JPH0354805A - Rare-earth permanent magnet and manufacture thereof - Google Patents

Rare-earth permanent magnet and manufacture thereof

Info

Publication number
JPH0354805A
JPH0354805A JP1190168A JP19016889A JPH0354805A JP H0354805 A JPH0354805 A JP H0354805A JP 1190168 A JP1190168 A JP 1190168A JP 19016889 A JP19016889 A JP 19016889A JP H0354805 A JPH0354805 A JP H0354805A
Authority
JP
Japan
Prior art keywords
minutes
permanent magnet
hours
rare
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1190168A
Other languages
Japanese (ja)
Inventor
Hiroaki Nagata
浩昭 永田
Takeshi Ohashi
健 大橋
Yoshio Tawara
俵 好夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1190168A priority Critical patent/JPH0354805A/en
Publication of JPH0354805A publication Critical patent/JPH0354805A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Abstract

PURPOSE:To obtain the temperature characteristics of magnetization which could not be obtained with conventional alloy compositions or through conventional magnetizing method and suppress the flux variation over a wide range by a method wherein a rare-earth permanent magnet is made of an alloy composition expressed by a specific formula. CONSTITUTION:Generally speaking, a rare-earth two-phase separate type magnet is made of rare-earth elements and transition metals including cobalt, but a metal composition expressed by the formula is employed in this method. In this formula, R denotes at leas one of Gd, Tb, Dy, Ho, Er and Ta, M denotes at least one of Ti, Zr, Hf, Nb, Ta and W, and the relation between X, U, V, Y and Z in the formula is set to satisfy 0.2<=X<=0.5, 0.1<=U<=0.3, 0.02<=V<=0.06, 0.03<=Y<=0.05 and 6.5<=Z<=8.0. Further, the alloy composition is ground into fine powder and, after the powder is compression molded into a predetermined shape in a magnetic field, the molded element is sintered, turned into solution and aged under temperatures 1100-1250 deg.C, 1000-1200 deg.C and 400-1000 deg.C respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、広い温度範囲にわたって磁束変化の少ない、
温度特性に優れた希土類永久磁石とその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a magnetic flux that exhibits small changes in magnetic flux over a wide temperature range.
The present invention relates to a rare earth permanent magnet with excellent temperature characteristics and a method for manufacturing the same.

(従来の技術) 従来のSm系2−17型希土類永久磁石は、Nd系、C
e系と比較すると磁化の温度特性(可逆温度係数で表わ
すと、Sm系−0.03%/”C,Nd系一〇.l3%
/℃、Ce系−0.09%/℃となる)は良いが、広い
温度範囲、例えば−20〜100℃で使用する航空機、
計測器等の精密電子機器の制御には温度に対する磁束の
変化量がさらに少ない温度特性の良いものが求められて
いた。
(Prior art) Conventional Sm-based 2-17 type rare earth permanent magnets include Nd-based, C
When compared with the e-type, the temperature characteristics of magnetization (expressed as a reversible temperature coefficient: Sm-0.03%/C, Nd-10.13%)
/℃, Ce-based -0.09%/℃) is good, but aircraft used in a wide temperature range, for example -20 to 100℃,
For the control of precision electronic equipment such as measuring instruments, there has been a demand for devices with better temperature characteristics that have even smaller changes in magnetic flux with respect to temperature.

また、Slo系l−5型磁石のSmをGd. Er. 
Dy等の重希土類元素で置換した磁石は飽和磁気履歴曲
線(以下、ヒステリシスカーブと略称する)の角型性が
悪く、比較的磁気特性の低いものしか得られていなかっ
た(参考文献:1)Dong Li,Erda Xu:
IEEE TRANS  Vol.MAG−16  N
o.5,Sept.1980、  2)F.G. Jo
nesand  M.Tokunaga:IEEE  
TRANS  Vol.MAG−12,  No.6,
Nov.1976) .さらにSm系2−17型希土類
磁石を基礎とし、SmをGd. Er, Dy等の重希
土類元素で置換した磁石も角型性が悪く、着磁に際し大
型の着磁装置を必要とする欠点があった(参考文献:3
)熊坂、星野、小野:低温度係数R* (CoFeC:
uZr) + 7系希土類磁石:電気通信学会技報、C
PM83−36, p.991〜997. 1983)
In addition, Sm of the Slo type l-5 type magnet is Gd. Er.
Magnets substituted with heavy rare earth elements such as Dy have poor squareness in their saturation magnetic hysteresis curves (hereinafter referred to as hysteresis curves), and only those with relatively low magnetic properties were obtained (Reference: 1) Dong Li, Erda Xu:
IEEE TRANS Vol. MAG-16N
o. 5, Sept. 1980, 2) F. G. Jo
nesand M. Tokunaga: IEEE
TRANS Vol. MAG-12, No. 6,
Nov. 1976). Furthermore, based on Sm type 2-17 type rare earth magnet, Sm is Gd. Magnets substituted with heavy rare earth elements such as Er and Dy also have poor squareness and have the disadvantage of requiring a large magnetizing device for magnetization (Reference: 3).
) Kumasaka, Hoshino, Ono: Low temperature coefficient R* (CoFeC:
uZr) + 7-series rare earth magnet: Institute of Electrical Communication Engineers Technical Report, C
PM83-36, p. 991-997. 1983)
.

