JP6623998B2 - Method for producing RTB based sintered magnet - Google Patents

Method for producing RTB based sintered magnet Download PDF

Info

Publication number
JP6623998B2
JP6623998B2 JP2016189967A JP2016189967A JP6623998B2 JP 6623998 B2 JP6623998 B2 JP 6623998B2 JP 2016189967 A JP2016189967 A JP 2016189967A JP 2016189967 A JP2016189967 A JP 2016189967A JP 6623998 B2 JP6623998 B2 JP 6623998B2
Authority
JP
Japan
Prior art keywords
mass
rtb
sintered magnet
less
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189967A
Other languages
Japanese (ja)
Other versions
JP2018056301A (en
Inventor
鉄兵 佐藤
鉄兵 佐藤
國吉 太
太 國吉
倫太郎 石井
倫太郎 石井
康太 齋藤
康太 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016189967A priority Critical patent/JP6623998B2/en
Publication of JP2018056301A publication Critical patent/JP2018056301A/en
Application granted granted Critical
Publication of JP6623998B2 publication Critical patent/JP6623998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本開示は、R−T−B系焼結磁石の製造方法に関する。   The present disclosure relates to a method for manufacturing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは、希土類元素のうち少なくとも一種でありNdおよびPrの少なくとも一方を必ず含む)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータおよび家電製品などに使用されている。   RTB based sintered magnets (R is at least one of the rare earth elements and always includes at least one of Nd and Pr) are known as the most high-performance magnets among permanent magnets, and hard disk drives , Such as voice coil motors (VCM), electric vehicles (EV, HV, PHV, etc.), industrial motors, and home appliances.

R−T−B系焼結磁石は、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相と、から構成されている。主相であるR14B化合物は、高い飽和磁化と異方性磁界を持つ強磁性材料であり、R−T−B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is mainly composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at a grain boundary portion of the main phase. The R 2 T 14 B compound as the main phase is a ferromagnetic material having a high saturation magnetization and an anisotropic magnetic field, and forms the basis of the properties of the RTB-based sintered magnet.

R−T−B系焼結磁石は、高温において保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため、不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用される場合、高いHcJを有することが要求されている。 Since the coercive force HcJ (hereinafter sometimes simply referred to as " HcJ ") of the RTB -based sintered magnet decreases at high temperatures, irreversible thermal demagnetization occurs. Therefore, particularly when used for an electric vehicle motor, it is required to have a high HcJ .

R−T−B系焼結磁石において、主相であるR14B化合物中のRに含まれる軽希土類元素RL(以下、単に「RL」という場合がある)の一部を重希土類元素RH(以下、単に「RH」という場合がある)で置換するとHcJが向上することが知られており、RHの置換量の増加に伴いHcJは向上する。 In the RTB-based sintered magnet, a part of the light rare earth element RL (hereinafter may be simply referred to as “RL”) contained in R in the R 2 T 14 B compound as a main phase is replaced with a heavy rare earth element. RH (hereinafter simply is referred to as "RH") is known to H cJ is enhanced when substituted by, H cJ with increasing RH replacement amount is improved.

しかし、R14B化合物中のRLをRHで置換すると、R−T−B系焼結磁石のHcJが向上する一方、残留磁束密度B(以下、単に「B」という場合がある)が低下する。また、特にDyは資源存在量が少ないうえ産出地が限定されているなどの理由から供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、RHをできるだけ使用することなく(使用量をできるだけ少なくして)、HcJを向上させることが求められている。 However, substitution with RH to RL in R 2 T 14 B compound, while improving H cJ of the R-T-B-based sintered magnet, the remanence B r (hereinafter, simply referred to as "B r" is There is). In particular, Dy has a problem in that the supply is not stable due to the small amount of resources and the limited production area, and the price fluctuates greatly. Therefore, in recent years, it has been required to improve HcJ without using RH as much as possible (using as little as possible).

特許文献1には、従来一般に用いられてきたR−T−B系合金に比べB量が相対的に少ない特定の範囲に限定するとともに、Al、GaおよびCuのうちから選ばれる1種以上の金属元素Mを含有させることによりR17相を生成させ、該R17相を原料として生成させた遷移金属リッチ相(R13M)の体積率を充分に確保することにより、Dyの含有量を抑制しつつ保磁力の高いR−T−B系希土類焼結磁石が得られることが記載されている。 Patent Document 1 discloses that a B content is limited to a specific range relatively smaller than that of a conventionally used RTB-based alloy, and that at least one kind selected from Al, Ga and Cu is used. By containing the metal element M, an R 2 T 17 phase is generated, and the volume ratio of the transition metal rich phase (R 6 T 13 M) generated using the R 2 T 17 phase as a raw material is sufficiently ensured. It is described that an RTB-based rare earth sintered magnet having high coercive force while suppressing the content of Dy can be obtained.

国際公開第2013/008756号International Publication No. WO 2013/008756

前記の通りR−T−B系焼結磁石が最も利用される用途はモータであり、R−T−B系焼結磁石の磁気特性を向上することにより、モータの出力向上あるいはモータの小型化を図ることができる。そのため、BおよびHcJの向上は大変有効であるが、それらの特性とともに角形比H/HcJ(以下、単に「H/HcJ」という場合がある)も高くなければならない。H/HcJが低いと限界減磁界強度が小さくなるので減磁し易くなるという問題を引き起こす。そのため、高いBと高いHcJを有すると共に、高いH/HcJを有するR−T−B系焼結磁石の開発が求められている。
なお、R−T−B系焼結磁石の分野においては、一般に、角形比を求めるために測定するパラメータであるHは、I(磁化の強さ)−H(磁界の強さ)曲線の第2象限において、Iが0.9Bの値になる位置のH軸の読み値が用いられている。このHを減磁曲線のHcJで除した値(H/HcJ)が角形比として定義される。
As described above, motors are most commonly used for RTB-based sintered magnets. By improving the magnetic properties of RTB-based sintered magnets, the output of the motor can be improved or the size of the motor can be reduced. Can be achieved. Therefore, although the improvement of B r and H cJ is very effective, along with their characteristics squareness ratio H k / H cJ (hereinafter, simply referred to as "H k / H cJ") it must also be high. If H k / H cJ is low, the critical demagnetizing field strength becomes small, which causes a problem that demagnetization becomes easy. Therefore, while having a high B r and high H cJ, the development of the R-T-B sintered magnets are required to have a high H k / H cJ.
In the field of RTB-based sintered magnets, Hk, which is a parameter measured for obtaining the squareness ratio, is generally represented by an I (magnetization intensity) -H (magnetic field intensity) curve. in the second quadrant, reading the H-axis of the position where I is the value of 0.9B r are used. Divided by the H cJ of the demagnetization curve The H k (H k / H cJ ) is defined as the shape factor.

しかし、特許文献1に記載されているような、一般的なR−T−B系焼結磁石よりもB量を少なく(すなわち、R14B型化合物の化学量論比のB量よりも少なく)し、Ga等を添加した組成の焼結磁石は、高いBと高いHcJを有することができるものの、一般的なR−T−B系焼結磁石(すなわち、B量がR14B型化合物の化学量論比と同程度。以下、一般的なR−T−B系焼結磁石、と言うことがある)と比べて、H/HcJが低下するという問題点があった。例えば、特許文献1の表4〜表6に示されるように、角形比(特許文献1ではSq(角形性)と表記)は90%前後であり、特に重希土類元素RH(Dy)を含有した場合は80%台が多く、高いレベルにあるとは言い難い。なお、特許文献1には角形比の定義は記載されていないが、特許文献1の先行技術文献として引用されている、同一出願人による特開2007−119882号公報に「磁化が飽和磁化の90%となる外部磁場の値をiHcで割った値を%表記したもの」と記載されていることから、特許文献1の角形比の定義も同様であると思われる。つまり、特許文献1の角形比の定義は前記の一般的に用いられている定義と同様であると思われる。 However, the amount of B is smaller than that of a general RTB-based sintered magnet as described in Patent Document 1 (that is, the B amount is smaller than the B amount of the stoichiometric ratio of the R 2 T 14 B type compound). even less), and the sintered magnet of a composition with the addition of Ga or the like, high although B r and can have a high H cJ, general R-T-B based sintered magnet (that is, B amount is R H k / H cJ is lower than that of the 2 T 14 B type compound (similar to the stoichiometric ratio of the compound. Hereinafter, it may be referred to as a general RTB -based sintered magnet). There was a point. For example, as shown in Tables 4 to 6 of Patent Document 1, the squareness ratio (indicated as Sq (squareness) in Patent Document 1) is around 90%, and particularly contains the heavy rare earth element RH (Dy). In many cases, it is in the range of 80%, which is hardly high. Although the definition of the squareness ratio is not described in Patent Document 1, Japanese Patent Application Laid-Open No. 2007-119882, which is cited as a prior art document of Patent Document 1, discloses that “magnetization is 90% of saturation magnetization. % Is the value obtained by dividing the value of the external magnetic field that becomes% by iHc, "and the definition of the squareness ratio in Patent Document 1 seems to be the same. That is, it is considered that the definition of the squareness ratio in Patent Document 1 is the same as the definition generally used above.

