JP7021577B2 - Manufacturing method of RTB-based sintered magnet - Google Patents

Manufacturing method of RTB-based sintered magnet Download PDF

Info

Publication number
JP7021577B2
JP7021577B2 JP2018055048A JP2018055048A JP7021577B2 JP 7021577 B2 JP7021577 B2 JP 7021577B2 JP 2018055048 A JP2018055048 A JP 2018055048A JP 2018055048 A JP2018055048 A JP 2018055048A JP 7021577 B2 JP7021577 B2 JP 7021577B2
Authority
JP
Japan
Prior art keywords
mass
sintering
rtb
sintered magnet
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018055048A
Other languages
Japanese (ja)
Other versions
JP2019169560A (en
Inventor
信彦 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018055048A priority Critical patent/JP7021577B2/en
Priority to CN201910211946.5A priority patent/CN110299235B/en
Publication of JP2019169560A publication Critical patent/JP2019169560A/en
Application granted granted Critical
Publication of JP7021577B2 publication Critical patent/JP7021577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Description

本開示は、R-T-B系焼結磁石の製造方法に関する。 The present disclosure relates to a method for manufacturing an RTB-based sintered magnet.

R-T-B系焼結磁石(Rは希土類元素のうち少なくとも一種でありNdを必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 RTB-based sintered magnets (R is at least one of rare earth elements and always contains Nd, T is at least one of transition metal elements and always contains Fe) have the highest performance among permanent magnets. It is known as a magnet, and is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R-T-B系焼結磁石は主としてR14B化合物からなる主相とこの主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B化合物は高い磁化を持つ強磁性材料でありR-T-B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is mainly composed of a main phase composed of an R2 T 14 B compound and a grain boundary phase located at a grain boundary portion of this main phase. The main phase, R 2 T 14 B compound, is a ferromagnetic material with high magnetization and forms the basis of the characteristics of RTB-based sintered magnets.

R-T-B系焼結磁石は高温で保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用される場合、高温下でも高いHcJを有することが要求されている。 In the RTB-based sintered magnet, the coercive force H cJ (hereinafter, may be simply referred to as "H cJ ") decreases at a high temperature, so that irreversible demagnetization occurs. Therefore, especially when used in a motor for an electric vehicle, it is required to have a high HcJ even at a high temperature.

従来、HcJ向上のために、Dy、Tb等の重希土類元素RHをR-T-B系焼結磁石に多量に添加していた。しかし、重希土類元素RHを多量に添加すると、HcJは向上するが、残留磁束密度B(以下、単に「B」という場合がある)が低下するという問題があった。そのため、近年、R-T-B系焼結磁石の表面から内部にRHを拡散させて主相結晶粒の外殻部にRHを濃化させることでBの低下を抑制しつつ、高いHcJを得る方法が提案されている。 Conventionally, in order to improve H cJ , a large amount of heavy rare earth element RH such as Dy and Tb has been added to the R—TB based sintered magnet. However, when a large amount of the heavy rare earth element RH is added, H cJ is improved, but there is a problem that the residual magnetic flux density Br (hereinafter, may be simply referred to as “ Br ”) is lowered. Therefore, in recent years, RH is diffused from the surface of the RTB -based sintered magnet to the inside to concentrate RH in the outer shell of the main phase crystal grains, thereby suppressing the decrease in Br and increasing the H. A method for obtaining cJ has been proposed.

しかし、Dyは、もともと資源量が少ないうえ産出地が限定されている等の理由から、供給が不安定であり、価格変動するなどの問題を有している。そのため、DyなどのRHをできるだけ使用せず(使用量をできるだけ少なくして)、Bの低下を抑制しつつ、高いHcJを得ることが求められている。 However, Dy has problems such as unstable supply and price fluctuations due to the fact that the amount of resources is originally small and the production area is limited. Therefore, it is required to obtain high H cJ while suppressing the decrease of Br without using RH such as Dy as much as possible (reducing the amount used as much as possible).

特許文献1には、通常のR-T-B合金よりもB量を低くするとともに、Al、Ga、Cuのうちから選ばれる1種類以上の金属元素Mを含有させることによりR17M相を生成させ、該RFe17相を原料として生成させた遷移金属リッチ相(R13M)の体積率を十分に確保することにより、Dyの含有量を抑制しつつ、保磁力の高いR-T-B系希土類焼結磁石が得られることが記載されている。 In Patent Document 1, the amount of B is lower than that of a normal RTB alloy, and R 2 F 17 M is contained by containing one or more kinds of metal elements M selected from Al, Ga, and Cu. By forming a phase and sufficiently securing the volume ratio of the transition metal rich phase (R 6 T 13 M) generated from the R 2 Fe 17 phase as a raw material, the coercive force while suppressing the content of Dy. It is described that a high-grade RTB-based rare earth sintered magnet can be obtained.

また、上述の通りR-T-B系焼結磁石が最も利用される用途はモータであり、特に電気自動車用モータなどの用途で高温安定性を確保するためにHcJの向上は大変有効であるが、それらの特性とともに角形比H/HcJ(以下、単にH/HcJという場合がある)も高くなければならない。H/HcJが低いと減磁しやすくなるという問題を引き起こす。そのため、高いHcJを有するとともに、高いH/HcJを有するR-T-B系焼結磁石が求められている。なお、R-T-B系焼結磁石の分野においては、一般に、H/HcJを求めるために測定するパラメータであるHは、J(磁化の強さ)-H(磁界の強さ)曲線の第2象限において、Jが0.9×J(Jは残留磁化、J=B)の値になる位置のH軸の読み値が用いられている。このHを減磁曲線のHcJで除した値(H/HcJ=H(KA/m)/HcJ(KA/m)×100(%))が角形比として定義される。 In addition, as mentioned above, the applications where RTB-based sintered magnets are most used are motors, and improvement of HcJ is very effective to ensure high-temperature stability, especially in applications such as motors for electric vehicles. However, along with these characteristics, the square ratio H k / H cJ (hereinafter, may be simply referred to as H k / H cJ ) must also be high. If H k / H cJ is low, it causes a problem that demagnetization is likely to occur. Therefore, there is a demand for an RTB-based sintered magnet having a high H cJ and a high H k / H cJ . In the field of RTB-based sintered magnets, in general, H k , which is a parameter to be measured for obtaining H k / H cJ , is J (magnetization strength) −H (magnetic field strength). In the second quadrant of the curve), the H-axis reading at the position where J is 0.9 × Jr ( Jr is the residual magnetization, Jr = Br ) is used. The value obtained by dividing this H k by H cJ of the demagnetization curve (H k / H cJ = H k (KA / m) / H cJ (KA / m) × 100 (%)) is defined as the square ratio.