(発明が解決しようとする課題) 本発明は、このような従来の磁石の持つ欠点を除去する
ため、Sm系2−17型希土類磁石を基礎として、Sm
をGd. Er. Dy等の重希土類元素で置換し、多
段焼結、多段時効処理の最適条件を組み合わせることに
よって、磁化の温度特性を大幅に向上し、かつ、角型性
の良い希土類永久磁石を提供することにある。
(Problems to be Solved by the Invention) In order to eliminate the drawbacks of such conventional magnets, the present invention is based on the Sm type 2-17 type rare earth magnet.
Gd. Er. By substituting with heavy rare earth elements such as Dy, and combining the optimal conditions of multi-stage sintering and multi-stage aging treatment, we have significantly improved the temperature characteristics of magnetization and provided rare earth permanent magnets with good squareness. be.

(課題を解決するための手段) 本発明者等は、かかる課題を解決するために磁石合金組
成、磁化条件について鋭意検討した結果、本発明を完成
した。その要旨とするところは、1.一般式  SII
++−xRx(Got−u−v−yFeucuvMy)
z(ここにRはGd, Tb. Dy. Ho. Er
.Tmから選ばれる少なくとも1種以上、MはTi. 
Zr. Hf. Nb. Ta. Wから選ばれる少な
くとも1種以上、0.2≦X≦0.6、0.1≦IJ≦
0.3、0.02≦V ≦0.06、0.003 ≦Y
 ≦0.05、6.5≦Z≦8.0)で表わされる合金
組成物からなる希土類永久磁石および 2.請求項1に記載の合金組成物を微粉砕し、この微粉
を磁界中で所定形状に圧縮成形した後、焼結、溶体化お
よび時効処理する永久磁石の製造方法において、a)1
,100 〜1,250℃の範囲内で2段階以上の多段
填結を合計30分間〜5時間行なった後、b)1,00
0〜1,200℃の範囲内で20分間〜3時間溶体化処
理するが、c) a)の焼結時間およびb)の溶体化時
間の合計を50分間〜8時間内とし、次いでd)400
〜1,000℃の範囲内で2回以上の時効処理を行なう
ことを特徴とする希土類永久磁石の製造方法にある。
(Means for Solving the Problems) In order to solve the problems, the present inventors have completed the present invention as a result of intensive studies on magnet alloy composition and magnetization conditions. The main points are: 1. General formula SII
++-xRx (Got-u-v-yFeucuvMy)
z (here R is Gd, Tb. Dy. Ho. Er
.. At least one species selected from Tm, M is Ti.
Zr. Hf. Nb. Ta. At least one type selected from W, 0.2≦X≦0.6, 0.1≦IJ≦
0.3, 0.02≦V ≦0.06, 0.003≦Y
2. a rare earth permanent magnet consisting of an alloy composition represented by 0.05, 6.5 ≦ Z ≦ 8.0); and 2. A method for producing a permanent magnet, which comprises finely pulverizing the alloy composition according to claim 1, compression molding the fine powder into a predetermined shape in a magnetic field, and then sintering, solutionizing and aging treatment, comprising: a)1.
, 100 to 1,250°C for a total of 30 minutes to 5 hours, b) 1,00
Solution treatment is carried out at a temperature of 0 to 1,200°C for 20 minutes to 3 hours, but c) the total of the sintering time in a) and the solution treatment time in b) is within 50 minutes to 8 hours, and then d) 400
A method for producing a rare earth permanent magnet, characterized by performing aging treatment two or more times within the range of ~1,000°C.

