JPS61264133A - Permanent magnet alloy and its manufacture - Google Patents

Permanent magnet alloy and its manufacture

Info

Publication number
JPS61264133A
JPS61264133A JP60103946A JP10394685A JPS61264133A JP S61264133 A JPS61264133 A JP S61264133A JP 60103946 A JP60103946 A JP 60103946A JP 10394685 A JP10394685 A JP 10394685A JP S61264133 A JPS61264133 A JP S61264133A
Authority
JP
Japan
Prior art keywords
less
temperature
cooling
heat treatment
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60103946A
Other languages
Japanese (ja)
Other versions
JPH0549737B2 (en
Inventor
Hitoshi Yamamoto
日登志 山本
Setsuo Fujimura
藤村 節夫
Satoru Hirozawa
哲 広沢
Yutaka Matsuura
裕 松浦
Masato Sagawa
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60103946A priority Critical patent/JPS61264133A/en
Publication of JPS61264133A publication Critical patent/JPS61264133A/en
Publication of JPH0549737B2 publication Critical patent/JPH0549737B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet alloy having superior coercive force and high squareness on the demagnetizing curve by compacting and sintering alloy powder having a specified composition consisting of Fe, B and a rare earth element and by heat treating the sintered body in three steps under specified conditions. CONSTITUTION:The composition of alloy powder is composed of, by atom, 8-30% R (one or more kinds of rare earth elements including Y), 2-28% B and the balance Fe. The alloy powder is compacted and sintered, and the sintered body is subjected to primary heat treatment at 750-1,000 deg.C and cooled to <=680 deg.C at 3-200 deg.C/min cooling rate. The sintered body is then subjected to secondary heat treatment at 480-700 deg.C and cooled to <=200 deg.C at 10-2,000 deg.C/min cooling rate. The sintered body is heated again at 10-2,000 deg.C/min heating rate, subjected to tertiary heat treatment at 350-450 deg.C and cooled to <=200 deg.C at 10-2,000 deg.C/min cooling rate.

Description

【発明の詳細な説明】 [技術分野] 本発明は高価で資源稀少なコバルトを全く使用しない希
土類争鉄・ボロン系永久磁石材料およびその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a rare earth iron/boron permanent magnet material that does not use cobalt, which is expensive and a scarce resource, and a method for producing the same.

[従来の技術] 現在使用されている永久磁石のうち代表的なものはアル
ニコ、ハードフェライト、および希土類コバルト磁石で
ある。しかし最近のコバルトの原料事情の不安定化に伴
ないコバルトを20〜30重量%含むアルニコ磁石の需
要は減り、鉄の酸化物を主成分とする安価なハードフェ
ライトが磁石材料の主流を占めるようになった。一方希
土類コバルト磁石はコバルトを50〜65重量%も含む
うえ希土類鉱石中にあまり含まれていないSmを使用す
るため大変高価であるが他の磁石に比べて磁石特性が格
段に高いため、主として小型で付加価値の高い磁気回路
に多く使われている。
[Prior Art] Typical permanent magnets currently used are alnico, hard ferrite, and rare earth cobalt magnets. However, as the raw material situation for cobalt has recently become unstable, the demand for alnico magnets containing 20 to 30% cobalt has decreased, and cheap hard ferrite, which is mainly composed of iron oxide, has become the mainstream magnet material. Became. On the other hand, rare earth cobalt magnets contain 50 to 65% by weight of cobalt and use Sm, which is not contained in rare earth ores, so they are very expensive, but because their magnetic properties are much higher than other magnets, they are mainly used for small size magnets. It is often used in high value-added magnetic circuits.

