JPH07335468A - Manufacture of rare-earth magnet - Google Patents

Manufacture of rare-earth magnet

Info

Publication number
JPH07335468A
JPH07335468A JP6123777A JP12377794A JPH07335468A JP H07335468 A JPH07335468 A JP H07335468A JP 6123777 A JP6123777 A JP 6123777A JP 12377794 A JP12377794 A JP 12377794A JP H07335468 A JPH07335468 A JP H07335468A
Authority
JP
Japan
Prior art keywords
magnet
sintering
density
coercive force
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6123777A
Other languages
Japanese (ja)
Inventor
Tekio Kusunoki
的生 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6123777A priority Critical patent/JPH07335468A/en
Publication of JPH07335468A publication Critical patent/JPH07335468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide a high-performance Nd magnet, which has an intrinsic residual magnetization in a high density and moreover, has a full coercive force from the viewpoint of practical use, by the establishment of a new method of manufacturing the magnet. CONSTITUTION:In a method of manufacturing a rare-earth magnet consisting of a compositional formula, Rx(Fe1-aCoa)yBzTb (Here, the R is at least one kind of an element or the mixed element of two kinds or more of elements out of rare-earth elements containing Y, the T is one kind or more of a transition metal or transition metals out of transition metals and (x), (y), (z), the (a) and the (b) are respectively used on the conditions of 11<=x<=16, 70<=y<=85, 4<=z<=9, 0<=a<=0.2 and 0<=b<=4.), a sintering is conducted to the degree of vacuum of 85 to 95% in a vacuum and subsequently a sintering is conducted at the atmosphere pressure of 50 to 500 in an inert gas atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類永久磁石、特には
Nd 系焼結磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet, particularly an Nd based sintered magnet.

【0002】[0002]

【従来の技術】希土類焼結磁石はその高い磁気特性のた
めにフェライト等に比べて非常に高価であるにも関わら
ず近年高い需要を示している。その中でも特にNd 系磁
石はSm 系磁石に比べて磁気特性が高く、価格も安いこ
とから希土類磁石の主流となりつつある。Nd 系磁石の
磁気特性を向上させるためには残留磁化を上昇させれば
よいが、Nd 系磁石は保磁力の温度特性が悪いため、で
きるだけ高い保磁力を維持したまま残留磁化を上昇させ
ることが必要である。残留磁化を上昇させるには磁石の
密度を真密度に近づけてやればよいが、通常行なわれる
真空中或は減圧から大気圧までの不活性ガス雰囲気下で
の焼結操作によれば、焼結温度を上昇させたり、焼結時
間を長くすれば磁石の密度が上がり真密度に近づき残留
磁化が上昇するが、焼結粒子が肥大化して保磁力が減少
するために安易に密度を上昇させることができず、結果
として実用的なNd 系磁石の残留磁化は真密度での残留
磁化よりも低いものであった。保磁力を余り減少させず
に焼結体の密度を真密度に近づける方法として例えば、
圧力 500〜1300気圧で熱間静水圧プレスを行なう事によ
り密度を上昇させ残留磁化を上昇させるという方法(特
公平 4-45573号参照)があるが、この方法では非常に高
い圧力を用いるので装置が非常に高価となる、高圧のた
め装置の取扱いに細心の注意を要する、処理時間が長く
生産効率が非常に悪い等の改良すべき問題点を含んでい
る。
2. Description of the Related Art Sintered rare earth magnets have recently been in high demand due to their high magnetic properties, although they are much more expensive than ferrites and the like. Among them, Nd magnets are becoming the mainstream of rare earth magnets because they have higher magnetic characteristics and are cheaper than Sm magnets. In order to improve the magnetic characteristics of the Nd-based magnet, it is sufficient to increase the remanent magnetization. However, since the Nd-based magnet has poor temperature characteristics of coercive force, it is possible to increase the remanent magnetization while maintaining as high a coercive force as possible. is necessary. In order to increase the remanent magnetization, it is sufficient to bring the density of the magnet close to the true density, but according to the usual sintering operation in vacuum or in an inert gas atmosphere from reduced pressure to atmospheric pressure, sintering is performed. If the temperature is raised or the sintering time is lengthened, the density of the magnet rises and approaches the true density, and the remanent magnetization rises.However, the sintered particles become enlarged and the coercive force decreases, so the density should be increased easily. As a result, the remanent magnetization of a practical Nd-based magnet was lower than that at the true density. As a method of bringing the density of the sintered body close to the true density without significantly reducing the coercive force, for example,
There is a method of increasing the density and residual magnetization by performing hot isostatic pressing at a pressure of 500 to 1300 atm (see Japanese Examined Patent Publication No. 4-45573), but this method uses a very high pressure, so the equipment However, there are problems to be improved, such as being very expensive, requiring careful handling of the device due to the high pressure, long processing time, and very poor production efficiency.