国際公開第2013/008756号International Publication No. 2013/008756

特許文献1に記載されているR-T-B系希土類磁石では、Dyの含有量を低減しつつ高いHcJが得られるものの、一般的なR-T-B系焼結磁石 (R14B型化合物の化学量論比よりもB量が多い)と比べてH/HcJが低下するという問題点があった。 In the R-TB-based rare earth magnet described in Patent Document 1, although a high HcJ can be obtained while reducing the Dy content, a general R-TB-based sintered magnet ( R2 T) can be obtained. 14 There is a problem that H k / H cJ is lowered as compared with (the amount of B is larger than the ratio of the chemical quantity theory of the B-type compound).

そこで本発明は、RHの含有量を低減しつつ、高いHcJと高いH/HcJを有するR-T-B系焼結磁石を製造するための方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing an RTB-based sintered magnet having a high H cJ and a high H k / H cJ while reducing the content of RH.

本発明の態様1は、
R:29.5~35.0質量%(Rは希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む)、
B:0.80~0.91質量%、
Ga:0.2~1.0質量%、および
T:61.5~69.5質量%(TはFeとCoであり、Tの90~100質量%がFeである)を含有し、
下記式(1)を満足するR-T-B系焼結磁石の製造方法であって、

[T]/55.85>14[B]/10.8 (1)
([T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量である)

合金粉末を準備する工程と、
前記合金粉末を成形して成形体を得る成形工程と、
前記成形体を、1010℃~1030℃の範囲内にある第1焼結温度で、12時間~36時間の範囲内にある第1焼結時間で加熱して、第1焼結体を得る第1焼結工程と、
前記第1焼結体を、990℃~1020℃の範囲内にあり、かつ前記第1焼結温度よりも10℃以上低い第2焼結温度で、17時間~41時間の範囲にあり、かつ前記第1焼結時間よりも5時間以上長い第2焼結時間で加熱して第2焼結体を得る第2焼結工程と、
前記第2焼結体を、400℃~800℃の範囲内にある熱処理温度で加熱する熱処理工程と、
を含む、R-T-B系焼結磁石の製造方法である。
Aspect 1 of the present invention is
R: 29.5 to 35.0% by mass (R is at least one rare earth element and contains at least one of Nd and Pr),
B: 0.80 to 0.91% by mass,
It contains Ga: 0.2 to 1.0% by mass, and T: 61.5 to 69.5% by mass (T is Fe and Co, and 90 to 100% by mass of T is Fe).
A method for manufacturing an RTB-based sintered magnet that satisfies the following formula (1).

[T] /55.85>14 [B] /10.8 (1)
([T] is the content of T shown in% by mass, and [B] is the content of B shown in% by mass)

The process of preparing alloy powder and
The molding process of molding the alloy powder to obtain a molded body, and
The molded body is heated at a first sintering temperature in the range of 1010 ° C. to 1030 ° C. and a first sintering time in the range of 12 hours to 36 hours to obtain a first sintered body. 1 sintering process and
The first sintered body is in the range of 990 ° C to 1020 ° C, and is in the range of 17 hours to 41 hours at the second sintering temperature which is 10 ° C or more lower than the first sintering temperature. In the second sintering step of obtaining a second sintered body by heating in a second sintering time that is 5 hours or more longer than the first sintering time.
A heat treatment step of heating the second sintered body at a heat treatment temperature in the range of 400 ° C. to 800 ° C.
Is a method for manufacturing an RTB-based sintered magnet including.

本発明の態様2は、前記第2焼結工程において、前記第2焼結温度が、990℃~1010℃の範囲内にあり、かつ前記第1焼結温度よりも20℃以上低い、態様1に記載のR-T-B系焼結磁石の製造方法である。 Aspect 2 of the present invention is the second sintering step in which the second sintering temperature is in the range of 990 ° C to 1010 ° C and is 20 ° C or more lower than the first sintering temperature. This is a method for manufacturing an RTB-based sintered magnet according to the above.

本発明の製造方法によれば、RHの含有量を低減しつつ、高いHcJと高いH/HcJを有するR-T-B系焼結磁石を製造することができる。 According to the production method of the present invention, it is possible to produce an RTB-based sintered magnet having a high H cJ and a high H k / H cJ while reducing the RH content.

以下に示す実施形態は、本発明の技術思想を具体化するためのR-T-B系焼結磁石の製造方法を例示するものであって、本発明を以下に限定するものではない。 The embodiments shown below exemplify a method for manufacturing an RTB-based sintered magnet for embodying the technical idea of the present invention, and do not limit the present invention to the following.

本発明者らは鋭意検討した結果、本発明は、以下に規定するような特定の組成範囲、特に極めて狭い特定範囲のB含有量を有するR-T-B系焼結磁石の製造において、焼結工程を2段階(第1焼結工程と第2焼結工程)で行い、かつ第1焼結工程および第2焼結工程の焼結条件(温度および時間)を適切に制御することにより、最終的に得られるR-T-B系焼結磁石の磁気的特性を向上できることを見いだした。
以下に本発明の実施形態に係る製造方法について詳述する。
As a result of diligent studies by the present inventors, the present invention is used in the production of an RTB-based sintered magnet having a specific composition range as defined below, particularly a very narrow specific range of B content. By performing the binding process in two stages (first sintering step and second sintering step) and appropriately controlling the sintering conditions (temperature and time) of the first sintering step and the second sintering step. It has been found that the magnetic properties of the finally obtained RTB-based sintered magnet can be improved.
The manufacturing method according to the embodiment of the present invention will be described in detail below.

<R-T-B系焼結磁石>
まず、本発明に係る製造方法によって得られるR-T-B系焼結磁石について説明する。
<RTB-based sintered magnet>
First, the RTB-based sintered magnet obtained by the manufacturing method according to the present invention will be described.

(R-T-B系焼結磁石の組成)
本実施形態に係るR-T-B系焼結磁石の組成は、
R:29.5~35.0質量%(Rは希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む)、
B:0.80~0.91質量%、
Ga:0.2~1.0質量%、および
T:61.5~69.5質量%(TはFeとCoであり、Tの90~100質量%がFeである)を含有し、下記式(1)を満足する。

[T]/55.85>14[B]/10.8 (1)
([T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量である)
(Composition of RTB-based sintered magnet)
The composition of the RTB-based sintered magnet according to this embodiment is
R: 29.5 to 35.0% by mass (R is at least one rare earth element and contains at least one of Nd and Pr),
B: 0.80 to 0.91% by mass,
It contains Ga: 0.2 to 1.0% by mass, and T: 61.5 to 69.5% by mass (T is Fe and Co, and 90 to 100% by mass of T is Fe), and is described below. Equation (1) is satisfied.