本発明者は先に、高価なSmやCOを含有しない新しい
高性能永久磁石としてFe−B−R系(RはYを包含す
る希土類元素の少なくとも一種)永久磁石を提案(特開
昭59−46008号)し、該Fe−B−R系合金を成
形、焼結後特定の条件下での熱処理いわゆる時効処理を
施すことにより焼結後の磁気特性とりわけ保磁力ならび
に減磁曲線の角形性が著しく改善されることを見い出し
た(特開昭59−217304)。
The present inventor previously proposed a Fe-BR-based (R is at least one kind of rare earth element including Y) permanent magnet as a new high-performance permanent magnet that does not contain expensive Sm or CO (Japanese Patent Application Laid-Open No. 59-1979-1). No. 46008), and by subjecting the Fe-B-R alloy to heat treatment under specific conditions after sintering, so-called aging treatment, the magnetic properties after sintering, especially the coercive force and the squareness of the demagnetization curve, are improved. It was found that this was significantly improved (Japanese Unexamined Patent Publication No. 59-217304).

[解決すべき問題点] 本出願人において、またさらに本熱処理工程に於て特定
の条件からなる2段熱処理を施すとさらに保磁力ならび
に減磁曲線の角形性が著しく改善されることを見出した
(特願昭59−36923号)。即ち焼結後特定の条件
下で2段熱処理してなる永久磁石は、保磁力1Hc3k
oe以上、残留磁束密度Br4kG以上及び最大エネル
ギー積(B H) m a x 4MGOe以上を有す
るも(7)−1’ある。
[Problems to be Solved] The present applicant has further discovered that the coercive force and the squareness of the demagnetization curve can be significantly improved by performing a two-stage heat treatment consisting of specific conditions in the heat treatment process. (Patent Application No. 59-36923). In other words, a permanent magnet produced by two-stage heat treatment under specific conditions after sintering has a coercive force of 1Hc3k.
There is also (7)-1' which has a residual magnetic flux density Br of 4 kG or more and a maximum energy product (B H) max of 4 MGOe or more.

ところで、最近は永久磁石の高温における用途及びモー
ター用・発電機用争磁気カップリング用など逆磁界の強
い用途が拡大の一途をたどっており、更に磁気特性特に
保磁力ならびに減磁曲線の角形性の優れた永久磁石が求
められている。
By the way, recently, the use of permanent magnets at high temperatures and applications with strong reverse magnetic fields, such as for competitive magnetic coupling for motors and generators, has been expanding, and magnetic properties, especially coercive force and squareness of demagnetization curve There is a need for excellent permanent magnets.

本発明は、高価で資源稀少なGoを含有しない希土類・
ポロン・鉄を主成分とする新規な永久磁石材料の保磁力
ならびに減磁曲線の角形性をさらに改善した永久磁石を
得ることにある。また本発明は高温における使用に耐え
得るように耐高温特性にすぐれ、逆磁界の強い用途にも
耐え得る永久[発明の構成概要」 本発明者らはかかる目的達成のため鋭意研究したところ
一定の組成範囲にあるFe−B−R合金の磁気特性の向
上に関し特定粒径の粉末を成形し焼結し更に焼結後に特
定の条件下での熱処理特に3段熱処理を施すことにより
焼結後の磁気特性とりわけ保磁力ならびに減磁曲線の角
形性が著しく改善されることを見出したものである。
The present invention is a rare earth material that does not contain Go, which is expensive and a scarce resource.
The object of the present invention is to obtain a permanent magnet in which the coercive force and the squareness of the demagnetization curve are further improved using a new permanent magnet material whose main component is poron-iron. In addition, the present invention has excellent high-temperature resistance characteristics so that it can withstand use at high temperatures, and has a permanent property that can withstand applications with strong reverse magnetic fields. In order to improve the magnetic properties of Fe-B-R alloys within a composition range, powder with a specific particle size is compacted and sintered, and then heat treatment is performed under specific conditions after sintering, especially three-step heat treatment. It has been found that the magnetic properties, especially the coercive force and the squareness of the demagnetization curve, are significantly improved.