そこで本発明は、RHをできるだけ使用することなく(使用量をできるだけ少なくして)、高いBおよび高いHcJを有すると共に、高いH/HcJを有するR−T−B系焼結磁石の製造方法を提供することを目的とする。 The present invention (to minimize the amount) without using as much as possible RH, high B r and high and having a H cJ, R-T-B based sintered magnet having a high H k / H cJ It is an object of the present invention to provide a method for producing the same.

本発明の第1態様は、
R:27.5質量%以上、34.0質量%以下(Rは、希土類元素のうち少なくとも一種でありNdおよびPrの少なくとも一方を必ず含む)、
B:0.85質量%以上、0.93質量%以下、
Ga:0.20質量%以上、0.70質量%以下、
Cu:0.05質量%以上、0.70質量%以下、
Al:0.05質量%以上、0.40質量%以下、および
T:61.5質量%以上(Tは、FeとCoであり、質量比でTの90%以上がFeである)を含み、
下記式(1)および(2)を満足するR−T−B系焼結磁石の製造方法であって、
[T]−72.3[B]>0 (1)
([T]−72.3[B])/55.85<13[Ga]/69.72 (2)
([T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量であり、[Ga]は質量%で示すGaの含有量である)

R−T−B系合金を準備するR−T−B系合金準備工程と、
前記R−T−B系合金を、水素加圧雰囲気で5℃以上350℃以下に加熱して水素脆化処理を実施した後、さらに3000Pa以下の減圧雰囲気又は不活性ガス雰囲気で750℃以上850℃以下に加熱する脱水素処理を実施して、R−T−B系合金粗粉末を得る水素粉砕工程と、
前記R−T−B系合金粗粉末を粉砕してR−T−B系合金粉末を得る微粉砕工程と、
前記R−T−B系合金粉末を成形して成形体を得る成形工程と、
前記成形体を焼結して焼結体を得る焼結工程と、
を含むR−T−B系焼結磁石の製造方法である。
According to a first aspect of the present invention,
R: 27.5% by mass or more and 34.0% by mass or less (R is at least one of rare earth elements and always contains at least one of Nd and Pr).
B: 0.85% by mass or more, 0.93% by mass or less,
Ga: 0.20% by mass or more and 0.70% by mass or less,
Cu: 0.05% by mass or more, 0.70% by mass or less,
Al: 0.05% by mass or more, 0.40% by mass or less, and T: 61.5% by mass or more (T is Fe and Co, and 90% or more of T in mass ratio is Fe) ,
A method for producing an RTB based sintered magnet satisfying the following formulas (1) and (2),
[T] -72.3 [B]> 0 (1)
([T] -72.3 [B]) / 55.85 <13 [Ga] /69.72 (2)
([T] is the T content in mass%, [B] is the B content in mass%, and [Ga] is the Ga content in mass%.)

An RTB-based alloy preparing step of preparing an RTB-based alloy;
The RTB-based alloy is heated to 5 ° C. or more and 350 ° C. or less in a hydrogen pressurized atmosphere to perform hydrogen embrittlement treatment, and then 750 ° C. or more to 850 ° C. in a reduced pressure atmosphere of 3000 Pa or less or an inert gas atmosphere. A hydrogen pulverizing step of performing a dehydrogenation treatment of heating to not more than 0 ° C. to obtain an RTB-based alloy coarse powder;
Pulverizing the RTB-based alloy coarse powder to obtain an RTB-based alloy powder;
A molding step of molding the RTB-based alloy powder to obtain a molded body;
A sintering step of sintering the molded body to obtain a sintered body,
This is a method for producing an RTB-based sintered magnet containing:

本発明の第2態様は、前記脱水素処理は、780℃以上820℃以下に加熱する、第1態様に記載のR−T−B系焼結磁石の製造方法である。   A second aspect of the present invention is the method for producing an RTB-based sintered magnet according to the first aspect, wherein the dehydrogenation treatment is performed by heating to 780 ° C or higher and 820 ° C or lower.

本発明により、RHをできるだけ使用することなく、高いBと高いHcJを有すると共に、高いH/HcJを有するR−T−B系焼結磁石の製造方法を提供することができる。 The present invention, without using as much as possible RH, which has a high B r and high H cJ, it is possible to provide a manufacturing method of the R-T-B based sintered magnet having a high H k / H cJ.

R−T−B系焼結磁石は、通常、原料合金を水素粉砕(粗粉砕)し、得られた粗粉砕粉をさらに微粉砕し、得られた合金粉末を成形および焼結することにより得ることができる。水素粉砕工程は、水素加圧雰囲気で加熱して原料合金を粗粉砕する水素吸蔵処理(水素脆化処理ともいう)と、減圧雰囲気で加熱して吸蔵した水素を放出する脱水素処理とを含む。
詳細を後述するように、本発明者らは鋭意検討した結果、水素粉砕工程において、所定の温度で水素脆化処理を行った後、750℃以上850℃以下の高温に加熱して脱水素処理を行うことにより、最終的に得られるR−T−B系焼結磁石は高いB、HcJおよびH/HcJが得られることを見出した。
The RTB-based sintered magnet is usually obtained by subjecting a raw material alloy to hydrogen pulverization (coarse pulverization), further pulverizing the obtained coarse pulverized powder, and molding and sintering the obtained alloy powder. be able to. The hydrogen pulverization step includes a hydrogen occlusion treatment (also referred to as hydrogen embrittlement treatment) in which the raw material alloy is roughly pulverized by heating in a hydrogen pressurized atmosphere, and a dehydrogenation treatment in which the occluded hydrogen is released by heating in a reduced pressure atmosphere. .
As will be described in detail later, the present inventors have conducted intensive studies. As a result, in the hydrogen pulverization step, after performing hydrogen embrittlement treatment at a predetermined temperature, the hydrogen debris treatment is performed by heating to a high temperature of 750 ° C. or more and 850 ° C. or less. by performing, R-T-B based sintered magnet finally obtained has found high B r, that H cJ and H k / H cJ can be obtained.

本発明の実施形態に係る製造方法により、高いB、HcJおよびH/HcJを有するR−T−B系焼結磁石が得られる理由については未だ不明な点もある。現在までに得られている知見を基に、本発明者らが考えるメカニズムについて以下に説明する。以下のメカニズムについての説明は本発明の技術的範囲を制限することを目的とするものではないことに留意されたい。 The manufacturing method according to the embodiment of the present invention, a high B r, there is also still questions about why the R-T-B based sintered magnet is obtained having a H cJ and H k / H cJ. The mechanism considered by the present inventors based on the knowledge obtained so far will be described below. It should be noted that the description of the following mechanism is not intended to limit the technical scope of the present invention.

一般的なR−T−B系焼結磁石よりもB量を少なくし、Ga等を添加した組成の焼結磁石では、一般的なR−T−B系焼結磁石と比べて、粒界相にFeが過剰に存在しており、そのため粒界相にはR−Fe相(NdFe17相等)およびR−Fe−Ga(NdFe13Ga相等)相が多く存在している。このようなR−T−B系焼結磁石では、水素粉砕工程の水素脆化処理時に水素雰囲気で加熱すると、粒界に存在するR−Fe相およびR−Fe−Ga相は、R水素化物とα−Fe相に分解される。α−Fe相は非常に安定した相であるため、焼結後においても主相および粒界相に取り込まれることなく残存し、また磁性を有するため、焼結磁石の磁気特性を悪化させることが知られている。本発明者らは、このような磁性を有するα−Fe相の量を低減することにより、R−T−B系焼結磁石の磁気特性を向上させることを検討した。 In a sintered magnet having a composition in which the amount of B is smaller than that of a general RTB based sintered magnet and to which Ga or the like is added, the grain boundary is larger than that of a general RTB based sintered magnet. phase and Fe is present in excess in so that the grain boundary phase is present R-Fe phase (Nd 2 Fe 17 phase etc.) and R-Fe-Ga (Nd 6 Fe 13 Ga equality) phase number. In such an RTB-based sintered magnet, when heated in a hydrogen atmosphere at the time of hydrogen embrittlement in the hydrogen grinding step, the R-Fe phase and the R-Fe-Ga phase present at the grain boundaries become R hydride. And an α-Fe phase. Since the α-Fe phase is a very stable phase, it remains without being taken into the main phase and the grain boundary phase even after sintering, and has magnetic properties, which may deteriorate the magnetic properties of the sintered magnet. Are known. The present inventors have studied to improve the magnetic characteristics of the RTB-based sintered magnet by reducing the amount of the α-Fe phase having such magnetism.