[T] /55.85>14 [B] /10.8 (1)
([T] is the content of T shown in% by mass, and [B] is the content of B shown in% by mass)

上記組成により、一般的なR-T-B系焼結磁石よりもB量を少なくするとともに、Ga等を含有させているので、二粒子粒界にR-T-Ga相が生成して、高いHcJを得ることができる。ここで、R-T-Ga相とは、代表的にはNdFe13Ga化合物である。R13Ga化合物は、LaCo11Ga型結晶構造を有する。また、R13Ga化合物は、その状態によっては、R13-δGa1+δ化合物(δは典型的には2以下)になっている場合がある。例えば、R-T-B系焼結磁石中にCu、Alが比較的多く含有される場合、R13-δ(Ga1-x-yCuAl1+δになっている場合がある。
以下に、各組成について詳述する。
Due to the above composition, the amount of B is smaller than that of a general RTB-based sintered magnet, and Ga and the like are contained, so that an RT-Ga phase is generated at the two-particle grain boundary. High H cJ can be obtained. Here, the RT-Ga phase is typically an Nd 6 Fe 13 Ga compound. The R 6 T 13 Ga compound has a La 6 Co 11 Ga type 3 crystal structure. Further, the R 6 T 13 Ga compound may be an R 6 T 13-δ Ga 1 + δ compound (δ is typically 2 or less) depending on the state. For example, when the RTB-based sintered magnet contains a relatively large amount of Cu and Al, it may be R 6 T 13-δ (Ga 1-xy Cu x Al y ) 1 + δ . be.
Each composition will be described in detail below.

(R:29.5~35.0質量%)
Rは、希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む。Rの含有量は、29.5~35.0質量%である。Rが29.5質量%未満であると焼結時の緻密化が困難となるおそれがあり、35.0質量%を超えると主相比率が低下して高いBを得られないおそれがある。Rの含有量は、好ましくは29.5~33.0質量%である。Rがこのような範囲であれば、より高いBを得ることができる。
(R: 29.5 to 35.0% by mass)
R is at least one of the rare earth elements and contains at least one of Nd and Pr. The content of R is 29.5 to 35.0% by mass. If R is less than 29.5% by mass, it may be difficult to densify during sintering, and if it exceeds 35.0% by mass, the main phase ratio may decrease and high Br may not be obtained. .. The content of R is preferably 29.5 to 33.0% by mass. If R is in such a range, a higher Br can be obtained.

(B:0.80~0.91質量%)
焼結磁石中のBの含有量は、0.80~0.91質量%である。Bが0.80質量%未満であるとR17相が生成されて高いHcJが得られないおそれがあり、0.91質量%を超えるとR-T-Ga相の生成量が少なすぎて高いHcJが得られないおそれがある。Bの含有量は、好ましくは0.88~0.90質量%であり、より高いHcJ向上効果が得られる。
(B: 0.80 to 0.91% by mass)
The content of B in the sintered magnet is 0.80 to 0.91% by mass. If B is less than 0.80% by mass, R2 T 17 phase may be generated and high H cJ may not be obtained, and if it exceeds 0.91% by mass, the amount of R-T-Ga phase produced is small. There is a risk that too high HcJ cannot be obtained. The content of B is preferably 0.88 to 0.90% by mass, and a higher H cJ improving effect can be obtained.

さらに、Bの含有量は下記式(1)を満たす。

[T]/55.85>14[B]/10.8 (1)

ここで[T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量である。
Further, the content of B satisfies the following formula (1).

[T] /55.85>14 [B] /10.8 (1)

Here, [T] is the content of T represented by mass%, and [B] is the content of B represented by mass%.

式(1)を満足することにより、Bの含有量が一般的なR-T-B系焼結磁石よりも少なくなる。一般的なR-T-B系焼結磁石は、主相であるR14B相以外に軟磁性相であるR17相が生成しないように、[T]/55.85(Feの原子量)は14[B]/10.8(Bの原子量)よりも少ない組成となっている([T]は、質量%で示すTの含有量である)。本発明の実施形態のR-T-B系焼結磁石は、一般的なR-T-B系焼結磁石と異なり、[T]/55.85が14[B]/10.8よりも多くなるように式(1)で規定している。なお、本発明の実施形態のR-T-B系焼結磁石におけるTの主成分はFeであるため、Feの原子量を用いた。 By satisfying the formula (1), the content of B becomes smaller than that of a general RTB-based sintered magnet. In a general RTB - based sintered magnet, [T] /55.85 ( T] / 55.85 ( T) / 55.85 (T) / 55.85 (T) / 55.85 (T) / 55.85 ( The atomic weight of Fe) is less than 14 [B] / 10.8 (atomic weight of B) ([T] is the content of T expressed in% by mass). The RTB-based sintered magnet of the embodiment of the present invention is different from the general RTB-based sintered magnet, and [T] /55.85 is higher than 14 [B] /10.8. It is specified by the formula (1) so that the number increases. Since the main component of T in the RTB-based sintered magnet of the embodiment of the present invention is Fe, the atomic weight of Fe was used.

(Ga:0.2~1.0質量%)
Gaの含有量は、0.2~1.0質量%である。Gaが0.2質量%未満であると、R-T-Ga相の生成量が少なすぎて、R17相を消失させることができず、高いHcJを得ることができないおそれがあり、1.0質量%を超えると不要なGaが存在することになり、主相比率が低下してBが低下するおそれがある。
(Ga: 0.2 to 1.0% by mass)
The content of Ga is 0.2 to 1.0% by mass. If Ga is less than 0.2% by mass, the amount of R T—Ga phase produced is too small, and the R2T 17 phase cannot be eliminated, and high HcJ may not be obtained. If it exceeds 1.0% by mass, unnecessary Ga will be present, and the main phase ratio may decrease and Br may decrease.