即ち本発明は原子百分率として8〜30%のR(但しR
はYを包含する希土類元素の少なくとも一種)、2〜2
8%のB、および残部Feを主成分とした合金粉末を成
形焼結し、焼結後750〜1000℃の温度で1次熱処
理後3〜2000℃/minの冷却速度で680℃以下
まで冷却した後、480〜700℃の温度で2次熱処理
後10〜2000℃/m1n(7)冷却速度で200℃
以下まで冷却後、再び10〜200.0℃/m1n(7
)昇温速度で昇温し350〜450℃の温度で昇温し1
0〜b 200℃日下すで701却l、で得られる★久磁石材料
を提供する。また本発明の永久磁石材料の製造方法は上
記一連の工程を含むことを特徴とする。
That is, in the present invention, R is 8 to 30% as an atomic percentage (however, R
is at least one rare earth element including Y), 2-2
An alloy powder whose main components are 8% B and the balance Fe is shaped and sintered, and after sintering, it is first heat-treated at a temperature of 750 to 1000°C, and then cooled to 680°C or less at a cooling rate of 3 to 2000°C/min. After that, secondary heat treatment at a temperature of 480 to 700°C and a cooling rate of 10 to 2000°C/m1n (7) to 200°C.
After cooling down to below 10~200.0℃/m1n (7
) Raise the temperature at a heating rate of 350 to 450°C.
0-b Provides a permanent magnet material obtained by heating at 200°C under 701 liters. Further, the method for manufacturing a permanent magnet material of the present invention is characterized by including the above-mentioned series of steps.

[発明の好適な実施の態様] 以下本発明について詳述する。[Preferred embodiments of the invention] The present invention will be explained in detail below.

本発明は磁気異方性永久磁石に限らず、製造工程中成形
を磁界をかけずに行うことにより磁気等方性永久磁石を
得ることが出来る。
The present invention is not limited to magnetically anisotropic permanent magnets, but can also obtain magnetically isotropic permanent magnets by performing molding without applying a magnetic field during the manufacturing process.

本発明永久磁石材料においてBは保磁力iHcが5kO
e以上を満たすために2%(以下%は合金中の原子百分
率を示す)以上であり、残留磁束密度Brがハードフェ
ライトの約4kG以上を得るために28%以下が必要で
ある。
In the permanent magnet material of the present invention, B has a coercive force iHc of 5 kO.
In order to satisfy e or more, it is required to be 2% (hereinafter % indicates the atomic percentage in the alloy) or more, and in order to obtain a residual magnetic flux density Br of about 4 kG or more of hard ferrite, it is required to be 28% or less.

ホウ素Bとしては純ポロン又はフェロポロンを用いるこ
とが出来、不純物としてAn、St、C等を含むものも
用いることが出来る。又Rは保磁力5kOe以上のため
に8%以上が必要である。
As boron B, pure poron or ferroporon can be used, and those containing An, St, C, etc. as impurities can also be used. Further, R is required to be 8% or more in order to have a coercive force of 5 kOe or more.

しかしRは燃えやす〈工業的取扱、製造上の困難のため
、また高価でもあるため30%以下とする。
However, R is flammable (difficult in industrial handling and manufacturing, and also expensive), so it should be kept at 30% or less.

Rとしては資源的に豊富な軽希土類を用いることが出来
、必ずしもSmを必要とせず或いはSmを主体とする必
要もないので原料が安価でありきわめて有用である。
As R, a light rare earth element which is abundant in resources can be used, and since Sm is not necessarily required or does not need to be mainly composed of Sm, the raw material is inexpensive and extremely useful.

本発明で用いる希土類元素RはYを包含し、軽希土類及
び重希土類を包含する希土類元素でありそのうちの1種
以上を用いる。即ちRとしてはNd、Pr、La、Ce
、Tb、Dy、Ho、Er、Eu、Sm、Gd、Pm、
Tm、Yb。
The rare earth element R used in the present invention includes Y, and is a rare earth element including light rare earths and heavy rare earths, and one or more of them is used. That is, R is Nd, Pr, La, Ce.
, Tb, Dy, Ho, Er, Eu, Sm, Gd, Pm,
Tm, Yb.

