JP7155813B2 - Method for producing RTB based sintered magnet - Google Patents

Method for producing RTB based sintered magnet Download PDF

Info

Publication number
JP7155813B2
JP7155813B2 JP2018181245A JP2018181245A JP7155813B2 JP 7155813 B2 JP7155813 B2 JP 7155813B2 JP 2018181245 A JP2018181245 A JP 2018181245A JP 2018181245 A JP2018181245 A JP 2018181245A JP 7155813 B2 JP7155813 B2 JP 7155813B2
Authority
JP
Japan
Prior art keywords
mass
alloy powder
less
powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018181245A
Other languages
Japanese (ja)
Other versions
JP2019169697A (en
Inventor
鉄兵 佐藤
倫太郎 石井
太 國吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2019169697A publication Critical patent/JP2019169697A/en
Application granted granted Critical
Publication of JP7155813B2 publication Critical patent/JP7155813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

本発明はR-T-B系焼結磁石の製造方法に関する。 The present invention relates to a method for producing an RTB based sintered magnet.

R-T-B系焼結磁石(Rは希土類元素のうち少なくとも一種であり、Ndを必ず含む。TはFeまたはFeとCoであり、Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 RTB based sintered magnets (R is at least one rare earth element and always contains Nd, T is Fe or Fe and Co, and B is boron) has the highest Known as a high-performance magnet, it is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R-T-B系焼結磁石は、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R-T-B系焼結磁石の特性の根幹をなしている。 RTB based sintered magnets are composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundary portion of the main phase. The R 2 T 14 B compound, which is the main phase, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field, and forms the basis of the properties of the RTB system sintered magnet.

高温では、R-T-B系焼結磁石の保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため、不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用されるR-T-B系焼結磁石では、高いHcJを有することが要求されている。 At high temperatures, irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) of the RTB sintered magnet decreases. Therefore, RTB sintered magnets used in motors for electric vehicles are particularly required to have a high HcJ .

R-T-B系焼結磁石において、R14B化合物中のRに含まれる軽希土類元素RL(例えば、NdやPr)の一部を重希土類元素RH(例えば、DyやTb)で置換すると、HcJが向上することが知られている。RHの置換量の増加に伴い、HcJは向上する。 In the RTB system sintered magnet, part of the light rare earth element RL (for example, Nd and Pr) contained in R in the R 2 T 14 B compound is replaced with the heavy rare earth element RH (for example, Dy and Tb). The substitution is known to improve the H cJ . The HcJ improves as the amount of RH substitution increases.

しかし、R14B化合物中のRLをRHで置換すると、R-T-B系焼結磁石のHcJが向上する一方、残留磁束密度B(以下、単に「B」という場合がある)が低下する。また、特にDyなどのRHは、資源存在量が少ないうえ、産出地が限定されているなどの理由から、供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、RHをできるだけ使用することなく、HcJを向上させることが求められている。 However, when RH is substituted for RL in the R 2 T 14 B compound, the H cJ of the RTB system sintered magnet is improved, while the residual magnetic flux density B r (hereinafter sometimes simply referred to as “B r ”) existing) will decrease. In particular, RH such as Dy has a problem that the supply is not stable and the price fluctuates greatly because the resources are scarce and the places of production are limited. Therefore, in recent years, there has been a demand for improving HcJ while minimizing the use of RH.

特許文献1には、Dyの含有量を抑制しつつ保磁力の高いR-T-B系希土類焼結磁石が開示されている。この焼結磁石の組成は、一般に用いられてきたR-T-B系合金に比べてB量が相対的に少ない特定の範囲に限定され、かつ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有している。その結果、粒界にR17相が生成され、このR17相から粒界に形成される遷移金属リッチ相(R13M)の体積比率が増加することにより、HcJが向上する。 Patent Document 1 discloses an RTB-based rare earth sintered magnet having a high coercive force while suppressing the Dy content. The composition of this sintered magnet is limited to a specific range in which the amount of B is relatively small compared to the generally used RTB alloy, and is selected from Al, Ga, and Cu. It contains more than one kind of metal element M. As a result, the R 2 T 17 phase is generated at the grain boundary, and the volume ratio of the transition metal-rich phase (R 6 T 13 M) formed at the grain boundary from this R 2 T 17 phase is increased. improves.

国際公開第2013/008756号WO2013/008756

特許文献1に開示されているR-T-B系希土類焼結磁石では、Dyの含有量を低減しつつ高いHcJが得られるものの、Bが大幅に低下するという問題があった。また、近年、電気自動車用モータ等の用途においてさらに高いHcJを有するR-T-B系焼結磁石が求められている。 In the RTB rare earth sintered magnet disclosed in Patent Document 1, although a high H cJ can be obtained while the Dy content is reduced, there is a problem that the Br is greatly reduced. In recent years, there has also been a demand for RTB-based sintered magnets having a higher HcJ for applications such as motors for electric vehicles.

本発明の様々な実施形態は、RHの含有量を低減しつつ、高いBと高いHcJを有するR-T-B系焼結磁石の製造方法を提供する。 Various embodiments of the present invention provide methods for producing RTB-based sintered magnets having high B r and high H cJ while reducing the RH content.

本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、R:27.5質量%以上33.0質量%以下(Rは希土類元素のうち少なくとも一種であり、Ndを必ず含む)、B:0.85質量%以上0.97質量%以下、T:61.5質量%以上(Tは、FeおよびCoであり、質量比でTの90%以上がFeである)、を含有する主合金粉末を用意する工程と、Pr:65質量%以上97質量%以下(Prの30質量%を他の希土類元素によって置換できる)、およびGa:3質量%以上35質量%以下(Gaの50質量%以下をCuで置換できる)を含有し、アトマイズ法によって作製されたPr-Ga合金粉末を用意する工程と、前記主合金粉末と前記Pr-Ga合金粉末とを混合し、混合粉末の全体に対する前記Pr-Ga合金粉末の質量比が1質量%以上10質量%以下である混合粉末を作製し、磁界中で成形する工程と、前記混合粉末の成形体を950℃以上1120℃未満の焼結温度で焼結する焼結工程と、を包含し、前記焼結工程における前記焼結温度をT℃、焼結時間をt秒とするとき、5×(1120-T)<t<10×(1120-T)の関係が成立する。 In an exemplary embodiment of the method for producing an RTB based sintered magnet of the present disclosure, R: 27.5% by mass or more and 33.0% by mass or less (R is at least one rare earth element, Nd must be included), B: 0.85% by mass or more and 0.97% by mass or less, T: 61.5% by mass or more (T is Fe and Co, and 90% or more of T in terms of mass ratio is Fe Pr: 65% by mass or more and 97% by mass or less (30% by mass of Pr can be replaced by another rare earth element), and Ga: 3% by mass or more and 35% by mass % or less (50% by mass or less of Ga can be replaced with Cu) and prepared by an atomizing method, and mixing the main alloy powder and the Pr-Ga alloy powder. Then, a step of producing a mixed powder in which the mass ratio of the Pr—Ga alloy powder to the entire mixed powder is 1% by mass or more and 10% by mass or less, molding in a magnetic field, and molding a compact of the mixed powder at 950 ° C. and a sintering step of sintering at a sintering temperature of not less than 1120 ° C., and when the sintering temperature in the sintering step is T ° C. and the sintering time is t seconds, 5 × (1120-T ) 2 <t<10×(1120−T) 2 holds.

ある実施形態において、[T]を質量%で示すTの含有量、[B]を質量%で示すBの含有量とするとき、前記R-T-B系焼結磁石は、[T]/55.85>14[B]/10.8の関係を満足する。 In one embodiment, where [T] is the content of T expressed in mass% and [B] is the content of B expressed in mass%, the RTB based sintered magnet has a ratio of [T]/ It satisfies the relationship 55.85>14[B]/10.8.

ある実施形態において、前記Pr-Ga合金粉末中のNd含有量は不可避的不純物含有量以下である。 In one embodiment, the content of Nd in the Pr--Ga alloy powder is equal to or less than the content of unavoidable impurities.