(T:61.5~69.5質量%(Tは、FeとCoでありTの90~100質量%がFeである))
Tは、遷移金属元素のうち少なくとも1種であり、Feを必ず含む。
焼結磁石中のTの含有量は61.5~69.5質量%である。また、Tの全量を100質量%としたとき、その10質量%以下をCoで置換できる。すなわち、Tの全量の90質量%以上がFeである。また、Tの全量(100質量%)をFeにしてもよい。Coを含有することにより耐食性を向上させることができるが、Coの置換量がFeの10質量%を超えると、高いBが得られないおそれがある。Tの含有量は、61.5質量%以上であり、かつ、上述した式(1)を満足する。Tの含有量が61.5質量%未満または69.5質量%を超えると、大幅にBが低下する恐れがある。好ましくは、Tが残部である。
(T: 61.5 to 69.5% by mass (T is Fe and Co, and 90 to 100% by mass of T is Fe))
T is at least one of the transition metal elements and always contains Fe.
The content of T in the sintered magnet is 61.5 to 69.5% by mass. Further, when the total amount of T is 100% by mass, 10% by mass or less thereof can be replaced with Co. That is, 90% by mass or more of the total amount of T is Fe. Further, the total amount of T (100% by mass) may be Fe. Corrosion resistance can be improved by containing Co, but if the substitution amount of Co exceeds 10% by mass of Fe, high Br may not be obtained. The content of T is 61.5% by mass or more, and the above-mentioned formula (1) is satisfied. If the T content is less than 61.5 % by mass or more than 69.5% by mass, Br may be significantly reduced. Preferably, T is the balance.

さらに、Tが残部の場合であっても、本発明のR-T-B系焼結磁石は、ジジム合金(Nd-Pr)、電解鉄、フェロボロンなどに通常含有される不可避的不純物としてCr、Mn、Si、La、Ce、Sm、Ca、Mgなどを含有することができる。さらに、製造工程中の不可避的不純物として、O(酸素)、N(窒素)およびC(炭素)などを例示できる。また、本発明のR-T-B系焼結磁石は、1種以上の他の元素(不可避的不純物以外の意図的に加えた元素)を含んでもよい。例えば、このような元素として、少量(各々0.1質量%程度)のAg、Zn、In、Sn、Ti、Ge、Y、H、F、P、S、V、Ni、Mo、Hf、Ta、W、Nb、Zrなどを含有してもよい。また、上述した不可避的不純物として挙げた元素を意図的に加えてもよい。このような元素は、合計で例えば1.0質量%程度含まれてもよい。この程度であれば、高いHcJを有するR-T-B系焼結磁石を得ることが十分に可能である。 Further, even when T is the remainder, the RTB-based sintered magnet of the present invention contains Cr, as an unavoidable impurity usually contained in didymium alloy (Nd-Pr), electrolytic iron, ferrobolon and the like. It can contain Mn, Si, La, Ce, Sm, Ca, Mg and the like. Further, as unavoidable impurities in the manufacturing process, O (oxygen), N (nitrogen), C (carbon) and the like can be exemplified. Further, the RTB-based sintered magnet of the present invention may contain one or more other elements (elements intentionally added other than unavoidable impurities). For example, as such elements, a small amount (about 0.1% by mass each) of Ag, Zn, In, Sn, Ti, Ge, Y, H, F, P, S, V, Ni, Mo, Hf, Ta , W, Nb, Zr and the like may be contained. Further, the elements listed as the above-mentioned unavoidable impurities may be intentionally added. Such elements may be contained, for example, about 1.0% by mass in total. With this degree, it is sufficiently possible to obtain an RTB-based sintered magnet having a high HcJ .

本発明の焼結磁石は、任意のその他の元素を更に含んでよい。そのように選択的に含有させることができるその他の元素を以下に例示する。 The sintered magnet of the present invention may further contain any other element. Other elements that can be selectively contained in this way are illustrated below.

(Cu:0質量%超、0.50質量%以下)
Cuを適量含むことにより、HcJをさらに向上することができる。
Cuは、0.50質量%以下で含まれてもよい。Cuの含有量は、好ましくは0.05~0.50質量%である。Cuを0.05質量%~0.50質量%で含有すると、HcJをさらに向上させることができる。Cuの含有量は、より好ましくは0.05質量%以上である。
(Cu: more than 0% by mass, 0.50% by mass or less)
By containing an appropriate amount of Cu, H cJ can be further improved.
Cu may be contained in an amount of 0.50% by mass or less. The Cu content is preferably 0.05 to 0.50% by mass. When Cu is contained in an amount of 0.05% by mass to 0.50% by mass, H cJ can be further improved. The Cu content is more preferably 0.05% by mass or more.

(Al:0質量%超、0.50質量%以下)
Alを適量含むことにより、HcJをさらに向上することができる。
Alは、0.50質量%以下で含まれてもよい。Alの含有量は、好ましくは0.05~0.50質量%である。Alを0.50質量%以下で含有すると、HcJをさらに向上させることができる。Alは通常、製造工程で不可避的不純物として0.05質量%以上含有され得るが、不可避的不純物で含有される量と意図的に添加した量の合計で0.5質量%以下含有してもよい。Alの含有量は、より好ましくは0.05質量%以上である。
(Al: more than 0% by mass, 0.50% by mass or less)
By containing an appropriate amount of Al, H cJ can be further improved.
Al may be contained in an amount of 0.50% by mass or less. The Al content is preferably 0.05 to 0.50% by mass. When Al is contained in an amount of 0.50% by mass or less, H cJ can be further improved. Al can usually be contained in an amount of 0.05% by mass or more as an unavoidable impurity in the manufacturing process, but even if it is contained in an amount of 0.5% by mass or less in total of the amount contained in the unavoidable impurity and the amount intentionally added. good. The Al content is more preferably 0.05% by mass or more.

(R-T-B系焼結磁石の磁気的特性)
本発明に係る焼結磁石は、高いHcjと高いH/HcJを示す。特に、Hcjが1400kA/m以上、かつH/HcJが85超であること好ましい、また、Hcjが1500kA/m超、かつH/HcJが85超であることがさらに好ましい。また、Hが1200kA/m以上であるのが好ましく、1230kA/m以上であるのがさらに好ましい。
(Magnetic characteristics of RTB-based sintered magnet)
The sintered magnet according to the present invention exhibits high H cj and high H k / H cJ . In particular, it is preferable that H cj is 1400 kA / m or more and H k / H cJ is more than 85, and it is more preferable that H cj is more than 1500 kA / m and H k / H cJ is more than 85. Further, H k is preferably 1200 kA / m or more, and more preferably 1230 kA / m or more.