R−T−B系焼結磁石の製造方法では、通常、脱水素処理は約600℃を超える温度に加熱することなく行われている。脱水素処理の加熱温度が高すぎると、上述したR水素化物から水素が放出されて単体R(金属R、例えばNd)となり、当該Rが微粉砕工程において酸化等し、磁気特性を劣化させる要因となる。そのため、脱水素処理を約600℃以下で行い、このような磁気特性を低下させるRの生成を抑制している。
本発明者らは鋭意検討した結果、一般的なR−T−B系焼結磁石よりもB量を少なくし、Ga等を添加した組成の場合において、600℃を超える高温の特定温度範囲で脱水素処理を行い、R水素化物から水素を放出させ、磁気特性を低下させると従来考えられていたRを積極的に生成することで、最終的に得られる焼結磁石の磁気特性を大幅に向上できることを見出した。
すなわち、水素吸蔵後、750℃以上850℃以下の高温に加熱して脱水素処理を行うことにより、R水素化物から水素を放出させてRを積極的に生成させることで、当該Rとα−Fe相とが再結合して、R−Fe相が再び生成すると考えられる。これにより、磁性を有するα−Fe相の量を低減することができ、その結果、最終的に得られる焼結磁石は高いB、HcJおよびH/HcJが得られると考えられる。
以下に、本発明の実施形態について詳述する。
In a method of manufacturing an RTB based sintered magnet, the dehydrogenation treatment is usually performed without heating to a temperature exceeding about 600 ° C. If the heating temperature of the dehydrogenation treatment is too high, hydrogen is released from the above-mentioned R hydride to become a simple substance R (metal R, for example, Nd), and this R is oxidized in the pulverization step and deteriorates magnetic properties. It becomes. Therefore, the dehydrogenation treatment is performed at about 600 ° C. or less to suppress the generation of R that degrades such magnetic characteristics.
As a result of intensive studies, the present inventors have found that the amount of B is smaller than that of a general RTB-based sintered magnet, and in the case of a composition to which Ga or the like is added, in a specific temperature range of a high temperature exceeding 600 ° C. By performing dehydrogenation and releasing hydrogen from the R hydride to actively generate R, which was conventionally considered to lower magnetic properties, the magnetic properties of the finally obtained sintered magnet can be significantly increased. I found that it can be improved.
That is, by heating to a high temperature of 750 ° C. or more and 850 ° C. or less after desorbing hydrogen, hydrogen is released from the R hydride to generate R positively, so that the R and α- It is considered that the Fe phase is recombined to form the R-Fe phase again. Thus, it is possible to reduce the amount of alpha-Fe phase having magnetism, so that the finally obtained sintered magnet high B r, H cJ and H k / H cJ can be obtained.
Hereinafter, embodiments of the present invention will be described in detail.

[R−T−B系焼結磁石]
まず、本発明の実施形態に係る製造方法により得られるR−T−B系焼結磁石について説明する。
本発明の実施形態に係るR−T−B系焼結磁石の組成は、R−T−B系焼結磁石全体を100質量%としたとき、
R:27.5質量%以上、34.0質量%以下(Rは、希土類元素のうち少なくとも一種でありNdおよびPrの少なくとも一方を必ず含む)、
B:0.85質量%以上、0.93質量%以下、
Ga:0.20質量%以上、0.70質量%以下、
Cu:0.05質量%以上、0.70質量%以下、
Al:0.05質量%以上、0.40質量%以下、および
T:61.5質量%以上(Tは、FeとCoであり質量比でTの90%以上がFeである)を含み、式(1)および(2)を満足する。

[T]−72.3[B]>0 (1)
([T]−72.3[B])/55.85<13[Ga]/69.72 (2)
(なお、[T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量であり、[Ga]は質量%で示すGaの含有量である)
[RTB sintered magnet]
First, an RTB-based sintered magnet obtained by the manufacturing method according to the embodiment of the present invention will be described.
The composition of the RTB-based sintered magnet according to the embodiment of the present invention is such that when the entire RTB-based sintered magnet is 100% by mass,
R: 27.5% by mass or more and 34.0% by mass or less (R is at least one of rare earth elements and always contains at least one of Nd and Pr).
B: 0.85% by mass or more, 0.93% by mass or less,
Ga: 0.20% by mass or more and 0.70% by mass or less,
Cu: 0.05% by mass or more, 0.70% by mass or less,
Al: 0.05% by mass or more, 0.40% by mass or less, and T: 61.5% by mass or more (T is Fe and Co, and 90% or more of T in mass ratio is Fe), Equations (1) and (2) are satisfied.

[T] -72.3 [B]> 0 (1)
([T] -72.3 [B]) / 55.85 <13 [Ga] /69.72 (2)
([T] is the T content in mass%, [B] is the B content in mass%, and [Ga] is the Ga content in mass%.)

上記組成により、一般的なR−T−B系焼結磁石よりもB量を少なくするとともに、Ga等を含有させているので、二粒子粒界にR−T−Ga相が生成して、高いHcJを得ることができる。ここで、R−T−Ga相とは、代表的にはNdFe13Ga化合物である。R13Ga化合物は、LaCo11Ga型結晶構造を有する。また、R13Ga化合物は、その状態によっては、R13−δGa1+δ化合物(δは典型的には2以下)になっている場合がある。例えば、R−T−B系焼結磁石中にCu、Alが比較的多く含有される場合、R13−δ(Ga1−x−yCuAl1+δになっている場合がある。 With the above composition, the amount of B is made smaller than that of a general RTB-based sintered magnet, and Ga and the like are contained, so that an RT-Ga phase is generated at the two grain boundary, High HcJ can be obtained. Here, the RTGA layer is typically a Nd 6 Fe 13 Ga compound. The R 6 T 13 Ga compound has a La 6 Co 11 Ga 3- type crystal structure. Further, the R 6 T 13 Ga compound may be an R 6 T 13 −δGa 1 + δ compound (δ is typically 2 or less) depending on the state. For example, Cu in R-T-B based sintered magnet, if the Al is contained relatively large, it may have been the R 6 T 13-δ (Ga 1-x-y Cu x Al y) 1 + δ is there.

また、本発明の別の好ましい実施形態の1つでは、残部は不可避的不純物であってよい。   In another preferred embodiment of the present invention, the balance may be unavoidable impurities.

次に各元素の詳細を説明する。   Next, details of each element will be described.

(1)希土類元素(R)
本発明の実施形態に係るR−T−B系焼結磁石におけるRは、希土類元素の少なくとも一種でありNdおよびPrの少なくとも一方を必ず含む。本発明の実施形態に係るR−T−B系焼結磁石は重希土類元素(RH)を含有しなくても高いBと高いHcJを得ることができるため、より高いHcJを求められる場合でもRHの添加量を削減でき、典型的にはRHの含有量を5質量%以下とすることができる。しかし、このことは、本発明の実施形態に係るR−T−B系焼結磁石のRH含有量が5質量%以下に限定されることを意味するものではない。
Rの含有量は、27.5質量%以上、34.0質量%以下である。
Rは、27.5質量%未満では、焼結過程で液相が十分に生成せず、R−T−B系焼結体を十分に緻密化することが困難になる恐れがあり、34.0質量%を超えると主相比率が低下して高いBを得ることができない。Rは、より高いBを得るには、31.0質量%以下が好ましい。
(1) Rare earth element (R)
R in the RTB based sintered magnet according to the embodiment of the present invention is at least one kind of rare earth element and always includes at least one of Nd and Pr. R-T-B based sintered magnet according to an embodiment of the present invention it is possible to obtain a high B r and high H cJ also contain no heavy rare-earth element (RH), obtained higher H cJ Even in this case, the amount of RH to be added can be reduced, and the RH content can be typically reduced to 5% by mass or less. However, this does not mean that the RH content of the RTB-based sintered magnet according to the embodiment of the present invention is limited to 5% by mass or less.
The content of R is 27.5% by mass or more and 34.0% by mass or less.
If R is less than 27.5% by mass, a liquid phase may not be sufficiently formed during the sintering process, and it may be difficult to sufficiently densify the RTB-based sintered body. 0 exceeds wt%, the main phase ratio can not be obtained a high B r drops. R is, in order to obtain a higher B r is preferably not more than 31.0 wt%.

(2)ボロン(B)
Bの含有量は、0.85質量%以上、0.93質量%以下である。
Bは、0.85質量%未満ではR17相が析出して高いHcJが得られない。さらに、主相比率が低下して高いBを得ることができない。Bが0.93質量%を超えるとR−T−Ga相の生成量が少なすぎて高いHcJが得られない恐れがある。
(2) Boron (B)
The content of B is 0.85% by mass or more and 0.93% by mass or less.
If B is less than 0.85% by mass, the R 2 T 17 phase precipitates and high HcJ cannot be obtained. Furthermore, it is impossible to main phase ratio to obtain a high B r drops. If B exceeds 0.93% by mass, the amount of the generated RT-Ga phase may be too small to obtain a high HcJ .

(3)ガリウム(Ga)
Gaの含有量は、0.20質量%以上、0.70質量%以下である。
Gaの含有量が0.20質量%未満であると、R−T−Ga相の生成量が少なすぎて、R17相を消失させることができず、高いHcJを得ることができない恐れがある。Gaの含有量が0.70質量%を超えると、不要なGaが存在することになり、主相比率が低下してBが低下する恐れがある。
(3) Gallium (Ga)
The content of Ga is 0.20% by mass or more and 0.70% by mass or less.
When the content of Ga is less than 0.20 wt%, and the amount of R-T-Ga phase is too small, it is impossible to eliminate the R 2 T 17 phase, it is impossible to obtain a high H cJ There is fear. When the content of Ga is more than 0.70 wt%, will be unnecessary Ga is present, there is a possibility that B r decreases to decrease the main phase proportion.