【0003】[0003]

【発明が解決しようとする課題】製造されたNd 系磁石
の密度が低いために起こる弊害は、その磁石が本来持つ
残留磁化よりも低いだけに留まらず、錆の発生、表面処
理被膜の密着性不良、機械的強度の不足等、磁気特性以
外の性能にも悪影響を及ぼす事となる。本発明は、この
ような問題点を解決して、新規な製造方法を確立するこ
とにより高密度で本来の残留磁化を有し、しかも実用上
充分な保磁力を有する高性能Nd 系磁石を提供しようと
するものである。
The problems caused by the low density of the manufactured Nd type magnet are not only lower than the remanent magnetization originally possessed by the magnet, but also the generation of rust and the adhesion of the surface-treated coating. Performances other than magnetic properties such as defects and lack of mechanical strength will be adversely affected. The present invention solves these problems and establishes a new manufacturing method to provide a high-performance Nd-based magnet having a high density, original remanent magnetization, and practically sufficient coercive force. Is what you are trying to do.

【0004】[0004]

【課題を解決するための手段】本発明者は、かかる課題
を解決するために、Nd 系磁石の製造条件、特に焼結条
件を鋭意検討した結果、前記のような 500〜1300気圧も
の超高圧は必要ではなく、真空から 500気圧までの雰囲
気制御が可能な熱処理炉で、真空中で真密度の85〜95%
まで焼結を行ない、引き続き不活性ガス雰囲気中50〜 5
00気圧にて焼結を行なうことにより、高密度で残留磁化
が高く、実用上充分な保磁力を有するNd 系磁石を製造
することが可能となり、本発明を完成させた。本発明の
要旨は、組成式Rx(Fe1-aCoayzb (ここにR
はYを含む希土類元素の内少なくとも1種の元素または
2種以上の混合元素、Tは遷移金属の内の1種以上、11
≦x≦16、70≦y≦85、4≦z≦9、0≦a≦ 0.2、0
≦b≦4)からなる希土類磁石の製造方法において、真
空中で真密度の85〜95%まで焼結を行ない、引き続き不
活性ガス雰囲気中50〜 500気圧にて焼結を行なうことを
特徴とする希土類磁石の製造方法にある。
In order to solve such a problem, the present inventor diligently studied the manufacturing conditions of Nd-based magnets, especially the sintering conditions, and as a result, the ultrahigh pressure of 500 to 1300 atm as described above was obtained. Is a heat treatment furnace that can control the atmosphere from vacuum to 500 atm. 85 to 95% of true density in vacuum
Sintering to 50-50 in an inert gas atmosphere.
By sintering at 00 atm, it becomes possible to manufacture an Nd-based magnet having a high density, a high residual magnetization, and a practically sufficient coercive force, thus completing the present invention. The gist of the present invention is that the composition formula R x (Fe 1-a Co a ) y B z T b (where R
Is at least one kind of rare earth element including Y or a mixed element of two or more kinds, and T is one or more kinds of transition metals, 11
≤x≤16, 70≤y≤85, 4≤z≤9, 0≤a≤0.2,0
In the method for producing a rare earth magnet of ≦ b ≦ 4), the sintering is performed to 85 to 95% of the true density in a vacuum, and then the sintering is performed at 50 to 500 atm in an inert gas atmosphere. There is a method of manufacturing a rare earth magnet.