?下、本発明を詳細に説明する。? Below, the present invention will be explained in detail.

先ず、永久磁石合金組成について述べる。First, the composition of the permanent magnet alloy will be described.

一般に、希土類二相分離型磁石はRTg−s. s (
式中Rは希土類元素、丁はコバルトを含む遷移金属)で
表わされるが、本発明においては、一般式Sm+ −x
Rx (Cot−u−v−JeuCuvMy) zの組
成式が有効である。ここにRはGd.Tb, Dy. 
Ho. Er. Tmから選ばれる少なくとも1種以上
とされ、温度特性の点からGdが好ましい。、MはTi
. Zr. Hf. Nb; Ta. Wから選ばれる
少なくとも1種以上とされ、角型比向上のの点からZr
. Tiが好ましい。RとT5〜6■に相当する(Sm
+−xRx)と(GO+−u−v−YFeuCuvMy
)zとの比Zは6.5≦Z≦8.0に限定され、好まし
くは7.2≦Z≦7.8である。6.5未満では飽和磁
化の低下が大となり、8.0を超えると充分な保磁力が
得られなくなる。また、Xは0.2≦X≦0.6の範囲
、好ましくは0.3≦X≦0.5が良く、0.2未満で
は重粕土類を添加しても、磁化の温度特性の改善効果が
顕著でなくなり、0.6を越えると飽和磁化の低下が大
きく、実用上有効でない。他方、Uおよび■の値を0.
1≦U≦0.3 、0.02≦V ≦0.06と限定し
たのは一般公知の経験に基づき、二相分離型磁石におけ
る高特性実現の範囲であり、かつ、本発明の製造方法に
おいて有効であることが確認されたからである。即ち、
Uが0.1未満では飽和磁化は充分上がらず、0.3を
越えると飽和磁化は上がるが、充分な保持力を確保出来
ないためである。
Generally, rare earth two-phase separated magnets are RTg-s. s (
In the formula, R is a rare earth element and D is a transition metal containing cobalt), but in the present invention, the general formula Sm+ -x
The compositional formula Rx (Cot-uv-JeuCuvMy)z is effective. Here R is Gd. Tb, Dy.
Ho. Er. It is at least one selected from Tm, and Gd is preferred from the viewpoint of temperature characteristics. , M is Ti
.. Zr. Hf. Nb; Ta. At least one kind selected from W, and from the viewpoint of improving the squareness ratio, Zr
.. Ti is preferred. Corresponds to R and T5~6■ (Sm
+-xRx) and (GO+-u-v-YFeuCuvMy
) Z is limited to 6.5≦Z≦8.0, preferably 7.2≦Z≦7.8. If it is less than 6.5, the saturation magnetization will decrease significantly, and if it exceeds 8.0, sufficient coercive force will not be obtained. In addition, X should be in the range of 0.2≦X≦0.6, preferably 0.3≦X≦0.5, and if it is less than 0.2, even if heavy lees earth is added, the temperature characteristics of magnetization will be affected. The improvement effect becomes less noticeable, and if it exceeds 0.6, the saturation magnetization decreases so much that it is not practically effective. On the other hand, the values of U and ■ are set to 0.
The limitations of 1≦U≦0.3 and 0.02≦V≦0.06 are based on generally known experience, and are within the range of achieving high characteristics in a two-phase separated magnet, and also within the manufacturing method of the present invention. This is because it has been confirmed to be effective. That is,
If U is less than 0.1, the saturation magnetization will not increase sufficiently, and if it exceeds 0.3, the saturation magnetization will increase, but sufficient coercive force cannot be ensured.

■の値を限定した理由もUの場合と同様に0,02未満
では保持力が充分確保出来ず、逆に0.06を越えると
、充分な飽和磁化を確保できないためである。微量添加
物MはYの値が0. 003≦Y≦0.05が良< ,
 0.003未満では本発明の熱処理効果が実現されず
、逆に0.05を越えると逆効果のみが表われ、磁石の
磁気特性が悪くなる。
The reason for limiting the value of (2) is that, as in the case of U, if it is less than 0.02, sufficient coercive force cannot be ensured, and conversely, if it exceeds 0.06, sufficient saturation magnetization cannot be ensured. The trace additive M has a Y value of 0. 003≦Y≦0.05 is good<,
If it is less than 0.003, the heat treatment effect of the present invention will not be achieved, and if it exceeds 0.05, only the opposite effect will appear and the magnetic properties of the magnet will deteriorate.

