JP2904667B2 - Rare earth permanent magnet alloy - Google Patents

Rare earth permanent magnet alloy

Info

Publication number
JP2904667B2
JP2904667B2 JP5022080A JP2208093A JP2904667B2 JP 2904667 B2 JP2904667 B2 JP 2904667B2 JP 5022080 A JP5022080 A JP 5022080A JP 2208093 A JP2208093 A JP 2208093A JP 2904667 B2 JP2904667 B2 JP 2904667B2
Authority
JP
Japan
Prior art keywords
permanent magnet
cell
rare earth
phase
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5022080A
Other languages
Japanese (ja)
Other versions
JPH06212327A (en
Inventor
和博 高口
健治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5022080A priority Critical patent/JP2904667B2/en
Publication of JPH06212327A publication Critical patent/JPH06212327A/en
Application granted granted Critical
Publication of JP2904667B2 publication Critical patent/JP2904667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、R2Co17 系希土類永久
磁石合金に関するものである。
The present invention relates to an R 2 Co 17 rare earth permanent magnet alloy.

【0002】[0002]

【従来の技術】希土類永久磁石合金としては、現在、R
2Co17 系磁石合金とR2Fe14 B系磁石合金とが一般に使
用されている。通常R2Fe14 B系磁石合金の方が最大エ
ネルギー積が大きいため幅広く利用されているが、これ
はキュリー温度が約 300℃と低いため 100℃を超えるよ
うな高温では磁気特性が極端に低下してしまい使用に耐
えない。反面、R2Co17 系磁石合金はキュリー温度が約
800℃と高いため、高温においてはR2Fe14 B系磁石合
金よりも磁気特性が高くなり、高温での使用はR2Co17
系磁石合金が用いられており、用途が限定されつつもさ
らなる高特性を目指して研究開発が進められている。
2. Description of the Related Art As a rare earth permanent magnet alloy, R
2 Co 17- based magnet alloys and R 2 Fe 14 B-based magnet alloys are generally used. Usually, R 2 Fe 14 B-based magnet alloys are widely used because their maximum energy products are larger, but their Curie temperature is as low as about 300 ° C, and their magnetic properties deteriorate extremely at high temperatures exceeding 100 ° C. It does not stand use. On the other hand, Curie temperature of R 2 Co 17 magnet alloy is about
Since 800 ° C. and higher, the magnetic properties becomes higher than R 2 Fe 14 B-based magnetic alloys at high temperatures, use at high temperatures R 2 Co 17
A system magnet alloy is used, and research and development are being pursued with the aim of achieving even higher characteristics while limiting applications.

【0003】R2Co17 系希土類永久磁石合金はその組織
構造として微細なセル状組織を有していることはよく知
られている。このセル状組織は、500〜5000Åのセル径を
もつR2Co17 相と、幅50〜 200Åの境界相であるRCo5
相とからなっている。R2Co17 系希土類永久磁石合金
は、この微細なセル状組織に磁壁がピンニングされるこ
とにより保磁力が発生するピンニング型の磁石である。
従って、微細構造であるセル状組織と磁気特性は密接に
関係しており、セル状組織を適切に制御することによ
り、磁気特性を高めようという試みが従来からなされて
きた。例えば、特開昭56-156734 号および特開昭56-156
735 号では、セル状組織のセルとセルとの距離を適当な
大きさに制御することにより 15KOeを越えるような大き
な保磁力を得ている。
It is well known that the R 2 Co 17 rare earth permanent magnet alloy has a fine cellular structure as its structure. This cellular structure is composed of an R 2 Co 17 phase having a cell diameter of 500 to 5000 ° and an RCo 5 phase as a boundary phase having a width of 50 to 200 °.
It consists of phases. The R 2 Co 17 rare earth permanent magnet alloy is a pinning type magnet in which a coercive force is generated by pinning a domain wall into this fine cellular structure.
Therefore, the microstructure of the cellular structure and the magnetic properties are closely related to each other, and attempts have been made to enhance the magnetic properties by appropriately controlling the cellular structure. For example, JP-A-56-156734 and JP-A-56-156
In 735, a large coercive force exceeding 15KOe was obtained by controlling the distance between cells in a cellular structure to an appropriate size.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、セル状
組織の制御は未だ十分に行われているとは言えず、セル
状組織を十分に制御することによってR2Co17 系希土類
永久磁石合金のさらなる高特性化が期待できる。本発明
は、セル内組織を精密に制御することにより優れた高磁
気特性を示す希土類永久磁石合金を提供しようとするも
のである。
However, the control of the cellular structure has not yet been sufficiently performed, and by controlling the cellular structure sufficiently, the R 2 Co 17- based rare earth permanent magnet alloy can be further improved. Higher characteristics can be expected. An object of the present invention is to provide a rare-earth permanent magnet alloy exhibiting excellent high magnetic properties by precisely controlling the structure in a cell.