(4)銅(Cu)
Cuの含有量は、0.05質量%以上、0.70質量%以下である。
Cuの含有量が0.05質量%未満であると、高いHcJを得ることができない。また、Cuの含有量が0.70質量%を超えるとBが低下する恐れがある。
(4) Copper (Cu)
The content of Cu is 0.05% by mass or more and 0.70% by mass or less.
If the Cu content is less than 0.05% by mass, a high HcJ cannot be obtained. The content of Cu is liable to decrease B r exceeds 0.70 mass%.

(5)アルミニウム(Al)
Alの含有量は、0.05質量%以上、0.40質量%以下である。Alを含有することにより、HcJを向上させることができる。Alは不可避的不純物として含有されてもよいし、積極的に添加して含有させてもよい。不可避的不純物で含有される量と積極的に添加した量の合計で0.05質量%以上0.40質量%以下含有させる。
(5) Aluminum (Al)
The content of Al is 0.05% by mass or more and 0.40% by mass or less. By containing Al, HcJ can be improved. Al may be contained as an unavoidable impurity, or may be positively added and contained. The total content of the inevitable impurities and the positively added amount is 0.05% by mass to 0.40% by mass.

(6)遷移金属元素(T)
TはFeとCoであり、質量比でTの90%以上がFeである。さらに本発明の効果を損なわない限りにおいて、少量のV、Mo、Hf、Ta、W等の遷移金属元素を含有してもよい。
Tが61.5質量%未満では、Bが大幅に低下するおそれがある。そのためTの含有量は61.5質量%以上である。TにおけるFeの割合が質量比で90%未満の場合、Bが低下する恐れがある。そのため、T含有量におけるCo含有量の割合は、T含有量全体の10%以下が好ましく、2.5%以下がより好ましい。
(6) Transition metal element (T)
T is Fe and Co, and 90% or more of T in mass ratio is Fe. Furthermore, as long as the effects of the present invention are not impaired, a small amount of a transition metal element such as V, Mo, Hf, Ta, or W may be contained.
T is less than 61.5 mass%, there is a possibility that B r is greatly reduced. Therefore, the content of T is 61.5% by mass or more. If the proportion of Fe in T is less than 90% by mass, Br may be reduced. Therefore, the proportion of the Co content in the T content is preferably 10% or less, more preferably 2.5% or less of the entire T content.

(7)式(1)および式(2)
本発明の実施形態におけるR−T−B系焼結磁石素材の組成は、式(1)を満足することにより、B含有量が一般的なR−T−B系焼結磁石よりも低くなっている。一般的なR−T−B系焼結磁石は、主相であるR14B相以外に軟磁性相であるR17相が析出しないよう[Fe]/55.847(Feの原子量)が[B]/10.811(Bの原子量)×14よりも少ない組成となっている([ ]は、その内部に記載された元素の質量%で示した含有量を意味する。例えば、[Fe]は質量%で示したFeの含有量を意味する)。本発明の実施形態に係るR−T−B系焼結磁石は、一般的なR−T−B系焼結磁石と異なり、[Fe]/55.847(Feの原子量)が[B]/10.811(Bの原子量)×14よりも多くなるように、式(1)を満足する組成とし、かつ、余ったFeからGaを含むことでR−T−Ga相を析出させるように、([T]−72.3B)/55.85(Feの原子量)が13Ga/69.72(Gaの原子量)を下回る組成となるように、式(2)を満足する組成とする。なお、TはFeとCoであるが、本発明の実施形態におけるTはFeが主成分(質量比で90%以上)であることから、Feの原子量を用いた。これにより、Dyなどの重希土類元素をできるだけ使用せず、高いHcJを得ることができる。

[T]−72.3[B]>0 (1)
([T]−72.3[B])/55.85<13[Ga]/69.72 (2)
([T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量であり、[Ga]は質量%で示すGaの含有量である)
(7) Equation (1) and Equation (2)
The composition of the RTB-based sintered magnet material according to the embodiment of the present invention satisfies the expression (1), so that the B content is lower than that of a general RTB-based sintered magnet. ing. A general RTB-based sintered magnet has a [Fe] /55.847 (of Fe) so that an R 2 T 17 phase which is a soft magnetic phase is not precipitated in addition to an R 2 T 14 B phase which is a main phase. (Atomic weight) is smaller than [B] /10.811 (atomic weight of B) × 14 ([] means the content shown by mass% of the element described therein. , [Fe] means the content of Fe in mass%). The RTB-based sintered magnet according to the embodiment of the present invention is different from a general RTB-based sintered magnet in that [Fe] /55.847 (atomic weight of Fe) is [B] / A composition satisfying the expression (1) is set so as to be larger than 10.811 (atomic weight of B) × 14, and an RT—Ga phase is precipitated by containing Ga from surplus Fe. A composition satisfying the expression (2) is set so that ([T] -72.3B) /55.85 (atomic weight of Fe) is less than 13 Ga / 69.72 (atomic weight of Ga). Although T is Fe and Co, T in the embodiment of the present invention is based on the atomic weight of Fe since Fe is a main component (90% or more by mass ratio). Thereby, high HcJ can be obtained without using a heavy rare earth element such as Dy as much as possible.

[T] -72.3 [B]> 0 (1)
([T] -72.3 [B]) / 55.85 <13 [Ga] /69.72 (2)
([T] is the T content in mass%, [B] is the B content in mass%, and [Ga] is the Ga content in mass%.)

(8)残部
上述したように、好ましい1つの実施形態では、残部は不可避的不純物であってよい。例えば、ジジム合金(Nd−Pr)、電解鉄およびフェロボロン等の溶解原料に通常不可避的に含有される不純物等に起因した不可避的不純物を含有していても、本発明の実施形態の効果を十分に奏することができる。このような不可避的不純物は、例えば、La、Ce、Cr、Mn、Si、Sm、CaおよびMgである。さらに、製造工程中の不可避的不純物として、O(酸素)、N(窒素)、C(炭素)などを例示できる。
(8) Remainder As described above, in one preferred embodiment, the remnant may be an unavoidable impurity. For example, the effects of the embodiment of the present invention can be sufficiently achieved even if the dissolving raw materials such as the didymium alloy (Nd-Pr), electrolytic iron, and ferroboron contain unavoidable impurities which are usually unavoidable. Can be played. Such unavoidable impurities are, for example, La, Ce, Cr, Mn, Si, Sm, Ca and Mg. Furthermore, examples of unavoidable impurities during the manufacturing process include O (oxygen), N (nitrogen), and C (carbon).

本発明の実施形態に係るR−T−B系焼結磁石の組成は、上述した元素に限定されるものではない。別の好ましい1つの実施形態では、上述した元素以外の任意の元素を1種または2種以上含んでもよい。以下にこのような任意に含んでよい元素を例示する。   The composition of the RTB-based sintered magnet according to the embodiment of the present invention is not limited to the above-described elements. In another preferred embodiment, one or more optional elements other than the above-mentioned elements may be included. The following are examples of such optional elements.

(9)ニオブ(Nb)、ジルコニウム(Zr)
R−T−B系焼結磁石は、NbおよびZrの少なくとも一方を含んでもよい。NbおよびZrの両方またはいずれか一方を含有することにより、焼結時における結晶粒の異常成長をより確実に抑制することができる。しかし、Nbおよび/またはZrの含有量が合計で0.1質量%を超えると不要なNbやZrが存在することにより、主相比率が低下してBが低下する恐れがある。そのため、Nbおよび/またはZrの含有量が合計で0.1質量%以下であることが好ましい。
(9) Niobium (Nb), zirconium (Zr)
The RTB-based sintered magnet may include at least one of Nb and Zr. By containing both or one of Nb and Zr, abnormal growth of crystal grains during sintering can be suppressed more reliably. However, the content of Nb and / or Zr is present unwanted Nb and Zr exceeds 0.1 mass% in total, there is a possibility that the main phase ratio is lowered B r drops. Therefore, the total content of Nb and / or Zr is preferably 0.1% by mass or less.

[R−T−B系焼結磁石の製造方法]
上述した組成を有するR−T−B系焼結磁石の製造方法を説明する。R−T−B系焼結磁石の製造方法は、R−T−B系合金準備工程、水素粉砕工程、微粉砕工程、成形工程、焼結工程および熱処理工程を含む。本発明の実施形態に係る製造方法は、水素粉砕工程にとりわけ特徴を有する。水素粉砕工程において、750℃以上850℃以下の高温に加熱して脱水素処理を行うことにより、R水素化物から水素を放出させてRを積極的に生成させることにより、Rとα−Fe相とを再結合させ、R−Fe相を再生成することができる。これにより、磁性を有するα−Fe相の量を低減することができ、その結果、最終的に得られる焼結磁石のHcJおよびH/HcJを向上することができる。
以下、各工程について説明する。
[Method of Manufacturing RTB Based Sintered Magnet]
A method for manufacturing an RTB-based sintered magnet having the above-described composition will be described. The method of manufacturing the RTB based sintered magnet includes an RTB based alloy preparing step, a hydrogen pulverizing step, a fine pulverizing step, a forming step, a sintering step, and a heat treatment step. The manufacturing method according to the embodiment of the present invention is particularly characterized in the hydrogen grinding step. In the hydrogen pulverization step, R and α-Fe phase are heated by heating to a high temperature of 750 ° C. or more and 850 ° C. or less to release hydrogen from R hydride and to actively generate R. Are recombined to form an R-Fe phase. Thus, it is possible to reduce the amount of alpha-Fe phase having magnetism, so that it is possible to improve the H cJ and H k / H cJ of the finally sintered magnet obtained.
Hereinafter, each step will be described.