次に第2の発明である希土類永久磁石の製造方法につい
て述べる。 本発明に係わる永久磁石の成形物は、公知
の粉末冶金法によって製造することが出来る。即ち、所
定の磁石合金組成の割合に配合した原料金属混合物をア
ルゴン雰囲気中で高周波誘導加熱により溶解し、水冷鉄
板に鋳湯してインゴットを得、このインゴットをブラウ
ンミル等の粉砕機を用いて、粗粒状に粉砕し、更にこの
粗粒をジェットミルにより微粉状に粉砕した後、15,
000エルステッド程度の磁界中で所定の任意形状にプ
レス成形する。
Next, a method for manufacturing a rare earth permanent magnet, which is the second invention, will be described. The molded permanent magnet according to the present invention can be manufactured by a known powder metallurgy method. That is, a raw metal mixture blended to a predetermined magnet alloy composition ratio is melted by high-frequency induction heating in an argon atmosphere, cast onto a water-cooled iron plate to obtain an ingot, and this ingot is crushed using a crusher such as a Brown mill. , after pulverizing into coarse particles and further pulverizing the coarse particles into fine powder with a jet mill, 15,
It is press-molded into a predetermined arbitrary shape in a magnetic field of approximately 000 Oe.

このようにして得られた成型物は、先ず1.100〜1
,250℃で填結されるが、多段階的に境結するのが好
ましく、各段階の焼結時間を合計して30分間〜5時間
行なうのが良い。例えば、( 1,180℃×50分間
)+ ( 1,210℃×2時間)の2段階焼結とする
。本発明の合金組成物は2段階以上の多段填結をしなけ
れば、焼結体の密度が充分でなく、また、充分な角型性
が得られないためである。焼結時間が30分間より短い
と密度上昇が充分でなく5時間以上になると長時間とな
り実用上困難となる。
The molded product obtained in this way has a particle size of 1.100 to 1.
, 250° C., but it is preferable to perform the sintering in multiple stages, and the total sintering time for each stage is preferably 30 minutes to 5 hours. For example, two-stage sintering is performed: (1,180°C x 50 minutes) + (1,210°C x 2 hours). This is because, unless the alloy composition of the present invention is subjected to multistage packing in two or more stages, the density of the sintered body will not be sufficient and sufficient squareness will not be obtained. If the sintering time is shorter than 30 minutes, the density will not increase sufficiently, and if the sintering time exceeds 5 hours, it will take a long time and will be difficult in practice.

次いで、溶体化処理に入る。その条件は1,000〜1
,200℃の範囲内で20分間〜3時間処理するが、前
述の焼結時間および該溶体化時間の合計を50分間〜8
時間以内とすることが良い。該溶体化時間が20分間よ
り短いと溶体化効果がなく、3時間以上になると長時間
となり、実用性がなくなるからである。
Next, solution treatment begins. The condition is 1,000 to 1
, 200°C for 20 minutes to 3 hours, but the total of the above-mentioned sintering time and the solution time is 50 minutes to 8 hours.
It is best to do so within an hour. This is because if the solution treatment time is shorter than 20 minutes, there will be no solution treatment effect, and if it is 3 hours or more, it will be a long time and will be impractical.

次に時効工程に入るが、時効は400〜1,000℃で
2回以上行なう。最初の時効は800℃以下で10分間
〜10時間保持後、1℃/分以下の速度で400℃以下
まで降下させ、引き続き2回目以降の時効は800℃以
上でlO分間〜10時間保持後、0.5℃/分以下の速
度で100℃以下まで降下させる。時効を2回以上行な
わないと、充分な保持力が得られず、最初の時効および
2回目以降の時効も上記の条件を満たさない場合は、本
発明の組成において充分な保持力を得ることが出来ない
。1回目時効と2回目時効で保持時間、保持速度を変え
るのは、それにより良好な角型性を持つヒステリシスカ
ーブが得られ、磁気特性が向上するためである。
Next, an aging process is started, and aging is performed at 400 to 1,000°C two or more times. The first aging is held at 800°C or lower for 10 minutes to 10 hours, then lowered to 400°C or lower at a rate of 1°C/min or less, and the second and subsequent aging is held at 800°C or higher for 10 minutes to 10 hours. The temperature is lowered to 100°C or less at a rate of 0.5°C/min or less. If aging is not performed two or more times, sufficient holding power cannot be obtained, and if the first aging and subsequent aging do not satisfy the above conditions, it is not possible to obtain sufficient holding power with the composition of the present invention. Can not. The reason why the holding time and holding speed are changed between the first aging and the second aging is that a hysteresis curve with good squareness can be obtained thereby improving the magnetic properties.