<R-T-B系焼結磁石の製造方法>
次に、本発明に係るR-T-B系焼結磁石の製造方法を説明する。
R-T-B系焼結磁石の製造方法は、合金粉末を準備する工程、成形工程、第1焼結工程、第2焼結工程、および熱処理工程を含む。
以下、各工程について説明する。
<Manufacturing method of RTB-based sintered magnet>
Next, a method for manufacturing the RTB-based sintered magnet according to the present invention will be described.
The method for producing an RTB-based sintered magnet includes a step of preparing an alloy powder, a forming step, a first sintering step, a second sintering step, and a heat treatment step.
Hereinafter, each step will be described.

(1)合金粉末を準備する工程
前記組成となるようにそれぞれの元素の金属または合金を準備し、これらをストリップキャスティング法等を用いてフレーク状の合金を製造する。
得られたフレーク状の合金を水素粉砕し、粗粉砕粉のサイズを例えば1.0mm以下とする。次に、粗粉砕粉をジェットミル等により微粉砕することで、例えば粒径D50(気流分散法によるレーザー回折法で得られた値(メジアン径))が3~7μmの微粉砕粉(合金粉末)を得る。なお、ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中およびジェットミル粉砕後の合金粉末に助剤として公知の潤滑剤を使用してもよい。
(1) Step of preparing alloy powder Metals or alloys of each element are prepared so as to have the above composition, and flake-shaped alloys are produced by using these by a strip casting method or the like.
The obtained flake-shaped alloy is pulverized with hydrogen, and the size of the coarsely pulverized powder is set to, for example, 1.0 mm or less. Next, by finely pulverizing the coarsely pulverized powder with a jet mill or the like, for example, the finely pulverized powder (alloy powder) having a particle size D50 (value (median diameter) obtained by the laser diffraction method by the air flow dispersion method) of 3 to 7 μm. ). A known lubricant may be used as an auxiliary agent for the coarsely pulverized powder before jet mill pulverization, and the alloy powder during and after jet mill pulverization.

(2)成形工程
得られた合金粉末を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内に該合金粉末を分散させたスラリーを注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。
(2) Molding step Molding is performed in a magnetic field using the obtained alloy powder to obtain a molded product. Molding in a magnetic field is a dry molding method in which a dry alloy powder is inserted into the cavity of a mold and molded while applying a magnetic field. A slurry in which the alloy powder is dispersed is injected into the cavity of the mold. Any known in-field molding method may be used, including a wet molding method in which the slurry is molded while discharging the dispersion medium.

(3)焼結工程
成形工程で得られた成形体を焼結することにより、焼結体(焼結磁石)を得る。本発明では、2段階の焼結(第1焼結工程と第2焼結工程)を行って焼結磁石を製造する。また、第1、第2焼結工程のいずれにおいても、一般的な焼結温度より低い焼結温度、一般的な焼結時間より長い焼結時間で焼結する。
(3) Sintering step A sintered body (sintered magnet) is obtained by sintering the molded body obtained in the molding step. In the present invention, a sintered magnet is manufactured by performing two-step sintering (first sintering step and second sintering step). Further, in both the first and second sintering steps, sintering is performed at a sintering temperature lower than the general sintering temperature and a sintering time longer than the general sintering time.

(3-1)第1焼結工程
第1焼結工程では、成形体を、1010℃~1030℃の範囲内にある第1焼結温度で、12時間~36時間の範囲内にある第1焼結時間で加熱する。これにより、第1焼結体が得られる。
なお、一般的な焼結条件は、焼結温度1040~1060℃で、焼結時間4時間~6時間程度である。つまり、本発明の第1焼結工程の第1焼結温度は、一般的な焼結温度に比べて10~50℃程度低く、第1焼結時間は、一般的な焼結時間に比べて2倍~8倍程度長い。
(3-1) First Sintering Step In the first sintering step, the molded body is first sintered in the range of 12 hours to 36 hours at the first sintering temperature in the range of 1010 ° C to 1030 ° C. Heat at the sintering time. As a result, the first sintered body is obtained.
The general sintering conditions are a sintering temperature of 1040 to 1060 ° C. and a sintering time of about 4 hours to 6 hours. That is, the first sintering temperature of the first sintering step of the present invention is about 10 to 50 ° C. lower than the general sintering temperature, and the first sintering time is compared with the general sintering time. It is about 2 to 8 times longer.

(3-2)第2焼結工程
第2焼結工程では、第1焼結体を、990℃~1020℃の範囲内にあり、かつ前記第1焼結温度よりも10℃以上低い第2焼結温度で焼結する。焼結時間(第2焼結時間)は、17時間~41時間の範囲にあり、かつ前記第1焼結時間よりも5時間以上長いで加熱する。これにより、第2焼結体(焼結磁石)が得られる。
本発明の第2焼結工程の焼結条件において、第2焼結温度は、一般的な焼結温度よりも低い第1焼結温度よりもさらに低く、第2焼結時間は、一般的な焼結時間よりも長い第1焼結時間よりもさらに長い。好ましくは、前記第2焼結工程において、前記第2焼結温度が、990℃~1010℃の範囲内にあり、かつ前記第1焼結温度よりも20℃以上低い。RHの含有量を低減しつつ、より高いHcJと高いH/HcJを有するR-T-B系焼結磁石を製造することができる。
(3-2) Second Sintering Step In the second sintering step, the first sintered body is in the range of 990 ° C to 1020 ° C, and the second sintering temperature is 10 ° C or more lower than the first sintering temperature. Sinter at the sintering temperature. The sintering time (second sintering time) is in the range of 17 hours to 41 hours, and the heating is performed longer than the first sintering time by 5 hours or more. As a result, a second sintered body (sintered magnet) is obtained.
In the sintering conditions of the second sintering step of the present invention, the second sintering temperature is further lower than the first sintering temperature, which is lower than the general sintering temperature, and the second sintering time is general. Longer than the sintering time Even longer than the first sintering time. Preferably, in the second sintering step, the second sintering temperature is in the range of 990 ° C to 1010 ° C and is 20 ° C or more lower than the first sintering temperature. It is possible to produce an RTB-based sintered magnet having a higher H cJ and a higher H k / H cJ while reducing the content of RH.

