにより得てもよいし、水素吸蔵R−Ga合金と主合金を別々に粉砕(粗粉砕および微粉砕)した後混合することにより得てもよい。例えば、以下の条件(a)または条件(b)により、R−Ga合金粉末と、主合金粉末と、を含む混合合金粉末を得る。

(条件a)水素吸蔵R−Ga合金(粗粉砕粉末)が水素を吸蔵している状態で、水素吸蔵R−Ga合金(粗粉砕粉末)を粉砕(微粉砕)して得たR−Ga合金粉末(微粉砕粉末)と、主合金を粉砕(粗粉砕および微粉砕)して得た主合金粉末(微粉砕粉末)と、を混合する。
(条件b)水素吸蔵R−Ga合金(粗粉砕粉末)と主合金の粗粉砕粉とを混合した混合合金(粗粉砕粉末)を得て、水素吸蔵R−Ga合金(粗粉砕粉末)が水素を吸蔵している状態で、混合合金(粗粉砕粉末)を粉砕(微粉砕)する。
3. Step of obtaining mixed alloy powder Next, using the one or more hydrogen storage R-Ga alloys (coarse pulverized powder) and the one or more main alloys, R-Ga alloy powder (fine pulverized powder) and main A mixed alloy powder (fine pulverized powder) containing an alloy powder (fine pulverized powder) is obtained. In the step of obtaining a mixed alloy powder (fine pulverized powder), at least the one or more hydrogen storage R-Ga alloys (coarse pulverized powder) are pulverized (fine pulverized) in a state of storing hydrogen. The mixed alloy powder (finely pulverized powder) may be obtained by mixing a hydrogen storage R-Ga alloy (coarse pulverized powder) and the main alloy and then pulverizing, or the hydrogen storage R-Ga alloy and the main alloy. You may obtain by mixing after grind | pulverizing separately (coarse grinding | pulverization and fine grinding | pulverization). For example, a mixed alloy powder containing an R—Ga alloy powder and a main alloy powder is obtained under the following condition (a) or condition (b).

(Condition a) R-Ga alloy obtained by pulverizing (finely pulverizing) a hydrogen storage R-Ga alloy (coarse pulverized powder) in a state where the hydrogen storage R-Ga alloy (coarse pulverized powder) occludes hydrogen The powder (finely pulverized powder) and the main alloy powder (finely pulverized powder) obtained by pulverizing (roughly and finely pulverizing) the main alloy are mixed.
(Condition b) A mixed alloy (coarse pulverized powder) obtained by mixing a hydrogen storage R-Ga alloy (coarse pulverized powder) and a main alloy coarse pulverized powder is obtained, and the hydrogen storage R-Ga alloy (coarse pulverized powder) is hydrogen. The mixed alloy (coarse pulverized powder) is pulverized (finely pulverized) while occluded.

(条件a)および(条件b)のいずれの方法によっても、D50が8μm以下の微粉砕粉状のR−Ga合金粉末を含む混合合金粉末(微粉砕粉末)を得ることができる。このような混合合金粉末(微粉砕粉末)を成形、焼結および熱処理することにより、高い保磁力HcJをおよび高い残留磁束密度Bを有するR−T−B系焼結磁石を得ることができる。
以下、(条件a)および(条件b)について説明する。
(Conditions a) and by any method (condition b), D 50 can be obtained a mixed alloy powder containing the following R-Ga alloy powder pulverized powdery 8 [mu] m (pulverized powder). Such mixed alloy powder forming the (pulverized powder), by sintering and heat treatment, to obtain a R-T-B based sintered magnet having a high residual magnetic flux density B r and a high coercive force H cJ it can.
Hereinafter, (Condition a) and (Condition b) will be described.

[(条件a)水素吸蔵R−Ga合金(粗粉砕粉末)が水素を吸蔵している状態で、水素吸蔵R−Ga合金(粗粉砕粉末)を粉砕(微粉砕)して得たR−Ga合金粉末(微粉砕粉末)と、主合金を粉砕(粗粉砕および微粉砕)して得た主合金粉末(微粉砕粉末)と、を混合する]
本発明にかかる混合合金粉末(微粉砕粉末)は、それぞれ準備したR−Ga合金粉末(微粉砕粉末)と、主合金粉末(微粉砕粉末)とを混合することにより得てもよい。
図1Aは、(条件a)における本発明の工程の例を示すフローチャートである。図1Aに示すように、(条件a)の場合、主合金及びR−Ga合金の粗粉砕粉末(主合金の粗粉砕粉末及び水素吸蔵R−Ga合金(粗粉砕粉末))を別々に作製し、さらに別々に微粉砕粉末(主合金粉末及びR−Ga合金粉末)を作製する。そして作製した主合金粉末(微粉砕粉末)及びR−Ga合金粉末(微粉砕粉末)を混合して混合合金粉末(微粉砕粉末)を得る。
[(Condition a) R-Ga obtained by pulverizing (finely pulverizing) a hydrogen storage R-Ga alloy (coarse pulverized powder) in a state where the hydrogen storage R-Ga alloy (coarse pulverized powder) occludes hydrogen The alloy powder (finely pulverized powder) and the main alloy powder (finely pulverized powder) obtained by pulverizing (roughly and finely pulverizing) the main alloy are mixed.
The mixed alloy powder (finely pulverized powder) according to the present invention may be obtained by mixing the prepared R-Ga alloy powder (finely pulverized powder) and the main alloy powder (finely pulverized powder).
FIG. 1A is a flowchart showing an example of the process of the present invention under (condition a). As shown in FIG. 1A, in the case of (Condition a), the main alloy and R-Ga alloy coarsely pulverized powder (main alloy coarsely pulverized powder and hydrogen storage R-Ga alloy (coarse pulverized powder)) were prepared separately. Further, finely pulverized powders (main alloy powder and R-Ga alloy powder) are produced separately. Then, the produced main alloy powder (finely pulverized powder) and R-Ga alloy powder (finely pulverized powder) are mixed to obtain a mixed alloy powder (finely pulverized powder).

・水素吸蔵R−Ga合金(粗粉砕粉末)を粉砕(微粉砕)してR−Ga合金粉末(微粉砕粉末)を得る工程
まず、得られた水素吸蔵R−Ga合金(粗粉砕粉末)を粉砕(微粉砕)して、R−Ga合金粉末(微粉砕粉末)を得る。具体的には、得られた水素吸蔵R−Ga合金(粗粉砕粉末)が水素を吸蔵している状態で、不活性ガス中でジェットミル等により微粉砕することによりR−Ga合金粉末(微粉砕粉末)を得る。ここで、本発明において、水素吸蔵R−Ga合金が水素を吸蔵している状態とは、水素吸蔵R−Ga合金が含有する水素量(水素含有量)が2600ppm以上であることをいう。水素吸蔵R−Ga合金が水素を吸蔵している状態で微粉砕することにより、D50が8μm以下の微粉砕粉状のR−Ga合金粉末を得ることができる。当該R−Ga合金粉末を用いて製造したR−T−B系焼結磁石は、高いHcJを有することができる。
Step of pulverizing (finely pulverizing) hydrogen storage R-Ga alloy (coarse pulverized powder) to obtain R-Ga alloy powder (fine pulverized powder) First, the obtained hydrogen storage R-Ga alloy (coarse pulverized powder) By pulverizing (pulverizing), an R-Ga alloy powder (fine pulverized powder) is obtained. Specifically, in the state where the obtained hydrogen storage R-Ga alloy (coarse pulverized powder) occludes hydrogen, the R-Ga alloy powder (fine A pulverized powder is obtained. Here, in the present invention, the hydrogen occlusion R-Ga alloy occludes hydrogen means that the hydrogen content (hydrogen content) contained in the hydrogen occlusion R-Ga alloy is 2600 ppm or more. By milling in a state where hydrogen storage R-Ga alloy is occluded hydrogen can be D 50 to obtain a R-Ga alloy powder 8μm following finely pulverized powder form. The RTB -based sintered magnet manufactured using the R-Ga alloy powder can have a high HcJ .

なお、水素吸蔵R−Ga合金(粗粉砕粉末)に対して、例えば500℃〜800℃程度の温度に加熱する脱水素処理を行うと、水素吸蔵R−Ga合金(粗粉砕粉末)がほとんど水素を含有しなくなり、更に水素吸蔵R−Ga合金(粗粉砕粉末)が溶融してしまうため、当該粉砕工程によって、D50が8μm以下のR−Ga合金粉末(微粉砕粉末)を得ることができない。 In addition, when the hydrogen storage R-Ga alloy (coarse pulverized powder) is dehydrogenated by heating to a temperature of, for example, about 500 ° C to 800 ° C, the hydrogen storage R-Ga alloy (coarse pulverized powder) is almost hydrogenated. no longer contain, for thereby further melting hydrogen storage R-Ga alloy (coarsely pulverized powder), by the grinding process, D 50 can not get 8μm following R-Ga alloy powder (pulverized powder) .

上述した水素吸蔵工程において水素吸蔵R−Ga合金(粗粉砕粉末)を得た後から(すなわち、水素炉から水素吸蔵R−Ga合金を取り出した時から)、微粉砕が完了するまでの間、水素吸蔵R−Ga合金(粗粉砕粉末)を450℃を超える温度に加熱することなく粉砕することが好ましい。このような条件であれば、水素吸蔵R−Ga合金(粗粉砕粉末)が溶融しないため、D50が8μm以下の微粉砕粉状のR−Ga合金粉末を確実に得ることができる。
さらに好ましくは、水素吸蔵R−Ga合金(粗粉砕粉末)を加熱することなく、水素吸蔵工程後の水素吸蔵R−Ga合金(粗粉砕粉末)を粉砕(微粉砕)する。(但し、微粉砕時に水素吸蔵R−Ga合金の温度が上昇する場合があるため、自身の発熱による温度上昇は加熱に含まない。)
なお本明細書において、「合金粉末」とは、D50が8μm以下の微粉砕粉状の粉末を意味する。
After obtaining the hydrogen occlusion R-Ga alloy (coarse pulverized powder) in the hydrogen occlusion process described above (that is, from the time when the hydrogen occlusion R-Ga alloy is taken out from the hydrogen furnace), until the fine pulverization is completed, It is preferable to pulverize the hydrogen storage R—Ga alloy (coarse pulverized powder) without heating to a temperature exceeding 450 ° C. With such a condition, since the hydrogen storage R-Ga alloy (coarsely pulverized powder) is not melted, D 50 can be obtained reliably following R-Ga alloy powder pulverized powdery 8 [mu] m.
More preferably, the hydrogen storage R-Ga alloy (coarse pulverized powder) after the hydrogen storage step is pulverized (fine pulverized) without heating the hydrogen storage R-Ga alloy (coarse pulverized powder). (However, since the temperature of the hydrogen storage R-Ga alloy may increase during fine pulverization, the temperature increase due to its own heat generation is not included in the heating.)
In the present specification, “alloy powder” means a finely pulverized powder having a D 50 of 8 μm or less.