本開示の実施形態によると、アトマイズ法によって作製されたPr-Ga合金粉末を適切な質量比率で主合金粉末に添加した混合粉末の成形体を作製した後、この成形体を特定条件のもとで焼結するため、Dyなどの重希土類元素の含有量を低減しても、高いBおよびHcJを有するR-T-B系焼結磁石を製造することができる。 According to the embodiment of the present disclosure, after producing a compact of a mixed powder in which Pr—Ga alloy powder produced by the atomization method is added to the main alloy powder in an appropriate mass ratio, this compact is produced under specific conditions. Therefore, RTB based sintered magnets having high B r and H cJ can be produced even if the content of heavy rare earth elements such as Dy is reduced.

R-T-B系焼結磁石の一部を拡大して模試的に示す断面図である。1 is a cross-sectional view schematically showing an enlarged part of an RTB based sintered magnet. FIG. 図1Aの破線矩形領域内をさらに拡大して模式的に示す断面図である。FIG. 1B is a schematic cross-sectional view further enlarging the inside of the broken-line rectangular region of FIG. 1A. 本開示の実施形態によるR-T-B系焼結磁石の製造方法における工程の例を示すフローチャートである。4 is a flow chart showing an example of steps in a method for manufacturing a RTB based sintered magnet according to an embodiment of the present disclosure; 焼結温度Tと焼結時間tとの関係を示すグラフである。4 is a graph showing the relationship between sintering temperature T and sintering time t.

図1Aは、R-T-B系焼結磁石の一部を拡大して模式的に示す断面図であり、図1Bは図1Aの破線矩形領域内をさらに拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1Aおよび図1Bに示されるように、R-T-B系焼結磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。粒界相14は、図1Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR14B化合物粒子が隣接する粒界三重点14bとを含む。 FIG. 1A is a schematic cross-sectional view enlarging a part of an RTB based sintered magnet, and FIG. 1B is a cross-sectional view schematically showing a further enlarged broken-line rectangular area in FIG. 1A. is. In FIG. 1A, as an example, an arrow with a length of 5 μm is shown for reference as a reference length indicating the size. As shown in FIGS. 1A and 1B, the RTB system sintered magnet has a main phase 12 mainly composed of an R 2 T 14 B compound and a grain boundary phase 14 located at the grain boundary portion of the main phase 12. It consists of As shown in FIG. 1B, the grain boundary phase 14 consists of a two-grain grain boundary phase 14a in which two R 2 T 14 B compound grains (grains) are adjacent to each other, and a grain boundary phase 14a in which three R 2 T 14 B compound grains are adjacent to each other. field triple point 14b.

主相12であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R-T-B系焼結磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。 The R 2 T 14 B compound, which is the main phase 12, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field. Therefore, in an RTB based sintered magnet, B r can be improved by increasing the abundance ratio of the R 2 T 14 B compound that is the main phase 12 . In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are adjusted to the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = 2:14:1).

特許文献1に記載されているように、一般的なR-T-B系焼結磁石よりもB量を少なく、すなわち、R14B型化合物の化学量論比のB量よりも少なくして、Gaを添加すると、Gaを含む遷移金属リッチ相(R-T-Ga相)が粒界相14内に生成してHcJが向上する。 As described in Patent Document 1, the amount of B is less than that of a general RTB-based sintered magnet, that is, the amount of B is less than the stoichiometric ratio of the R 2 T 14 B type compound. Then, when Ga is added, a transition metal-rich phase (RT-Ga phase) containing Ga is generated in the grain boundary phase 14 to improve H cJ .

本発明者らが鋭意検討した結果、R-T-Ga相は磁化を有しているため、R-T-B系焼結磁石の二粒子粒界14aおよび粒界三重点14bのうち、特にHcJに主に影響すると考えられる二粒子粒界14aにR-T-Ga相が多く存在すると、HcJ向上の妨げになることがわかった。また、R-T-Ga相の生成とともに、二粒子粒界14aにR-T-Ga相よりも磁化が低いと考えられるR-Ga相が生成されていることもわかった。そこで、高いHcJを有するR-T-B系焼結磁石を得るためには、R-T-Ga相を生成する必要はあるものの、二粒子粒界14aにR-Ga相を多く生成させることが重要であると考えた。 As a result of intensive studies by the present inventors, since the RT-Ga phase has magnetization, among the two grain boundaries 14a and the grain boundary triple points 14b of the RTB sintered magnet, It was found that the presence of a large amount of RT-Ga phase at the two-grain boundary 14a, which is considered to mainly affect H cJ , hinders improvement of H cJ . It was also found that together with the formation of the RT-Ga phase, an R--Ga phase, which is considered to have a lower magnetization than the RT--Ga phase, was also formed at the two-grain boundary 14a. Therefore, in order to obtain an RTB system sintered magnet having a high HcJ , although it is necessary to generate the RT-Ga phase, it is necessary to generate a large amount of the R-Ga phase at the grain boundaries 14a of the two grains. thought it was important.

本発明者らの実験の結果、アトマイズ法によって作製されたPr-Ga合金粉末(アトマイス粉)をR-T-B系焼結磁石の主合金の粉末と混合して、この混合粉末の成形体を作製した後、所定条件のもとで焼結工程を実行することにより、RおよびGaを主相結晶粒12の内部にほとんど導入させずに二粒子粒界14aへ導入できることがわかった。こうして、本発明の実施形態によれば、二粒子粒界にR-Ga相を多く生成させることができる。 As a result of experiments by the present inventors, Pr--Ga alloy powder (atomized powder) produced by the atomizing method was mixed with powder of the main alloy of RTB-based sintered magnets, and a molded body of this mixed powder was obtained. It was found that R and Ga can be introduced into the two-grain boundaries 14a without being introduced into the interior of the main phase crystal grains 12 by executing the sintering process under predetermined conditions after producing the R and Ga. Thus, according to the embodiment of the present invention, a large amount of R--Ga phase can be generated at the grain boundaries of two grains.

前述したように、R-T-B系焼結磁石は、主相を形成するための主合金の粉末粒子が焼結によって結合した構造を有しており、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。Pr-Ga合金の融点は、焼結温度よりも低いため、Pr-Ga合金の粉末粒子は、焼結工程の途中で溶融してR-T-B系焼結磁石の主として粒界相を構成する。 As described above, the RTB sintered magnet has a structure in which powder particles of the main alloy for forming the main phase are bonded by sintering, and is mainly composed of the R 2 T 14 B compound. It is composed of a main phase and a grain boundary phase located at the grain boundary portion of the main phase. Since the melting point of the Pr--Ga alloy is lower than the sintering temperature, the powder particles of the Pr--Ga alloy melt during the sintering process and mainly constitute the grain boundary phase of the RTB system sintered magnet. do.

なお、Pr-Ga合金は粉砕性が悪い。このため、Pr-Ga合金に対して通常の水素粉砕および微粉砕を行うと、粉砕に長時間を要し、量産性に問題がある。Pr-Ga合金に水素を吸蔵した状態で微粉砕すると、粉砕性は向上するが、得られた焼結磁石には水素が残存して磁気特性が劣化する場合がある。このため、水素吸蔵を利用する場合は、水素をなるべく残存させないために焼結時間を長くしたり、焼結温度を高めにしたりして、水素を充分に放出させる必要がある。しかし、そのような焼結条件では、RおよびGaが主相結晶粒内に拡散してしまい、高いHcJを得ることができない。 Incidentally, the Pr--Ga alloy has poor pulverizability. Therefore, if the Pr--Ga alloy is subjected to normal hydrogen pulverization and fine pulverization, pulverization takes a long time, which poses a problem in mass production. If the Pr--Ga alloy with hydrogen occluded is finely pulverized, the pulverizability is improved, but hydrogen may remain in the resulting sintered magnet, degrading the magnetic properties. Therefore, when utilizing hydrogen absorption, it is necessary to release hydrogen sufficiently by lengthening the sintering time or raising the sintering temperature so as not to leave hydrogen as much as possible. However, under such sintering conditions, R and Ga diffuse into the main phase crystal grains, making it impossible to obtain a high HcJ .