Lu及びYが包含される。RとしてはNd、Pr、Dy
、Tb、Ho等のうち一種をもって足り特にNd、Pr
が好ましく特に(Nd+Pr)を全R中50%以上(特
に80%以上)とすることが高い磁気特性を確実にかつ
低コストで実現する上で好ましい。通例これらのRのう
ち1種をもって足りるが実用上は2種以上の混合物(ミ
ツシュメタル、ジジム等)を入手上の便宜等の理由によ
り用いることができ、Sm、Y、La。
Lu and Y are included. R is Nd, Pr, Dy
, Tb, Ho, etc., and especially Nd, Pr
It is particularly preferable that (Nd+Pr) be 50% or more (particularly 80% or more) of the total R in order to reliably achieve high magnetic properties at low cost. Generally, one type of these R is sufficient, but in practice, a mixture of two or more types (Mitushmetal, didymium, etc.) can be used for reasons such as availability, and Sm, Y, La.

Ce、Gd等は他のR特にNd、Pr、Dy。Ce, Gd, etc. are other R, especially Nd, Pr, Dy.

Tb 、Ho等との混合物として用いることができる。It can be used as a mixture with Tb, Ho, etc.

但しS m 、 L aは可及的に少ない方がよい。However, it is better that S m and L a be as small as possible.

ばおRは純希土類元素でなくともよく工業上入手可能な
範囲で製造上不可避な不純物(他の希土類元素、Ca、
Mg、Fe、Ti、C,0等)を含有するものでも用い
ることが出来る。なお、Rとしては、R1として、Dy
、Tb、Gd、Hoの一種以上+R2としてNdとPr
の合計80%以上残部R1以外のYを包含する希土類元
素の一種以上の組合せがtHcの増大の効果に最も好ま
しい。本発明の磁石材料にはこれらのBおよびRの他は
Feが残部をしめるが製造に際し不可避の不純物が含ま
れることは差し支えない。
BaoR does not need to be a pure rare earth element; it may contain impurities that are unavoidable during manufacturing (other rare earth elements, Ca,
Those containing Mg, Fe, Ti, C, 0, etc.) can also be used. In addition, as R, R1, Dy
, Tb, Gd, and Ho + Nd and Pr as R2
A combination of one or more rare earth elements containing Y other than R1 for a total of 80% or more is most preferable for the effect of increasing tHc. In addition to these B and R, the balance of the magnet material of the present invention is Fe, but there is no problem in that it contains impurities that are unavoidable during manufacturing.

Fe−B−Hの基本組成において13〜16%R,6〜
11%Bは(BH)max35MGOe以上、13〜1
4.5%R96〜7.5%Bは40 M G Oe以上
(最高45MGOe以上)を与える上で適当な組成であ
る。
In the basic composition of Fe-B-H, 13-16% R, 6-
11%B is (BH) max35MGOe or more, 13-1
4.5%R96 to 7.5%B is a suitable composition for providing 40 MGOe or more (maximum 45MGOe or more).

本発明のFe*BaRを主成分とする永久磁石材料にお
いて所定量の添加元素Mを加えることが効果をもってお
り、特にBrの最大領域で保磁力を顕著に増大させ、角
形性の改善効果がある。保磁力の増大は磁石の高温にお
ける安定性を増し、その用途が拡大される。しかしMの
添加量の増大につれてBrが低下していき、そのため最
大エネルギー積(BH)maxが減少する。(BH)m
axは少し低くなっても高い保磁力Hcが必要とされる
用途は最近ことに多くなってきたためMを含む合金は大
変有用であるが(BH)maxは8 M G Oe以上
の範囲で特に有用である。
Adding a predetermined amount of additive element M to the Fe*BaR-based permanent magnet material of the present invention has the effect of significantly increasing the coercive force and improving the squareness, especially in the maximum Br region. . Increasing the coercive force increases the magnet's stability at high temperatures, expanding its applications. However, as the amount of M added increases, Br decreases, and therefore the maximum energy product (BH) max decreases. (BH)m
Recently, there have been many applications that require a high coercive force Hc even if ax is slightly lower, so alloys containing M are very useful, but (BH)max is particularly useful in the range of 8 M G Oe or more. It is.