(1)R−T−B系合金準備工程
最終的に得られるR−T−B系焼結磁石の組成が上述した組成範囲になるように各元素の金属または合金(溶解原料)を準備し、金型鋳造によるインゴット法や、冷却ロールを用いて合金溶湯を急冷するストリップキャスト法等によりフレーク状の原料合金(R−T−B系合金)を作製する。
(1) RTB-based alloy preparation step A metal or an alloy (melting raw material) of each element is prepared so that the composition of the finally obtained RTB-based sintered magnet falls within the above-described composition range. Then, a flake-shaped raw material alloy (RTB-based alloy) is produced by an ingot method by die casting, a strip casting method of rapidly cooling the molten alloy using a cooling roll, or the like.

(2)水素粉砕工程
得られたR−T−B系合金を水素粉砕し、粒径D50が100μm以上300μm以下の粗粉砕粉(R−T−B系合金粗粉末)を得る。尚、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。具体的には、R−T−B系合金に対して、水素加圧雰囲気で、5℃以上350℃以下に加熱して水素脆化処理(水素吸蔵処理ともいう)を実施した後、さらに3000Pa以下の減圧雰囲気又は不活性ガス雰囲気で、750℃以上850℃以下に加熱する脱水素処理を実施して、R−T−B系合金粗粉末を得る。以下に、本実施形態に係る水素脆化処理および脱水素処理について説明する。
なお、水素粉砕工程における加熱温度は、R−T−B系合金及び粗粉砕粉に熱電対をとりつけることにより確認することができる。
(2) Hydrogen crushing process resulting R-T-B alloy to hydrogen pulverization, the particle diameter D 50 is obtained 100μm or 300μm or less coarse pulverized powder (R-T-B type alloy coarse powder). The particle diameter D 50 is the volume center value obtained by the laser diffraction method by air flow dispersion method (volume-based median diameter). Specifically, the RTB-based alloy is heated to 5 ° C. or more and 350 ° C. or less in a hydrogen pressurized atmosphere to perform a hydrogen embrittlement treatment (also referred to as a hydrogen occlusion treatment). A dehydrogenation treatment is performed by heating to 750 ° C. or higher and 850 ° C. or lower in the following reduced pressure atmosphere or inert gas atmosphere to obtain an RTB-based alloy coarse powder. Hereinafter, the hydrogen embrittlement treatment and the dehydrogenation treatment according to the present embodiment will be described.
The heating temperature in the hydrogen pulverizing step can be confirmed by attaching a thermocouple to the RTB-based alloy and the coarsely pulverized powder.

(2−1)水素脆化処理
(水素加圧雰囲気)
R−T−B系合金を炉内に装入した後、真空にして加熱し、その後水素を導入して水素加圧雰囲気にする。水素脆化処理時の水素の絶対圧が低すぎると、R−T−B系合金に十分に水素を吸蔵することができない可能性がある。そのため、水素の絶対圧が150kPa以上となるように水素を導入するのが好ましい。
(2-1) Hydrogen embrittlement treatment (hydrogen pressurized atmosphere)
After charging the RTB-based alloy into the furnace, the furnace is heated to a vacuum and then hydrogen is introduced to make a hydrogen pressurized atmosphere. If the absolute pressure of hydrogen during the hydrogen embrittlement treatment is too low, there is a possibility that the RTB-based alloy may not be able to occlude hydrogen sufficiently. Therefore, it is preferable to introduce hydrogen so that the absolute pressure of hydrogen becomes 150 kPa or more.

(水素脆化処理温度:5℃以上350℃以下)
水素脆化処理時の加熱温度が高すぎると、十分に水素を吸蔵することができない可能性があり、最終的に得られるR−T−B系焼結磁石の磁気特性が低下する。そのため、水素脆化処理時の加熱温度は350℃以下であり、好ましくは300℃以下である。
一方、水素脆化処理時の加熱温度が低すぎると、同じく十分に水素を吸蔵することができない。そのため、水素脆化処理時の加熱温度は5℃以上であり、好ましくは20℃以上である。
(Hydrogen embrittlement temperature: 5 ° C or higher and 350 ° C or lower)
If the heating temperature during the hydrogen embrittlement treatment is too high, it may not be possible to occlude hydrogen satisfactorily, and the magnetic properties of the finally obtained RTB-based sintered magnet deteriorate. Therefore, the heating temperature during the hydrogen embrittlement treatment is 350 ° C. or lower, and preferably 300 ° C. or lower.
On the other hand, if the heating temperature at the time of the hydrogen embrittlement treatment is too low, hydrogen cannot be sufficiently absorbed. Therefore, the heating temperature during the hydrogen embrittlement treatment is 5 ° C. or higher, preferably 20 ° C. or higher.

(2−2)脱水素処理
水素脆化処理後、水素を吸蔵した粗粉砕粉を減圧雰囲気で加熱することにより、脱水素(すなわち、粗粉砕粉からの水素の放出)を行う。本発明の実施形態に係る製造方法では、脱水素処理時の加熱温度を750℃以上850℃以下の範囲に制御することで、最終的に得られる焼結磁石は高いB、HcJおよびH/HcJが得られる。より詳細には、脱水素処理を750℃以上850℃以下の高温で行うことにより、主相から水素を放出するだけでなく、粒界相に存在するR水素化物からも水素を放出させてRを生成することができ、Rと粒界相に存在するα−Fe相とを再結合させてR−Fe相を生成することにより、磁性を有するα−Fe相の量を低減することができ、その結果、最終的に得られる焼結磁石は高いB、HcJおよびH/HcJが得られると考えられる。
(2-2) Dehydrogenation treatment After the hydrogen embrittlement treatment, dehydrogenation (that is, release of hydrogen from the coarsely pulverized powder) is performed by heating the coarsely pulverized powder storing hydrogen in a reduced pressure atmosphere. In the manufacturing method according to the embodiment of the present invention, by controlling the heating temperature in the dehydrogenation process in the range temperatures higher than 750 ℃ 850 ° C. or less, the finally obtained sintered magnet high B r, H cJ and H k / HcJ is obtained. More specifically, by performing the dehydrogenation treatment at a high temperature of 750 ° C. or more and 850 ° C. or less, not only hydrogen is released from the main phase but also hydrogen is released from the R hydride present in the grain boundary phase, and R Can be generated, and the amount of the magnetic α-Fe phase can be reduced by recombining R and the α-Fe phase present in the grain boundary phase to generate an R-Fe phase. as a result, sintered magnet finally obtained high B r, H cJ and H k / H cJ can be obtained.

(3000Pa以下の減圧雰囲気又は不活性ガス雰囲気)
脱水素処理は、3000Pa以下の減圧雰囲気又は不活性ガス雰囲気で行う。このような減圧雰囲気又は不活性ガス雰囲気で行うことにより、水素脆化処理後の粗粉砕粉から効率よく水素を取り出すことができる。尚、不活性ガス雰囲気としてはアルゴンガス雰囲気が挙げられる。アルゴンガス以外としては例えばヘリウムガスである。
なお、脱水素処理を行うと、水素脆化処理後の粗粉砕粉からの水素の放出に伴い、炉内圧力が上昇して、3000Paを超えるようになる。その後、粗粉砕粉からの水素の放出が完了すると、炉内圧力は徐々に低下し、最終的には再び3000Pa以下に維持される。本明細書において、“3000Pa以下の減圧雰囲気で脱水素処理を実施する”とは、脱水素処理の加熱開始時の炉内圧力が3000Pa以下であり、かつ、脱水素処理中に炉内圧力が上昇して再び低下した後に炉内圧力が3000Pa以下となっていることを意味する。
(Reduced pressure atmosphere of 3000 Pa or less or inert gas atmosphere)
The dehydrogenation treatment is performed in a reduced pressure atmosphere of 3000 Pa or less or an inert gas atmosphere. By performing the treatment in such a reduced pressure atmosphere or an inert gas atmosphere, hydrogen can be efficiently extracted from the coarsely pulverized powder after the hydrogen embrittlement treatment. The inert gas atmosphere includes an argon gas atmosphere. Other than the argon gas, for example, helium gas is used.
When the dehydrogenation treatment is performed, the pressure in the furnace increases with the release of hydrogen from the coarsely pulverized powder after the hydrogen embrittlement treatment, and exceeds 3000 Pa. Thereafter, when the release of hydrogen from the coarsely pulverized powder is completed, the pressure in the furnace gradually decreases, and is finally maintained at 3000 Pa or less again. In this specification, "implementing the dehydrogenation treatment in a reduced-pressure atmosphere of 3000 Pa or less" means that the furnace pressure at the start of heating in the dehydrogenation treatment is 3000 Pa or less, and the furnace pressure during the dehydrogenation treatment is It means that the pressure in the furnace has become 3000 Pa or less after the temperature has risen and then decreased again.