第1焼結工程と、第2焼結工程とは、連続して行ってもよい。つまり、第1焼結工程終了後、第1焼結温度から第2焼結温度まで冷却して、そのまま第2焼結工程を行ってもよい。また、第1焼結工程終了後に一旦室温まで冷却し、その後に第2焼結温度まで昇温して、第2焼結工程を行ってもよい。
なお、第1焼結工程および第2焼結工程のいずれにおいても、焼結時の雰囲気による酸化を防止するために、焼結は、真空雰囲気中または雰囲気ガス中で行うことが好ましい。雰囲気ガスは、ヘリウム、アルゴンなどの不活性ガスを用いることが好ましい。
The first sintering step and the second sintering step may be continuously performed. That is, after the first sintering step is completed, the second sintering step may be performed as it is by cooling from the first sintering temperature to the second sintering temperature. Further, after the completion of the first sintering step, the temperature may be once cooled to room temperature and then raised to the second sintering temperature to perform the second sintering step.
In both the first sintering step and the second sintering step, in order to prevent oxidation due to the atmosphere at the time of sintering, the sintering is preferably performed in a vacuum atmosphere or an atmosphere gas. As the atmosphere gas, it is preferable to use an inert gas such as helium or argon.

(4)熱処理工程
得られた第2焼結体(焼結磁石)に対し、磁気特性を向上させることを目的とした熱処理を行う。熱処理温度は、400℃~800℃の範囲内とする。熱処理時間は既知の条件を用いることができ、例えば60分~300分熱処理をすることができる。例えば、比較的低い温度(400℃以上600℃以下)のみでの熱処理(一段熱処理)をしてもよく、あるいは比較的高い温度(700℃以上800℃以下)で熱処理を行った後比較的低い温度(400℃以上600℃以下)で熱処理(二段熱処理)をしてもよい。好ましい条件は、730℃以上1020℃以下で5分から500分程度の熱処理を施し、冷却後(室温まで冷却後、または440℃以上550℃以下まで冷却後)、さらに440℃以上550℃以下で5分から500分程度熱処理をすることが挙げられる。熱処理雰囲気は、真空雰囲気あるいは不活性ガス(ヘリウムやアルゴンなど)で行うことが好ましい。
(4) Heat treatment step The obtained second sintered body (sintered magnet) is heat-treated for the purpose of improving the magnetic properties. The heat treatment temperature is in the range of 400 ° C. to 800 ° C. Known conditions can be used for the heat treatment time, and the heat treatment can be performed for, for example, 60 minutes to 300 minutes. For example, the heat treatment (one-step heat treatment) may be performed only at a relatively low temperature (400 ° C. or higher and 600 ° C. or lower), or the heat treatment may be performed at a relatively high temperature (700 ° C. or higher and 800 ° C. or lower) and then relatively low. Heat treatment (two-stage heat treatment) may be performed at a temperature (400 ° C. or higher and 600 ° C. or lower). Preferred conditions are heat treatment at 730 ° C. or higher and 1020 ° C. or lower for about 5 to 500 minutes, after cooling (after cooling to room temperature or cooling to 440 ° C. or higher and 550 ° C. or lower), and further at 440 ° C. or higher and 550 ° C. or lower. Heat treatment may be performed for about 1 to 500 minutes. The heat treatment atmosphere is preferably a vacuum atmosphere or an inert gas (helium, argon, etc.).

最終的な製品形状にするなどの目的で、得られた焼結磁石に研削などの機械加工を施してもよい。その場合、熱処理は機械加工前でも機械加工後でもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、既知の表面処理であってもよく、例えばAl蒸着や電気Niめっきや樹脂塗料などの表面処理を行うことができる。 The obtained sintered magnet may be machined by grinding or the like for the purpose of forming the final product shape. In that case, the heat treatment may be performed before or after machining. Further, the obtained sintered magnet may be surface-treated. The surface treatment may be a known surface treatment, and for example, surface treatment such as Al vapor deposition, electro-Ni plating, and resin paint can be performed.

このようにして得られた焼結磁石は、HcjとH/HcJが共に向上されていた。 In the sintered magnet thus obtained, both H cj and H k / H cJ were improved.

R-T-B系焼結磁石がおよそ表1のNo.M1~M4に示す組成となるように、各元素を秤量してストリップキャスト法により鋳造し、フレーク状の合金を得た。得られたフレーク状の合金を水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素雰囲気中で乾式粉砕し、D50が4.3μmの合金粉末を得た。得られた合金粉末の成分分析結果を表1のNo.M1~M4に示す。表1における各成分(O、N及びC以外)は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。また、O(酸素)含有量は、ガス融解-赤外線吸収法、N(窒素)含有量は、ガス融解-熱伝導法、C(炭素)含有量は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した。 The RTB-based sintered magnets are No. 1 in Table 1. Each element was weighed and cast by a strip casting method so as to have the compositions shown in M1 to M4 to obtain a flake-shaped alloy. The obtained flake-shaped alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then dehydrogenated by heating and cooling in a vacuum to 550 ° C. to obtain coarsely pulverized powder. Next, zinc stearate as a lubricant was added to the obtained coarsely pulverized powder in an amount of 0.04% by mass based on 100% by mass of the coarsely pulverized powder, mixed, and then used by an air flow type pulverizer (jet mill device). , Dry pulverization in a nitrogen atmosphere to obtain an alloy powder having a D50 of 4.3 μm. The component analysis results of the obtained alloy powder are shown in Table 1 No. It is shown in M1 to M4. Each component (other than O, N and C) in Table 1 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). The O (oxygen) content is a gas melting-infrared absorption method, the N (nitrogen) content is a gas melting-heat conduction method, and the C (carbon) content is a combustion-infrared absorption method. Used and measured.

前記合金粉末に、液体潤滑剤を微粉砕粉100質量%に対して、0.3質量%添加、混合した後、磁界中成形し、成形体を得た。なお、成形装置は、磁場印加方向と加圧法方向とが直行する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。 A liquid lubricant was added to the alloy powder in an amount of 0.3% by mass based on 100% by mass of the finely pulverized powder, mixed, and then molded in a magnetic field to obtain a molded product. As the molding apparatus, a so-called right-angled magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing method direction are orthogonal to each other was used.

得られた成形体を表2に示す条件で第一焼結工程、第二焼結工程及び熱処理工程を行いR-T-B系焼結磁石を得た。例えば表2のサンプルNo.1は、No.M1の合金粉末を成形して得られた成形体を1020℃の温度で24時間加熱した後室温まで冷却して第一焼結体を得た後、前記第一焼結体を1000℃の温度で36時間加熱した後室温まで冷却して第二焼結体を得た後、前記第二焼結体を800℃で2時間加熱した後、490℃まで降温し、さらに490℃で3時間加熱したものである。サンプルNo.2~24も同様に記載している。なお、サンプルNo.5~12は、第二焼結工程は行っていない。 The obtained molded body was subjected to a first sintering step, a second sintering step and a heat treatment step under the conditions shown in Table 2 to obtain an RTB-based sintered magnet. For example, the sample No. in Table 2 1 is No. The molded product obtained by molding the M1 alloy powder was heated at a temperature of 1020 ° C. for 24 hours and then cooled to room temperature to obtain a first sintered body, and then the first sintered body was heated to a temperature of 1000 ° C. After heating to room temperature for 36 hours and then cooling to room temperature to obtain a second sintered body, the second sintered body was heated at 800 ° C. for 2 hours, then lowered to 490 ° C., and further heated at 490 ° C. for 3 hours. It was done. Sample No. 2 to 24 are described in the same manner. In addition, sample No. In Nos. 5 to 12, the second sintering step was not performed.