本開示の実施形態では、Pr-Ga合金のアトマイズ粉を使用することにより、粉砕を行うことなく粉末粒子(例えば106μm以下の粒径を有する粒子)を得ることが可能となる。合金が吸蔵した水素を焼結工程中に放出させる必要がないため、焼結時間を長くしたり、焼結温度を高めにする必要もない。その結果、RおよびGaによって粒界相を改質して磁石特性を高めるために適した焼結条件を選択することができた。 In the embodiment of the present disclosure, the use of atomized Pr—Ga alloy powder makes it possible to obtain powder particles (for example, particles having a particle size of 106 μm or less) without pulverization. Since it is not necessary to release the hydrogen occluded by the alloy during the sintering process, there is no need to lengthen the sintering time or raise the sintering temperature. As a result, it was possible to select sintering conditions suitable for modifying the grain boundary phase with R and Ga to improve the magnetic properties.

本開示によるR-T-B系焼結磁石の製造方法は、図2に例示されるように、R-T-B系焼結磁石用の主合金粉末を準備する工程S10と、アトマイズ法により作製されたPr-Ga合金の粉末を準備する工程S20とを含む。主合金粉末を準備する工程S10とPr-Ga合金の粉末を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造された主合金粉末およびPr-Ga合金の粉末を用いてもよい。さらに本開示によるR-T-B系焼結磁石の製造方法は、主合金粉末とPr-Ga合金粉末とを混合して磁界中で成形する工程(粉末成形工程)S30と、成形によって得られた混合粉末成形体を焼結する工程(焼結工程)S40とを含む。 As illustrated in FIG. 2, the method for producing a RTB based sintered magnet according to the present disclosure includes a step S10 of preparing a main alloy powder for an RTB based sintered magnet, and an atomization method. and step S20 of providing powder of the fabricated Pr--Ga alloy. The order of the step S10 of preparing the main alloy powder and the step S20 of preparing the Pr--Ga alloy powder is arbitrary, and the main alloy powder and the Pr--Ga alloy powder produced in different places may be used. good. Further, the method for producing an RTB based sintered magnet according to the present disclosure includes a step of mixing the main alloy powder and the Pr—Ga alloy powder and compacting in a magnetic field (powder compacting step) S30, and and a step of sintering the mixed powder compact (sintering step) S40.

本開示の実施形態における主合金粉末は、
R:27.5質量%以上33.0質量%以下(Rは希土類元素のうち少なくとも一種であり、Ndを必ず含む)、
B:0.85質量%以上0.97質量%以下、
T:61.5質量%以上(Tは、FeおよびCoであり、質量比でTの90%以上がFeである)、
を含有する。
The main alloy powder in embodiments of the present disclosure is
R: 27.5% by mass or more and 33.0% by mass or less (R is at least one of rare earth elements and necessarily contains Nd),
B: 0.85% by mass or more and 0.97% by mass or less,
T: 61.5% by mass or more (T is Fe and Co, and 90% or more of T is Fe in mass ratio),
contains

一方、本開示の実施形態におけるPr-Ga合金粉末は、
Pr:65質量%以上97質量%以下、および
Ga:3質量%以上35質量%以下(Gaの50質量%以下をCuで置換できる)、
を含有する。
On the other hand, the Pr—Ga alloy powder in the embodiment of the present disclosure is
Pr: 65% by mass or more and 97% by mass or less, and Ga: 3% by mass or more and 35% by mass or less (50% by mass or less of Ga can be replaced with Cu),
contains

本開示の実施形態における粉末成形工程S30では、主合金粉末とPr-Ga合金粉末とを混合するとき、混合粉末の全体に対するPr-Ga合金粉末の質量比が1質量%以上10質量%以下にする。 In the powder compacting step S30 in the embodiment of the present disclosure, when mixing the main alloy powder and the Pr—Ga alloy powder, the mass ratio of the Pr—Ga alloy powder to the entire mixed powder is 1% by mass or more and 10% by mass or less. do.

本開示の実施形態における焼結工程S40では、混合粉末の成形体を950℃以上1120℃未満の焼結温度で焼結する。また、焼結温度をT℃、焼結時間をt秒とするとき、以下の式1の関係が成立するように焼結条件を調整する。
5×(1120-T)<t<10×(1120-T)(式1)
In the sintering step S40 in the embodiment of the present disclosure, the compact of the mixed powder is sintered at a sintering temperature of 950°C or higher and lower than 1120°C. Further, when the sintering temperature is T° C. and the sintering time is t seconds, the sintering conditions are adjusted so that the relationship of Equation 1 below is established.
5×(1120−T) 2 <t<10×(1120−T) 2 (Formula 1)

図3は、焼結温度Tと焼結時間tとの関係を示すグラフである。グラフ中の破線は、焼結時間tの下限値を規定する5×(1120-T)を示す曲線である。一方、グラフ中の点線は、焼結時間tの上限値を規定する10×(1120-T)を示す曲線である。 FIG. 3 is a graph showing the relationship between sintering temperature T and sintering time t. The dashed line in the graph is a curve showing 5×(1120−T) 2 that defines the lower limit of sintering time t. On the other hand, the dotted line in the graph is a curve representing 10×(1120−T) 2 that defines the upper limit of the sintering time t.

焼結温度Tを例えば1020℃に設定した場合、焼結時間tの下限値を規定する5×(1120-T)は5×100=50000秒であり、これは約13時間50分である。また、焼結時間tの上限値を規定する10×(1120-T)は10×100=100000秒であり、これは約27時間46分である。従って、焼結温度Tが1020℃であれば、焼結時間tは約13時間50分以上約27時間46分以下の範囲から選択される。 When the sintering temperature T is set to, for example, 1020° C., 5×(1120−T) 2 that defines the lower limit of the sintering time t is 5×100 2 =50000 seconds, which is about 13 hours and 50 minutes. be. Also, 10×(1120−T) 2 defining the upper limit of the sintering time t is 10×100 2 =100000 seconds, which is about 27 hours and 46 minutes. Therefore, if the sintering temperature T is 1020° C., the sintering time t is selected from the range of about 13 hours and 50 minutes to about 27 hours and 46 minutes.

本開示によれば、上記の主合金粉末およびPr-Ga合金粉末を混合して作製した粉末の成形体に対して、上記特定条件のもとで焼結が実行されることにより、焼結および粒界相中のR-Ga相生成が適切に進行する。その結果、R-T-B系焼結磁石の粒界相が磁石内部の全体にわたって改質されて高いBおよびHcJを実現する。R-T-B系焼結磁石素材を焼結によって作製した後、このR-T-B系焼結磁石素材の表面から内部にPrおよびGaを拡散して導入した場合は、どうしても、PrおよびGaに濃度勾配が生じるため、R-T-B系焼結磁石の粒界相内であっても、R-T-B系焼結磁石の表面に近い領域と、R-T-B系焼結磁石の内部とでは、R-Ga相の生成量に差が生じてしまう。しかし、本開示の実施形態によれば、焼結前の段階からPrおよびGaが添加され、粉末成形体の内部に存在するため、従来法による問題が解決する。 According to the present disclosure, sintering is performed under the specific conditions for a powder compact produced by mixing the main alloy powder and the Pr—Ga alloy powder, whereby sintering and Formation of the R--Ga phase in the grain boundary phase proceeds appropriately. As a result, the grain boundary phase of the RTB system sintered magnet is reformed throughout the interior of the magnet to achieve high B r and H cJ . When Pr and Ga are diffused and introduced from the surface of the RTB based sintered magnet material into the interior after the RTB based sintered magnet material is produced by sintering, Pr and Ga are inevitably introduced. Since Ga concentration gradient occurs, even in the grain boundary phase of the RTB sintered magnet, the region near the surface of the RTB sintered magnet and the RTB sintered magnet There is a difference in the amount of R--Ga phase produced between the inside of the magnet and the inside of the magnet. However, according to the embodiments of the present disclosure, Pr and Ga are added from the stage before sintering and are present inside the powder compact, thus solving the problems of the conventional method.

また、本開示の実施形態において、Pr-Ga合金の粉末は、アトマイズ法によって作製されている。アトマイズ法によって作製された粉末は「アトマイズ粉末(atomized powder)」と呼ばれることがある。 Further, in the embodiment of the present disclosure, the Pr--Ga alloy powder is produced by the atomization method. Powders produced by the atomization method are sometimes called "atomized powders".