【0005】[0005]

【課題を解決するための手段】本発明者等は、微細なセ
ル状組織と磁気特性について鋭意研究を続けた結果、セ
ル内の組成が磁気特性に大きな影響を及ぼし、セル内の
組成を適切に制御することにより残留磁束密度や保磁力
が高い高特性なR2Co17 系永久磁石を製造することに成
功した。即ち、本発明の要旨は、重量百分率で、24〜28
%のR(Rは希土類元素のうち1種以上)、5〜30%の
Fe、3〜6%のCu、2〜4%のZr、残部Coから成り、微
細なセル状組織のセル内の組成が原子百分率で、8≦R
≦12、5≦Fe≦40、1≦Cu≦4、 0.1≦Zr≦3、残部Co
から成ることを特徴とする希土類永久磁石合金にある。
Means for Solving the Problems The present inventors have conducted intensive studies on fine cellular structures and magnetic properties. As a result, the composition in the cell has a great influence on the magnetic properties, and the composition in the cell is appropriately adjusted. By controlling this, the R 2 Co 17 permanent magnet having high residual magnetic flux density and high coercive force was successfully manufactured. That is, the gist of the present invention is, in terms of weight percentage, 24-28.
% Of R (R is one or more of rare earth elements), 5 to 30%
Fe, composed of 3 to 6% of Cu, 2 to 4% of Zr, and the balance of Co. The composition in the cell having a fine cellular structure is represented by atomic percentage and 8 ≦ R.
≦ 12, 5 ≦ Fe ≦ 40, 1 ≦ Cu ≦ 4, 0.1 ≦ Zr ≦ 3, Co remaining
Or a rare earth permanent magnet alloy comprising:

【0006】以下、本発明を詳細に説明する。R2Co17
系希土類永久磁石合金は、一般に次のような工程により
製造される。先ず、所定量の原料を秤量し、それらを高
周波溶解炉またはアーク炉などの溶解炉で溶解し鋳造す
る。続いて、この溶解インゴットをジョークラッシャ
ー、スタンプミル、ブラウンミルなどを用いて粗粉砕を
行い、その後、ジェットミル、ボールミルなどにより、
粒径1〜50μmになるように微粉砕を行う。微粉砕され
たR2Co17 系合金は、磁場中で成形され、その後、1,10
0 〜1,250℃で燒結され、次いで、燒結温度よりも0〜5
0℃低い温度で溶体化される。燒結、溶体化に要する時
間は、0.5〜5時間が適当である。最後に時効処理が施さ
れる。時効処理は通常初段時効として 700〜 950℃で一
定の時間保持し、その後、連続冷却または多段時効を行
う。上記の各工程においては、R2Co17 系合金が酸化さ
れると特性の劣化が著しいのでこれを防ぐため、真空中
または非酸化性の雰囲気下で行われる。
Hereinafter, the present invention will be described in detail. R 2 Co 17
A rare earth permanent magnet alloy is generally manufactured by the following steps. First, a predetermined amount of raw materials is weighed, and they are melted and cast in a melting furnace such as a high-frequency melting furnace or an arc furnace. Subsequently, the melted ingot is coarsely crushed using a jaw crusher, a stamp mill, a brown mill, etc., and thereafter, by a jet mill, a ball mill, etc.
Pulverize to a particle size of 1 to 50 μm. The finely pulverized R 2 Co 17 alloy is formed in a magnetic field,
Sintering at 0-1250 ° C, then 0-5
Solution solution at 0 ° C lower temperature. The time required for sintering and solution treatment is suitably 0.5 to 5 hours. Finally, aging treatment is performed. The aging treatment is usually carried out at 700 to 950 ° C. for a certain period of time as the first stage aging, followed by continuous cooling or multistage aging. In each of the above steps, when the R 2 Co 17 alloy is oxidized, the properties are significantly deteriorated. To prevent such deterioration, the steps are performed in a vacuum or in a non-oxidizing atmosphere.