ジェットミル粉砕前の粗粉砕粉(すなわち、水素吸蔵R−Ga合金)、ジェットミル粉砕中およびジェットミル粉砕後の合金粉末に助剤として既知の潤滑剤を添加してもよい。   A known lubricant may be added as an auxiliary agent to the coarsely pulverized powder (that is, hydrogen storage R—Ga alloy) before jet mill pulverization, and to the alloy powder during and after jet mill pulverization.

このように、R−Ga合金に対して、200℃以上450℃以下の温度で水素吸蔵処理を行い、水素を吸蔵した状態のまま粉砕することにより、D50が8μm以下のR−Ga合金粉末(微粉砕粉末)を得ることができる。このような微細なR−Ga合金粉末を用いて、主合金粉末と混合するブレンド法によってR−T−B系焼結磁石を製造することにより、二粒子粒界に多くのR−Ga相が存在すると考えられ、それにより高いHcJを有するR−T−B系焼結磁石を得ることができる。ここで、R−Ga相とは、R:70質量%以上95質量%以下、Ga:5質量%以上30質量%以下、T(Fe):20質量%以下(0を含む)を含むものである。R−T−B系焼結磁石中にCuを比較的多く含む場合は、Gaの一部がCuで置換されるため、例えばR(Ga,Cu)化合物になっている場合がある。 As described above, the R—Ga alloy is subjected to a hydrogen occlusion treatment at a temperature of 200 ° C. or higher and 450 ° C. or lower, and pulverized in a state where the hydrogen is occluded, whereby an R—Ga alloy powder having a D 50 of 8 μm or less. (Finely pulverized powder) can be obtained. By using such a fine R-Ga alloy powder to produce an R-T-B system sintered magnet by a blend method in which it is mixed with the main alloy powder, many R-Ga phases are present at the two-grain grain boundaries. An RTB -based sintered magnet having a high H cJ can be obtained. Here, the R-Ga phase includes R: 70% by mass or more and 95% by mass or less, Ga: 5% by mass or more and 30% by mass or less, and T (Fe): 20% by mass or less (including 0). When a relatively large amount of Cu is contained in the RTB-based sintered magnet, a part of Ga is substituted with Cu, so that it may be, for example, an R 3 (Ga, Cu) 1 compound.

・R−Ga合金粉末(微粉砕粉末)と、主合金粉末(微粉砕粉末)と、を混合する工程
このようにして得られるR−Ga合金粉末(微粉砕粉末)と、主合金を粉砕(粗粉砕および微粉砕)して得られる主合金粉末(微粉砕粉末)と、を含む混合合金粉末(微粉砕粉末)を得る。
具体的には、混合合金粉末(微粉砕粉末)は、水素吸蔵R−Ga合金(粗粉砕粉末)を粉砕して得たR−Ga合金粉末(微粉砕粉末)と、主合金を粉砕(粗粉砕および微粉砕)して得た主合金粉末(微粉砕粉末)とをそれぞれ準備し、これらを混合することにより得ることができる。R−Ga合金粉末(微粉砕粉末)と主合金粉末(微粉砕粉末)は例えば、V型混合機などの公知の混合器で混合すればよい。
この場合、前記R−Ga合金粉末(微粉砕粉末)を得る工程とは別に、上述したような公知の粉砕方法を用いて主合金粉末(微粉砕粉末)を準備する。具体的には、主合金を水素粉砕等によって粗粉砕し、平均粒度が1.0mm以下の粗粉砕粉末(主合金の粗粉末)を準備する。次に、粗粉砕粉末を不活性ガス中でジェットミル等により微粉砕し、例えば粒径D50が3〜5μmの微粉砕粉(主合金粉末)を得る。このようにして得られた主合金粉末(微粉砕粉末)と、R−Ga合金粉末(微粉砕粉末)を得る工程により得られたR−Ga合金粉末(微粉砕粉末)とを混合することにより、混合合金粉末(微粉砕粉末)を得ることができる。
Step of mixing R-Ga alloy powder (finely pulverized powder) and main alloy powder (finely pulverized powder) The R-Ga alloy powder (finely pulverized powder) thus obtained and the main alloy are pulverized ( A mixed alloy powder (finely pulverized powder) containing a main alloy powder (finely pulverized powder) obtained by coarse pulverization and fine pulverization) is obtained.
Specifically, the mixed alloy powder (finely pulverized powder) includes an R-Ga alloy powder (finely pulverized powder) obtained by pulverizing a hydrogen storage R-Ga alloy (coarsely pulverized powder), and a main alloy pulverized (roughly). The main alloy powder (finely pulverized powder) obtained by pulverization and fine pulverization is prepared and mixed. The R-Ga alloy powder (finely pulverized powder) and the main alloy powder (finely pulverized powder) may be mixed with a known mixer such as a V-type mixer, for example.
In this case, apart from the step of obtaining the R-Ga alloy powder (finely pulverized powder), the main alloy powder (finely pulverized powder) is prepared using a known pulverization method as described above. Specifically, the main alloy is coarsely pulverized by hydrogen pulverization or the like to prepare a coarsely pulverized powder (coarse powder of the main alloy) having an average particle size of 1.0 mm or less. Next, the coarsely pulverized powder is finely pulverized by a jet mill in an inert gas, for example, the particle size D 50 of obtained finely pulverized powder 3~5μm (mainly alloy powder). By mixing the main alloy powder (finely pulverized powder) thus obtained and the R-Ga alloy powder (finely pulverized powder) obtained in the step of obtaining the R-Ga alloy powder (finely pulverized powder). A mixed alloy powder (finely pulverized powder) can be obtained.

[(条件b)前記水素吸蔵R−Ga合金(粗粉砕粉末)と前記主合金の粗粉砕粉とを混合した混合合金(粗粉砕粉末)を得て、前記水素吸蔵R−Ga合金(粗粉砕粉末)が水素を吸蔵している状態で、前記混合合金(粗粉砕粉末)を粉砕(微粉砕)する]
また、本発明の実施形態に係る混合合金粉末(微粉砕粉末)は、水素吸蔵R−Ga合金(粗粉砕粉末)と主合金の粗粉砕粉とを混合した混合合金(粗粉砕粉末)を粉砕(微粉砕)することにより得てもよい。
図1Bは、(条件b)おける本発明の工程の例を示すフローチャートである。図1Bに示すように、(条件b)の場合、主合金及びR−Ga合金の粗粉砕粉末(主合金の粗粉砕粉末及び水素吸蔵R−Ga合金(粗粉砕粉末))を別々に作製した後、主合金の粗粉砕粉末と水素吸蔵R−Ga合金(粗粉砕粉末)を混合して混合合金(粗粉砕粉末)を得る。そして得られた混合合金(粗粉砕粉末)を粉砕(微粉砕)することにより、混合合金粉末(微粉砕粉末)を得る。
[(Condition b) A mixed alloy (coarse pulverized powder) obtained by mixing the hydrogen storage R-Ga alloy (coarse pulverized powder) and the main alloy coarse pulverized powder was obtained, and the hydrogen storage R-Ga alloy (coarse pulverized) The mixed alloy (coarse pulverized powder) is pulverized (finely pulverized) while the powder) is storing hydrogen.]
Moreover, the mixed alloy powder (finely pulverized powder) according to the embodiment of the present invention is a pulverized mixed alloy (coarse pulverized powder) obtained by mixing a hydrogen storage R-Ga alloy (coarsely pulverized powder) and a coarsely pulverized powder of the main alloy. It may be obtained by (pulverization).
FIG. 1B is a flowchart showing an example of the process of the present invention under (condition b). As shown in FIG. 1B, in the case of (Condition b), the main alloy and R-Ga alloy coarsely pulverized powder (main alloy coarsely pulverized powder and hydrogen storage R-Ga alloy (coarse pulverized powder)) were prepared separately. Thereafter, the coarsely pulverized powder of the main alloy and the hydrogen storage R-Ga alloy (coarse pulverized powder) are mixed to obtain a mixed alloy (coarse pulverized powder). The obtained mixed alloy (coarse pulverized powder) is pulverized (fine pulverized) to obtain a mixed alloy powder (fine pulverized powder).

・混合合金を得る工程
まず、主合金を、公知の粉砕方法(例えば水素粉砕)を用いて粉砕することにより、例えば1.0mm以下の主合金の粗粉砕粉を得る。次に、得られた主合金の粗粉砕粉と、水素吸蔵R−Ga合金と、を混合することにより、混合合金を得る。
-Step of obtaining mixed alloy First, the main alloy is pulverized using a known pulverization method (for example, hydrogen pulverization) to obtain coarsely pulverized powder of the main alloy having a size of 1.0 mm or less, for example. Next, a mixed alloy is obtained by mixing the coarsely pulverized powder of the obtained main alloy and the hydrogen storage R—Ga alloy.