(脱水素処理温度:750℃以上850℃以下)
脱水素処理の温度が750℃未満であると、最終的に得られる焼結磁石のB、HcJおよびH/HcJが低下する。750℃未満であると、R水素化物から水素を放出することができないため、磁性を有するα−Fe相を低減することができないためであると考えられる。そのため、脱水素処理時の加熱温度は750℃以上であり、好ましくは780℃以上である。
一方、脱水素処理の温度が高すぎると、粗粉砕粉の粒成長が生じて最終的に得られるR−T−B系焼結磁石の磁気特性が低下する。そのため、脱水素処理は850℃以下で行い、好ましくは820℃以下で行う。
(Dehydrogenation temperature: 750 ° C to 850 ° C)
When the temperature of the dehydrogenation treatment is less than 750 ° C., B r of the finally sintered magnet obtained, is H cJ and H k / H cJ decreases. It is considered that if the temperature is lower than 750 ° C., hydrogen cannot be released from the R hydride, so that the α-Fe phase having magnetism cannot be reduced. Therefore, the heating temperature at the time of the dehydrogenation treatment is 750 ° C or higher, preferably 780 ° C or higher.
On the other hand, if the temperature of the dehydrogenation treatment is too high, grain growth of the coarsely pulverized powder occurs and the magnetic properties of the finally obtained RTB-based sintered magnet deteriorate. Therefore, the dehydrogenation treatment is performed at 850 ° C. or lower, preferably at 820 ° C. or lower.

(3)微粉砕工程
得られた粗粉砕粉(R−T−B系合金粗粉末)を、窒素などの不活性ガス中でジェットミル等により微粉砕し、粗粉砕粉の粒径D50よりも小さい粒径D50を有する微粉砕粉(R−T−B系合金粉末)を得る。微粉砕粉の粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値(体積基準メジアン径))は、3μm〜5μmが好ましい。合金粉末は、1種類の合金粉末(単合金粉末)を用いてもよいし、2種類以上の合金粉末を混合することにより合金粉末(混合合金粉末)を得る、いわゆる2合金法を用いてもよく、既知の方法などを用いて本発明の実施形態の組成となるように合金粉末を作製すればよい。
なお、ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中およびジェットミル粉砕後の合金粉末に助剤として既知の潤滑剤を添加してもよい。
(3) a milling step resulting crude pulverized powder (R-T-B based alloy coarse powder), finely pulverized by a jet mill in an inert gas such as nitrogen, than the particle size D 50 of the coarsely pulverized powder obtaining a finely pulverized powder (R-T-B-based alloy powder) having an even smaller particle size D 50. Finely pulverized powder having a particle size D 50 (volume center value obtained by measurement by the air flow distributed Laser diffraction (volume basis median diameter)) is, 3Myuemu~5myuemu is preferred. As the alloy powder, one kind of alloy powder (single alloy powder) may be used, or a so-called two-alloy method of obtaining an alloy powder (mixed alloy powder) by mixing two or more kinds of alloy powder may be used. An alloy powder may be produced using a known method or the like so as to have the composition of the embodiment of the present invention.
Note that a known lubricant may be added as an auxiliary agent to the coarsely pulverized powder before the jet mill pulverization, the alloy powder during the jet mill pulverization and after the jet mill pulverization.

(4)成形工程
得られた合金粉末に対して磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内に該合金粉末を分散させたスラリーを注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。成形中に印加する磁界の方向は、加圧方向と直交する方向(いわゆる直角磁界成形法)でもよく、加圧方向に平行方向(いわゆる平行磁界成形法)でもよい。
(4) Forming Step The obtained alloy powder is formed in a magnetic field to obtain a formed body. In the magnetic field molding, dry alloy powder is inserted into the cavity of the mold, and a dry molding method of molding while applying a magnetic field, a slurry in which the alloy powder is dispersed in the cavity of the mold is injected, Any known magnetic field molding method may be used, including a wet molding method in which the slurry is discharged while the dispersion medium is discharged. The direction of the magnetic field applied during molding may be a direction orthogonal to the pressing direction (so-called perpendicular magnetic field forming method) or a direction parallel to the pressing direction (so-called parallel magnetic field forming method).

(5)焼結工程
成形体を焼結することにより焼結体(焼結磁石)を得る。成形体の焼結は既知の方法を用いることができる。なお、焼結時の雰囲気による酸化を防止するために、焼結は、真空雰囲気中または雰囲気ガス中で行うことが好ましい。雰囲気ガスは、ヘリウム、アルゴンなどの不活性ガスを用いることが好ましい。
(5) Sintering step A sintered body (sintered magnet) is obtained by sintering the compact. A known method can be used for sintering the compact. Note that sintering is preferably performed in a vacuum atmosphere or an atmosphere gas in order to prevent oxidation due to an atmosphere during sintering. As the atmosphere gas, it is preferable to use an inert gas such as helium or argon.

(6)熱処理工程
得られた焼結磁石に対し、磁気特性を向上させることを目的とした熱処理を行うことが好ましい。熱処理温度、熱処理時間などは既知の条件を用いることができる。例えば、比較的低い温度(400℃以上600℃以下)のみでの熱処理(一段熱処理)をしてもよく、あるいは比較的高い温度(700℃以上焼結温度以下(例えば1050℃以下))で熱処理を行った後比較的低い温度(400℃以上600℃以下)で熱処理(二段熱処理)をしてもよい。好ましい条件は、730℃以上1020℃以下で5分から500分程度の熱処理を施し、冷却後(室温まで冷却後、または440℃以上550℃以下まで冷却後)、さらに440℃以上550℃以下で5分から500分程度熱処理をすることが挙げられる。熱処理雰囲気は、真空雰囲気あるいは不活性ガス(ヘリウムやアルゴンなど)で行うことが好ましい。
(6) Heat treatment step It is preferable to perform a heat treatment on the obtained sintered magnet for the purpose of improving magnetic properties. Known conditions such as a heat treatment temperature and a heat treatment time can be used. For example, heat treatment (one-step heat treatment) at only a relatively low temperature (400 ° C. or more and 600 ° C. or less) may be performed, or heat treatment at a relatively high temperature (700 ° C. or more and a sintering temperature or less (eg, 1050 ° C. or less)). After that, heat treatment (two-step heat treatment) may be performed at a relatively low temperature (400 ° C. or more and 600 ° C. or less). Preferred conditions are a heat treatment at 730 ° C. or more and 1020 ° C. or less for about 5 minutes to 500 minutes, and after cooling (after cooling to room temperature or after cooling to 440 ° C. or more and 550 ° C. or less), Heat treatment for about 1 minute to about 500 minutes. The heat treatment is preferably performed in a vacuum atmosphere or an inert gas (such as helium or argon).

最終的な製品形状にするなどの目的で、得られた焼結磁石に研削などの機械加工を施してもよい。その場合、熱処理は機械加工前でも機械加工後でもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、既知の表面処理であってもよく、例えばAl蒸着や電気Niめっきや樹脂塗料などの表面処理を行うことができる。   The obtained sintered magnet may be subjected to machining such as grinding for the purpose of obtaining a final product shape. In that case, the heat treatment may be performed before or after machining. Further, the obtained sintered magnet may be subjected to a surface treatment. The surface treatment may be a known surface treatment, for example, a surface treatment such as Al vapor deposition, electric Ni plating, and resin paint.

本開示を実験例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。   The present disclosure will be described in more detail with reference to experimental examples, but the present disclosure is not limited thereto.