以上の各工゛程は、成型物が酸化されることがないよう
に真空中またはアルゴン等の不活性ガス中で行なわれる
。以上述べた様に上記組成の成型体を各工程で熱処理す
ることによって充分な保持力と良好な角型を確保し、磁
化の温度特性に優れた希土類永久磁石材料が得られる。
Each of the above steps is carried out in vacuum or in an inert gas such as argon to prevent the molded product from being oxidized. As described above, by heat-treating the molded body having the above composition in each step, it is possible to obtain a rare earth permanent magnet material that ensures sufficient holding force and good squareness, and has excellent temperature characteristics of magnetization.

以下、本発明の具体的実施態様を実施例を挙げて説明す
るが、本発明はこれらに限定されるものではない。例中
部および%は全で重量に拠る。
Hereinafter, specific embodiments of the present invention will be described with reference to Examples, but the present invention is not limited thereto. All percentages and percentages are by weight.

(実施例1) Smo7Gdo. s (Go。,InFeb. to
ctlo. osZra. oss)t. s上記組或
のインゴットを1気圧のAr雰囲気中で高周波溶解炉を
用い、アーク溶解を行ない、磁石インゴットを作製した
。このインゴットを使い、粉末冶金法にて磁石を製造し
た。先ず、粗砕機(ジョークラッシャーおよびブラウン
ミル)を用いて粗粉砕し、この粗粉をジェットミルを用
いて窒素中で平均微粉粒径3μmまで微粉砕した。この
微粉を磁場中配向させ、2 t/cm”のプレス圧でプ
レスした。この成型体を200TorrのAr雰囲気中
で焼結炉を用い、1,180℃で30分間、1, 18
8℃で60分間2段焼結した後、1, 175℃で30
分間の溶体化処理を行なった。この後、1気圧のAr雰
囲気中で780℃でl時間時効処理を行ない、1℃/分
の速度で室温まで冷却した。次に、これを再び830℃
で3時間時効処理を行ない、0.5℃/分の速度で室温
まで冷却し、表−1に示す磁気特性および温度特性の磁
石を得た。
(Example 1) Smo7Gdo. s (Go., InFeb. to
ctlo. osZra. oss)t. s A certain ingot of the above set was subjected to arc melting in an Ar atmosphere of 1 atmosphere using a high frequency melting furnace to produce a magnet ingot. Using this ingot, a magnet was manufactured using a powder metallurgy method. First, it was coarsely crushed using a coarse crusher (jaw crusher and Braun mill), and this coarse powder was finely crushed in nitrogen using a jet mill to an average fine particle diameter of 3 μm. This fine powder was oriented in a magnetic field and pressed at a pressing pressure of 2 t/cm. This molded body was heated at 1,180°C for 30 minutes using a sintering furnace in an Ar atmosphere of 200 Torr.
After two stages of sintering at 8°C for 60 minutes, sintering was performed at 1,175°C for 30 minutes.
Solution treatment was carried out for 1 minute. Thereafter, an aging treatment was performed at 780° C. for 1 hour in an Ar atmosphere of 1 atm, followed by cooling to room temperature at a rate of 1° C./min. Next, heat this again at 830℃
The magnet was aged for 3 hours and cooled to room temperature at a rate of 0.5° C./min to obtain a magnet with the magnetic properties and temperature characteristics shown in Table 1.

(実施例2) Sllo. ssGdo. 44 (fl:oo. y
+sFea. zocuo. osZro. oss)
7. t+この組成の合金を用いて実施例1と同様の方
法で磁石を製造した。焼結は1,185℃で40分間、
1,192℃で50分間、2段焼結した後、1, 18
2℃で30分間の溶体化処理を行なった。時効はl回目
の時効を790℃で2時間行ない、1’C/分の速度で
室温まで冷却した。2段目の時効は830℃で3時間行
ない、0.5℃/分の速度で室温まで冷却し、表−1に
示す磁気特性および温度特性を得た。
(Example 2) Sllo. ssGdo. 44 (fl:oo.y
+sFea. zocuo. osZro. oss)
7. t+ A magnet was manufactured in the same manner as in Example 1 using an alloy having this composition. Sintering was performed at 1,185℃ for 40 minutes.
After two stages of sintering at 1,192°C for 50 minutes, 1,18
Solution treatment was performed at 2°C for 30 minutes. The first aging was carried out at 790° C. for 2 hours, followed by cooling to room temperature at a rate of 1′C/min. The second stage aging was carried out at 830°C for 3 hours and cooled to room temperature at a rate of 0.5°C/min to obtain the magnetic properties and temperature characteristics shown in Table 1.