添加元素Mの夫々の添加によるBrへの及ぼす効果を明
らかにするためその添加量を変化させてBrの変化を測
定しハードフェライトのBr約4kGよりはるかに高い
範囲を考慮し、またハードフェライトの(BH)max
約4MGOeよりはるかに高い範囲を考慮しMの添加量
の上限はV  8.5% 、  Nb  12.5 $
、 Ta  10.5 LMo  9.5%、   W
  9.5L  Or  8.5%、AI  9.5X
、  Ti  4.5L  Zr  5.5X、Hf 
 5.5!、  Kn  8.0%、  Ni  8.
O!、Ge  7.Oz、Sn   3.5L   B
i   5.O$、Sb  2.5  %  、   
Si   5.0 %、及びZn 2.0 %である。
In order to clarify the effect of each addition of the additive element M on Br, we measured the change in Br by varying the amount of addition, taking into account a range much higher than about 4 kG of Br in hard ferrite, and (BH)max
Considering the range much higher than about 4 MGOe, the upper limit of the amount of M added is V 8.5% and Nb 12.5 $
, Ta 10.5 LMo 9.5%, W
9.5L Or 8.5%, AI 9.5X
, Ti 4.5L Zr 5.5X, Hf
5.5! , Kn 8.0%, Ni 8.
O! , Ge7. Oz, Sn 3.5L B
i5. O$, Sb 2.5%,
Si is 5.0%, and Zn is 2.0%.

Mは0%を含ます又1種もしくは2種以上を添加使用す
ることが出来る。Mを2種以上含有する場合には各添加
元素の特性の中間の値を一般に示し夫々の元素の含有量
は上記%の範囲内でかつその最大含有量は当該添加元素
のうち最大値を有するものの原子%以下とする0Mは一
般に少量で有効(0,1〜3%程度但し、sbは1%以
下、Znは035%以下)であり、好ましくはo、i〜
1% 、V、Nb、Cr、Ta、Mo、W、AIが好ま
しい。
M contains 0%, and one type or two or more types can be added and used. When containing two or more types of M, it generally indicates the intermediate value of the characteristics of each added element, and the content of each element is within the range of the above percentage, and the maximum content is the maximum value among the added elements. 0M is generally effective in small amounts (approximately 0.1 to 3%, however, sb is 1% or less and Zn is 0.35% or less), and is preferably o, i to 35% or less.
1%, V, Nb, Cr, Ta, Mo, W, and AI are preferred.

本発明の永久磁石創料は、前記FeBRを主成分とする
組成において、最大エネルギー[(BH)maxはハー
ドフェライhm石(〜4MGOe)よりはるかに高い値
となる。
In the composition of the permanent magnet material of the present invention having FeBR as its main component, the maximum energy [(BH)max is much higher than that of hard ferrite hmite (~4MGOe).

本発明による磁気異方性永久磁石において、軽希土類を
全R中の50%以上含有しかつ12〜20%のR14〜
24%のBおよび残部Feの組成範囲の場合、もしくは
該組成に1種又は2種以上の下記添加元素M1e   
  V  e、5X以下、Nb 8.5$ U下、Ta
 8.5X 以下、No 5.5%以下、W  5.5
%以下、Or 4.5X以下、AI 5.5X以下、T
i 3.5X以下、Zr 3.5X以下、If 3.5
%以下、Mll 4.0%以下、Ni 2.OX以下、
 Ge 4.0%以下、Sn !、(H以下、Bi 3
.0X以下、Sb 0.5X以下、Si4.0%以下、
及びZn 1.0%以下で、Mを2種以上含む場合のM
の合量は含有するMの当該各元素のうち最大値を有する
ものの原子%以下含む組成範囲の場合、(BH)max
は17MGOeを示す好ましい範囲である。更に前記R
,0,2〜3%、R13〜19%、85〜11%、残部
Feの組成範囲の場合もしくは該組成に前記添加元素M
を1種又は2種以上(o、i〜3%、特に0.1〜1%
)含有する場合は最大エネルギー積(BH)max35
MGOe以上、更には42MGOe以上の磁気特性を発
現する最も好ましい範囲である。
In the magnetically anisotropic permanent magnet according to the present invention, the light rare earth element is contained in an amount of 50% or more of the total R, and 12 to 20% of R14 to
In the case of a composition range of 24% B and the balance Fe, or one or more of the following additive elements M1e to the composition
V e, 5X or less, Nb 8.5$ U or less, Ta
8.5X or less, No 5.5% or less, W 5.5
% or less, Or 4.5X or less, AI 5.5X or less, T
i 3.5X or less, Zr 3.5X or less, If 3.5
% or less, Mll 4.0% or less, Ni 2. Below OX,
Ge 4.0% or less, Sn! , (below H, Bi 3
.. 0X or less, Sb 0.5X or less, Si 4.0% or less,
and M when Zn is 1.0% or less and contains two or more types of M.
(BH)max
is a preferable range showing 17 MGOe. Furthermore, the above R
, 0.2 to 3%, R13 to 19%, 85 to 11%, and the balance is Fe, or the above-mentioned additional element M is added to the composition.
One or more types (o, i ~ 3%, especially 0.1 ~ 1%
), maximum energy product (BH) max 35
This is the most preferable range for exhibiting magnetic properties of MGOe or higher, particularly 42MGOe or higher.