【0005】以下、本発明を詳細に説明する。本発明が
適用される希土類永久磁石合金の組成式はRx(Fe1-a
oayzb で表わされ、ここにRはYを含むLa、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb
及びLu の内から選択される1種の元素または2種以上
の希土類元素であり、TはAl、Si、Ti、V、 Cr、Mn、N
i、Cu、Zn、Ga、Zr、Nb、Mo、Sn、Hf、Ta、Wの内から選
択される1種または2種以上の遷移金属元素である。原
子比xは11≦x≦16、yは70≦y≦85、zは4≦z≦
9、aは0≦a≦ 0.2、bは0≦b≦4である。この組
成においてRの量Xが11未満ではα−Fe の析出があり
保磁力が著しく減少するために好ましくなく、16を越え
ると残留磁化が低くなるために好ましくない。Bの量z
は4未満ではNd2Fe17 相の析出により保磁力が著しく
減少するので好ましくなく、9を越えると非磁性相であ
るNd Fe44 相の量が増え残留磁化が減少するために
好ましくない。aはFe とCo の比を表すものであり、
Fe をCo で置換することによって残留磁化を上昇させ
ることができるが、aの量が0.2 を越えると保磁力が著
しく減少するために好ましくない。添加元素である遷移
金属元素Tは保磁力を上昇させるために用いられるが、
bが4を越えると保磁力を上昇させる効果が弱まり、残
留磁化の減少が著しいので好ましくない。
The present invention will be described in detail below. The composition formula of the rare earth permanent magnet alloy to which the present invention is applied is R x (Fe 1-a C
o a ) y B z T b , where R includes Y, La, C
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb
And one or more rare earth elements selected from Lu and T is Al, Si, Ti, V, Cr, Mn, N
It is one or more kinds of transition metal elements selected from i, Cu, Zn, Ga, Zr, Nb, Mo, Sn, Hf, Ta and W. Atomic ratio x is 11 ≦ x ≦ 16, y is 70 ≦ y ≦ 85, z is 4 ≦ z ≦
9, a is 0 ≦ a ≦ 0.2, and b is 0 ≦ b ≦ 4. In this composition, if the amount X of R is less than 11, it is not preferable because α-Fe is precipitated and the coercive force is remarkably reduced, and if it exceeds 16 the remanent magnetization becomes low, which is not preferable. Amount of B z
Is less than 4, it is not preferable because the coercive force is remarkably reduced by precipitation of the Nd 2 Fe 17 phase, and if it exceeds 9, the amount of the nonmagnetic phase Nd Fe 4 B 4 phase is increased and the residual magnetization is decreased, which is not preferable. . a represents the ratio of Fe and Co, and
Although the residual magnetization can be increased by substituting Fe for Co, if the amount of a exceeds 0.2, the coercive force is significantly reduced, which is not preferable. The transition metal element T, which is an additional element, is used to increase the coercive force,
If b exceeds 4, the effect of increasing the coercive force is weakened and the remanent magnetization is significantly reduced, which is not preferable.