得られたR-T-B焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B-Hトレーサによって磁気特性を測定した。その結果を表3に示す。なお、HはJ(磁化の大きさ)-H(磁界の強さ)曲線の第2象限において、Jが0.9×J(Jは残留磁化、J=B)の値になる位置のHの値である。 The obtained RTB sintered magnet was machined to prepare a sample having a length of 7 mm, a width of 7 mm, and a thickness of 7 mm, and the magnetic characteristics were measured by a BH tracer. The results are shown in Table 3. In addition, H k is a value of 0.9 × J r (J r is residual magnetization, J r = Br ) in the second quadrant of the J (magnitude of magnetization) −H (strength of magnetic field) curve. It is the value of H at the position where it becomes.

Figure 0007021577000001
Figure 0007021577000001

Figure 0007021577000002
Figure 0007021577000002

Figure 0007021577000003
Figure 0007021577000003

本明細書では、HcJとH/HcJの良否判断は、それぞれHcJ>1300kA/m、H/HcJ>85を満たすかどうかで判断される。発明は、HcJとH/HcJが共に高い、つまり「HcJ>1300kA/m、かつ、H/HcJ>85」の条件を満たすものを「本発明例」とし、HcJ、H/HcJの一方または両方が低いために「「HcJ>1300kA/m、かつ、H/HcJ>85」の条件を満たさないものを「比較例」とする。
表3に示すように、本発明例(サンプルNo.1~3)はいずれもHcJ>1300kA/m、かつ、H/HcJ>85を満たし、高いHcJと高いH/HcJを有している。 これに対し、サンプルNo.4は、第一焼結工程、第二焼結工程及び熱処理工程の条件は本発明の規定を満たしているが、組成が本発明の規定の範囲外であるため、高いH/HcJが得られているものの、HcJが大きく低下しているため、「HcJ>1300kA/m、かつ、H/HcJ>85」の条件を満たさず、高いHcJと高いH/HcJを共に得ることができなかった。
また、第一焼結工程の第1焼結温度及び第1焼結時間が本発明の範囲外で、さらに第二焼結工程を行っていないサンプルNo.5~12、第一焼結工程の第1温度が本発明の範囲外であるサンプルNo.13~16、第二焼結工程の第2焼結温度が本発明の範囲外であるNo.17~20、及び第一焼結工程と第二焼結工程の加熱温度が同じであるNo.21~24は、いずれも「HcJ>1300kA/m、かつ、H/HcJ>85」の条件を満たさず、高いHcJと高いH/HcJを共に得ることができなかった。
In the present specification, the quality judgment of H cJ and H k / H cJ is determined by whether or not H cJ > 1300 kA / m and H k / H cJ > 85 are satisfied, respectively. In the present invention, H cJ and H k / H cJ are both high, that is, those satisfying the condition of "H cJ > 1300 kA / m and H k / H cJ >85" are defined as "examples of the present invention", and H cJ , A "comparative example" is one that does not satisfy the condition of "H cJ > 1300 kA / m and H k / H cJ >85" because one or both of H k / H cJ is low.
As shown in Table 3, all of the examples of the present invention (Sample Nos. 1 to 3) satisfy H cJ > 1300 kA / m and H k / H cJ > 85, and have high H cJ and high H k / H cJ. have. On the other hand, sample No. In No. 4, the conditions of the first sintering step, the second sintering step and the heat treatment step satisfy the provisions of the present invention, but since the composition is outside the scope of the provisions of the present invention, a high Hk / H cJ is obtained. Although it has been obtained, since H cJ is significantly reduced, it does not satisfy the condition of "H cJ > 1300 kA / m and H k / H cJ >85", and high H cJ and high H k / H cJ. Could not be obtained together.
Further, the sample No. 1 in which the first sintering temperature and the first sintering time of the first sintering step are outside the range of the present invention and the second sintering step is not performed is further performed. 5 to 12, sample No. 1 in which the first temperature of the first sintering step is outside the range of the present invention. No. 13-16, the second sintering temperature of the second sintering step is outside the range of the present invention. No. 17 to 20 and No. 1 having the same heating temperature in the first sintering step and the second sintering step. None of 21 to 24 satisfied the condition of "H cJ > 1300 kA / m and H k / H cJ >85", and both high H cJ and high H k / H cJ could not be obtained.

Claims (2)

R:29.5~35.0質量%(Rは希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む)、
B:0.80~0.91質量%、
Ga:0.2~1.0質量%、および
T:61.5~69.5質量%(TはFeとCoであり、Tの90~100質量%がFeである)を含有し、
下記式(1)を満足するR-T-B系焼結磁石の製造方法であって、

[T]/55.85>14[B]/10.8 (1)
([T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量である)

合金粉末を準備する工程と、
前記合金粉末を成形して成形体を得る成形工程と、
前記成形体を、1010℃~1030℃の範囲内にある第1焼結温度で、12時間~36時間の範囲内にある第1焼結時間で加熱して、第1焼結体を得る第1焼結工程と、
前記第1焼結体を、990℃~1020℃の範囲内にあり、かつ前記第1焼結温度よりも10℃以上低い第2焼結温度で、17時間~41時間の範囲にあり、かつ前記第1焼結時間よりも5時間以上長い第2焼結時間で加熱して第2焼結体を得る第2焼結工程と、
前記第2焼結体を、400℃~800℃の範囲内にある熱処理温度で加熱する熱処理工程と、を含む、R-T-B系焼結磁石の製造方法。
R: 29.5 to 35.0% by mass (R is at least one rare earth element and contains at least one of Nd and Pr),
B: 0.80 to 0.91% by mass,
It contains Ga: 0.2 to 1.0% by mass, and T: 61.5 to 69.5% by mass (T is Fe and Co, and 90 to 100% by mass of T is Fe).
A method for manufacturing an RTB-based sintered magnet that satisfies the following formula (1).