(実施例3) 実施例2と同じ組或の合金を用いて実施例1と同様の方
法で磁石を製造した。填結は1, 183℃で20分間
、1, 190℃で70分間2段填結した後、1,18
0℃で40分間の溶体化処理を行なった。時効処理は1
回目の時効を780℃で2時間行ない、1℃/分の速度
で室温まで冷却した。2回目の時効は840℃で2時間
行ない、0,5℃/分の速度で室温まで冷却し、表−1
に示す磁気特性および温度特性を得た。
(Example 3) A magnet was manufactured in the same manner as in Example 1 using the same set of alloys as in Example 2. The packing was carried out in two stages: at 1,183°C for 20 minutes and at 1,190°C for 70 minutes, and then at 1,183°C for 70 minutes.
Solution treatment was performed at 0°C for 40 minutes. Aging treatment is 1
The second aging was carried out at 780°C for 2 hours and cooled to room temperature at a rate of 1°C/min. The second aging was carried out at 840°C for 2 hours, and then cooled to room temperature at a rate of 0.5°C/min.
The magnetic and temperature characteristics shown in are obtained.

(実施例4) Smo. yGdo. s (Coo. t4Feo.
 +sCuo. oaTLo. as)t. ?この組
成の合金を用いて実施例1と同様の方法で磁石を製造し
た。焼結は1,182℃で40分間、1,192℃で8
0分間2段焼結した後、1.177℃で50分間の溶体
化処理を行なった。時効処理は1回目を760℃で3時
間行ない、1℃/分の速度で室温まで冷却した。2回目
は830℃で2時間行なル)、0.5℃/分の速度で室
温まで冷却し、表−1に示す磁気特性および温度特性を
得た。
(Example 4) Smo. yGdo. s (Coo. t4Feo.
+sCuo. oaTLo. as) t. ? A magnet was manufactured in the same manner as in Example 1 using an alloy having this composition. Sintering was performed at 1,182°C for 40 minutes and at 1,192°C for 8 minutes.
After sintering in two stages for 0 minutes, solution treatment was performed at 1.177°C for 50 minutes. The first aging treatment was carried out at 760°C for 3 hours, and then cooled to room temperature at a rate of 1°C/min. The second time was carried out at 830° C. for 2 hours) and then cooled to room temperature at a rate of 0.5° C./min to obtain the magnetic properties and temperature characteristics shown in Table 1.

(比較例1) 実施例2と比較するために、実施例2の組成の合金を使
用して実施例lと同様の方法で磁石を製造した。焼結は
1,190℃で2時間の1段焼結とした。時効は1段の
みで820℃で3時間行ない、0.5℃/分の速度で室
温まで冷却し、表−1に示す磁気特性および温度特性を
得た。これを実施例2と比較すると、角型比およびiH
cが小さくなっているため、磁気特性および温度特性が
落ちているのが解る。
(Comparative Example 1) In order to compare with Example 2, a magnet was manufactured using the alloy having the composition of Example 2 in the same manner as in Example 1. Sintering was carried out in one stage at 1,190°C for 2 hours. Aging was performed in only one stage at 820° C. for 3 hours, and cooling was performed at a rate of 0.5° C./min to room temperature to obtain the magnetic properties and temperature characteristics shown in Table 1. Comparing this with Example 2, the squareness ratio and iH
It can be seen that because c is smaller, the magnetic properties and temperature characteristics are degraded.