・混合合金を粉砕する工程
このようして得られる混合合金を粉砕することにより、混合合金粉末を得る。
具体的には、混合合金に含まれる水素吸蔵R−Ga合金(粗粉砕粉末)が水素を吸蔵している状態で、不活性ガス中でジェットミル等により、混合合金を微粉砕することにより混合合金粉末を得る。ここで、混合合金に含まれる水素吸蔵R−Ga合金(粗粉砕粉末)が水素を吸蔵している状態とは、混合合金に含まれる水素吸蔵R−Ga合金(粗粉砕粉末)が含有する水素量(水素含有量)が2600ppm以上であることをいう。混合合金(粗粉砕粉末)に含まれる水素吸蔵R−Ga合金(粗粉砕粉末)が水素を吸蔵している状態で、混合合金(粗粉砕粉末)を微粉砕することにより、D50が8μm以下の微粉砕粉状のR−Ga合金粉末を含む、混合合金粉末を得ることができる。当該混合合金粉末を用いて製造したR−T−B系焼結磁石は、高いHcJを有することができる。
-The process of grind | pulverizing a mixed alloy The mixed alloy powder is obtained by grind | pulverizing the mixed alloy obtained in this way.
Specifically, mixing is performed by pulverizing the mixed alloy with a jet mill or the like in an inert gas in a state where the hydrogen storage R-Ga alloy (coarse pulverized powder) contained in the mixed alloy stores hydrogen. An alloy powder is obtained. Here, the state where the hydrogen storage R-Ga alloy (coarse pulverized powder) contained in the mixed alloy occludes hydrogen means the hydrogen contained in the hydrogen storage R-Ga alloy (coarse pulverized powder) contained in the mixed alloy. The amount (hydrogen content) is 2600 ppm or more. In a state where hydrogen storage R-Ga alloy mixture contained in the alloy (coarsely pulverized powder) (coarsely pulverized powder) is storing hydrogen by mixing alloy (coarsely pulverized powder) is finely pulverized, D 50 is 8μm or less A mixed alloy powder containing the finely pulverized powdered R-Ga alloy powder can be obtained. The RTB -based sintered magnet manufactured using the mixed alloy powder can have a high HcJ .

なお、水素吸蔵R−Ga合金(粗粉砕粉末)を含む混合合金(粗粉砕粉末)に対して、例えば500℃〜800℃程度の温度に加熱する脱水素処理を行うと、混合合金に含まれる水素吸蔵R−Ga合金(粗粉砕粉末)がほとんど水素を含有しなくなり、更に水素吸蔵R−Ga合金(粗粉砕粉末)が溶融してしまうため、当該粉砕工程によって、D50が8μm以下のR−Ga合金粉末(微粉砕粉末)を含む混合合金粉末(微粉砕粉末)を得ることができない。 In addition, when the dehydrogenation process heated to the temperature of about 500 to 800 degreeC is performed with respect to the mixed alloy (coarse pulverized powder) containing a hydrogen storage R-Ga alloy (coarse pulverized powder), it will be contained in the mixed alloy. The hydrogen occlusion R-Ga alloy (coarse pulverized powder) hardly contains hydrogen, and the hydrogen occlusion R-Ga alloy (coarse pulverized powder) is melted. Therefore, R 50 having a D50 of 8 μm or less is obtained by the pulverization step. A mixed alloy powder (finely pulverized powder) containing a Ga alloy powder (finely pulverized powder) cannot be obtained.

上述した水素吸蔵工程において水素吸蔵R−Ga合金(粗粉砕粉末)を得た後から(すなわち、水素炉から水素吸蔵R−Ga合金を取り出した時から)、混合合金(粗粉砕粉末)の微粉砕が完了するまでの間、混合合金(粗粉砕粉末)に含まれる水素吸蔵R−Ga合金(粗粉砕粉末)を450℃を超える温度に加熱することなく混合合金(粗粉砕粉末)を粉砕(微粉砕)することが好ましい。このような条件であれば、混合合金(粗粉砕粉末)に含まれる水素吸蔵R−Ga合金(粗粉砕粉末)が溶融しないため、D50が8μm以下の微粉砕粉状のR−Ga合金粉末を含む混合合金粉末(微粉砕粉末)を確実に得ることができる。
さらに好ましくは、水素吸蔵R−Ga合金(粗粉砕粉末)を得た後から混合合金の微粉砕が完了するまでの間、混合合金(粗粉砕粉末)に含まれる水素吸蔵R−Ga合金(粗粉砕粉末)を加熱することなく、混合合金(粗粉砕粉末)を粉砕(微粉砕)する。(但し、微粉砕時に水素吸蔵R−Ga合金の温度が上昇する場合があるため、自身の発熱による温度上昇は加熱に含まない。)
After obtaining the hydrogen occlusion R-Ga alloy (coarse pulverized powder) in the hydrogen occlusion process described above (that is, from when the hydrogen occlusion R-Ga alloy is taken out from the hydrogen furnace), the mixed alloy (coarse pulverized powder) is finely mixed. Until the pulverization is completed, the mixed alloy (coarse pulverized powder) is pulverized without heating the hydrogen storage R-Ga alloy (coarse pulverized powder) contained in the mixed alloy (coarse pulverized powder) to a temperature exceeding 450 ° C. ( It is preferable to pulverize. With such a condition, since the hydrogen storage R-Ga alloy contained in the mixed alloy (coarsely pulverized powder) (coarsely pulverized powder) is not melted, D 50 of 8μm or less finely ground powder like R-Ga alloy powder A mixed alloy powder (finely pulverized powder) containing can be reliably obtained.
More preferably, the hydrogen storage R-Ga alloy (coarse powder) contained in the mixed alloy (coarse pulverized powder) after the hydrogen storage R-Ga alloy (coarse pulverized powder) is obtained until the fine pulverization of the mixed alloy is completed. The mixed alloy (coarse pulverized powder) is pulverized (fine pulverized) without heating the pulverized powder). (However, since the temperature of the hydrogen storage R-Ga alloy may increase during fine pulverization, the temperature increase due to its own heat generation is not included in the heating.)

ジェットミル粉砕前の混合合金、ジェットミル粉砕中およびジェットミル粉砕後の混合合金粉末に助剤として既知の潤滑剤を添加してもよい。   A known lubricant may be added as an auxiliary agent to the mixed alloy before jet mill grinding, and to the mixed alloy powder during jet mill grinding and after jet mill grinding.

このように、R−Ga合金に対して、200℃以上450℃以下の温度で水素吸蔵処理を行い、水素吸蔵R−Ga合金(粗粉砕粉末)が水素を吸蔵した状態のまま、水素吸蔵R−Ga合金(粗粉砕粉末)を含む混合合金(粗粉砕粉末)を粉砕(微粉砕)することにより、D50が8μm以下のR−Ga合金粉末(微粉砕粉末)を含む混合合金粉末(微粉砕粉末)を得ることができる。このような微細なR−Ga合金粉末を含む混合合金粉末を用いて、R−T−B系焼結磁石を製造することにより、二粒子粒界に多くのR−Ga相が存在すると考えられ、それにより高いHcJを有するR−T−B系焼結磁石を得ることができる。 As described above, the hydrogen storage treatment is performed on the R—Ga alloy at a temperature of 200 ° C. or more and 450 ° C. or less, and the hydrogen storage R-Ga alloy (coarse pulverized powder) stores the hydrogen in the state of storing the hydrogen. by -Ga alloy (coarsely pulverized powder) mixed alloy containing a (coarsely pulverized powder) grinding (milling), mixing the alloy powder D 50 comprises 8μm following R-Ga alloy powder (pulverized powder) (fine Pulverized powder) can be obtained. It is thought that many R-Ga phases exist at the two-grain grain boundary by producing an RTB-based sintered magnet using such a mixed alloy powder containing a fine R-Ga alloy powder. Thus , an RTB -based sintered magnet having high H cJ can be obtained.

混合合金粉末を得る工程において、(条件a)および(条件b)のいずれの方法により混合合金を得る場合であっても、混合合金粉末の質量に対するR−Ga合金粉末(微粉砕粉末)の質量の比が1〜5%となるように、R−Ga合金粉末(微粉砕粉末)と主合金粉末(微粉砕粉末)とを混合する。混合合金粉末の質量に対するR−Ga合金粉末(微粉砕粉末)の質量の比をこのような範囲にすることにより、高いHcJを有することができる。尚、混合合金粉末(微粉砕粉末)を得る工程を上記(条件b)で行う場合は、水素吸蔵R−Ga合金(粗粉砕粉末)と主合金の粗粉砕粉とを混合した混合物の質量に対する水素吸蔵R−Ga合金(粗粉砕粉末)の質量の比が1〜5%になるように調整すればよい。 In the step of obtaining the mixed alloy powder, the mass of the R-Ga alloy powder (finely pulverized powder) relative to the mass of the mixed alloy powder, regardless of whether the mixed alloy is obtained by any of the methods (Condition a) and (Condition b) The R—Ga alloy powder (finely pulverized powder) and the main alloy powder (finely pulverized powder) are mixed so that the ratio is 1 to 5%. By setting the ratio of the mass of the R—Ga alloy powder (finely pulverized powder) to the mass of the mixed alloy powder in such a range, high H cJ can be obtained. In addition, when performing the process of obtaining mixed alloy powder (finely pulverized powder) by said (condition b), it is with respect to the mass of the mixture which mixed hydrogen storage R-Ga alloy (coarsely pulverized powder) and the coarsely pulverized powder of the main alloy. What is necessary is just to adjust so that the mass ratio of a hydrogen storage R-Ga alloy (coarse pulverized powder) may be 1 to 5%.

4.成形工程
得られた混合合金粉末を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内にスラリーを注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。
4). Forming Step Using the obtained mixed alloy powder, forming in a magnetic field is performed to obtain a formed body. Molding in a magnetic field is a dry molding method in which a dry alloy powder is inserted into a mold cavity and molding is performed while a magnetic field is applied. The slurry is injected into the mold cavity and the slurry dispersion medium is discharged. Any known forming method in a magnetic field may be used, including a wet forming method.