アトマイズ法は、溶湯噴霧法とも呼ばれる粉末作製方法の1種であり、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法を含む。たとえばガスアトマイズ法によれば、金属または合金を溶解炉で溶融して溶湯を形成し、その溶湯を窒素またはアルゴンなどの不活性ガス雰囲気中に噴霧して凝固させる。噴霧された溶湯は、微細な液滴として飛散するため、高速度で冷却されて凝固する。作製される粉末粒子は、それぞれ、球形の形状を持つため、粉砕を行う必要はない。アトマイズ法によって作製される粉末粒子のサイズは、たとえば10μm~200μmの範囲に分布する。 The atomization method, which is also called a molten metal atomization method, is one type of powder production method, and includes known atomization methods such as a gas atomization method and a plasma atomization method. For example, according to the gas atomization method, a metal or alloy is melted in a melting furnace to form a molten metal, which is sprayed into an inert gas atmosphere such as nitrogen or argon to solidify. Since the sprayed molten metal scatters as fine droplets, it is cooled at a high speed and solidified. Since the powder particles produced each have a spherical shape, no pulverization is necessary. The size of powder particles produced by the atomization method is distributed, for example, in the range of 10 μm to 200 μm.

アトマイズ法によれば、噴霧される合金溶湯の液滴が小さく、各液滴の重量に対する表面積が相対的に大きいため、冷却速度が高くなる。そのため、形成される粉末粒子は、非晶質または微結晶質である。なお、これらの粉末粒子に対しては、混合前において付加的に熱処理を行って非晶質を結晶化させてもよい。 According to the atomization method, since the droplets of the molten alloy to be sprayed are small and the surface area of each droplet is relatively large relative to its weight, the cooling rate is high. As such, the powder particles formed are amorphous or microcrystalline. These powder particles may additionally be heat-treated before mixing to crystallize amorphous particles.

Pr-Ga合金の粉末の粒度は篩わけすることによって調整され得る。また、篩わけで排除される粉末が10質量%以内であれば、その影響は少ないので、篩わけせずに用いてもよい。 The particle size of the Pr--Ga alloy powder can be adjusted by sieving. Further, if the amount of powder excluded by sieving is within 10% by mass, the effect is small, so the powder may be used without sieving.

焼結工程の後にさらに、真空または不活性ガス雰囲気中、焼結温度よりも低い温度で付加的な熱処理を実施してもよい。焼結工程S40と、付加熱処理を実施する工程との間に、他の工程、たとえば冷却工程などが実行されてもよい。 After the sintering step, an additional heat treatment may be performed at a temperature below the sintering temperature in a vacuum or inert gas atmosphere. Other steps, such as a cooling step, may be performed between the sintering step S40 and the step of performing the additional heat treatment.

本開示の製造方法によって作製されたR-T-B系焼結磁石は、例えば、以下の組成を有している。
R:27.5質量%以上、34.0質量%以下(Rは、希土類元素のうち少なくとも一種でありNdおよびPrの少なくとも一方を必ず含む)、
B:0.85質量%以上、0.93質量%以下、
Ga:0.20質量%以上、0.70質量%以下、
Cu:0.05質量%以上、0.70質量%以下、および
T:61.5質量%以上(Tは、FeとCoであり質量比でTの90%以上がFeである)を含み、かつ、[T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量とするとき、[T]/55.85>14[B]/10.8が成立する。
An RTB based sintered magnet manufactured by the manufacturing method of the present disclosure has, for example, the following composition.
R: 27.5% by mass or more and 34.0% by mass or less (R is at least one rare earth element and always contains at least one of Nd and Pr),
B: 0.85% by mass or more and 0.93% by mass or less,
Ga: 0.20% by mass or more and 0.70% by mass or less,
Cu: 0.05% by mass or more and 0.70% by mass or less, and T: 61.5% by mass or more (T is Fe and Co, and 90% or more of T in terms of mass ratio is Fe), And when [T] is the content of T expressed in mass% and [B] is the content of B expressed in mass%, [T]/55.85>14[B]/10.8 To establish.

以下、各合金の組成についてさらに詳しく説明する。 The composition of each alloy will be described in more detail below.

1.主合金の組成
(R) Rの含有量は27.5~33.0質量%である。Rは希土類元素のうち少なくとも一種であり、Ndを必ず含む。Rが27.5質量%未満では焼結過程で液相が十分に生成せず、焼結体を充分に緻密化することが困難になる。一方、Rが33.0質量%を超えても本発明の効果を得ることができるが、焼結体の製造工程中における合金粉末が非常に活性になり、合金粉末の著しい酸化や発火などが生じる可能性があるため、33.0質量%以下が好ましい。Rは28質量%~33.0質量%であることがより好ましく、29質量%~33質量%であることがさらに好ましい。重希土類元素RHの含有量は、5質量%以下であることが好ましい。本発明の実施形態では、重希土類元素RHを使用しなくても高いBと高いHcJを得ることができるため、より高いHcJを求められる場合でも、重希土類元素RHの添加量を低減できる。
1. Composition of Main Alloy (R) The content of R is 27.5 to 33.0% by mass. R is at least one of rare earth elements, and necessarily contains Nd. If the R content is less than 27.5% by mass, the liquid phase is not sufficiently formed during the sintering process, making it difficult to sufficiently densify the sintered body. On the other hand, even if R exceeds 33.0% by mass, the effect of the present invention can be obtained, but the alloy powder becomes very active during the manufacturing process of the sintered body, and the alloy powder is significantly oxidized and ignited. 33.0% by mass or less is preferable. R is more preferably 28% by mass to 33.0% by mass, even more preferably 29% by mass to 33% by mass. The content of the heavy rare earth element RH is preferably 5% by mass or less. In the embodiment of the present invention, high B r and high H cJ can be obtained without using the heavy rare earth element RH. can.

(B) Bの含有量は、0.85~0.97質量%である。Bの含有量を0.85~0.97質量%含有させた主合金粉末とPr-Ga合金粉末と混合して焼結することにより、高いBと高いHcJを得ることができる。Bの含有量が0.85質量%未満であるとBが低下する可能性があり、0.97質量%を超えるとHcJが低下する可能性がある。また、Bの一部はCで置換できる。 (B) The content of B is 0.85 to 0.97% by mass. A high B r and a high H cJ can be obtained by mixing the main alloy powder containing 0.85 to 0.97% by mass of B with the Pr—Ga alloy powder and sintering the mixture. If the B content is less than 0.85% by mass, Br may decrease, and if it exceeds 0.97% by mass, HcJ may decrease. Also, part of B can be replaced with C.

(Ga) 主合金粉末におけるGaの含有量は、0~0.8質量%である。本発明は、Pr-Ga合金の粉末を主合金粉末に添加することにより、Gaを粒界相に導入するため、主合金粉末のGa量は比較的少ない量(又はGaを含有しない)にする。Gaの含有量が0.8質量%を超えると、主相中にGaが含有することで主相の磁化が低下し、高いBを得ることができない可能性がある。好ましくはGaの含有量は、0.5質量%以下である。より高いBを得ることができる。 (Ga) The content of Ga in the main alloy powder is 0 to 0.8% by mass. In the present invention, by adding Pr—Ga alloy powder to the main alloy powder, Ga is introduced into the grain boundary phase, so the main alloy powder has a relatively small amount of Ga (or does not contain Ga). . If the Ga content exceeds 0.8% by mass, the magnetization of the main phase may decrease due to Ga contained in the main phase, making it impossible to obtain a high Br . Preferably, the Ga content is 0.5% by mass or less. A higher Br can be obtained.