【0006】次に本発明の製造方法を述べる。Nd 系磁
石の焼結は真空中、或は減圧から大気圧の不活性ガス雰
囲気下で焼結されるのが一般的であったが、保磁力を減
少させずにNd 系磁石の高密度化を図り残留磁化を上昇
させるには、真空中で真密度の85〜95%まで焼結を行な
い、引き続き不活性ガス雰囲気中50〜 500気圧にて焼結
するような二つの異なる雰囲気下で連続して焼結を行な
うことが非常に効果があることを見出した。先ず、上記
組成となるように原料金属を真空中或は不活性ガス雰囲
気中にて高周波溶解炉にて溶解鋳造する。次に、作製し
た合金をジョウクラッシャー、ブラウンミル等で粗粉砕
を行なった後、ジェットミル等で微粉砕を行なう。ここ
で得られた平均粒径1〜20μmの粉末を約 15kOeの磁場
中にて1〜2Ton/cm2 の圧力にて成形し、密度が3〜5
g/ccの成形体を得る。
Next, the manufacturing method of the present invention will be described. Nd-based magnets are generally sintered in vacuum or in an inert gas atmosphere from reduced pressure to atmospheric pressure, but the density of Nd-based magnets is increased without decreasing the coercive force. In order to increase the remanence, the sintering should be performed in vacuum to 85 to 95% of the true density and then continuously in two different atmospheres such as 50 to 500 atm in an inert gas atmosphere. Then, it was found that the sintering is very effective. First, the raw material metal is melt-cast in a high-frequency melting furnace in a vacuum or in an inert gas atmosphere so as to have the above composition. Next, the produced alloy is coarsely pulverized by a jaw crusher, a brown mill or the like, and then finely pulverized by a jet mill or the like. The powder having an average particle size of 1 to 20 μm obtained here was molded in a magnetic field of about 15 kOe at a pressure of 1 to 2 Ton / cm 2 and a density of 3 to 5
A g / cc molded body is obtained.

【0007】以上のようにして得られた成形体に本発明
の最大の特徴である特定条件の焼結を施す。即ち、 900
〜1150℃の真空中にて0.05〜10時間焼結を行ない、磁石
にオープンポアの無くなる真密度の85〜95%まで磁石の
密度を上昇させておき、引き続き不活性ガスを50〜 500
気圧まで導入し 800℃〜1100℃の温度で 0.1〜5時間焼
結を行なう。ここで真空中での焼結は、磁石オープンポ
アを無くすことが目的であり、 900℃未満の温度では焼
結を10時間以上行なっても真密度の85〜95%まで磁石密
度を上昇させることができずオープンポアが無くならな
いため好ましくなく、1150℃を越える温度で焼結を行な
うと0.05時間でも焼結粒子が異常に成長し、結果として
保磁力の急激な減少につながるため好ましくない。また
0.05時間未満では焼結反応を綿密に制御して密度を所定
の範囲に収めることが困難であるので好ましくなく、10
時間を越えると生産性に著しい支障をきたすため好まし
くない。
The compact thus obtained is subjected to sintering under the specific conditions, which is the greatest feature of the present invention. Ie 900
Sinter in a vacuum of ~ 1150 ℃ for 0.05-10 hours, increase the density of the magnet to 85-95% of the true density without open pores in the magnet, and then add an inert gas of 50-500%.
Introduce to atmospheric pressure and sinter at a temperature of 800 ℃ to 1100 ℃ for 0.1 to 5 hours. Here, the purpose of sintering in vacuum is to eliminate the magnet open pores. At temperatures below 900 ° C, the magnet density can be increased to 85 to 95% of the true density even after 10 hours or more of sintering. However, it is not preferable because the open pores do not disappear, and when sintering is performed at a temperature higher than 1150 ° C., sintered particles grow abnormally even for 0.05 hours, resulting in a rapid decrease in coercive force, which is not preferable. Also
If it is less than 0.05 hours, it is difficult to control the sintering reaction closely to keep the density within a predetermined range, which is not preferable.
If the time is exceeded, productivity will be significantly impaired, which is not preferable.