(1)実験例1
R−T−B系焼結磁石がおよそ表1に示す組成となるように、各元素を秤量しストリップキャスト法により鋳造し、フレーク状のR−T−B系合金を複数個準備した。得られた前記R−T−B系合金に対し水素粉砕を行った。水素粉砕は、まず前記R−T−B系合金をそれぞれ水素炉内に装入した後真空にし、表2の水素脆化処理温度で加熱し、絶対圧が295kPaになるまで水素を導入し、水素脆化処理を実施した。次に、真空中(具体的には100Pa以下の減圧雰囲気)で表2の脱水素処理温度で加熱する脱水素処理を実施して冷却し、R−T−B系合金粗粉末を得た。R−T−B系合金粗粉末の粒径D50を気流分散法によるレーザー回折法で測定した所、200μmであった。前記R−T−B系合金粗粉末に、潤滑剤としてステアリン酸亜鉛を粗粉末100質量%に対して0.04質量%添加し、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、R−T−B系合金粉末を得た。前記R−T−B系合金粉末の粒径D50を気流分散法によるレーザー回折法で測定した所、4.5μmであった。
(1) Experimental example 1
Each element was weighed and cast by a strip casting method so that the RTB-based sintered magnet had a composition shown in Table 1 to prepare a plurality of flake-like RTB-based alloys. The obtained RTB-based alloy was pulverized with hydrogen. Hydrogen pulverization is performed by first charging the RTB-based alloy in a hydrogen furnace and then evacuating, heating at a hydrogen embrittlement temperature shown in Table 2, and introducing hydrogen until the absolute pressure becomes 295 kPa. Hydrogen embrittlement treatment was performed. Next, a dehydrogenation treatment was performed by heating at a dehydrogenation treatment temperature shown in Table 2 in a vacuum (specifically, a reduced-pressure atmosphere of 100 Pa or less), followed by cooling to obtain an RTB-based alloy coarse powder. Where the R-T-B alloy coarse powder particle size D 50 of the measured by a laser diffraction method by air flow dispersion method, was 200 [mu] m. 0.04% by mass of zinc stearate is added as a lubricant to 100% by mass of the coarse powder as a lubricant to the RTB-based alloy coarse powder, and the mixture is then mixed with an air-flow crusher (jet mill device). Then, dry pulverization was performed in a nitrogen stream to obtain an RTB-based alloy powder. Where it said R-T-B alloy powder particle size D 50 of the measured by a laser diffraction method by air flow dispersion method, was 4.5 [mu] m.

前記R−T−B系合金粉末に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加し、混合した後磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。   Zinc stearate was added as a lubricant to the RTB-based alloy powder in an amount of 0.05% by mass with respect to 100% by mass of the finely pulverized powder. Note that a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction are orthogonal to each other was used as the forming apparatus.

得られた成形体を、真空中、1000℃以上1040℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、焼結体を得た。得られた焼結体の密度は7.5Mg/m以上であった。得られた焼結体に対し真空中、900℃で2時間保持した後室温まで冷却し、次いで真空中で500℃で2時間保持した後、室温まで冷却する熱処理を施しR−T−B系焼結磁石(No.1〜12)を得た。得られたR−T−B系焼結磁石のNo.1の成分結果を表1に示す。なお、表1における各成分(O、NおよびC以外)は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、O(酸素)含有量は、ガス融解−赤外線吸収法、N(窒素)含有量は、ガス融解−熱伝導法、C(炭素)含有量は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した。以下の表3および表5も同様である。尚、No.2〜12についてもNo.1と同様にR−T−B系焼結磁石の成分を測定した所、No.1(表1)と同等であった。また、本発明の実施形態に係る式(1)および(2)をそれぞれ計算し、式(1)および式(2)をそれぞれ満たしている場合は「○」、満たしていない場合は「×」、と記載した。以下、表3および表5も同様である。熱処理後のR−T−B系焼結磁石(試料No.1〜12)にそれぞれ機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B−Hトレーサによって各試料の磁気特性を測定した。測定結果を表2に示す。なお、H/HcJ(角形比)において、HはI(磁化の大きさ)−H(磁界の強さ)曲線の第2象限において、Iが0.9×J(Jは残留磁化、J=B)の値になる位置のHの値(以下同様)である。 The obtained molded body was sintered in a vacuum at 1000 ° C. or higher and 1040 ° C. or lower (a temperature at which densification by sintering was sufficiently selected for each sample) for 4 hours and then rapidly cooled to obtain a sintered body. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The obtained sintered body is kept in a vacuum at 900 ° C. for 2 hours, cooled to room temperature, and then kept in a vacuum at 500 ° C. for 2 hours, and then subjected to a heat treatment of cooling to room temperature to obtain an RTB-based material. Sintered magnets (Nos. 1 to 12) were obtained. No. of the obtained RTB based sintered magnet. Table 1 shows the results of the components. In addition, each component (other than O, N, and C) in Table 1 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). The O (oxygen) content is measured by a gas melting and infrared absorption method, the N (nitrogen) content is measured by a gas melting and heat conduction method, and the C (carbon) content is measured by a combustion and infrared absorption method. And measured. The same applies to Tables 3 and 5 below. In addition, No. Nos. 2 to 12 are also Nos. When the components of the RTB-based sintered magnet were measured in the same manner as in No. 1, no. 1 (Table 1). Further, the equations (1) and (2) according to the embodiment of the present invention are calculated, respectively, and “○” indicates that the equations (1) and (2) are satisfied, and “×” indicates that the equations (1) and (2) are not satisfied. , Was described. Hereinafter, the same applies to Tables 3 and 5. The heat-treated RTB-based sintered magnets (Sample Nos. 1 to 12) were each machined to prepare samples having a length of 7 mm, a width of 7 mm, and a thickness of 7 mm, and the magnetic properties of each sample were measured by a BH tracer. The properties were measured. Table 2 shows the measurement results. In H k / H cJ (square ratio), H k is 0.9 × J r (J r is in the second quadrant of the I (magnetization magnitude) -H (magnetic field strength) curve). This is the value of H at the position where the value of the residual magnetization, Jr = Br ) (the same applies hereinafter).

Figure 0006623998
Figure 0006623998

Figure 0006623998
Figure 0006623998

表1および表2に示すように、本発明で規定する化学成分組成および水素粉砕条件(水素脆化処理温度および脱水素処理温度)を満たす実施例であるNo.3〜7およびNo.9〜11は、Br≧1.348T且つHcJ≧1396kA/m且つH/HcJ≧0.943の高い磁気特性が得られている。これに対し、水素粉砕工程における脱水素処理温度が本発明で規定する範囲外である比較例No.1、2およびNo.8、ならびに水素粉砕工程における水素脆化処理温度が本発明で規定する範囲外である比較例No.12は、Br≧1.348T且つHcJ≧1396kA/m且つH/HcJ≧0.943の高い磁気特性が得られていない。また、水素粉砕工程における脱水素温度が780℃以上820℃以下であるNo.4〜6は、Br≧1.411T且つHcJ≧1432kA/m且つH/HcJ≧0.951であり、さらに高い磁気特性が得られている。 As shown in Tables 1 and 2, Example No. 1 satisfies the chemical composition and the hydrogen crushing conditions (hydrogen embrittlement temperature and dehydrogenation temperature) specified in the present invention. Nos. 3 to 7 and Nos. 9 to 11, high magnetic properties such as Br ≧ 1.348T, H cJ ≧ 1396 kA / m, and H k / H cJ ≧ 0.943 were obtained. On the other hand, in Comparative Example No. in which the dehydrogenation treatment temperature in the hydrogen grinding step was out of the range specified in the present invention. 1, 2 and No. Comparative Example No. 8 in which the hydrogen embrittlement treatment temperature in the hydrogen grinding step was outside the range specified in the present invention. In No. 12, high magnetic properties such as Br ≧ 1.348T, H cJ ≧ 1396 kA / m and H k / H cJ ≧ 0.943 were not obtained. In addition, the dehydrogenation temperature in the hydrogen grinding step was 780 ° C or higher and 820 ° C or lower. In Nos. 4 to 6, Br ≧ 1.411T, H cJ ≧ 1432 kA / m and H k / H cJ ≧ 0.951, and higher magnetic properties are obtained.

(2)実験例2
R−T−B系焼結磁石がおよそ表3のNo.13〜22に示す組成となるように各元素を秤量する以外は、実験例1のNo.6と同じ条件でR−T−B系焼結磁石を作製した。得られたR−T−B系焼結磁石(No.13〜22)の成分結果を表3に示す。
(2) Experimental example 2
The RTB-based sintered magnet is approximately No. 3 in Table 3. No. 13 of Experimental Example 1 except that each element was weighed so that the compositions shown in FIGS. Under the same conditions as in Example 6, an RTB-based sintered magnet was produced. Table 3 shows the component results of the obtained RTB-based sintered magnets (Nos. 13 to 22).

Figure 0006623998
Figure 0006623998

得られたR−T−B系焼結磁石(試料No.13〜22)にそれぞれ実験例1と同様に機械加工を施し、実験例1と同様に、各試料の磁気特性を測定した。測定結果を表4に示す。   The obtained RTB-based sintered magnets (Sample Nos. 13 to 22) were machined in the same manner as in Experimental Example 1, and the magnetic properties of each sample were measured in the same manner as in Experimental Example 1. Table 4 shows the measurement results.

Figure 0006623998
Figure 0006623998

表4に示すように、本発明で規定する化学成分組成および水素粉砕条件(水素脆化処理温度および脱水素処理温度)を満たす実施例No.22は、Br≧1.348T且つHcJ≧1396kA/m且つH/HcJ≧0.943の高い磁気特性が得られている。これに対し、本発明で規定する組成範囲から外れている比較例No.13(B量および式(1)が範囲外)、No.14(式(1)が範囲外)、No.15(式(2)が範囲外)、No.16(B量および式(2)が範囲外)、No.17(Ga量が範囲外)、No.18および19(Cu量が範囲外)、No.20(Al量が範囲外)、No.21(B量および式(1)が範囲外)は、Br≧1.348T、HcJ≧1396kA/m、かつH/HcJ≧0.943の高い磁気特性が得られていない。 As shown in Table 4, the composition of Example No. satisfying the chemical composition and the hydrogen pulverization conditions (hydrogen embrittlement temperature and dehydrogenation temperature) specified in the present invention. 22, high magnetic properties of Br ≧ 1.348T and H cJ1396kA / m and H k / H cJ ≧ 0.943 is obtained. On the other hand, in Comparative Example No. out of the composition range specified in the present invention. 13 (the amount of B and the formula (1) are out of the range); 14 (Expression (1) is out of range); No. 15 (Expression (2) is out of range); No. 16 (B content and formula (2) are out of range), 17 (Ga content is out of range); Nos. 18 and 19 (Cu content is out of range); No. 20 (Al content is out of range), 21 (B amount and the formula (1) is out of range) is, Br ≧ 1.348T, H cJ ≧ 1396kA / m, and H k / H cJ ≧ high magnetic properties of 0.943 is not obtained.