【0007】溶体化処理終了直後のR2Co17 系合金は T
bCu7型の結晶構造を示すが、次工程の時効処理によりR
2Co17 相とRCo5 相とに分離し、微細なセル状組織を形
成する。このセル状組織は初段時効時に形成され、その
セルの大きさは、概ね初段時効の温度で決まる。その後
の連続冷却、多段時効により各構成元素が拡散し、セル
を構成するR2Co17 相、境界を構成するRCo5 相の組成
は変化していく。R、Cuは境界相へと拡散し、Co、Feは
セル内へと拡散し、Zrは殆ど拡散しない。R2Co17 相と
RCo5 相の組成が変化していくことにより、R2Co17
磁石合金の特性も変化していく。従って、セル内の組成
を適切に制御することにより、残留磁束密度、保磁力が
高い高性能永久磁石を製造することが可能である。
[0007] Immediately after the completion of the solution treatment, the R 2 Co 17 alloy is T
The crystal structure of bCu 7 type is shown.
Separates into 2 Co 17 phase and RCo 5 phase to form a fine cellular structure. This cellular structure is formed during the first-stage aging, and the size of the cell is substantially determined by the temperature of the first-stage aging. The constituent elements are diffused by the subsequent continuous cooling and multi-stage aging, and the composition of the R 2 Co 17 phase forming the cell and the RCo 5 phase forming the boundary change. R and Cu diffuse into the boundary phase, Co and Fe diffuse into the cell, and Zr hardly diffuses. As the composition of the R 2 Co 17 phase and the RCo 5 phase changes, the properties of the R 2 Co 17- based magnet alloy also change. Therefore, by appropriately controlling the composition in the cell, it is possible to manufacture a high-performance permanent magnet having a high residual magnetic flux density and a high coercive force.

【0008】[0008]