(M) Mの含有量は、0~2質量%である。MはCu、Al、Nb、Zrの少なくとも一種であり、0質量%であっても本発明の効果を奏することができるが、Cu、Al、Nb、Zrの合計で2質量%以下含有することができる。Cu、Alを含有することによりHcJを向上させることができる。Cu、Alは積極的に添加してもよいし、使用原料や合金粉末の製造過程において不可避的に導入されるものを活用してもよい。また、Nb、Zrを含有することにより焼結時における結晶粒の異常粒成長を抑制することができる。Mは好ましくは、Cuを必ず含み、Cuを0.05~0.30質量%含有する。Cuを0.05~0.30質量%含有することにより、よりHcJを向上させることができるからである。 (M) The content of M is 0 to 2% by mass. M is at least one of Cu, Al, Nb, and Zr, and the effect of the present invention can be exhibited even if it is 0% by mass. can be done. H cJ can be improved by containing Cu and Al. Cu and Al may be positively added, or those that are unavoidably introduced in the raw material used or the manufacturing process of the alloy powder may be utilized. Also, by containing Nb and Zr, abnormal grain growth of crystal grains during sintering can be suppressed. Preferably, M necessarily contains Cu and contains 0.05 to 0.30% by mass of Cu. This is because the H cJ can be further improved by containing 0.05 to 0.30% by mass of Cu.

(T) Tは、Fe、またはFeとCoである。質量比でTの90%以上がFeであることが好ましい。Feの一部をCoで置換することができる。但し、Coの置換量が、質量比でT全体の10%を超えるとBが低下するため好ましくない。Tの含有量は、61.5質量%以上である。Tの含有量が61.5質量%未満であると、大幅にBrが低下する恐れがある。好ましくは、Tが残部である。 (T) T is Fe or Fe and Co. Fe preferably accounts for 90% or more of T in mass ratio. Part of Fe can be replaced with Co. However, if the substitution amount of Co exceeds 10% of the total T by mass ratio, Br decreases, which is not preferable. The content of T is 61.5% by mass or more. If the T content is less than 61.5% by mass, Br may decrease significantly. Preferably, T is the balance.

本開示における主合金粉末は、ジジム合金(Nd-Pr)、電解鉄、フェロボロンなどの合金中および製造工程中に通常含有される不可避的不純物、および、少量の上記以外の元素(上記R、B、Ga、M、T以外の元素)を含有してもよい。たとえば、Ti、V、Cr、Mn、Ni、Si、La、Ce、Sm、Ca、Mg、O(酸素)、N(窒素)、C(炭素)、Mo、Hf、Ta、Wなどをそれぞれ含有してもよい。 The main alloy powder in the present disclosure includes unavoidable impurities that are usually contained in alloys such as didymium alloys (Nd-Pr), electrolytic iron, and ferroboron and during the manufacturing process, and small amounts of elements other than the above (R, B , Ga, M, and T). For example, Ti, V, Cr, Mn, Ni, Si, La, Ce, Sm, Ca, Mg, O (oxygen), N (nitrogen), C (carbon), Mo, Hf, Ta, W, etc. You may

主合金粉末は、Nd-Fe-B系焼結磁石に代表される一般的なR-T-B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて粒径D50が1μm以上10μm以下(好ましくは、粒径D50が3μm以上8μm以下)に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。 The main alloy powder can be prepared using a general RTB based sintered magnet manufacturing method typified by Nd—Fe—B based sintered magnets. For example, after pulverizing a raw material alloy produced by a strip casting method or the like to a particle size D50 of 1 μm or more and 10 μm or less (preferably a particle size D50 of 3 μm or more and 8 μm or less) using a jet mill or the like , can be prepared by molding in a magnetic field and sintering at a temperature between 900°C and 1100°C.

原料合金の粉砕粒径(気流分散式レーザー回折法による測定で得られる体積中心値=D50)が1μm未満では粉砕粉を作製するのが非常に困難であり、生産効率が大幅に低下するため好ましくない。一方、粉砕粒径が10μmを超えると最終的に得られるR-T-B系焼結磁石用主合金粉末の結晶粒径が大きくなり過ぎ、高いHcJを得ることが困難となるため好ましくない。 If the pulverized particle size of the raw material alloy (volume median value = D 50 measured by the air dispersion laser diffraction method) is less than 1 μm, it is extremely difficult to produce pulverized powder, and the production efficiency is greatly reduced. I don't like it. On the other hand, if the pulverized particle size exceeds 10 μm, the crystal grain size of the finally obtained main alloy powder for sintered RTB magnets becomes too large, making it difficult to obtain a high HcJ , which is not preferable. .

好ましくは、主合金粉末は式2を満足する。
[T]/55.85>14[B]/10.8 (式2)
Preferably, the primary alloy powder satisfies Equation 2.
[T]/55.85>14[B]/10.8 (Formula 2)

この式2を満足することにより、Bの含有量が一般的なR-T-B系焼結磁石よりも少なくなる。一般的なR-T-B系焼結磁石は、主相であるR14B相以外にFe相やR17相が生成しないよう[T]/55.85(Feの原子量)が14[B]/10.8(Bの原子量)よりも少ない組成となっている([T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量である)。 By satisfying this formula 2, the B content becomes smaller than that of general RTB based sintered magnets. General RTB sintered magnets have a [T]/55.85 (atomic weight of Fe) so that Fe phase and R 2 T 17 phase do not form in addition to R 2 T 14 B phase, which is the main phase. is less than 14 [B] / 10.8 (atomic weight of B) ([T] is the content of T expressed in mass%, [B] is the content of B expressed in mass% is).

本開示の好ましい実施形態では、一般的なR-T-B系焼結磁石と異なり、[T]/55.85(Feの原子量)が14[B]/10.8(Bの原子量)よりも多くなるように式2で規定する。なお、主合金粉末におけるTはFeが主成分であるためFeの原子量を用いている。 In a preferred embodiment of the present disclosure, unlike general RTB sintered magnets, [T]/55.85 (atomic weight of Fe) is higher than 14 [B]/10.8 (atomic weight of B). is defined by Equation 2 so that As for T in the main alloy powder, the atomic weight of Fe is used because Fe is the main component.

2.Pr-Ga合金粉末の組成
(Pr) Pr-Ga合金粉末のPrは、Pr-Ga合金の全体の65~97質量%である。このPrの30質量%以下を他の希土類元素で置換することができる。具体的には、Prの30質量%以下をNdで置換することができ、Prの20質量%以下をDyおよび/又はTbで置換することができる。
2. Composition of Pr—Ga alloy powder (Pr) Pr in the Pr—Ga alloy powder is 65 to 97% by mass of the entire Pr—Ga alloy. 30% by mass or less of this Pr can be replaced with other rare earth elements. Specifically, 30 mass % or less of Pr can be replaced with Nd, and 20 mass % or less of Pr can be replaced with Dy and/or Tb.

(Ga) GaはPr-Ga合金全体の3質量%~35質量%であり、Gaの50質量%以下をCuで置換することができる。Pr-Ga合金は、不可避的不純物を含んでいても良い。 (Ga) Ga accounts for 3% to 35% by mass of the entire Pr--Ga alloy, and 50% by mass or less of Ga can be replaced with Cu. The Pr--Ga alloy may contain unavoidable impurities.

なお、本開示における「Prの30%以下をNdで置換することができ」とは、Pr-Ga合金中のPrの含有量(質量%)を100%とし、そのうち30%をNdで置換できることを意味する。たとえば、Pr-Ga合金中のPrが70質量%(Gaが30質量%)であれば、Ndを21質量%まで置換することができる。すなわち、Prが49質量%、Ndが21質量%となる。Dy、Tb、Cuの場合も同様である。 In the present disclosure, “30% or less of Pr can be replaced with Nd” means that the content (mass%) of Pr in the Pr—Ga alloy is 100%, and 30% of which can be replaced with Nd. means For example, 70% by mass of Pr (30% by mass of Ga) in a Pr—Ga alloy can be substituted with up to 21% by mass of Nd. That is, Pr is 49% by mass and Nd is 21% by mass. The same is true for Dy, Tb, and Cu.