【0008】後半の不活性ガスを50気圧〜 500気圧まで
導入した時の焼結では、50気圧未満では密度の上昇に時
間がかかり粒成長を伴うため保磁力の減少を引き起こす
ので好ましくなく、 500気圧を越えても密度を上げる効
果は 500気圧未満の場合と変わらず機器が大型化してし
まうだけであるので好ましくない。 800℃未満では密度
の上昇速度が遅く生産性に著しい支障をきたすため好ま
しくなく、1100℃を越えると急激に密度化と焼結粒子の
肥大化が進行し保磁力を著しく減少させるため好ましく
ない。また、焼結時間が 0.1時間未満では不活性ガスの
圧力により密度化促進の効果が少ないので好ましくな
く、5時間を越えると粒成長により保磁力の減少や生産
性が減少するため、0.1 〜5時間が良い。このようにし
て製造された磁石は、通常の焼結によって製造された磁
石に較べて高い密度、高い残留磁化を有していた。ま
た、保磁力の減少は 200G程度と非常に少なく実用上充
分な保磁力を有しており、本発明の処理は保磁力の減少
が殆どなしに磁石のエネルギー積を向上させる上で非常
に有効であった。
In the latter half of sintering when introducing an inert gas up to 50 atm to 500 atm, if the pressure is less than 50 atm, it takes time for the density to rise and the grain growth is accompanied with the decrease of coercive force. Even if the pressure exceeds the atmospheric pressure, the effect of increasing the density is not the same as the case where the pressure is less than 500 atmospheric pressure, since the size of the device is increased. If the temperature is lower than 800 ° C, the rate of increase in density is slow and the productivity is remarkably hindered, and if it is higher than 1100 ° C, the density and the sintered particles are rapidly enlarged and the coercive force is significantly decreased, which is not preferable. Further, if the sintering time is less than 0.1 hours, the effect of accelerating the densification is small due to the pressure of the inert gas, which is not preferable, and if it exceeds 5 hours, the coercive force and the productivity are reduced due to the grain growth, so that 0.1 to 5 is required. Good time The magnet manufactured in this way had a higher density and a higher remanent magnetization than the magnet manufactured by ordinary sintering. Further, the coercive force is reduced to about 200 G, which is very small and has a practically sufficient coercive force, and the treatment of the present invention is very effective in improving the energy product of the magnet with almost no decrease in coercive force. Met.

【0009】[0009]

【作用】本発明と従来の技術との大きな違いは焼結処理
を連続して行なうことと不活性ガスの圧力範囲であり、
特公平4-45573 号では一旦焼結して冷却したものを再び
加熱して 500〜1300気圧もの高い圧力を用いて熱間静水
圧プレス処理を施す事により高密度化を達成している
が、本発明では、その1/3以下の圧力で同等の効果を
得ている。この違いは連続処理を行なうか、一旦冷却し
て再処理を行なうかの違いに集約され、本発明では連続
処理であるために、最初の焼結時に生成された液相が後
半の不活性ガス圧力による高密度化処理時にも存在し高
密度化を促進するように働くのに対し、特公平4-45573
号では一次焼結の後一旦冷却するために液相が種々の金
属間化合物に変化してしまうために二次焼結である熱間
静水圧プレス処理での液相の量や質が一次焼結での液相
とは異なる物であるために容易に密度化が進行せず 500
〜1300気圧もの高い圧力が必要となるのではないかと推
測される。
The major difference between the present invention and the prior art is the continuous sintering process and the pressure range of the inert gas.
In Japanese Examined Patent Publication No. 4-45573, high density is achieved by heating again after sintering and cooling and performing hot isostatic pressing using a pressure as high as 500 to 1300 atm. In the present invention, the same effect is obtained at a pressure of 1/3 or less. This difference is concentrated on the difference between continuous treatment or once cooling and retreatment. In the present invention, since the treatment is continuous, the liquid phase generated during the first sintering is the latter half of the inert gas. It exists even during densification processing by pressure, and acts to promote densification, while in Japanese Patent Publication No. 4-45573.
In No. 1, the liquid phase changes to various intermetallic compounds after being cooled once after the primary sintering, so the amount and quality of the liquid phase in the hot isostatic pressing process, which is secondary sintering, is Since it is different from the liquid phase in binding, densification does not easily proceed 500
It is speculated that a high pressure of ~ 1300 atm may be required.

【0010】[0010]