5.焼結工程
成形体を焼結することにより焼結体(焼結磁石)を得る。成形体の焼結は既知の方法を用いることができる。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中または不活性ガス中で行うことが好ましい。不活性ガスは、ヘリウム、アルゴンなどの不活性ガスを用いることが好ましい。
5. Sintering process A sintered compact (sintered magnet) is obtained by sintering a molded object. A known method can be used for sintering the molded body. In order to prevent oxidation due to the atmosphere during sintering, sintering is preferably performed in a vacuum atmosphere or in an inert gas. As the inert gas, an inert gas such as helium or argon is preferably used.

6.熱処理工程
得られた焼結磁石に対し、磁気特性を向上させることを目的とした熱処理を行うことが好ましい。熱処理温度、熱処理時間などは既知の条件を用いることができる。例えば、比較的低い温度(400℃以上600℃以下)のみでの熱処理(一段熱処理)をしてもよく、あるいは比較的高い温度(700℃以上焼結温度以下(例えば1050℃以下))で熱処理を行った後比較的低い温度(400℃以上600℃以下)で熱処理(二段熱処理)をしてもよい。好ましい条件は、730℃以上1020℃以下で5分から500分程度の熱処理を施し、冷却後(室温まで冷却後、または440℃以上550℃以下まで冷却後)、さらに440℃以上550℃以下で5分から500分程度熱処理をすることが挙げられる。熱処理雰囲気は、真空雰囲気あるいは不活性ガス(ヘリウムやアルゴンなど)で行うことが好ましい。
6). Heat treatment step The obtained sintered magnet is preferably subjected to heat treatment for the purpose of improving magnetic properties. Known conditions can be used for the heat treatment temperature, the heat treatment time, and the like. For example, heat treatment (one-step heat treatment) only at a relatively low temperature (400 ° C. or more and 600 ° C. or less) may be performed, or heat treatment is performed at a relatively high temperature (700 ° C. or more and sintering temperature or less (eg, 1050 ° C. or less)). After performing, heat treatment (two-stage heat treatment) may be performed at a relatively low temperature (400 ° C. or more and 600 ° C. or less). Preferable conditions are as follows: heat treatment at 730 ° C. to 1020 ° C. for 5 minutes to 500 minutes, cooling (after cooling to room temperature or after cooling to 440 ° C. to 550 ° C.), and further at 440 ° C. to 550 ° C. Heat treatment for about 500 minutes to 500 minutes. The heat treatment atmosphere is preferably a vacuum atmosphere or an inert gas (such as helium or argon).

最終的な製品形状にするなどの目的で、得られた焼結磁石に研削などの機械加工を施してもよい。その場合、熱処理は機械加工前でも機械加工後でもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、既知の表面処理であってもよく、例えばAl蒸着や電気Niめっきや樹脂塗料などの表面処理を行うことができる。   For the purpose of obtaining a final product shape, the obtained sintered magnet may be subjected to machining such as grinding. In that case, the heat treatment may be performed before or after machining. Furthermore, you may surface-treat to the obtained sintered magnet. The surface treatment may be a known surface treatment, and for example, a surface treatment such as Al deposition, electric Ni plating, or resin coating can be performed.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

・実施例1
実施例1の本発明例は、混合合金粉末を得る工程を条件bで行った。
表1の試料No.1〜4(いずれも比較例)に示すR−T−B系焼結磁石の組成となるように各元素を秤量し、ストリップキャスト法により、それぞれの合金を作製した。得られた各合金に対して、公知の水素粉砕を行い粗粉砕粉を得た。具体的には、前記合金をそれぞれ水素炉内に装入した後真空にし、室温で絶対圧が295kPaになるまで水素導入し水素脆化した後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉末を得た。
Example 1
In the inventive example of Example 1, the step of obtaining the mixed alloy powder was performed under the condition b.
Sample No. in Table 1 Each element was weighed so as to have the composition of the RTB-based sintered magnet shown in 1-4 (both were comparative examples), and each alloy was produced by strip casting. Each of the obtained alloys was subjected to known hydrogen pulverization to obtain coarsely pulverized powder. Specifically, dehydrogenation is performed by charging each of the above alloys into a hydrogen furnace and applying a vacuum, introducing hydrogen until the absolute pressure reaches 295 kPa at room temperature, hydrogen embrittlement, and heating and cooling to 550 ° C. in vacuum. Treatment was performed to obtain a coarsely pulverized powder.

前記粗粉砕粉末をそれぞれジェットミルにより微粉砕し、粒径D50(気流分散法によるレーザー回折法で得られる体積中心値)が4.5μmの微粉砕粉末を作製した。前記微粉砕粉末に、潤滑剤としてステアリン酸亜鉛を微粉砕粉末100質量部に対して0.05質量部添加、混合した。その後、磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中で組成に応じて1030〜1070℃で4時間焼結し、R−T−B系焼結磁石を得た。焼結磁石の密度は7.5Mg/m以上であった。焼結後のR−T−B系焼結磁石に、真空中で900℃で2時間保持した後室温まで冷却し、次いで真空中で500℃で2時間保持した後、室温まで冷却する熱処理を施した。得られたR−T−B系焼結磁石の成分の分析結果を表1に示す。 The coarsely pulverized powders were each finely pulverized by a jet mill to prepare finely pulverized powders having a particle diameter D 50 (volume center value obtained by a laser diffraction method by an air flow dispersion method) of 4.5 μm. To the finely pulverized powder, 0.05 part by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the finely pulverized powder was added and mixed. Then, it shape | molded in the magnetic field and obtained the molded object. In addition, what was called a right-angle magnetic field shaping | molding apparatus (lateral magnetic field shaping | molding apparatus) in which the magnetic field application direction and the pressurization direction orthogonally cross was used for the shaping | molding apparatus. The obtained molded body was sintered in vacuum at 1030 to 1070 ° C. for 4 hours according to the composition to obtain an RTB-based sintered magnet. The density of the sintered magnet was 7.5 Mg / m 3 or more. The sintered R-T-B sintered magnet is subjected to a heat treatment in which it is kept at 900 ° C. for 2 hours in a vacuum, then cooled to room temperature, then kept at 500 ° C. in a vacuum for 2 hours, and then cooled to room temperature. gave. Table 1 shows the analysis results of the components of the obtained RTB-based sintered magnet.

表1におけるNd、Pr、B、Zr、Co、Al、Cu、Ga及びFeは、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、O(酸素量)は、ガス融解−赤外線吸収法、N(窒素量)は、ガス融解−熱伝導法、C(炭素量)は、燃焼−赤外線吸収法、によるガス分析装置を使用して測定した。以下、表5及び表10も同様である。また、表1に、本発明における式(1)を満たしている場合は「○」と満たしていない場合は「×」と記載した。以下、表5、表10、表15、表17および表21も同様である   Nd, Pr, B, Zr, Co, Al, Cu, Ga, and Fe in Table 1 were measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). O (oxygen amount) is a gas melting-infrared absorption method, N (nitrogen amount) is a gas melting-heat conduction method, and C (carbon amount) is a combustion-infrared absorption method. Measured. The same applies to Tables 5 and 10 below. Moreover, in Table 1, when satisfy | filling Formula (1) in this invention, it described as "(circle)" and not satisfy | filled with "x". The same applies to Table 5, Table 10, Table 15, Table 17, and Table 21 below.

Figure 2018060997
Figure 2018060997

更に、表2に示す主合金(No.A〜J)およびR−Ga合金(No.a〜d)の組成となるように各元素を秤量し、ストリップキャスト法により合金を作製した。得られた主合金およびR−Ga合金の成分の分析結果を表2に示す。表2におけるNd、Pr、B、Zr、Co、Al、Cu、Ga及びFeは、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。以下、表7も同様である。得られた前記主合金を上述した公知の水素粉砕と同様な条件で水素粉砕を行い、主合金の粗粉砕粉末を得た。また、得られた前記R−Ga合金に対して表3に示す条件で水素吸蔵工程を行うことにより水素吸蔵R−Ga合金(粗粉砕粉末)を得た。例えば、表3の水素吸蔵R−Ga合金No.b−2は、表2の合金No.bのR−Ga合金を水素炉内に装入した後、真空で250℃に加熱し、絶対圧が295kPaになるまで水素導入し水素脆化させた後、冷却し、さらに400℃まで真空中で加熱、冷却する追加処理を行ったものである。
表3に記載の他の水素吸蔵R−Ga合金(合金No.a−1、a−2、b−1、c−1、d−1〜d−4)、並びに表8、表13および表19に記載の各水素吸蔵R−Ga合金についても、水素吸蔵工程の条件を同様の記載ルールに沿って記載している。なお、R−Ga合金への加熱温度は、R−Ga合金に熱電対をとりつけることにより確認した。
Furthermore, each element was weighed so as to have a composition of a main alloy (No. A to J) and an R—Ga alloy (No. a to d) shown in Table 2, and an alloy was produced by a strip casting method. Table 2 shows the analysis results of the components of the obtained main alloy and R-Ga alloy. Nd, Pr, B, Zr, Co, Al, Cu, Ga and Fe in Table 2 were measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). The same applies to Table 7 below. The obtained main alloy was subjected to hydrogen pulverization under the same conditions as the known hydrogen pulverization described above to obtain a coarsely pulverized powder of the main alloy. Further, a hydrogen storage step was performed on the obtained R-Ga alloy under the conditions shown in Table 3 to obtain a hydrogen storage R-Ga alloy (coarse pulverized powder). For example, the hydrogen storage R-Ga alloy No. b-2 is alloy No. 2 in Table 2. After charging the R-Ga alloy of b into a hydrogen furnace, it was heated to 250 ° C. in a vacuum, hydrogen was introduced until the absolute pressure became 295 kPa, hydrogen embrittled, cooled, and further cooled to 400 ° C. in vacuum. This is an additional process of heating and cooling.
Other hydrogen storage R-Ga alloys described in Table 3 (Alloy Nos. A-1, a-2, b-1, c-1, d-1 to d-4), and Tables 8, 13 and Tables For each of the hydrogen storage R-Ga alloys described in 19, the conditions of the hydrogen storage process are described in accordance with the same description rule. In addition, the heating temperature to R-Ga alloy was confirmed by attaching a thermocouple to R-Ga alloy.