(3)実験例3
R−T−B系焼結磁石がおよそ表3のNo.23および24に示す組成となるように各元素を秤量する以外は、実験例1のNo.6と同じ条件でR−T−B系焼結磁石を作製した。得られたR−T−B系焼結磁石(No.23および24)の成分の結果を表5に示す。
(3) Experimental example 3
The RTB-based sintered magnet is approximately No. 3 in Table 3. No. 23 of Experimental Example 1 except that each element was weighed so that the compositions shown in FIGS. Under the same conditions as in Example 6, an RTB-based sintered magnet was produced. Table 5 shows the results of the components of the obtained RTB-based sintered magnets (Nos. 23 and 24).

Figure 0006623998
Figure 0006623998

得られたR−T−B系焼結磁石(試料No.23および24)にそれぞれ実験例1と同様に機械加工を施し、実験例1と同様に、各試料の磁気特性を測定した。測定結果を表6に示す。   The obtained RTB-based sintered magnets (Sample Nos. 23 and 24) were machined in the same manner as in Experimental Example 1, and the magnetic properties of each sample were measured as in Experimental Example 1. Table 6 shows the measurement results.

Figure 0006623998
Figure 0006623998

No.23および24は、重希土類元素RHを含有(Dyを3.11質量%含有)し、Bの含有量以外はほぼ同じ組成である。表6に示す様に、実施例であるNo.24は、比較例であるNo.23(B量および式(1)が範囲外)と比べて、高いHcJおよび高いH/HcJが得られている。 No. 23 and 24 contain the heavy rare earth element RH (containing 3.11% by mass of Dy), and have substantially the same composition except for the B content. As shown in Table 6, the sample No. No. 24 is a comparative example. 23 in comparison with (B amount and the formula (1) is out of range), high H cJ and high H k / H cJ can be obtained.

Claims (2)

R:27.5質量%以上、34.0質量%以下(Rは、希土類元素のうち少なくとも一種でありNdおよびPrの少なくとも一方を必ず含む)、
B:0.85質量%以上、0.93質量%以下、
Ga:0.20質量%以上、0.70質量%以下、
Cu:0.05質量%以上、0.70質量%以下、
Al:0.05質量%以上、0.40質量%以下、および
T:61.5質量%以上(Tは、FeとCoであり質量比でTの90%以上がFeである)を含み、
下記式(1)および(2)を満足するR−T−B系焼結磁石の製造方法であって、
[T]−72.3[B]>0 (1)
([T]−72.3[B])/55.85<13[Ga]/69.72 (2)
([T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量であり、[Ga]は質量%で示すGaの含有量である)

R−T−B系合金を準備するR−T−B系合金準備工程と、
前記R−T−B系合金を、水素加圧雰囲気で5℃以上350℃以下に加熱して水素脆化処理を実施した後、さらに3000Pa以下の減圧雰囲気又は不活性ガス雰囲気で750℃以上850℃以下に加熱する脱水素処理を実施して、R−T−B系合金粗粉末を得る水素粉砕工程と、
前記R−T−B系合金粗粉末を粉砕してR−T−B系合金粉末を得る微粉砕工程と、
前記R−T−B系合金粉末を成形して成形体を得る成形工程と、
前記成形体を焼結して焼結体を得る焼結工程と、
を含む、R−T−B系焼結磁石の製造方法。
R: 27.5% by mass or more and 34.0% by mass or less (R is at least one of rare earth elements and always contains at least one of Nd and Pr).
B: 0.85% by mass or more, 0.93% by mass or less,
Ga: 0.20% by mass or more and 0.70% by mass or less,
Cu: 0.05% by mass or more, 0.70% by mass or less,
Al: 0.05% by mass or more, 0.40% by mass or less, and T: 61.5% by mass or more (T is Fe and Co, and 90% or more of T in mass ratio is Fe),
A method for producing an RTB based sintered magnet satisfying the following formulas (1) and (2),
[T] -72.3 [B]> 0 (1)
([T] -72.3 [B]) / 55.85 <13 [Ga] /69.72 (2)
([T] is the T content in mass%, [B] is the B content in mass%, and [Ga] is the Ga content in mass%.)

An RTB-based alloy preparing step of preparing an RTB-based alloy;
The RTB-based alloy is heated to 5 ° C. or more and 350 ° C. or less in a hydrogen pressurized atmosphere to perform hydrogen embrittlement treatment, and then 750 ° C. or more to 850 ° C. in a reduced pressure atmosphere of 3000 Pa or less or an inert gas atmosphere. A hydrogen pulverizing step of performing a dehydrogenation treatment of heating to not more than 0 ° C. to obtain an RTB-based alloy coarse powder;
Pulverizing the RTB-based alloy coarse powder to obtain an RTB-based alloy powder;
A molding step of molding the RTB-based alloy powder to obtain a molded body;
A sintering step of sintering the molded body to obtain a sintered body,
A method for producing an RTB-based sintered magnet, comprising:
前記脱水素処理は、780℃以上820℃以下に加熱する、請求項1に記載のR−T−B系焼結磁石の製造方法。   The method for producing an RTB-based sintered magnet according to claim 1, wherein the dehydrogenation treatment is performed by heating to 780C to 820C.
JP2016189967A 2016-09-28 2016-09-28 Method for producing RTB based sintered magnet Active JP6623998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189967A JP6623998B2 (en) 2016-09-28 2016-09-28 Method for producing RTB based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189967A JP6623998B2 (en) 2016-09-28 2016-09-28 Method for producing RTB based sintered magnet

Publications (2)

Publication Number Publication Date
JP2018056301A JP2018056301A (en) 2018-04-05
JP6623998B2 true JP6623998B2 (en) 2019-12-25

Family

ID=61834331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189967A Active JP6623998B2 (en) 2016-09-28 2016-09-28 Method for producing RTB based sintered magnet

Country Status (1)

Country Link
JP (1) JP6623998B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177124A (en) * 2018-03-30 2019-10-17 株式会社三洋物産 Game machine
JP7131033B2 (en) * 2018-03-30 2022-09-06 株式会社三洋物産 game machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188713A (en) * 1993-12-28 1995-07-25 Aichi Steel Works Ltd Device for producing rare earth magnet powder
JP4329318B2 (en) * 2002-09-13 2009-09-09 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP4215240B2 (en) * 2003-02-26 2009-01-28 Tdk株式会社 Hydrogen grinding method, rare earth permanent magnet manufacturing method
JP3891307B2 (en) * 2004-12-27 2007-03-14 信越化学工業株式会社 Nd-Fe-B rare earth permanent sintered magnet material
JP2012204696A (en) * 2011-03-25 2012-10-22 Tdk Corp Production method of powder for magnetic material and permanent magnet
JP6432406B2 (en) * 2014-03-27 2018-12-05 日立金属株式会社 R-T-B system alloy powder and R-T-B system sintered magnet
CN105185497B (en) * 2015-08-28 2017-06-16 包头天和磁材技术有限责任公司 A kind of preparation method of permanent-magnet material

Also Published As

Publication number Publication date
JP2018056301A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6288076B2 (en) R-T-B sintered magnet
JP6614084B2 (en) Method for producing R-Fe-B sintered magnet
JP6414653B1 (en) Method for producing RTB-based sintered magnet
JP6090550B1 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6414654B1 (en) Method for producing RTB-based sintered magnet
WO2019181249A1 (en) Method for producing r-t-b system sintered magnet
WO2017159576A1 (en) Method for manufacturing r-t-b based sintered magnet
JP2009302318A (en) RL-RH-T-Mn-B-BASED SINTERED MAGNET
WO2018101239A1 (en) R-fe-b sintered magnet and production method therefor
JP6541038B2 (en) RTB based sintered magnet
JP2019169542A (en) Method for manufacturing r-t-b based sintered magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP6213697B1 (en) Method for producing RTB-based sintered magnet
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP6474043B2 (en) R-T-B sintered magnet
JP2018125445A (en) R-T-B based sintered magnet
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP7021577B2 (en) Manufacturing method of RTB-based sintered magnet
JP7548688B2 (en) RTB based sintered magnet
JP2005286175A (en) R-t-b-based sintered magnet and its manufacturing method
JP2021057564A (en) Method for manufacturing r-t-b based sintered magnet
JP2021155783A (en) Method of producing r-t-b-based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6623998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350