等方性の場合、10〜25%R,3〜23%B、残部F
eにおいて(BH)max4MGOe以上、12〜20
%R15〜18%B、残部Feにおいて(BH)max
5MGOe以−ヒとなる。
In the case of isotropy, 10-25% R, 3-23% B, balance F
(BH) max4MGOe or more, 12-20
%R15-18%B, balance Fe (BH)max
This will be 5MGOe.

この発明における磁石材料合金の結晶相は主相が少なく
とも50 マa1%以上(好ましくは80マOI%以上
)の正方晶であり、少なくとも非磁性相により主相の粒
界が囲まれていることが、すぐれた磁気特性を有する焼
結永久磁石を作製するのに不可欠である。非磁性相は主
としてRリッチ相(R90原子%以上の金属)或いはさ
らにBリッチ相(R2Fe7 BBないしR,Fe4B
4等)から構成されほんのわずかでも有効であり、例え
ばl  vo1%以上は十分な量である。正方晶格子の
りその中心組成はR2F e +a Bであると考えら
れる。本発明の3段時効処理により、より好ましい金属
組織が得られることにより、高い磁気特性が得られるも
のと考えられる。
The crystalline phase of the magnet material alloy in this invention is a tetragonal main phase of at least 50 Ma1% or more (preferably 80 MaOI% or more), and the grain boundaries of the main phase are surrounded by at least a non-magnetic phase. is essential for producing sintered permanent magnets with excellent magnetic properties. The non-magnetic phase is mainly an R-rich phase (a metal containing R90 atomic% or more) or a B-rich phase (R2Fe7BB or R,Fe4B).
4, etc.), and even a small amount is effective; for example, l vo 1% or more is a sufficient amount. The central composition of the tetragonal lattice glue is considered to be R2F e +a B. It is believed that the three-stage aging treatment of the present invention provides a more preferable metal structure, thereby providing high magnetic properties.

また、本発明による磁気等方性永久磁石におい中経希土
類が50原子%以上)とし12〜16%のR16〜18
%のB、残部Feの組成範囲の場合、もしくは該組成に
前記異方性磁石の場合と同様の添加元素Mを1種又は2
種以上含有する場合は(BH)maxが8MGOe以上
(最高11MGOe以上)の等方性永久磁石としては極
めて高い磁気特性を発現する好ましい範囲である。なお
等方性についてもMは0.1〜3%が十分有効であり0
.1〜1%が好ましく、好ましい元素は異方性の場合と
同様である。
Furthermore, in the magnetically isotropic permanent magnet according to the present invention, the medium-value rare earth element is 50 atomic % or more) and R16-18 is 12-16%.
% of B and the balance is Fe, or one or two of the same additive elements M as in the case of the anisotropic magnet are added to the composition.
When more than one species is contained, (BH) max is in a preferable range that exhibits extremely high magnetic properties as an isotropic permanent magnet of 8 MGOe or more (maximum 11 MGOe or more). Regarding isotropy, M of 0.1 to 3% is sufficiently effective and 0.
.. It is preferably 1 to 1%, and the preferred elements are the same as in the case of anisotropy.