PrおよびGaを上記範囲内としたPr-Ga合金の粉末を主合金粉末と混合することにより、焼結工程でPrおよびGaを粒界相に濃縮して磁石の全体にわたって粒界相に分散させることができる。Pr-Ga合金中のPrの一部は、Nd、Dyおよび/又はTbと置換されていてもよいが、それぞれの置換量が上記範囲を超えるとPrが少なすぎるため、高いBと高いHcJを得ることができない。好ましくは、Pr-Ga合金のNd含有量は不可避的不純物含有量以下(およそ1質量%以下)である。Gaは、50%以下をCuで置換することができるが、Cuの置換量が50%を超えるとHcJが低下する可能性がある。 By mixing Pr--Ga alloy powder with Pr and Ga within the above ranges with the main alloy powder, Pr and Ga are concentrated in the grain boundary phase during the sintering process and dispersed in the grain boundary phase throughout the magnet. be able to. Part of Pr in the Pr—Ga alloy may be substituted with Nd, Dy and/or Tb, but if the amount of each substitution exceeds the above range, Pr is too small, so high Br and high H cJ cannot be obtained. Preferably, the Nd content of the Pr--Ga alloy is less than or equal to the incidental impurity content (approximately 1% by weight or less). Although 50% or less of Ga can be replaced with Cu, HcJ may decrease when the amount of Cu replacement exceeds 50%.

本開示におけるPr-Ga合金の粉末は、アトマイズ法によって作製される。このため、機械的な粉砕を行わないでも、前述したように、球形の形状を有している。 The Pr--Ga alloy powder in the present disclosure is produced by the atomization method. Therefore, even without mechanical pulverization, it has a spherical shape as described above.

こうして得られた焼結磁石に対して、更に磁気特性を向上させることを目的として追加的な熱処理を行ってもよい。たとえば、焼結温度よりも低い温度(400℃以上600℃以下)で一段熱処理を行ってもよい。あるいは、相対的に高い温度(700℃以上焼結温度以下)で第一熱処理を行った後、相対的に低い温度(400℃以上600℃以下)で第二熱処理を行ってもよい(二段熱処理)。二段熱処理の具体例は、750℃以上850℃以下の温度で5分から500分程度の第一熱処理、および、440℃以上550℃以下の温度で5分から500分程度の第二熱処理を含み得る。第一熱処理と第二熱処理との間において、室温まで冷却したたり、または、440℃以上550℃以下の温度まで冷却してもよい。焼結後の冷却時に生成されるR13Ga相は、相対的に高い温度の熱処理によって消失し得る。第二熱処理前にR13Ga相の量を低減すると、粒界相が拡大し、HcJを高めることができる。また、相対的に低い温度の熱処理は、R-T-Ga相およびR-Ga相の生成を促進し得る。 The sintered magnet thus obtained may be subjected to additional heat treatment for the purpose of further improving the magnetic properties. For example, one-step heat treatment may be performed at a temperature lower than the sintering temperature (400° C. or higher and 600° C. or lower). Alternatively, after performing the first heat treatment at a relatively high temperature (700 ° C. or higher and the sintering temperature or lower), the second heat treatment may be performed at a relatively low temperature (400 ° C. or higher and 600 ° C. or lower) (two-step Heat treatment). A specific example of the two-stage heat treatment may include a first heat treatment at a temperature of 750° C. or higher and 850° C. or lower for about 5 minutes to 500 minutes, and a second heat treatment at a temperature of 440° C. or higher and 550° C. or lower for about 5 minutes to 500 minutes. . Between the first heat treatment and the second heat treatment, cooling may be performed to room temperature, or to a temperature of 440° C. or higher and 550° C. or lower. The R 6 T 13 Ga phase generated during cooling after sintering can disappear by heat treatment at relatively high temperatures. Reducing the amount of R6T13Ga phase before the second heat treatment expands the grain boundary phase and can increase HcJ . Also, heat treatment at relatively low temperatures can promote the formation of RT-Ga and R-Ga phases.

熱処理は、いずれも、真空雰囲気または不活性ガス(ヘリウムやアルゴンなど)で行うことが望ましい。 Any heat treatment is desirably performed in a vacuum atmosphere or an inert gas (helium, argon, etc.).

本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。 The present disclosure will be described in more detail by examples, but the disclosure is not limited thereto.

実施例1
およそ表1のNo.Aに示す組成となるように各元素を秤量してストリップキャスト法により鋳造し、フレーク状の合金を得た。得られたフレーク状の合金を水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素雰囲気中で乾式粉砕し、粒径D50が4.3μmの主合金粉末を得た。得られた主合金粉末の成分分析結果を表1のNo.Aに示す。表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、以下、主合金粉末、Pr-Ga合金粉末及びR-T-B系焼結磁石の組成も同様にして測定した。
Example 1
About No. in Table 1. Each element was weighed so that the composition shown in A was obtained, and the alloy was cast by a strip casting method to obtain an alloy in the form of flakes. After hydrogen embrittlement was applied to the resulting flake-shaped alloy in a pressurized hydrogen atmosphere, dehydrogenation treatment was performed by heating to 550° C. in vacuum and cooling to obtain a coarsely pulverized powder. Next, 0.04% by mass of zinc stearate as a lubricant is added to the coarsely ground powder with respect to 100% by mass of the coarsely ground powder. , dry-milled in a nitrogen atmosphere to obtain a main alloy powder with a particle size D50 of 4.3 μm. No. 1 in Table 1 shows the result of component analysis of the obtained main alloy powder. A. Each component in Table 1 was measured using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The compositions of the main alloy powder, the Pr--Ga alloy powder, and the RTB system sintered magnet were also measured in the same manner.

Figure 0007155813000001
Figure 0007155813000001

次に表2に示す組成の合金のPr-Ga合金粉末(No.a)をアトマイズ法により作製した。得られたPr-Ga合金粉末の粒度は106μm以下であった。 Next, a Pr--Ga alloy powder (No. a) of an alloy having the composition shown in Table 2 was produced by an atomizing method. The particle size of the obtained Pr--Ga alloy powder was 106 μm or less.

Figure 0007155813000002
Figure 0007155813000002

次に、主合金粉末(No.A)とPr-Ga合金粉末(No.a)をV型混合機に投入して混合し、混合粉末(微粉砕粉末)を作製した。混合粉末の全体に対するPr-Ga合金粉末の質量比は3質量%であった。前記混合粉末に、潤滑剤としてステアリン酸亜鉛を微粉砕粉末100質量%に対して0.05質量%添加、混合した後、磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、表3に示す焼結温度及び焼結時間にて焼結した。なお、焼結時間が本開示の式1(5×(1120-T)<t<10×(1120-T))を満たしている場合は〇と、満たしていない場合は×と記載している。また、焼結温度及び焼結磁石は成形体に熱電対をとりつけることにより測定した。焼結後のR-T-B系焼結磁石に、真空中で900℃で2時間保持した後室温まで冷却し、次いで真空中で500℃で2時間保持した後、室温まで冷却する熱処理を施しR-T-B系焼結磁石(No.1~9)を得た。得られたR-T-B系焼結磁石の成分を確認した所、いずれも(No.1~9)質量比率で、Nd:22.5%、Pr:9.77%、B:0.88%、Co:0.87%、Al:0.1%、Cu:0.18%、Ga:0.5%、Zr:0.1%、Fe:64.85%前後であり、本開示の式2([T]/55.85>14[B]/10.8 )を満たしていた。 熱処理後の焼結磁石(試料No.1~9)に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B-Hトレーサによって各試料の特性(B及びHcJ)を測定した。測定結果を表3に示す。 Next, the main alloy powder (No. A) and the Pr--Ga alloy powder (No. a) were put into a V-type mixer and mixed to prepare a mixed powder (fine pulverized powder). The mass ratio of the Pr--Ga alloy powder to the entire mixed powder was 3% by mass. 0.05% by mass of zinc stearate as a lubricant was added to the mixed powder with respect to 100% by mass of the finely pulverized powder, and the mixture was compacted in a magnetic field to obtain a compact. As the forming apparatus, a so-called orthogonal magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are perpendicular to each other was used. The obtained compact was sintered at the sintering temperature and sintering time shown in Table 3. If the sintering time satisfies the formula 1 (5 × (1120-T) 2 < t < 10 × (1120-T) 2 ) of the present disclosure, it is indicated as ◯, and if it is not satisfied, it is indicated as ×. ing. Also, the sintering temperature and the sintered magnet were measured by attaching a thermocouple to the compact. The RTB sintered magnet after sintering is subjected to heat treatment in which it is held at 900°C in vacuum for 2 hours, then cooled to room temperature, then held at 500°C in vacuum for 2 hours, and then cooled to room temperature. RTB system sintered magnets (Nos. 1 to 9) were obtained. When the components of the obtained RTB based sintered magnets were checked, all (No. 1 to 9) were found to be Nd: 22.5%, Pr: 9.77%, B: 0.5% by mass ratio. 88%, Co: 0.87%, Al: 0.1%, Cu: 0.18%, Ga: 0.5%, Zr: 0.1%, Fe: 64.85%, and the present disclosure 2 ([T]/55.85>14[B]/10.8). The heat- treated sintered magnets (samples No. 1 to 9) were machined to prepare samples with a length of 7 mm, a width of 7 mm, and a thickness of 7 mm. was measured. Table 3 shows the measurement results.