[T] /55.85>14 [B] /10.8 (1)
([T] is the content of T shown in% by mass, and [B] is the content of B shown in% by mass)

The process of preparing alloy powder and
The molding process of molding the alloy powder to obtain a molded body, and
The molded body is heated at a first sintering temperature in the range of 1010 ° C. to 1030 ° C. and a first sintering time in the range of 12 hours to 36 hours to obtain a first sintered body. 1 sintering process and
The first sintered body is in the range of 990 ° C to 1020 ° C, and is in the range of 17 hours to 41 hours at the second sintering temperature which is 10 ° C or more lower than the first sintering temperature. In the second sintering step of obtaining a second sintered body by heating in a second sintering time that is 5 hours or more longer than the first sintering time.
A method for producing an RTB-based sintered magnet, which comprises a heat treatment step of heating the second sintered body at a heat treatment temperature in the range of 400 ° C. to 800 ° C.
前記第2焼結工程において、前記第2焼結温度が、990℃~1010℃の範囲内にあり、かつ前記第1焼結温度よりも20℃以上低い、請求項1に記載のR-T-B系焼結磁石の製造方法。 The RT according to claim 1, wherein in the second sintering step, the second sintering temperature is in the range of 990 ° C to 1010 ° C and is 20 ° C or more lower than the first sintering temperature. -A method for manufacturing a B-based sintered magnet.
JP2018055048A 2018-03-22 2018-03-22 Manufacturing method of RTB-based sintered magnet Active JP7021577B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018055048A JP7021577B2 (en) 2018-03-22 2018-03-22 Manufacturing method of RTB-based sintered magnet
CN201910211946.5A CN110299235B (en) 2018-03-22 2019-03-20 Method for producing R-T-B sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055048A JP7021577B2 (en) 2018-03-22 2018-03-22 Manufacturing method of RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2019169560A JP2019169560A (en) 2019-10-03
JP7021577B2 true JP7021577B2 (en) 2022-02-17

Family

ID=68026413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055048A Active JP7021577B2 (en) 2018-03-22 2018-03-22 Manufacturing method of RTB-based sintered magnet

Country Status (2)

Country Link
JP (1) JP7021577B2 (en)
CN (1) CN110299235B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117099180A (en) * 2021-03-29 2023-11-21 株式会社博迈立铖 Method for producing R-T-B sintered magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232012A (en) 1998-12-11 2000-08-22 Shin Etsu Chem Co Ltd Manufacture of rare-earth magnet
JP2016184689A (en) 2015-03-26 2016-10-20 日立金属株式会社 Method for producing r-t-b-based sintered magnet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252402A (en) * 1986-08-29 1988-10-19 Shin Etsu Chem Co Ltd Manufacture of rare earth permanent magnet
JPH07335468A (en) * 1994-06-06 1995-12-22 Shin Etsu Chem Co Ltd Manufacture of rare-earth magnet
JP4547840B2 (en) * 2001-07-27 2010-09-22 Tdk株式会社 Permanent magnet and method for manufacturing the same
JP4242716B2 (en) * 2003-06-30 2009-03-25 本田技研工業株式会社 Manufacturing method of inclined composite material
JP5210585B2 (en) * 2007-09-28 2013-06-12 株式会社アルバック Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method
KR101087574B1 (en) * 2009-02-26 2011-11-28 한양대학교 산학협력단 Fabrication method of sintered magnetic by cyclic heat treatment and sintered magnetic prepared thereby
CN103426624B (en) * 2013-08-14 2015-12-02 林建强 The preparation method of Nd-Fe-B permanent magnet
CN106030736B (en) * 2014-03-26 2018-04-27 日立金属株式会社 The manufacture method of R-T-B based sintered magnets
CN104952581A (en) * 2015-07-16 2015-09-30 浙江中杭新材料股份有限公司 Preparation method of NdFeB (neodymium iron boron) magnetic materials
WO2017110680A1 (en) * 2015-12-24 2017-06-29 日立金属株式会社 Method of producing r-t-b sintered magnet
CN106128673B (en) * 2016-06-22 2018-03-30 烟台首钢磁性材料股份有限公司 A kind of Sintered NdFeB magnet and preparation method thereof
JP6733398B2 (en) * 2016-07-27 2020-07-29 日立金属株式会社 Method for manufacturing RTB-based sintered magnet
JP6860808B2 (en) * 2016-08-17 2021-04-21 日立金属株式会社 Manufacturing method of RTB-based sintered magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232012A (en) 1998-12-11 2000-08-22 Shin Etsu Chem Co Ltd Manufacture of rare-earth magnet
JP2016184689A (en) 2015-03-26 2016-10-20 日立金属株式会社 Method for producing r-t-b-based sintered magnet

Also Published As

Publication number Publication date
JP2019169560A (en) 2019-10-03
CN110299235A (en) 2019-10-01
CN110299235B (en) 2024-01-30

Similar Documents

Publication Publication Date Title
JP6614084B2 (en) Method for producing R-Fe-B sintered magnet
US10923256B2 (en) R-T-B-based sintered magnet and method for producing same
WO2016133071A1 (en) Method for producing r-t-b system sintered magnet
WO2015020182A1 (en) R-t-b type sintered magnet, and motor
JP2017147425A (en) R-iron-boron based sintered magnet and method for manufacturing the same
JP6798546B2 (en) Manufacturing method of RTB-based sintered magnet
JP6500907B2 (en) Method of manufacturing RTB based sintered magnet
JP6451900B2 (en) R-Fe-B sintered magnet and method for producing the same
JPWO2019181249A1 (en) Manufacturing method of RTB-based sintered magnet
JP6443757B2 (en) Method for producing RTB-based sintered magnet
JP6541038B2 (en) RTB based sintered magnet
CN110431646B (en) Method for producing R-T-B sintered magnet
JP6213697B1 (en) Method for producing RTB-based sintered magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP6474043B2 (en) R-T-B sintered magnet
JP7021578B2 (en) Manufacturing method of RTB-based sintered magnet
JP7021577B2 (en) Manufacturing method of RTB-based sintered magnet
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP6760160B2 (en) Manufacturing method of RTB-based sintered magnet
WO2019065481A1 (en) Method for manufacturing r-t-b-based sintered magnet
JP7215044B2 (en) Method for producing RTB based sintered magnet
JP6702215B2 (en) R-T-B system sintered magnet
CN111724957A (en) R-T-B sintered magnet
JP7228097B2 (en) Method for producing RTB based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7021577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350