また、水素吸蔵R−Ga合金No.a−1、a−2、b−2、d−3における水素含有量(水素量)を測定した。測定結果を表3に示す。水素含有量は、株式会社堀場製作所製:EMGA−621Wの装置を用いて、Ar雰囲気中で加熱・溶解カラム分離―熱伝導度法(TCD)により測定した。尚、水素吸蔵R−Ga合金No.a―1、a―2、b−1、b−2、c−1及びd−1は後工程の微粉砕をすることができたが、水素吸蔵R−Ga合金No.d−2及びNo.d−4は、加熱温度が高すぎた(いずれも450℃を超える温度で加熱した)ため、R−Ga合金が溶解してしまい微粉砕することができなかった。更に、水素吸蔵R−Ga合金No.d−3は、合金の加熱温度が低すぎた(150℃)ため、R−Ga合金が水素脆化せず(水素含有量が50ppmと少ない)、微粉砕することができなかった。そのため、表3に示す様に、水素吸蔵R−Ga合金は、少なくとも水素を2600ppm(a−2)以上吸蔵させた状態で粉砕しなければならない。   Further, hydrogen storage R—Ga alloy No. The hydrogen content (amount of hydrogen) in a-1, a-2, b-2, and d-3 was measured. Table 3 shows the measurement results. The hydrogen content was measured by heating / dissolving column separation-thermal conductivity method (TCD) in an Ar atmosphere using an apparatus manufactured by Horiba, Ltd .: EMGA-621W. In addition, hydrogen storage R-Ga alloy No. a-1, a-2, b-1, b-2, c-1 and d-1 were able to be finely pulverized in the subsequent process. d-2 and No. Since d-4 was too high in heating temperature (both heated at a temperature exceeding 450 ° C.), the R—Ga alloy was dissolved and could not be finely pulverized. Furthermore, hydrogen storage R—Ga alloy No. In d-3, since the heating temperature of the alloy was too low (150 ° C.), the R—Ga alloy was not hydrogen embrittled (hydrogen content was as low as 50 ppm) and could not be finely pulverized. Therefore, as shown in Table 3, the hydrogen storage R-Ga alloy must be pulverized with at least 2600 ppm (a-2) or more of hydrogen stored.

得られた主合金の粗粉砕粉末と水素吸蔵R−Ga合金(粗粉砕粉末)を、表4に示す比率でそれぞれV型混合機に投入して混合し、ジェットミルにより微粉砕し、粒径D50(気流分散法によるレーザー回折法で得られる体積中心値)が4.5μmの微粉砕粉末(主合金粉末及びR−Ga合金粉末が混合された混合合金粉末)を作製した(条件b)。例えば、表4における試料No.5は、表2に示す合金No.Aの粗粉砕粉と表3の水素吸蔵R−Ga合金No.a−1を混合し、混合合金粉末を作製したものであり、前記混合合金粉末の質量に対するR−Ga合金粉末の質量の比(この場合、合金No.Aと水素吸蔵R−Ga合金No.a−1を混合した混合合金の全質量に対する、水素吸蔵R−Ga合金No.a−1の質量の比)は2.5質量%である。
表4に記載の他の試料(試料No.6〜15)、並びに表9、表14、表20に記載の各試料についても、各合金および混合比の条件を同様の記載ルールに沿って記載している。
The obtained coarsely pulverized powder of the main alloy and the hydrogen storage R-Ga alloy (coarsely pulverized powder) were introduced into a V-type mixer at the ratios shown in Table 4 and mixed, and finely pulverized by a jet mill. D 50 (volume center value obtained by laser diffraction method by airflow dispersion method) was prepared as finely pulverized powder (mixed alloy powder in which main alloy powder and R-Ga alloy powder were mixed) (condition b) . For example, sample No. 5 is alloy No. shown in Table 2. The coarsely pulverized powder of A and the hydrogen storage R-Ga alloy No. a-1 is mixed to produce a mixed alloy powder, and the ratio of the mass of the R-Ga alloy powder to the mass of the mixed alloy powder (in this case, the alloy No. A and the hydrogen storage R-Ga alloy No. 1). The ratio of the mass of the hydrogen storage R-Ga alloy No. a-1 to the total mass of the mixed alloy obtained by mixing a-1) is 2.5% by mass.
For the other samples (sample Nos. 6 to 15) described in Table 4 and the samples described in Table 9, Table 14, and Table 20, the conditions of each alloy and the mixing ratio are described according to the same description rule. doing.

前記微粉砕粉末に、潤滑剤としてステアリン酸亜鉛を微粉砕粉末100質量部に対して0.05質量部添加、混合した後、磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中で組成に応じて1030〜1070℃で4時間焼結し、焼結体(R−T−B系焼結磁石)を得た。焼結磁石の密度は7.5Mg/m以上であった。焼結後のR−T−B系焼結磁石に、真空中で900℃で2時間保持した後室温まで冷却し、次いで真空中で500℃で2時間保持した後、室温まで冷却する熱処理を施した。得られたR−T−B系焼結磁石の成分の分析結果を表5に示す。 To the finely pulverized powder, 0.05 part by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the finely pulverized powder was added and mixed, and then molded in a magnetic field to obtain a molded body. In addition, what was called a right-angle magnetic field shaping | molding apparatus (lateral magnetic field shaping | molding apparatus) in which the magnetic field application direction and the pressurization direction orthogonally cross was used for the shaping | molding apparatus. The obtained molded body was sintered in vacuum at 1030 to 1070 ° C. for 4 hours according to the composition to obtain a sintered body (RTB-based sintered magnet). The density of the sintered magnet was 7.5 Mg / m 3 or more. The sintered R-T-B sintered magnet is subjected to a heat treatment in which it is kept at 900 ° C. for 2 hours in a vacuum, then cooled to room temperature, then kept at 500 ° C. in a vacuum for 2 hours, and then cooled to room temperature. gave. Table 5 shows the analysis results of the components of the obtained RTB-based sintered magnet.

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

熱処理後の焼結磁石(試料No.1〜15)に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B−Hトレーサによって各試料の特性(B及びHcJ)を測定した。測定結果を表6に示す。 The sintered magnets (sample Nos. 1 to 15) after heat treatment are machined to prepare samples having a length of 7 mm, a width of 7 mm, and a thickness of 7 mm, and characteristics of each sample (B r and H cJ ) by a BH tracer Was measured. Table 6 shows the measurement results.

Figure 2018060997
Figure 2018060997

表6に示すように、試料No.1〜4は単一合金を用いて作製した比較例である。試料No.6、8、9、13は、試料No.1〜4とほぼ同じ組成(R−T−B系焼結磁石の組成)となるように主合金粉末とR−Ga合金粉末を含む混合合金粉末を用いて作製(つまり、本発明の製造方法により作製)した本発明例である。試料No.6(試料No.1とほぼ同じ組成)、試料No.8(試料No.2とほぼ同じ組成)、試料No.9(試料No.3とほぼ同じ組成)、試料No.13(試料No.4とほぼ同じ組成)の特性を試料No.1〜4と特性をそれぞれ比較すると、いずれも本発明例の試料(試料No.6、8、9、13)の方が高いB及び高いHcJが得られている。 As shown in Table 6, Sample No. 1-4 are comparative examples produced using a single alloy. Sample No. 6, 8, 9, and 13 are sample Nos. Prepared by using mixed alloy powder containing main alloy powder and R-Ga alloy powder so as to have almost the same composition as that of 1-4 (composition of RTB-based sintered magnet) (that is, the production method of the present invention) This is an example of the present invention prepared by the above method. Sample No. 6 (substantially the same composition as sample No. 1), sample no. 8 (same composition as sample No. 2), sample no. 9 (substantially the same composition as sample No. 3), sample no. 13 (substantially the same composition as sample No. 4). Comparing the 1-4 and properties, respectively, both of which can obtain high B r and a high H cJ towards the sample of the present invention examples (Sample No.6,8,9,13).

これに対し、本発明の組成範囲(R−T−B系焼結磁石の組成範囲)から外れている試料No.5(式1が本発明の範囲外)、試料No.10及び14(B量が本発明の範囲外)の比較例は、本発明の製造方法により作製しているものの、HcJが大幅に低下している。 On the other hand, Sample No. deviating from the composition range of the present invention (composition range of the RTB-based sintered magnet). 5 (Formula 1 is outside the scope of the present invention), Sample No. Although the comparative examples of 10 and 14 (the amount of B is outside the range of the present invention) are produced by the production method of the present invention, the HcJ is greatly reduced.

・実施例2
実施例2では、混合合金粉末を得る工程を条件bで行った。
表7に示す主合金(No.K〜Q)及びR−Ga合金(No.e〜j)の組成となるように各元素を秤量し、ストリップキャスト法により合金を作製した。得られた主合金およびR−Ga合金の成分の分析結果を表7に示す。得られた前記主合金を上述した公知の水素粉砕と同様な条件で水素粉砕を行い、主合金の粗粉砕粉末を得た。また、得られた前記R−Ga合金に対して表8に示す本発明の水素吸蔵工程を行うことにより水素吸蔵R−Ga合金(粗粉砕粉末)を得た。得られた主合金の粗粉砕粉末と水素吸蔵R−Ga合金(粗粉砕粉末)を、表9に示す比率でそれぞれV型混合機に投入して混合し、ジェットミルにより微粉砕し、粒径D50(気流分散法によるレーザー回折法で得られる体積中心値)が4.5μmの微粉砕粉末(主合金粉末及びR−Ga合金粉末が混合された混合合金粉末)を作製した(条件b)。得られた微粉砕粉を実施例1と同様な方法で成形して成形体を得た。さらに、得られた成形体を実施例1と同様な方法で焼結、熱処理を行った。得られた焼結体(R−T−B系焼結磁石)の成分の分析結果を表10に示す。表10に示す様に、試料No.16〜22は、いずれもほぼ同じ組成である。
Example 2
In Example 2, the step of obtaining the mixed alloy powder was performed under condition b.
Each element was weighed so as to have a composition of a main alloy (No. K to Q) and an R—Ga alloy (No. e to j) shown in Table 7, and an alloy was produced by a strip casting method. Table 7 shows the analysis results of the components of the obtained main alloy and R-Ga alloy. The obtained main alloy was subjected to hydrogen pulverization under the same conditions as the known hydrogen pulverization described above to obtain a coarsely pulverized powder of the main alloy. Moreover, the hydrogen storage process of this invention shown in Table 8 was performed with respect to the obtained said R-Ga alloy, and the hydrogen storage R-Ga alloy (coarse pulverized powder) was obtained. The obtained coarsely pulverized powder of the main alloy and the hydrogen occlusion R-Ga alloy (coarsely pulverized powder) were introduced into a V-type mixer at the ratios shown in Table 9 and mixed, and finely pulverized by a jet mill. D 50 (volume center value obtained by laser diffraction method by airflow dispersion method) was prepared as finely pulverized powder (mixed alloy powder in which main alloy powder and R-Ga alloy powder were mixed) (condition b) . The obtained finely pulverized powder was molded in the same manner as in Example 1 to obtain a molded body. Furthermore, the obtained molded body was sintered and heat-treated in the same manner as in Example 1. Table 10 shows the analysis results of the components of the obtained sintered body (RTB-based sintered magnet). As shown in Table 10, sample no. 16-22 all have substantially the same composition.