Figure 0007155813000003
Figure 0007155813000003

表3に示すように、本発明例は、いずれも高いBと高いHcJを有するR-T-B系焼結磁石が得られているのに対し、焼結時間が本開示の範囲外である比較例はいずれも高いBと高いHcJを有するR-T-B系焼結磁石が得られていない。 As shown in Table 3, the present invention examples all produced RTB sintered magnets having high B r and high H cJ . None of these comparative examples yielded RTB based sintered magnets with high B r and high H cJ .

実施例2
およそ表4のNo.B~Iに示す組成となるように各元素を秤量してストリップキャスト法により鋳造し、フレーク状の合金を得た。得られたフレーク状の合金を実施例1と同様の方法で粉砕し、主合金粉末を得た。得られた主合金粉末の組成を表4に示す。
Example 2
About No. 4 in Table 4. Each element was weighed so that the composition shown in B to I was obtained, and the alloy was cast by a strip casting method to obtain an alloy in the form of flakes. The resulting flake-like alloy was pulverized in the same manner as in Example 1 to obtain main alloy powder. Table 4 shows the composition of the obtained main alloy powder.

Figure 0007155813000004
Figure 0007155813000004

次に実施例1と同様に表5に示す組成の合金のPr-Ga合金粉末(No.a~e)をアトマイズ法により作製して用意した。得られたPr-Ga合金粉末の粒度は106μm以下であった。 Next, similarly to Example 1, Pr--Ga alloy powders (Nos. a to e) of alloys having compositions shown in Table 5 were prepared by the atomization method. The particle size of the obtained Pr--Ga alloy powder was 106 μm or less.

Figure 0007155813000005
Figure 0007155813000005

次に表6に示す条件で主合金粉末とPr-Ga合金粉末をV型混合機に投入して混合し、混合粉末(微粉砕粉末)を作製した。No.11は、No.C(主合金粉末)とNo.a(Pr-Ga合金粉末)とを混合したものであり、混合粉末の全体に対するPr-Ga合金粉末の質量比は1質量%である。No.12~21も同様に記載している。また、No.10は、主合金粉末のみでPr-Ga合金粉末を混合しなかった。混合粉末を実施例1と同様な方法で成形し、成形体を得た。得られた成形体を、1040℃で36000秒(10hr)にて焼結した。なお、焼結温度及び焼結時間は本開示の範囲内である。得られた焼結体に実施例1と同様の熱処理を施しR-T-B系焼結磁石(No.11~21)を得た。また、No.10は、主合金粉末のみでPr-Ga合金粉末を混合しなかったこと以外は、No.11~21と同様にしてR-T-B系焼結磁石を作製した。R-T-B系焼結磁石の組成を表7に示す。本開示の式2を満たしている場合は〇と、満たしていない場合は×と記載している。R-T-B系焼結磁石(試料No.10~21)に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B-Hトレーサによって各試料の特性(B及びHcJ)を測定した。測定結果を表6に示す。 Next, under the conditions shown in Table 6, the main alloy powder and the Pr--Ga alloy powder were put into a V-type mixer and mixed to prepare a mixed powder (pulverized powder). No. 11 is No. C (main alloy powder) and No. a (Pr--Ga alloy powder), and the mass ratio of the Pr--Ga alloy powder to the entire mixed powder is 1% by mass. No. 12 to 21 are similarly described. Also, No. No. 10 did not mix the Pr--Ga alloy powder with only the main alloy powder. The mixed powder was molded in the same manner as in Example 1 to obtain a molded body. The compact thus obtained was sintered at 1040° C. for 36000 seconds (10 hr). The sintering temperature and sintering time are within the scope of the present disclosure. The obtained sintered bodies were subjected to heat treatment in the same manner as in Example 1 to obtain RTB sintered magnets (Nos. 11 to 21). Also, No. No. 10 is the same as No. 1 except that only the main alloy powder was mixed with no Pr--Ga alloy powder. An RTB based sintered magnet was produced in the same manner as in Nos. 11 to 21. Table 7 shows the composition of the RTB system sintered magnet. When formula 2 of the present disclosure is satisfied, it is indicated by ◯, and when it is not satisfied, it is indicated by ×. RTB sintered magnets (samples No. 10 to 21) were machined to prepare samples with a length of 7 mm, a width of 7 mm, and a thickness of 7 mm, and the characteristics of each sample (B r and H cJ ) was measured. Table 6 shows the measurement results.

Figure 0007155813000006
Figure 0007155813000006

Figure 0007155813000007
Figure 0007155813000007

表6に示すように、本発明例は、いずれも高いBと高いHcJを有するR-T-B系焼結磁石が得られているのに対し、Pr-Ga合金粉末を使用していないNo.10や合金粉末の全体に対するPr-Ga合金粉末の質量比が10質量%を超えているNo.16やPr-Ga合金粉末におけるPr量が外れているNo.18及びNo.19の比較例は、いずれも高いBと高いHcJを有するR-T-B系焼結磁石が得られていない。 As shown in Table 6, all the examples of the present invention produced RTB based sintered magnets with high Br and high HcJ , whereas Pr—Ga alloy powder was used. No No. No. 10 and No. 1 in which the mass ratio of the Pr—Ga alloy powder to the entire alloy powder exceeds 10% by mass. No. 16 and No. 1 where the Pr amount in the Pr—Ga alloy powder is off. 18 and no. None of the 19 comparative examples provided RTB based sintered magnets with high B r and high H cJ .

実施例3
およそ表8のNo.Jに示す組成となるように各元素を秤量してストリップキャスト法により鋳造し、フレーク状の合金を得た。得られたフレーク状の合金を実施例1と同様の方法で粉砕し、主合金粉末を得た。得られた主合金粉末の組成を表8に示す。
Example 3
About No. 8 in Table 8. Each element was weighed so that the composition shown in J was obtained, and the alloy was cast by a strip casting method to obtain an alloy in the form of flakes. The resulting flake-like alloy was pulverized in the same manner as in Example 1 to obtain main alloy powder. Table 8 shows the composition of the obtained main alloy powder.

Figure 0007155813000008
Figure 0007155813000008

次に実施例1と同様に表9に示す組成の合金のPr-Ga合金粉末(No.fおよびg)をアトマイズ法により作製して用意した。得られたPr-Ga合金粉末の粒度は106μm以下であった。 Next, in the same manner as in Example 1, Pr--Ga alloy powders (No. f and g) of alloys having compositions shown in Table 9 were prepared by the atomization method. The particle size of the obtained Pr--Ga alloy powder was 106 μm or less.