【実施例】以下、本発明の具体的実態態様を実施例を挙
げて説明するが、本発明はこれらに限定されるものでは
ない。 (実施例1、比較例1〜3)組成がNd 13.4−Dy 0.6
−Fe 74.5−Co 5−B 6−Al 0.5 (原子%)とな
る合金を、純度99.9重量%以上の原料各金属を誘導加熱
高周波溶解炉にてAr 雰囲気中で溶解し、鋳造してイン
ゴットを作製した。この合金をAr 雰囲気中でジョウク
ラッシャー、ブラウンミルを用いて粗粉砕し、その後窒
素ガスを用いたジェットミルで平均粒径5μmの微粉末
を得た。この微粉末を方位を揃えるために約15kOe の磁
場中で、磁場に対して垂直な方向に約2Ton/cm2 の圧力
にて加圧成形して成形体を得た。この成形体を前段焼結
として真空中にて1060℃で10分間焼結を行ない、引き続
き後段焼結としてAr 圧力を30、200、600気圧の3水準に
設定した雰囲気中で1060℃で30分間焼結を行なった。前
段焼結での密度確認のために上記と同様に成形体を真空
中にて1060℃で10分間焼結のみを行なった磁石の密度を
測定したところ7.1g/cc であり、真密度の約93%であっ
た。このようにして得られた焼結体をAr 雰囲気中で 6
00℃で2時間時効処理を施して夫々比較例1(30 気圧)
、実施例1(200気圧) 、比較例2(600気圧) とし磁石
特性を測定して表1に示した。別に上記のようにして得
られた同一組成の成形体を真空中にて1100℃で1時間焼
結を施したのち上記時効処理を施した試料を比較例3と
し、その結果を表1に併記した。表1から明らかなよう
に本発明の方法によれば、比較的低圧で殆ど保磁力の低
下を招かずに密度、及び残留磁化を効率よく上昇させる
ことができ、結果としてエネルギー積を上昇させること
ができた。また本発明の方法によって得られた磁石は、
割れ欠けが少なく、強度が上昇していた。
[Examples] The following will describe specific embodiments of the present invention with reference to Examples, but the present invention is not limited thereto. (Example 1, Comparative Examples 1 to 3) The composition is Nd 13.4-Dy 0.6.
-Fe 74.5-Co 5-B 6-Al 0.5 (atomic%) alloy was melted in the induction heating high frequency melting furnace in the Ar heating atmosphere to melt each raw material metal with a purity of 99.9% by weight or more, and was cast into an ingot. It was made. This alloy was coarsely crushed using a jaw crusher and a brown mill in an Ar atmosphere, and then fine powder having an average particle size of 5 μm was obtained by a jet mill using nitrogen gas. This fine powder was pressure-molded in a magnetic field of about 15 kOe in a direction perpendicular to the magnetic field at a pressure of about 2 Ton / cm 2 in order to make the orientation uniform, to obtain a molded body. This compact was sintered as a first-stage sintering at 1060 ° C in vacuum for 10 minutes, and then as a second-stage sintering at 1060 ° C for 30 minutes in an atmosphere where the Ar pressure was set to three levels of 30, 200, and 600 atm. Sintering was performed. In order to confirm the density in the first-stage sintering, the density of the magnet was 7.1 g / cc, which was 7.1 g / cc when the molded body was only sintered in vacuum at 1060 ° C for 10 minutes in the same manner as above. It was 93%. The sintered body obtained in this way was
Comparative example 1 (30 atm) after aging treatment at 00 ℃ for 2 hours
Example 1 (200 atm) and Comparative Example 2 (600 atm) were used to measure the magnet characteristics, which are shown in Table 1. Separately, a molded article of the same composition obtained as described above was sintered in vacuum at 1100 ° C. for 1 hour and then subjected to the aging treatment as Comparative Example 3, and the results are also shown in Table 1. did. As is clear from Table 1, according to the method of the present invention, the density and the residual magnetization can be efficiently increased at a relatively low pressure with almost no decrease in the coercive force, and as a result, the energy product can be increased. I was able to. Further, the magnet obtained by the method of the present invention,
There were few cracks and chips, and the strength was increased.