【作用】セルのR2Co17 相の組成は以下のような理由に
より規定される。セル内のRの量を原子%で8%以上12
%以下としたのは、Rの量が12%より多くなると大きな
保磁力が得られないためである。これは、Rの量が多い
ということは相分離の進行が不十分であるということで
あり、従って、磁壁のピンニング作用が不十分であるた
めと考えられる。また、セルの結晶構造をR2Co17 相に
保つためにはセル内のRの量は8%以上が必要である。
Rは希土類元素の1種以上で、Yを含む La,Ce,Pr,Nd,P
m,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbおよびLuから選択される
1種または2種以上の混合元素とすることができる。セ
ルのR2Co17 相に含まれるFe量が5原子%未満であると
2Co17 系磁石合金の残留磁束密度は小さくなってしま
う。これは、R2Co17 相に含まれるFe量が5原子%より
少なくなると、R2Co17 相の飽和磁化が小さくなるため
だと考えられる。従って、大きな残留磁束密度を得るた
めに、セルのR2Co17 相に含まれるFe量が5原子%以上
となるように時効処理すればよいが、セル内に含まれる
Fe量が40原子%より多くなると保磁力が低下してしま
う。以上のような観点により、セルのR2Co17 相に含ま
れるFe量が5原子%以上40原子%以下に限定される。
The composition of the R 2 Co 17 phase of the cell is determined for the following reasons. The amount of R in the cell is 8% or more in atomic% 12
% Or less because a large coercive force cannot be obtained if the amount of R is more than 12%. This is considered to be because the large amount of R means that the progress of the phase separation is insufficient, and therefore the domain wall pinning action is insufficient. Further, in order to maintain the crystal structure of the cell in the R 2 Co 17 phase, the amount of R in the cell needs to be 8% or more.
R is one or more of the rare earth elements, including Y La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and one or more mixed elements selected from Lu. If the amount of Fe contained in the R 2 Co 17 phase of the cell is less than 5 atomic%, the residual magnetic flux density of the R 2 Co 17 based magnet alloy will be small. This is considered to be because when the amount of Fe contained in the R 2 Co 17 phase is less than 5 atomic%, the saturation magnetization of the R 2 Co 17 phase becomes small. Therefore, in order to obtain a large residual magnetic flux density, it is sufficient to perform aging treatment so that the amount of Fe contained in the R 2 Co 17 phase of the cell becomes 5 atomic% or more, but it is contained in the cell.
If the Fe content exceeds 40 atomic%, the coercive force decreases. From the above viewpoint, the amount of Fe contained in the R 2 Co 17 phase of the cell is limited to 5 at% to 40 at%.

【0009】セルのR2Co17 相に含まれるCu量が4原子
%を超えるとR2Co17 系磁石合金の保磁力は小さくなっ
てしまう。これは、R2Co17 相に含まれるCu量が4原子
%を超えると、R2Co17 相の結晶磁気異方性が小さくな
るためだと考えられる。従って、大きな保磁力を得るた
めにはセルのR2Co17 相に含まれるCu量が4原子%以下
となるように時効処理すればよいが、1原子%以下にす
るためには長時間の時効処理を必要とし、製造上問題が
ある。以上のような観点により、セルのR2Co17 相に含
まれるCu量が1原子%以上4原子%以下に限定される。
セル内のZr量が3原子%を超えると、永久磁石の残留磁
束密度が低下してしまう。また、0.1原子%未満にする
ためには長時間の時効処理を行わなければならず、製造
上不合理である。
If the amount of Cu contained in the R 2 Co 17 phase of the cell exceeds 4 atomic%, the coercive force of the R 2 Co 17- based magnet alloy becomes small. This is considered to be because when the amount of Cu contained in the R 2 Co 17 phase exceeds 4 atomic%, the crystal magnetic anisotropy of the R 2 Co 17 phase decreases. Therefore, in order to obtain a large coercive force, it is sufficient to perform aging treatment so that the amount of Cu contained in the R 2 Co 17 phase of the cell becomes 4 atomic% or less. Aging treatment is required, and there is a problem in manufacturing. From the above viewpoint, the amount of Cu contained in the R 2 Co 17 phase of the cell is limited to 1 atomic% or more and 4 atomic% or less.
When the amount of Zr in the cell exceeds 3 atomic%, the residual magnetic flux density of the permanent magnet decreases. Further, in order to reduce the content to less than 0.1 atomic%, aging treatment must be performed for a long time, which is unreasonable in production.