(比較例2) 実施例3と比較するために実施例2の組成の合金を使用
して実施例1と同様の方法で磁石を製造した。焼結は1
,188℃で80分間の1回焼結とした.時効は1回の
みで820℃で2時間行ない、0.5℃/分の速度で室
温まで冷却し、表−1に示す磁気特性、および温度特性
を得た。これを実施例3と比較すると、角型比およびi
Hcが小さくなっているため、磁気特性および温度特性
が落ちているのが解る。
(Comparative Example 2) For comparison with Example 3, a magnet was manufactured in the same manner as in Example 1 using an alloy having the composition of Example 2. Sintering is 1
, sintering was carried out once at 188°C for 80 minutes. Aging was performed only once at 820°C for 2 hours, and cooling was performed at a rate of 0.5°C/min to room temperature to obtain the magnetic properties and temperature properties shown in Table 1. Comparing this with Example 3, the squareness ratio and i
It can be seen that the magnetic properties and temperature characteristics have deteriorated because Hc has become smaller.

(発明の効果) 本発明により,従来の組成、磁化方法では得られなかっ
た磁化の温度特性に優れ、かつ、角型性の良い希土類永
久磁石の提供が可能となり、産業上極めて利用価値が高
い。
(Effect of the invention) The present invention makes it possible to provide a rare earth permanent magnet that has excellent temperature characteristics of magnetization that could not be obtained with conventional compositions and magnetization methods, and has good squareness, and has extremely high utility value in industry. .

Claims (2)

【特許請求の範囲】[Claims] 1.一般式Sm_1_−_XR_X(Co_1_−_U
_−_V_−_YFe_UCu_VM_Y)_Z(ここ
にRはGd、Tb、Dy、Ho、Er、Tmから選ばれ
る少なくとも1種以上、MはTi、Zr、Hf、Nb、
Ta、Wから選ばれる少なくとも1種以上、0.2≦X
≦0.6、0.1≦U≦0.3、0.02≦V≦0.0
6、0.003≦Y≦0.05、6.5≦Z≦8.0)
で表わされる合金組成物からなる希土類永久磁石。
1. General formula Sm_1_-_XR_X(Co_1_-_U
___V_-_YFe_UCu_VM_Y)_Z (herein, R is at least one selected from Gd, Tb, Dy, Ho, Er, and Tm, and M is Ti, Zr, Hf, Nb,
At least one selected from Ta, W, 0.2≦X
≦0.6, 0.1≦U≦0.3, 0.02≦V≦0.0
6, 0.003≦Y≦0.05, 6.5≦Z≦8.0)
A rare earth permanent magnet consisting of an alloy composition represented by:
2.請求項1に記載の合金組成物を微粉砕し、この微粉
を磁界中で所定形状に圧縮成形した後、焼結、溶体化お
よび時効処理する永久磁石の製造方法において、a)1
,100〜1,250℃の範囲内で2段階以上の多段焼
結を合計30分間〜5時間行なった後、b)1,000
〜1,200℃の範囲内で20分間〜3時間溶体化処理
するが、c)a)の焼結時間およびb)の溶体化時間の
合計を50分間〜8時間内とし、次いでd)400〜1
,000℃の範囲内で2回以上の時効処理を行なうこと
を特徴とする希土類永久磁石の製造方法。
2. A method for producing a permanent magnet, which comprises finely pulverizing the alloy composition according to claim 1, compression molding the fine powder into a predetermined shape in a magnetic field, and then sintering, solutionizing and aging treatment, comprising: a)1.
, 2 or more stages of multi-stage sintering within the range of 100 to 1,250°C for a total of 30 minutes to 5 hours, b) 1,000
Solution treatment is carried out within the range of ~1,200°C for 20 minutes to 3 hours, but c) the total of the sintering time in a) and the solution treatment time in b) is within 50 minutes to 8 hours, and then d) 400°C ~1
A method for producing a rare earth permanent magnet, characterized by performing aging treatment two or more times within a range of ,000°C.
JP1190168A 1989-07-21 1989-07-21 Rare-earth permanent magnet and manufacture thereof Pending JPH0354805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190168A JPH0354805A (en) 1989-07-21 1989-07-21 Rare-earth permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190168A JPH0354805A (en) 1989-07-21 1989-07-21 Rare-earth permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0354805A true JPH0354805A (en) 1991-03-08