【0011】(実施例2、比較例4)組成式Nd 13.6−
Dy 0.4 −Fe 74−Co 2−B 6−Ga 0.5 −Mo 0.5
(原子%)となる合金を磁石原料とした以外は全て実
施例1、比較例3の処理条件と同一として磁石を作製し
夫々を実施例2、比較例4とし、磁気特性を測定して表
1に併記した。
(Example 2, Comparative Example 4) Composition formula Nd 13.6-
Dy 0.4 -Fe 74 -Co 2-B 6 -Ga 0.5 -Mo 0.5
Magnets were produced under the same processing conditions as in Example 1 and Comparative Example 3 except that the alloy (atom%) was used as the magnet raw material. It was also written in 1.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明の製造方法により磁石の保磁力を
減ずる事なく磁石の密度、残留磁化を高めた高性能の希
土類焼結磁石を提供することができ、産業上その利用価
値は極めて高い。
By the manufacturing method of the present invention, it is possible to provide a high-performance rare earth sintered magnet having an increased magnet density and residual magnetization without reducing the coercive force of the magnet, and its industrial utility value is extremely high. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成式Rx(Fe1-aCoayzb (ここ
にRはYを含む希土類元素の内少なくとも1種の元素ま
たは2種以上の混合元素、Tは遷移金属の内の1種以
上、11≦x≦16、70≦y≦85、4≦z≦9、0≦a≦
0.2、0≦b≦4)からなる希土類磁石の製造方法にお
いて、真空中で真密度の85〜95%まで焼結を行ない、引
き続き不活性ガス雰囲気中50〜 500気圧にて焼結を行な
うことを特徴とする希土類磁石の製造方法。
1. A composition formula R x (Fe 1-a Co a ) y B z T b (wherein R is at least one element of rare earth elements including Y or a mixed element of two or more elements, and T is a transition element). One or more of metals, 11 ≦ x ≦ 16, 70 ≦ y ≦ 85, 4 ≦ z ≦ 9, 0 ≦ a ≦
0.2, 0 ≤ b ≤ 4) In the method for producing a rare earth magnet, the sintering should be performed to 85 to 95% of the true density in vacuum, and then to 50 to 500 atm in an inert gas atmosphere. And a method for manufacturing a rare earth magnet.
JP6123777A 1994-06-06 1994-06-06 Manufacture of rare-earth magnet Pending JPH07335468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6123777A JPH07335468A (en) 1994-06-06 1994-06-06 Manufacture of rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6123777A JPH07335468A (en) 1994-06-06 1994-06-06 Manufacture of rare-earth magnet

Publications (1)

Publication Number Publication Date
JPH07335468A true JPH07335468A (en) 1995-12-22

Family

ID=14869030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6123777A Pending JPH07335468A (en) 1994-06-06 1994-06-06 Manufacture of rare-earth magnet

Country Status (1)

Country Link
JP (1) JPH07335468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011113A3 (en) * 1998-12-11 2000-11-15 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth permanent magnet
JP2019169560A (en) * 2018-03-22 2019-10-03 日立金属株式会社 Manufacturing method of r-t-b-based sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011113A3 (en) * 1998-12-11 2000-11-15 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth permanent magnet
JP2019169560A (en) * 2018-03-22 2019-10-03 日立金属株式会社 Manufacturing method of r-t-b-based sintered magnet

Similar Documents

Publication Publication Date Title
EP0126802B1 (en) Process for producing of a permanent magnet
US5228930A (en) Rare earth permanent magnet power, method for producing same and bonded magnet
JPH0521218A (en) Production of rare-earth permanent magnet
JP2904667B2 (en) Rare earth permanent magnet alloy
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
EP0595477A1 (en) Method of manufacturing powder material for anisotropic magnets and method of manufacturing magnets using the powder material
JPH01219143A (en) Sintered permanent magnet material and its production
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2000114016A (en) Permanent magnet and manufacture thereof
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JP3860372B2 (en) Rare earth magnet manufacturing method
JPH0776708A (en) Production of anisotropic rare earth alloy powder for permanent magnet
KR20220115773A (en) Method of manufacturing anisotropic rare earth bulk magnet and anisotropic rare earth bulk magnet therefrom
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH07335468A (en) Manufacture of rare-earth magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH0146574B2 (en)
JPH04247604A (en) Rare earth-fe-co-b anisotropic magnet
JPH0845718A (en) Magnetic material and its manufacture
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPS6077961A (en) Permanent magnet material and its manufacture
JP3300555B2 (en) Rare earth magnet manufacturing method
JPH04143221A (en) Production of permanent magnet