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

熱処理後の焼結磁石(試料No.16〜22)に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B−Hトレーサによって各試料の特性(B及びHcJ)を測定した。測定結果を表11に示す。 Sintered magnet after the heat treatment by machining (Sample Nanba16~22), vertical 7mm, horizontal 7mm, the sample thickness 7mm produced, the characteristics of each sample by the B-H tracer (B r and H cJ) Was measured. Table 11 shows the measurement results.

Figure 2018060997
Figure 2018060997

試料No.17、19、20、22は、本発明例である。試料No.16は比較例であり、R−Ga合金の組成が本発明の範囲から外れている(R−Ga合金におけるFeが本発明の範囲外)。試料No.18は比較例であり、R−Ga合金にけるR量及びGa量が本発明の範囲から外れている。試料No.21は比較例であり、R−Ga合金粉末の混合量が本発明の範囲から外れている。表11に示す様に、本発明例の試料No.17、19、20、22の特性は、比較例の試料No,16、18、21の特製と比べて、いずれも高いHcJが得られている。 Sample No. 17, 19, 20, and 22 are examples of the present invention. Sample No. 16 is a comparative example, and the composition of the R—Ga alloy is out of the scope of the present invention (Fe in the R—Ga alloy is out of the scope of the present invention). Sample No. 18 is a comparative example, and the R amount and the Ga amount in the R—Ga alloy are out of the scope of the present invention. Sample No. 21 is a comparative example, and the mixing amount of the R—Ga alloy powder is out of the scope of the present invention. As shown in Table 11, sample No. As for the characteristics of 17, 19, 20, and 22 , all HcJs are higher than those of the special samples of Comparative Sample Nos. 16, 18, and 21 .

・実施例3
実施例3では、混合合金粉末を得る工程を条件aで行った。
主合金(No.T,U)及びR−Ga合金(No.t,u)の組成がおよそ表12に示す組成となるように各元素を秤量し、ストリップキャスト法により合金を作製した。得られた主合金およびR−Ga合金の成分の分析結果を表12に示す。得られた前記主合金を実施例1と同様な条件で水素粉砕を行い、主合金の粗粉砕粉末を得た。さらに得られた主合金の粗粉砕粉末をジェットミルにより微粉砕し、粒径D50(気流分散法によるレーザー回折法で得られる体積中心値)が4.5μmの微粉砕粉末(主合金粉末)を作製した。また、得られた前記R−Ga合金に対して表13に示す本発明の水素吸蔵工程を行うことにより水素吸蔵R−Ga合金(粗粉砕粉末)を得た。さらに得られた水素吸蔵R−Ga合金をジェットミルにより微粉砕し、粒径D50(気流分散法によるレーザー回折法で得られる体積中心値)が4.5μmのR−Ga合金粉末(微粉砕粉末)を作製した。得られた主合金粉末(微粉砕粉末)とR−Ga合金粉末(微粉砕粉末)を、表14に示す比率でそれぞれV型混合機に投入して混合し、混合合金粉末(微粉砕粉末)を作製した(条件a)。得られた混合合金粉末を実施例1と同様な方法で成形して成形体を得た。さらに、得られた成形体を実施例1と同様な方法で焼結、熱処理を行った。得られた焼結体(R−T−B系焼結磁石)の成分の分析結果を表15に示す。
Example 3
In Example 3, the step of obtaining the mixed alloy powder was performed under the condition a.
Each element was weighed so that the compositions of the main alloy (No. T, U) and the R—Ga alloy (No. t, u) were the compositions shown in Table 12, and an alloy was produced by strip casting. Table 12 shows the analysis results of the components of the obtained main alloy and R-Ga alloy. The obtained main alloy was hydrogen crushed under the same conditions as in Example 1 to obtain a coarsely pulverized powder of the main alloy. Further, the coarsely pulverized powder of the obtained main alloy was finely pulverized by a jet mill, and the finely pulverized powder (main alloy powder) having a particle diameter D 50 (volume center value obtained by laser diffraction method by airflow dispersion method) of 4.5 μm. Was made. Moreover, the hydrogen storage process of this invention shown in Table 13 was performed with respect to the obtained said R-Ga alloy, and the hydrogen storage R-Ga alloy (coarse pulverized powder) was obtained. Further resulting hydrogen storage R-Ga alloy was finely pulverized by a jet mill, a particle diameter D 50 (volume center values obtained by the laser diffraction method using a stream of dispersion method) of 4.5 [mu] m R-Ga alloy powder (milled Powder). The obtained main alloy powder (finely pulverized powder) and R-Ga alloy powder (finely pulverized powder) were mixed in a V-type mixer at the ratios shown in Table 14, respectively, and mixed alloy powder (finely pulverized powder) (Condition a). The obtained mixed alloy powder was molded in the same manner as in Example 1 to obtain a molded body. Furthermore, the obtained molded body was sintered and heat-treated in the same manner as in Example 1. Table 15 shows the analysis results of the components of the obtained sintered body (RTB-based sintered magnet).

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

熱処理後の焼結磁石(試料No.23及び24)に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B−Hトレーサによって各試料の特性(B及びHcJ)を測定した。測定結果を表16に示す。 Sintered magnet after the heat treatment by machining (Sample No.23 and 24), vertical 7mm, horizontal 7mm, the sample thickness 7mm produced, the characteristics of each sample by the B-H tracer (B r and H cJ) Was measured. The measurement results are shown in Table 16.

Figure 2018060997
Figure 2018060997

表16に示すように、(条件a)にて混合合金粉末を作製した本発明例(試料No.23及び24)においても、高いB及び高いHcJが得られている。 As shown in Table 16, is also obtained a high B r and a high H cJ in the present invention example of manufacturing a mixed alloy powder in (Conditions a) (Sample No.23 and 24).

・実施例4
実施例4の本発明例は、混合合金粉末を得る工程を条件bで行った。
およそ表17の試料No.25〜28(いずれも比較例)に示すR−T−B系焼結磁石の組成となるように各元素を秤量し、ストリップキャスト法によりそれぞれの合金を作製した。得られた前記合金を実施例1と同様な方法で公知の水素粉砕を行い粗粉砕粉を得た。具体的には、前記合金をそれぞれ水素炉内に装入した後真空にし、室温で絶対圧が295kPaになるまで水素導入し水素脆化した後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉末を得た。
Example 4
In the inventive example of Example 4, the step of obtaining the mixed alloy powder was performed under the condition b.
Sample No. in Table 17 Each element was weighed so as to have the composition of the RTB-based sintered magnet shown in 25 to 28 (all are comparative examples), and each alloy was produced by strip casting. The obtained alloy was subjected to known hydrogen pulverization in the same manner as in Example 1 to obtain coarsely pulverized powder. Specifically, dehydrogenation is performed by charging each of the above alloys into a hydrogen furnace and applying a vacuum, introducing hydrogen until the absolute pressure reaches 295 kPa at room temperature, hydrogen embrittlement, and heating and cooling to 550 ° C. in vacuum. Treatment was performed to obtain a coarsely pulverized powder.

前記粗粉砕粉末をそれぞれジェットミルにより微粉砕し、粒径D50(気流分散法によるレーザー回折法で得られる体積中心値)が4.5μmの微粉砕粉末を作製した。前記微粉砕粉末に、潤滑剤としてステアリン酸亜鉛を微粉砕粉末100質量部に対して0.05質量部添加、混合した。その後、実施例1と同様な方法で成形して成形体を得た。さらに、得られた成形体を実施例1と同様な方法で焼結、熱処理を行った。得られた焼結体(R−T−B系焼結磁石)の成分の分析結果を表17に示す。 The coarsely pulverized powders were each finely pulverized by a jet mill to prepare finely pulverized powders having a particle diameter D 50 (volume center value obtained by a laser diffraction method by an air flow dispersion method) of 4.5 μm. To the finely pulverized powder, 0.05 part by mass of zinc stearate as a lubricant with respect to 100 parts by mass of the finely pulverized powder was added and mixed. Then, it shape | molded by the method similar to Example 1, and obtained the molded object. Furthermore, the obtained molded body was sintered and heat-treated in the same manner as in Example 1. Table 17 shows the analysis results of the components of the obtained sintered body (R-T-B system sintered magnet).