Figure 0007155813000009
Figure 0007155813000009

次に表10に示す条件で主合金粉末とPr-Ga合金粉末をV型混合機に投入して混合し、混合粉末(微粉砕粉末)を作製した。No.22は、No.J(主合金粉末)とNo.f(Pr-Ga合金粉末)とを混合したものであり、混合粉末の全体に対するPr-Ga合金粉末の質量比は3質量%である。No.23も同様に記載している。混合粉末を実施例1と同様な方法で成形し、成形体を得た。得られた成形体を、1070℃で14400秒(4hr)にて焼結した。なお、焼結温度及び焼結時間は本開示の範囲内である。得られた焼結体に実施例1と同様の熱処理を施しR-T-B系焼結磁石(No.22および23)を得た。R-T-B系焼結磁石の組成を表11に示す。R-T-B系焼結磁石(試料No.22および23)に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B-Hトレーサによって各試料の特性(B及びHcJ)を測定した。測定結果を表10に示す。 Next, under the conditions shown in Table 10, the main alloy powder and the Pr--Ga alloy powder were put into a V-type mixer and mixed to prepare a mixed powder (pulverized powder). No. 22 is No. J (main alloy powder) and No. f (Pr--Ga alloy powder), and the mass ratio of the Pr--Ga alloy powder to the entire mixed powder is 3% by mass. No. 23 is similarly described. The mixed powder was molded in the same manner as in Example 1 to obtain a molded body. The compact thus obtained was sintered at 1070° C. for 14400 seconds (4 hours). The sintering temperature and sintering time are within the scope of the present disclosure. The obtained sintered bodies were subjected to the same heat treatment as in Example 1 to obtain RTB sintered magnets (Nos. 22 and 23). Table 11 shows the composition of the RTB system sintered magnet. RTB sintered magnets (samples No. 22 and 23) were machined to prepare samples of 7 mm in length, 7 mm in width, and 7 mm in thickness, and the characteristics of each sample (B r and H cJ ) was measured. Table 10 shows the measurement results.

Figure 0007155813000010
Figure 0007155813000010

Figure 0007155813000011
Figure 0007155813000011

表10に示すように、本発明例は、いずれも高いBと高いHcJを有するR-T-B系焼結磁石が得られている。 As shown in Table 10, all the invention examples yield RTB based sintered magnets having high B r and high H cJ .

本発明によれば、高いBと高いHcJを有するR-T-B系焼結磁石を作製することができる。本発明の焼結磁石は、高温下に晒されるハイブリッド車搭載用モータ等の各種モータや家電製品等に好適である。 According to the present invention, an RTB based sintered magnet having high B r and high H cJ can be produced. The sintered magnet of the present invention is suitable for various motors such as hybrid vehicle mounted motors exposed to high temperatures, home electric appliances, and the like.

12 R14B化合物からなる主相
14 粒界相
14a 二粒子粒界相
14b 粒界三重点
Main phase 14 composed of 12 R 2 T 14 B compound Grain boundary phase 14a Two-grain grain boundary phase 14b Grain boundary triple point

Claims (3)

R:27.5質量%以上33.0質量%以下(Rは希土類元素のうち少なくとも一種で
あり、Ndを必ず含む)、
B:0.85質量%以上0.97質量%以下、
T:61.5質量%以上(Tは、FeおよびCoであり、質量比でTの90%以上がFeである)、
を含有する主合金粉末を用意する工程と、
Pr:65質量%以上97質量%以下(Prの30質量%を他の希土類元素によって置換できる)、および
Ga:3質量%以上35質量%以下(Gaの50質量%以下をCuで置換できる)
を含有し、アトマイズ法によって作製されたPr-Ga合金粉末を用意する工程と、
前記主合金粉末と前記Pr-Ga合金粉末とを混合し、混合粉末の全体に対する前記Pr-Ga合金粉末の質量比が1質量%以上10質量%以下である混合粉末を作製し、磁界中で成形する工程と、
前記混合粉末の成形体を950℃以上1120℃未満の焼結温度で焼結する焼結工程と、
を包含し、
前記焼結工程における前記焼結温度をT℃、焼結時間をt秒とするとき、
t≧3600、かつ、
5×(1120-T)<t<10×(1120-T)の関係が成立する、R-T-B系焼結磁石の製造方法。
R: 27.5% by mass or more and 33.0% by mass or less (R is at least one of rare earth elements and necessarily contains Nd),
B: 0.85% by mass or more and 0.97% by mass or less,
T: 61.5% by mass or more (T is Fe and Co, and 90% or more of T is Fe in mass ratio),
providing a main alloy powder containing
Pr: 65% by mass or more and 97% by mass or less (30% by mass of Pr can be replaced by another rare earth element), and Ga: 3% by mass or more and 35% by mass or less (50% by mass or less of Ga can be replaced by Cu)
A step of preparing a Pr—Ga alloy powder containing and produced by an atomizing method;
The main alloy powder and the Pr--Ga alloy powder are mixed to prepare a mixed powder in which the mass ratio of the Pr--Ga alloy powder to the entire mixed powder is 1% by mass or more and 10% by mass or less. a molding step;
A sintering step of sintering the compact of the mixed powder at a sintering temperature of 950° C. or more and less than 1120° C.;
encompasses
When the sintering temperature in the sintering step is T ° C. and the sintering time is t seconds,
t≧3600, and
A method for producing an RTB based sintered magnet, wherein the relationship 5×(1120−T) 2 <t<10×(1120−T) 2 is established.
[T]を質量%で示すTの含有量、[B]を質量%で示すBの含有量とするとき、前記R-T-B系焼結磁石は、
[T]/55.85>14[B]/10.8
の関係を満足する、請求項1に記載のR-T-B系焼結磁石の製造方法。
Where [T] is the content of T expressed in mass% and [B] is the content of B expressed in mass%, the RTB based sintered magnet is:
[T]/55.85>14[B]/10.8
2. The method for manufacturing an RTB based sintered magnet according to claim 1, which satisfies the relationship of
前記Pr-Ga合金粉末中のNd含有量は不可避的不純物含有量以下である、請求項1または2に記載のR-T-B系焼結磁石の製造方法。 3. The method for producing a RTB based sintered magnet according to claim 1, wherein the Nd content in said Pr--Ga alloy powder is equal to or less than the content of unavoidable impurities.
JP2018181245A 2018-03-22 2018-09-27 Method for producing RTB based sintered magnet Active JP7155813B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018054743 2018-03-22
JP2018054743 2018-03-22

Publications (2)

Publication Number Publication Date
JP2019169697A JP2019169697A (en) 2019-10-03
JP7155813B2 true JP7155813B2 (en) 2022-10-19

Family

ID=68108529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181245A Active JP7155813B2 (en) 2018-03-22 2018-09-27 Method for producing RTB based sintered magnet

Country Status (1)

Country Link
JP (1) JP7155813B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7180089B2 (en) * 2018-03-22 2022-11-30 日立金属株式会社 Method for producing RTB based sintered magnet
JP6947344B1 (en) * 2019-12-26 2021-10-13 日立金属株式会社 Manufacturing method of RTB-based sintered magnet and RTB-based sintered magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018291A1 (en) 2015-07-30 2017-02-02 日立金属株式会社 Method for producing r-t-b system sintered magnet
JP2018056334A (en) 2016-09-29 2018-04-05 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP2018060997A (en) 2016-03-29 2018-04-12 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP2019169542A (en) 2018-03-22 2019-10-03 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018291A1 (en) 2015-07-30 2017-02-02 日立金属株式会社 Method for producing r-t-b system sintered magnet
JP2018060997A (en) 2016-03-29 2018-04-12 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP2018056334A (en) 2016-09-29 2018-04-05 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP2019169542A (en) 2018-03-22 2019-10-03 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet

Also Published As

Publication number Publication date
JP2019169697A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6555170B2 (en) R-Fe-B sintered magnet and method for producing the same
JP7180089B2 (en) Method for producing RTB based sintered magnet
JP6614084B2 (en) Method for producing R-Fe-B sintered magnet
JP6489052B2 (en) R-Fe-B sintered magnet and method for producing the same
JP6414653B1 (en) Method for producing RTB-based sintered magnet
WO2018034264A1 (en) R-t-b sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
JP6750543B2 (en) R-T-B system sintered magnet
JPWO2016133067A1 (en) Method for producing RTB-based sintered magnet
JP6432718B1 (en) Method for producing RTB-based sintered magnet
JP7044218B1 (en) RTB-based sintered magnet
JP7155813B2 (en) Method for producing RTB based sintered magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP7021578B2 (en) Manufacturing method of RTB-based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP7059995B2 (en) RTB-based sintered magnet
JP7179799B2 (en) R-Fe-B system sintered magnet
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP7020224B2 (en) RTB-based sintered magnet and its manufacturing method
JP2020155657A (en) Method for manufacturing r-t-b based sintered magnet
JP7476601B2 (en) Manufacturing method of RTB based sintered magnet
JP2021057564A (en) Method for manufacturing r-t-b based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7155813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350