Family

ID=16253568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190168A Pending JPH0354805A (en) 1989-07-21 1989-07-21 Rare-earth permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0354805A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882494A (en) * 2010-05-17 2010-11-10 中国科学院宁波材料技术与工程研究所 Samarium-cobalt sintered magnet material and preparation method thereof
CN103021621A (en) * 2011-09-27 2013-04-03 株式会社东芝 Permanent magnet and manufacturing method thereof, and motor and generator using the same
CN103036323A (en) * 2011-09-29 2013-04-10 株式会社东芝 Permanent magnet and motor and generator using the same
US20130241333A1 (en) * 2010-03-30 2013-09-19 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
CN103839639A (en) * 2012-11-20 2014-06-04 株式会社东芝 Permanent magnet, and motor and power generator using the same
JP2016157952A (en) * 2016-03-18 2016-09-01 株式会社東芝 Motor, generator, and motor car
JP2017168847A (en) * 2017-04-04 2017-09-21 株式会社東芝 Permanent magnet, motor, power generator, and vehicle
CN111243804A (en) * 2019-11-29 2020-06-05 南京安德海睿智能科技有限公司 Rare earth permanent magnet with hydrogen resistance and preparation method thereof
CN111313571A (en) * 2019-11-29 2020-06-19 南京安德海睿智能科技有限公司 Hydrogen-resistant motor based on rare earth permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161044A (en) * 1981-03-31 1982-10-04 Shin Etsu Chem Co Ltd Permanent magnet containing rare earth element and its manufacture
JPS59204208A (en) * 1983-05-07 1984-11-19 Hitachi Metals Ltd Manufacture of rare earth cobalt magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161044A (en) * 1981-03-31 1982-10-04 Shin Etsu Chem Co Ltd Permanent magnet containing rare earth element and its manufacture
JPS59204208A (en) * 1983-05-07 1984-11-19 Hitachi Metals Ltd Manufacture of rare earth cobalt magnet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130241333A1 (en) * 2010-03-30 2013-09-19 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US9774234B2 (en) * 2010-03-30 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
CN101882494A (en) * 2010-05-17 2010-11-10 中国科学院宁波材料技术与工程研究所 Samarium-cobalt sintered magnet material and preparation method thereof
CN103021621A (en) * 2011-09-27 2013-04-03 株式会社东芝 Permanent magnet and manufacturing method thereof, and motor and generator using the same
JP2013074235A (en) * 2011-09-29 2013-04-22 Toshiba Corp Permanent magnet, and motor and dynamo including the same
CN103036323A (en) * 2011-09-29 2013-04-10 株式会社东芝 Permanent magnet and motor and generator using the same
CN103839639A (en) * 2012-11-20 2014-06-04 株式会社东芝 Permanent magnet, and motor and power generator using the same
CN103839639B (en) * 2012-11-20 2017-01-04 株式会社东芝 Permanent magnet and use motor and the electromotor of this permanent magnet
JP2016157952A (en) * 2016-03-18 2016-09-01 株式会社東芝 Motor, generator, and motor car
JP2017168847A (en) * 2017-04-04 2017-09-21 株式会社東芝 Permanent magnet, motor, power generator, and vehicle
CN111243804A (en) * 2019-11-29 2020-06-05 南京安德海睿智能科技有限公司 Rare earth permanent magnet with hydrogen resistance and preparation method thereof
CN111313571A (en) * 2019-11-29 2020-06-19 南京安德海睿智能科技有限公司 Hydrogen-resistant motor based on rare earth permanent magnet
CN111243804B (en) * 2019-11-29 2023-10-17 南京安德海睿智能科技有限公司 Rare earth permanent magnet with hydrogen resistance and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102589802B1 (en) Neodymium iron boron magnetic material, raw material composition, manufacturing method and application
WO2021244321A1 (en) Neodymium iron boron magnet material, raw material composition, preparation method therefor and use thereof
JP2904667B2 (en) Rare earth permanent magnet alloy
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPH01219143A (en) Sintered permanent magnet material and its production
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH0146575B2 (en)
JPS60182107A (en) Permanent magnet material and manufacture thereof
JPH0146574B2 (en)
JPS61136656A (en) Production of sintered material for permanent magnet
JPH04247604A (en) Rare earth-fe-co-b anisotropic magnet
JPS6052556A (en) Permanent magnet and its production
JPS6077961A (en) Permanent magnet material and its manufacture
JPS6052555A (en) Permanent magnet material and its production
JPH0252413B2 (en)
JPH07335468A (en) Manufacture of rare-earth magnet
JPS63157844A (en) Manufacture of permanent magnet material
JPH0362775B2 (en)
JPH02145739A (en) Permanent magnet material and permanent magnet
JPH0227425B2 (en)
JPH0246657B2 (en)
JPS596350A (en) Rare earth element cobalt material for magnet and preparation thereof
JPS59154004A (en) Manufacture of permanent magnet