本発明において、結合剤、滑剤は、異方性の場合には、
成形の際の配向を妨げるため一般には用いられないが、
等方性磁石の場合には、結合剤、滑剤等を含むことによ
りプレス効率の改善、成形体の強度増大等が可能である
In the present invention, when the binder and lubricant are anisotropic,
Although it is not generally used because it interferes with orientation during molding,
In the case of an isotropic magnet, it is possible to improve the pressing efficiency and increase the strength of the molded product by including a binder, a lubricant, etc.

本発明永久磁石は異方性、等方性いずれの場合にも工業
的製造上不可避な不純物の存在を許容できる。即ちR,
B、Feの他に所定範囲内でC1Ca、Mg、P、Cu
、S、0等が含有されるこL+4.−Ta藝 伽1社屏
熟≠ lギl黒楯ル塙く笛体し外スC,Ca、Mg各4
.0%以下、P、Cu各3.3%以下、32.5%以下
、02.0%以下(但しその含量は当該各元素の最大値
以下)の含有量であればハードフェライトと同程度のB
r(4kG程度)以上の特性が得られ磁石材料として、
有用である。但し、目的とする特性に応じてこれらの不
純物のレベルは規定される。特に(BH)max35M
GOe以上の高磁気特性を実現するためにはO,C,C
aの含有量を特に低く保つことが好ましい。Ca、Mg
、P、Cu等は安価な原料から、Cは有機成形助剤等か
ら、S、0は製造工程から混入することがある。
The permanent magnet of the present invention can tolerate the presence of impurities that are unavoidable in industrial production, whether it is anisotropic or isotropic. That is, R,
In addition to B and Fe, C1Ca, Mg, P, and Cu within a specified range.
, S, 0, etc. are included L+4. -Tagei 1 company folding ≠ 4 black shields with a flute body and 4 each of C, Ca, and Mg
.. If the content is 0% or less, P, Cu each 3.3% or less, 32.5% or less, 02.0% or less (however, the content is below the maximum value of each element), it is equivalent to hard ferrite. B
r (approximately 4kG) or higher, and as a magnetic material,
Useful. However, the levels of these impurities are determined depending on the desired properties. Especially (BH)max35M
In order to achieve magnetic properties higher than GOe, O, C, C
It is preferred to keep the content of a particularly low. Ca, Mg
, P, Cu, etc. may be mixed in from inexpensive raw materials, C may be mixed in from organic molding aids, etc., and S, 0 may be mixed in from the manufacturing process.

本発明の永久磁石材料は、前述の特定の製造方法によっ
て得られる。
The permanent magnet material of the present invention is obtained by the specific manufacturing method described above.

本発明の製造方法は、前記FeBRを主成分とする組成
の合金粉末を成形焼結し、焼結後750〜1000℃の
温度で1火熱処理後3〜2000’O/minの冷却速
度で680’0以下まで冷却した後、480〜700℃
の温度で2次熱処理後lO〜2000℃/minの冷却
速度で200℃以下まで冷却後、再び10〜b の昇温速度で昇温し350〜450℃の温度で3次熱処
理後10〜2000℃/ m i nの冷却速度で20
0″C以下まで冷却することを特徴とする。
The manufacturing method of the present invention comprises forming and sintering the alloy powder having a composition mainly composed of FeBR, and after sintering, heat-treating it at a temperature of 750 to 1000°C for 1 time, and then cooling it at a cooling rate of 3 to 2000'O/min to 680°C. 'After cooling to below 0, 480-700℃
After the second heat treatment at a temperature of lO~2000℃/min to 200℃ or less, the temperature was raised again at a temperature increase rate of 10~b and after the third heat treatment at a temperature of 350~450℃, the temperature was 10~2000℃. 20 at a cooling rate of °C/min
It is characterized by cooling to 0″C or less.