【0010】なお、R2Co17 系永久磁石合金の組成を重
量百分率で、24〜28%のR(Rは希土類元素のうち1種
以上)、10〜20%のFe、3〜6%のCu、2〜4%のZr、
残部Coと限定したのは、以下のような理由からである。
2Co17 系永久磁石合金中に含まれるRの量が、28重量
%を超えるとBr が低下する。また、24重量%未満では
角型が悪くなる。また、Fe量が、5重量%未満ではBr
が低下してしまい、30重量%を超えると保磁力が低下す
る。さらにZr量が2重量%未満では十分な保磁力が得ら
れず、4重量%より多くなると最大エネルギー積の低下
を引き起こす。Cu量が3重量%未満では保磁力が低くな
ってしまい、6重量%より多くなるとBr の低下をもた
らす。
The composition of the R 2 Co 17- based permanent magnet alloy is expressed in terms of weight percentage of 24-28% R (R is one or more of rare earth elements), 10-20% Fe, and 3-6% Cu, 2-4% Zr,
The reason for limiting the remainder to Co is as follows.
When the amount of R contained in the R 2 Co 17 permanent magnet alloy exceeds 28% by weight, Br decreases. If it is less than 24% by weight, the square shape will be poor. If the Fe content is less than 5% by weight, Br
Is reduced, and if it exceeds 30% by weight, the coercive force is reduced. Further, if the Zr content is less than 2% by weight, a sufficient coercive force cannot be obtained, and if it exceeds 4% by weight, the maximum energy product decreases. If the Cu content is less than 3% by weight, the coercive force will be low, and if it exceeds 6% by weight, Br will be reduced.

【0011】[0011]

【実施例】本発明の実施態様を実施例を挙げて具体的に
説明するが、本発明はこれらに限定されるものではな
い。 (実施例1)合金組成がSm 25.5、Fe 14、Cu 4.5、Zr 3、
残Co各重量%となるように原料を秤量した後、これらを
高周波溶解炉にて溶解し合金インゴットを作製した。得
られた合金インゴットをブラウンミルを用いて粗粉砕
し、その後ジェットミルで微粉砕を行ない平均粒径を約
5μmとした。この合金粉を磁場中で成形を行い、得ら
れた成形体を1,200 ℃で燒結、1,180 ℃で溶体化した。
次いで時効処理はまず初段時効として、850℃で2時間保
持した後、0.5 ℃/min の冷却速度で夫々 600℃、500
℃、400℃まで連続冷却を行い、続いて常温まで急冷し
た。得られた永久磁石は、磁気特性を測定し、透過電子
顕微鏡で微細組織を観察、エネルギー分散型X線分析装
置で微細組織のセル内の各元素の定量分析を行った。得
られた結果を表1に示す。
EXAMPLES The embodiments of the present invention will be specifically described with reference to examples, but the present invention is not limited to these. (Example 1) The alloy composition was Sm 25.5, Fe 14, Cu 4.5, Zr 3,
After weighing the raw materials so as to be each residual Co by weight%, they were melted in a high frequency melting furnace to produce an alloy ingot. The obtained alloy ingot was coarsely pulverized using a brown mill and then finely pulverized by a jet mill to have an average particle size of about 5 μm. This alloy powder was compacted in a magnetic field, and the obtained compact was sintered at 1,200 ° C and solution-treated at 1,180 ° C.
Next, the aging treatment is performed as a first-stage aging, which is maintained at 850 ° C. for 2 hours, and then cooled at a cooling rate of 0.5 ° C./min to 600 ° C. and 500
Continuous cooling to 400 ° C and 400 ° C followed by rapid cooling to room temperature. The magnetic properties of the obtained permanent magnet were measured, the fine structure was observed with a transmission electron microscope, and each element in the fine structure cell was quantitatively analyzed with an energy dispersive X-ray analyzer. Table 1 shows the obtained results.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2)合金組成をSm 25.5、Fe 16、Cu
4.0、Zr 2、 残 Co 各重量%とし、実施例1と同様な条
件で燒結体を作製し、その後次のような時効処理を施し
た。即ち、初段時効として 870℃で2時間保持した後、
それぞれ50℃/min、10℃/min、1℃/minの冷却速度で
400℃まで連続冷却し急冷した。得られた永久磁石は、
磁気特性を測定し、透過電子顕微鏡で微細組織を観察
し、エネルギー分散型X線分析装置で微細組織のセル内
の各元素の定量分析を行った。得られた結果を表2に示
す。
Example 2 The alloy composition was Sm 25.5, Fe 16 and Cu
A sintered body was prepared under the same conditions as in Example 1 except that 4.0, Zr 2, and the remaining Co were each wt%, and then subjected to the following aging treatment. That is, after holding at 870 ° C for 2 hours as the first stage aging,
At cooling rates of 50 ° C / min, 10 ° C / min and 1 ° C / min, respectively
It was cooled continuously to 400 ° C and quenched. The resulting permanent magnet is
The magnetic properties were measured, the fine structure was observed with a transmission electron microscope, and each element in the cell of the fine structure was quantitatively analyzed with an energy dispersive X-ray analyzer. Table 2 shows the obtained results.