Figure 2018060997
Figure 2018060997

およそ表18に示す主合金(No.V〜Y)及びR−Ga合金(No.k〜n)の組成となるように各元素を秤量し、ストリップキャスト法により合金を作製した。得られた主合金およびR−Ga合金の成分の分析結果を表18に示す。得られた前記主合金を上述した公知の水素粉砕と同様な条件で水素粉砕を行い、主合金の粗粉砕粉末を得た。また、得られた前記R−Ga合金に対して表19に示す本発明の水素吸蔵工程を行うことにより水素吸蔵R−Ga合金(粗粉砕粉末)を得た。
また、水素吸蔵R−Ga合金No.k−1、n−1における水素含有量を測定した。測定結果を表19に示す。
Each element was weighed so as to have a composition of a main alloy (No. V to Y) and an R—Ga alloy (No. k to n) shown in Table 18, and an alloy was produced by strip casting. Table 18 shows the analysis results of the components of the obtained main alloy and R-Ga alloy. The obtained main alloy was subjected to hydrogen pulverization under the same conditions as the known hydrogen pulverization described above to obtain a coarse pulverized powder of the main alloy. Moreover, the hydrogen storage process of this invention shown in Table 19 was performed with respect to the obtained said R-Ga alloy, and the hydrogen storage R-Ga alloy (coarse pulverized powder) was obtained.
Further, hydrogen storage R—Ga alloy No. The hydrogen content at k-1 and n-1 was measured. The measurement results are shown in Table 19.

得られた主合金の粗粉砕粉末と水素吸蔵R−Ga合金(粗粉砕粉末)を、表20に示す比率でそれぞれV型混合機に投入して混合し、ジェットミルにより微粉砕し、粒径D50(気流分散法によるレーザー回折法で得られる体積中心値)が4.5μmの微粉砕粉末(主合金粉末及びR−Ga合金粉末が混合された混合合金粉末)を作製した(条件b)。なお、表20における水素吸蔵R−Ga合金No.a−1及び合金No.Bは実施例1と同じものを用いたものである。得られた微粉砕粉を実施例1と同様な方法で成形して成形体を得た。さらに、得られた成形体を実施例1と同様な方法で焼結、熱処理を行った。得られたR−T−B系焼結磁石の成分の分析結果を表21に示す。表17及び表21に示すように、試料No.25〜37は、重希土類元素(Dy及びTb)の含有量以外はいずれもほぼ同じ組成である。 The obtained coarsely pulverized powder of the main alloy and the hydrogen storage R-Ga alloy (coarse pulverized powder) were respectively introduced into a V-type mixer at the ratios shown in Table 20, mixed, finely pulverized by a jet mill, D 50 (volume center value obtained by laser diffraction method by airflow dispersion method) was prepared as finely pulverized powder (mixed alloy powder in which main alloy powder and R-Ga alloy powder were mixed) (condition b) . In Table 20, the hydrogen storage R-Ga alloy No. a-1 and alloy no. B is the same as in Example 1. The obtained finely pulverized powder was molded in the same manner as in Example 1 to obtain a molded body. Furthermore, the obtained molded body was sintered and heat-treated in the same manner as in Example 1. Table 21 shows the analysis results of the components of the obtained RTB-based sintered magnet. As shown in Table 17 and Table 21, Sample No. Except for the contents of heavy rare earth elements (Dy and Tb), 25 to 37 have almost the same composition.

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

Figure 2018060997
Figure 2018060997

熱処理後の焼結磁石(試料No.25〜37)に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B−Hトレーサによって各試料の特性(B及びHcJ)を測定した。測定結果を表22に示す。 The sintered magnets (sample Nos. 25 to 37) after heat treatment are machined to produce samples having a length of 7 mm, a width of 7 mm, and a thickness of 7 mm, and the characteristics of each sample (B r and H cJ ) using a BH tracer Was measured. The measurement results are shown in Table 22.

Figure 2018060997
Figure 2018060997

表22に示すように、同じ重希土類元素を同じ量で含有する試料の組み合わせは、以下の通りである。試料No.25及び29及び33は、いずれもDy:0.5質量%含有している。試料No.26及び30及び34は、いずれもTb:0.2質量%含有している。試料No.27及び31及び35は、いずれもTb:0.5質量%含有している。そして、試料No.28及び32及び36及び37は、いずれもTb:1.0質量%している。同じ重希土類元素を同じ量で含有する試料同士で比較すると、単一合金を用いて作製した比較例の試料に比べて、主合金粉末とR−G合金粉末を含む混合合金粉末を用いて作製した本発明例の試料の方が、いずれも高いB及び高いHcJが得られている。 As shown in Table 22, combinations of samples containing the same heavy rare earth element in the same amount are as follows. Sample No. All of 25, 29 and 33 contain Dy: 0.5% by mass. Sample No. 26, 30 and 34 all contain 0.2% by mass of Tb. Sample No. 27, 31 and 35 all contain 0.5% by mass of Tb. And sample no. 28, 32, 36 and 37 all have Tb: 1.0 mass%. Compared with samples containing the same heavy rare earth element in the same amount, produced using a mixed alloy powder including a main alloy powder and an RG alloy powder compared to a sample of a comparative example produced using a single alloy towards the samples of the present invention example of the both high B r and a high H cJ are achieved.

また、本発明例同士を比べると、主合金側に重希土類元素を含有させて作製した試料No.29〜32よりも、R−Ga合金側に重希土類元素を含有させて作製した試料No.33〜37の方がより高いB及び高いHcJが得られている。なお、試料No.36は、主合金とR−G合金のいずれにも重希土類元素が含有されているが、その含有量が主合金よりもR−Ga合金の方が多い。
よってR−T−B系焼結磁石に重希土類元素を含有させる場合、主合金側よりもR−Ga合金側に重希土類元素を多く含有させた方が好ましい。
In addition, when the inventive examples were compared with each other, sample No. 2 was prepared by containing a heavy rare earth element on the main alloy side. Samples Nos. 29 to 32 were prepared by containing a heavy rare earth element on the R-Ga alloy side. Who 33-37 are higher B r and a high H cJ are achieved. Sample No. No. 36 contains heavy rare earth elements in both the main alloy and the RG alloy, but the content of the R-Ga alloy is greater than that of the main alloy.
Therefore, when the R-T-B system sintered magnet contains a heavy rare earth element, it is preferable to contain a larger amount of heavy rare earth element on the R-Ga alloy side than on the main alloy side.

Claims (9)

R1:28.5〜33.5質量%(R1は、希土類元素のうち少なくとも1種でありNdおよびPrの少なくとも1種を含む)、
B:0.84〜0.92質量%、
Ga:0.3〜0.7質量%、
Cu:0.05〜0.35質量%、
Al:0.02〜0.50質量%、
T:61.0質量%以上(Tは、FeとCoでありTの90質量%以上がFeである)を含み、下記式(1)を満足するR−T−B系焼結磁石の製造方法であって、

14[B]/10.8<[T]/55.85 (1)
([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である)

R2:80〜95質量%(R2は、希土類元素のうち少なくとも1種)、
Ga:5〜20質量%(Gaの40質量%以下をCuで置換できる)、
Fe:0〜1質量%(Feの一部または全部をCoで置換できる)を含む1種以上のR−Ga合金と、1種以上の主合金とを準備する工程と、
前記R−Ga合金を水素雰囲気で200℃以上450℃以下の温度に加熱して、水素吸蔵R−Ga合金を得る水素吸蔵工程と、
前記1種以上の水素吸蔵R−Ga合金と前記1種以上の主合金とを用いて、R−Ga合金粉末と主合金粉末を含む混合合金粉末を得る工程と、
前記混合合金粉末を成形して成形体を得る成形工程と、
前記成形体を焼結し焼結体を得る焼結工程と、
前記焼結体に熱処理を施す熱処理工程と、
を含み、
前記混合合金粉末を得る工程において、少なくとも前記1種以上の水素吸蔵R−Ga合金は水素を吸蔵している状態で粉砕され、
前記混合合金粉末の質量に対する前記R−Ga合金粉末の質量の比が、1〜5%である、R−T−B系焼結磁石の製造方法。
R1: 28.5-33.5% by mass (R1 is at least one of rare earth elements and includes at least one of Nd and Pr),
B: 0.84 to 0.92 mass%,
Ga: 0.3-0.7 mass%,
Cu: 0.05 to 0.35 mass%,
Al: 0.02-0.50 mass%,
Production of RTB-based sintered magnet including T: 61.0% by mass or more (T is Fe and Co, and 90% by mass or more of T is Fe) and satisfies the following formula (1) A method,

14 [B] /10.8 <[T] /55.85 (1)
([B] is the B content in mass%, and [T] is the T content in mass%)

R2: 80 to 95% by mass (R2 is at least one of rare earth elements),
Ga: 5 to 20% by mass (40% by mass or less of Ga can be replaced with Cu),
Preparing one or more R-Ga alloys including Fe: 0 to 1% by mass (part or all of Fe can be replaced with Co) and one or more main alloys;
A hydrogen storage step of heating the R-Ga alloy to a temperature of 200 ° C. or higher and 450 ° C. or lower in a hydrogen atmosphere to obtain a hydrogen storage R-Ga alloy;
Using the one or more hydrogen storage R-Ga alloys and the one or more main alloys to obtain a mixed alloy powder including the R-Ga alloy powder and the main alloy powder;
A molding step of molding the mixed alloy powder to obtain a molded body;
A sintering step of sintering the molded body to obtain a sintered body;
A heat treatment step for heat-treating the sintered body;
Including
In the step of obtaining the mixed alloy powder, at least the one or more hydrogen storage R-Ga alloys are pulverized in a state of storing hydrogen,
The manufacturing method of the RTB system sintered magnet whose ratio of the mass of the R-Ga alloy powder to the mass of the mixed alloy powder is 1 to 5%.
前記混合合金粉末を得る工程は、以下の(条件a)または(条件b)により混合合金粉末を得る、請求項1に記載のR−T−B系焼結磁石の製造方法。
(条件a)前記水素吸蔵R−Ga合金が水素を吸蔵している状態で、前記水素吸蔵R−Ga合金を粉砕して得たR−Ga合金粉末と、前記主合金を粉砕して得た主合金粉末と、を混合する
(条件b)前記水素吸蔵R−Ga合金と前記主合金の粗粉砕粉とを混合した混合合金を得て、前記水素吸蔵R−Ga合金が水素を吸蔵している状態で、前記混合合金を粉砕する
The process for obtaining the mixed alloy powder according to claim 1, wherein the mixed alloy powder is obtained according to the following (Condition a) or (Condition b).
(Condition a) Obtained by pulverizing the main alloy with R-Ga alloy powder obtained by pulverizing the hydrogen-occluded R-Ga alloy in a state where the hydrogen-occlusion R-Ga alloy occludes hydrogen. (Condition b) A mixed alloy obtained by mixing the hydrogen storage R-Ga alloy and the coarsely pulverized powder of the main alloy is obtained, and the hydrogen storage R-Ga alloy stores hydrogen. Crush the mixed alloy
前記水素吸蔵R−Ga合金における水素含有量は2600ppm以上である、請求項1または2に記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB system sintered magnet according to claim 1 or 2 whose hydrogen content in said hydrogen occlusion R-Ga alloy is 2600 ppm or more. R1:28.5〜33.5質量%(R1は、希土類元素のうち少なくとも1種でありNdおよびPrの少なくとも1種を含む)、
B:0.84〜0.92質量%、
Ga:0.3〜0.7質量%、
Cu:0.05〜0.35質量%、
Al:0.02〜0.50質量%、
を含み、
残部がT(Tは、FeとCoでありTの90質量%以上がFeである)および不可避的不純物であり、下記式(1)を満足するR−T−B系焼結磁石の製造方法であって、