【0014】[0014]

【表2】 [Table 2]

【0015】(実施例3)合金組成をSm 25.0、Fe 20、Cu
5.0、Zr 2.5、残 Co 各重量%とし、実施例1と同様な条
件で燒結体を作成し、その後次のような時効処理を施し
た。すなわち、初段時効としてそれぞれ 850℃で 0.5、
2、10時間保持した後、700℃で1時間、600℃で2時間、5
00℃で5時間、400℃で10時間の多段処理を行った。得ら
れた永久磁石は、磁気特性を測定し、透過電子顕微鏡で
微細組織を観察し、エネルギー分散型X線分析装置で微
細組織のセル内の各元素の定量分析を行った。得られた
結果を表3に示す。
Example 3 The alloy composition was Sm 25.0, Fe 20 and Cu
A sintered body was prepared under the same conditions as in Example 1 with 5.0, Zr 2.5, and the remaining Co being each wt%, and then subjected to the following aging treatment. That is, the first stage aging is 0.5 at 850 ° C,
After holding for 2, 10 hours, 1 hour at 700 ° C, 2 hours at 600 ° C, 5 hours
The multi-stage treatment was performed at 00 ° C. for 5 hours and at 400 ° C. for 10 hours. The magnetic properties of the obtained permanent magnet were measured, the microstructure was observed with a transmission electron microscope, and each element in the microstructure cell was quantitatively analyzed by an energy dispersive X-ray analyzer. Table 3 shows the obtained results.

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】本発明によれば、残留磁束密度および保
磁力の高い高特性R2Co17 系永久磁石合金が得られ、産
業上その利用価値は極めて高い。
According to the present invention, a high-performance R 2 Co 17 permanent magnet alloy having a high residual magnetic flux density and a high coercive force can be obtained, and its industrial value is extremely high.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 19/07 C22C 33/02 ──────────────────────────────────────────────────の Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C22C 19/07 C22C 33/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量百分率で、24〜28%のR(Rは希土類
元素のうち1種以上)、5〜30%のFe、3〜6%のCu、
2〜4%のZr、残部Coから成る希土類永久磁石合金にお
いて、微細なセル状組織のセル内の組成が原子百分率
で、8≦R≦12、5≦Fe≦40、1≦Cu≦4、 0.1≦Zr≦
3、残部Coから成ることを特徴とする希土類永久磁石合
金。
(1) a weight percentage of 24 to 28% of R (R is one or more of rare earth elements), 5 to 30% of Fe, 3 to 6% of Cu,
Rare earth permanent magnet alloy consisting of 2-4% Zr, balance Co
There, in the composition is atomic percentage in the cell of the micro-fine cell-like structure, 8 ≦ R ≦ 12,5 ≦ Fe ≦ 40,1 ≦ Cu ≦ 4, 0.1 ≦ Zr ≦
3. A rare earth permanent magnet alloy characterized by the balance of Co.
JP5022080A 1993-01-14 1993-01-14 Rare earth permanent magnet alloy Expired - Lifetime JP2904667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5022080A JP2904667B2 (en) 1993-01-14 1993-01-14 Rare earth permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5022080A JP2904667B2 (en) 1993-01-14 1993-01-14 Rare earth permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPH06212327A JPH06212327A (en) 1994-08-02
JP2904667B2 true JP2904667B2 (en) 1999-06-14

Family

ID=12072909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5022080A Expired - Lifetime JP2904667B2 (en) 1993-01-14 1993-01-14 Rare earth permanent magnet alloy

Country Status (1)

Country Link
JP (1) JP2904667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10951074B2 (en) 2016-03-17 2021-03-16 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504233B2 (en) * 2011-09-27 2014-05-28 株式会社東芝 PERMANENT MAGNET AND ITS MANUFACTURING METHOD, AND MOTOR AND GENERATOR USING THE SAME
JP5586645B2 (en) 2012-03-15 2014-09-10 株式会社東芝 Permanent magnet and motor and generator using the same
JP5487228B2 (en) 2012-03-15 2014-05-07 株式会社東芝 Permanent magnet and motor and generator using the same
DE112012006640T5 (en) * 2012-07-02 2015-04-02 Grirem Advanced Materials Co. Ltd. Rare earth permanent magnet powder, bonded magnet and device using the bonded magnet
JP6257890B2 (en) 2012-11-20 2018-01-10 株式会社東芝 Permanent magnet and motor and generator using the same
JP6076705B2 (en) 2012-11-20 2017-02-08 株式会社東芝 Permanent magnet and motor and generator using the same
JP6257891B2 (en) 2012-11-20 2018-01-10 株式会社東芝 Permanent magnets, permanent magnet motors, generators, and cars
JP6081254B2 (en) 2013-03-26 2017-02-15 株式会社東芝 Permanent magnet and motor and generator using the same
EP3046119B1 (en) 2013-09-13 2021-07-21 Kabushiki Kaisha Toshiba Permanent magnet, motor, and power generator
EP3051544A4 (en) 2013-09-24 2017-05-10 Kabushiki Kaisha Toshiba Permanent magnet, motor and power generator
JP5710818B2 (en) * 2014-03-14 2015-04-30 株式会社東芝 Permanent magnet, motor and generator using the same
WO2016084118A1 (en) 2014-11-28 2016-06-02 株式会社 東芝 Permanent magnet, motor, and generator
EP3276640B1 (en) 2015-03-23 2021-04-21 Kabushiki Kaisha Toshiba Permanent magnet, motor and dynamo
WO2017046827A1 (en) * 2015-09-15 2017-03-23 株式会社 東芝 Permanent magnet and dynamo-electric machine
JP6490821B2 (en) 2015-09-15 2019-03-27 株式会社東芝 Permanent magnets, rotating electrical machines, and cars
JP6448749B2 (en) * 2017-11-24 2019-01-09 株式会社東芝 Permanent magnet, permanent magnet motor and generator using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10951074B2 (en) 2016-03-17 2021-03-16 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Also Published As

Publication number Publication date
JPH06212327A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
JP2904667B2 (en) Rare earth permanent magnet alloy
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH01219143A (en) Sintered permanent magnet material and its production
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPH06188113A (en) Manufacture of permanent magnet composed mainly of ndfeb
JPH0146575B2 (en)
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH0146574B2 (en)
JP2951491B2 (en) Rare earth permanent magnet alloy
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS61264133A (en) Permanent magnet alloy and its manufacture
JPH05234789A (en) Molding method and manufacture of sintered magnet
JPH045739B2 (en)
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH06108190A (en) Rare earth permanent magnet alloy
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPS62181403A (en) Permanent magnet
JPH04247604A (en) Rare earth-fe-co-b anisotropic magnet
JPH06112019A (en) Nitride magnetic material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14