14[B]/10.8<[T]/55.85 (1)
([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である)

R2:80〜95質量%(R2は、希土類元素のうち少なくとも1種)、
Ga:5〜20質量%(Gaの40質量%以下をCuで置換できる)、
Fe:0〜1質量%(Feの一部または全部をCoで置換できる)を含む1種以上のR−Ga合金と、1種以上の主合金とを準備する工程と、
前記R−Ga合金を水素雰囲気で200℃以上450℃以下の温度に加熱して、水素吸蔵R−Ga合金を得る水素吸蔵工程と、
以下の(条件a)または(条件b)により、R−Ga合金粉末と主合金粉末を含む混合合金粉末を得る工程と、
(条件a)前記水素吸蔵R−Ga合金が水素を吸蔵している状態で、前記水素吸蔵R−Ga合金を粉砕して得たR−Ga合金粉末と、前記主合金を粉砕して得た主合金粉末と、を混合する
(条件b)前記水素吸蔵R−Ga合金と前記主合金の粗粉砕粉とを混合した混合合金を得て、前記水素吸蔵R−Ga合金が水素を吸蔵している状態で、前記混合合金を粉砕する
前記混合合金粉末を成形して成形体を得る成形工程と、
前記成形体を焼結し焼結体を得る焼結工程と、
前記焼結体に熱処理を施す熱処理工程と、
を含み、前記混合合金粉末の質量に対する前記R−Ga合金粉末の質量の比が、1〜5%である、R−T−B系焼結磁石の製造方法。
R1: 28.5-33.5% by mass (R1 is at least one of rare earth elements and includes at least one of Nd and Pr),
B: 0.84 to 0.92 mass%,
Ga: 0.3-0.7 mass%,
Cu: 0.05 to 0.35 mass%,
Al: 0.02-0.50 mass%,
Including
The balance is T (T is Fe and Co, and 90% by mass or more of T is Fe) and inevitable impurities, and the manufacturing method of the RTB-based sintered magnet satisfying the following formula (1) Because

14 [B] /10.8 <[T] /55.85 (1)
([B] is the B content in mass%, and [T] is the T content in mass%)

R2: 80 to 95% by mass (R2 is at least one of rare earth elements),
Ga: 5 to 20% by mass (40% by mass or less of Ga can be replaced with Cu),
Preparing one or more R-Ga alloys including Fe: 0 to 1% by mass (part or all of Fe can be replaced with Co) and one or more main alloys;
A hydrogen storage step of heating the R-Ga alloy to a temperature of 200 ° C. or higher and 450 ° C. or lower in a hydrogen atmosphere to obtain a hydrogen storage R-Ga alloy;
A step of obtaining a mixed alloy powder containing an R-Ga alloy powder and a main alloy powder according to the following (condition a) or (condition b);
(Condition a) Obtained by pulverizing the main alloy with R-Ga alloy powder obtained by pulverizing the hydrogen-occluded R-Ga alloy in a state where the hydrogen-occlusion R-Ga alloy occludes hydrogen. (Condition b) A mixed alloy obtained by mixing the hydrogen storage R-Ga alloy and the coarsely pulverized powder of the main alloy is obtained, and the hydrogen storage R-Ga alloy stores hydrogen. In a state where the mixed alloy is pulverized, a forming step of forming the mixed alloy powder to obtain a formed body,
A sintering step of sintering the molded body to obtain a sintered body;
A heat treatment step for heat-treating the sintered body;
And the ratio of the mass of the R-Ga alloy powder to the mass of the mixed alloy powder is 1 to 5%.
前記水素吸蔵R−Ga合金における水素含有量は2600ppm以上である、請求項4に記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB system sintered magnet according to claim 4 whose hydrogen content in said hydrogen occlusion R-Ga alloy is 2600 ppm or more. 前記混合合金粉末を得る工程の(条件a)において、前記水素吸蔵工程の後、前記水素吸蔵R−Ga合金を450℃を超える温度に加熱することなく、前記水素吸蔵R−Ga合金を粉砕することを特徴とする、請求項2または4に記載のR−T−B系焼結磁石の製造方法。   In (condition a) in the step of obtaining the mixed alloy powder, after the hydrogen storage step, the hydrogen storage R-Ga alloy is pulverized without heating the hydrogen storage R-Ga alloy to a temperature exceeding 450 ° C. The manufacturing method of the RTB type | system | group sintered magnet of Claim 2 or 4 characterized by the above-mentioned. 前記混合合金粉末を得る工程の(条件a)において、前記水素吸蔵工程の後、前記水素吸蔵R−Ga合金を加熱することなく、前記水素吸蔵R−Ga合金を粉砕することを特徴とする、請求項2または4に記載のR−T−B系焼結磁石の製造方法。   In (condition a) of the step of obtaining the mixed alloy powder, the hydrogen storage R-Ga alloy is pulverized after the hydrogen storage step without heating the hydrogen storage R-Ga alloy. The manufacturing method of the RTB system sintered magnet of Claim 2 or 4. 前記混合合金粉末を得る工程の(条件b)において、前記水素吸蔵工程の後、前記水素吸蔵R−Ga合金を450℃を超える温度に加熱することなく、前記混合合金を粉砕することを特徴とする、請求項2または4に記載のR−T−B系焼結磁石の製造方法。   (Condition b) in the step of obtaining the mixed alloy powder, the mixed alloy is pulverized after the hydrogen storage step without heating the hydrogen storage R-Ga alloy to a temperature exceeding 450 ° C. The manufacturing method of the RTB type | system | group sintered magnet of Claim 2 or 4. 前記混合合金粉末を得る工程の(条件b)において、前記水素吸蔵工程の後、前記水素吸蔵R−Ga合金を加熱することなく、前記混合合金を粉砕することを特徴とする、請求項2または4に記載のR−T−B系焼結磁石の製造方法。   In the (condition b) of the step of obtaining the mixed alloy powder, the mixed alloy is pulverized after the hydrogen storage step without heating the hydrogen storage R-Ga alloy. 4. A method for producing an RTB-based sintered magnet according to 4.
JP2017054790A 2016-03-29 2017-03-21 Manufacturing method of RTB-based sintered magnet Active JP6760160B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016066158 2016-03-29
JP2016066158 2016-03-29
JP2016189972 2016-09-28
JP2016189972 2016-09-28

Publications (2)

Publication Number Publication Date
JP2018060997A true JP2018060997A (en) 2018-04-12
JP6760160B2 JP6760160B2 (en) 2020-09-23

Family

ID=61910156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054790A Active JP6760160B2 (en) 2016-03-29 2017-03-21 Manufacturing method of RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP6760160B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169697A (en) * 2018-03-22 2019-10-03 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP7450321B2 (en) 2021-09-24 2024-03-15 煙台東星磁性材料株式有限公司 Manufacturing method of heat-resistant magnetic material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176414A (en) * 1993-11-02 1995-07-14 Tdk Corp Manufacture of permanent magnet
WO2015020182A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b type sintered magnet, and motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176414A (en) * 1993-11-02 1995-07-14 Tdk Corp Manufacture of permanent magnet
WO2015020182A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b type sintered magnet, and motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169697A (en) * 2018-03-22 2019-10-03 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP7155813B2 (en) 2018-03-22 2022-10-19 日立金属株式会社 Method for producing RTB based sintered magnet
JP7450321B2 (en) 2021-09-24 2024-03-15 煙台東星磁性材料株式有限公司 Manufacturing method of heat-resistant magnetic material

Also Published As

Publication number Publication date
JP6760160B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6288076B2 (en) R-T-B sintered magnet
JP6406255B2 (en) R-T-B system sintered magnet and method for manufacturing R-T-B system sintered magnet
JP6288095B2 (en) Method for producing RTB-based sintered magnet
JP6500907B2 (en) Method of manufacturing RTB based sintered magnet
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP6798546B2 (en) Manufacturing method of RTB-based sintered magnet
JP6443757B2 (en) Method for producing RTB-based sintered magnet
JP6541038B2 (en) RTB based sintered magnet
JP6432718B1 (en) Method for producing RTB-based sintered magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP7021578B2 (en) Manufacturing method of RTB-based sintered magnet
JP6760160B2 (en) Manufacturing method of RTB-based sintered magnet
JP6474043B2 (en) R-T-B sintered magnet
JP4870274B2 (en) Rare earth permanent magnet manufacturing method
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP2019169697A (en) Method for manufacturing r-t-b based sintered magnet
JP6229938B2 (en) R-T-B sintered magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2019169560A (en) Manufacturing method of r-t-b-based sintered magnet
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2018125445A (en) R-T-B based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JP2005286174A (en) R-t-b-based sintered magnet
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350