合金粉末は好ましくは一般に93〜80給重の平均粒度
とする。非酸化性雰囲気を完全に確保すればさらに微細
とすることも可能であるが、粉末が極めて酸化性に富む
ため、酸化、発火するために、通常の条件では0.3g
m以上が好ましい、f:&形焼結工程は、一般にはプレ
ス成形(異方性の場合磁界中にて、等方性の場合磁界な
しで)し焼結する。焼結は、好ましくは、還元性又は非
酸化性雰囲気中(真空又は不活性ガス雰囲気中減圧、常
圧ないし加圧下に)で900−1200℃の温度で行う
、比較的低温で焼結する場合には長時間焼結することが
必要である。
The alloy powder preferably has an average particle size of generally 93 to 80 feed weight. It is possible to make the powder even finer if a completely non-oxidizing atmosphere is ensured, but since the powder is extremely oxidizing, it will oxidize and ignite, so under normal conditions it will weigh less than 0.3g.
The f: & shape sintering step, which is preferably m or more, is generally press forming (in a magnetic field in the case of anisotropy, without a magnetic field in the case of isotropy) and sintering. Sintering is preferably carried out in a reducing or non-oxidizing atmosphere (in vacuum or in an inert gas atmosphere under reduced pressure, normal pressure or pressure) at a temperature of 900-1200°C, in the case of sintering at a relatively low temperature. It is necessary to sinter for a long time.

以下本発明の製造方法を磁気異方性永久磁石の場合につ
いて実験例に基づいて説明する。
The manufacturing method of the present invention will be explained below based on experimental examples in the case of magnetically anisotropic permanent magnets.

実験の際の出発原料としてはFeは純度99゜0%以上
の電解鉄、Bは純度99.0%以上の純ポロンおよび純
度90.0%以上のフェロポロン、Rは純度95%以上
のものを使用した。
As starting materials for the experiment, Fe is electrolytic iron with a purity of 99.0% or more, B is pure poron with a purity of 99.0% or more and ferroporon with a purity of 90.0% or more, and R is one with a purity of 95% or more. used.

これらの原料を上記の範囲内で配合調整して真空ないし
、不活性ガス雰囲気中で高周波溶解。
These raw materials are blended within the above range and melted using high frequency in a vacuum or inert gas atmosphere.

アーク溶解などで溶解し合金化し、これを冷却して得ら
れた合金をスタンプミル、ショークラッシャーなどで粗
粉砕して粗粉砕粉を得るか、あるいは、Ca等の還元剤
を用いて酸化物から還元法によって粗粉砕粉を得てもよ
い、こうして得た粗粉砕粉を更にジェットミル、ボール
ミル等により微粉砕する。微粉砕は不活性ガス雰囲気中
で行なう乾式粉砕もしくはアセトン、トルエン等を用い
る有機溶媒中で行なう湿式粉砕のいずれも用いることが
出来る。微粉砕によって得られる合金粉末を平均粒径0
.3〜80ILmとする。平均粒度0.3pm未満のも
のでは微粉砕中ないしその後の工程で粉末の酸化が著し
くなり焼結後の密度が上がらず、得られる磁石特性も低
い。平均粒度80μmをこえるとすぐれた磁石特性とり
わけ高せるためには微粉末の平均粒度は1〜40pmが
好ましく特に2〜20gmが最も好ましい。平均粒度0
.3〜80gmの粉末を、異方性磁石とする場合には磁
界中(例えば5kOe以上)で、加圧成形する。成形に
用いる圧力は0.5〜3.0トン/cm2が好ましい。
The alloy is melted and alloyed by arc melting, etc., and the resulting alloy is coarsely crushed using a stamp mill, show crusher, etc. to obtain a coarsely ground powder, or alternatively, the oxide is converted from an oxide using a reducing agent such as Ca. A coarsely pulverized powder may be obtained by a reduction method, and the coarsely pulverized powder thus obtained is further pulverized using a jet mill, a ball mill, or the like. For fine pulverization, either dry pulverization in an inert gas atmosphere or wet pulverization in an organic solvent such as acetone or toluene can be used. The alloy powder obtained by fine pulverization has an average particle size of 0.
.. 3 to 80 ILm. If the average particle size is less than 0.3 pm, the oxidation of the powder will be significant during the pulverization or subsequent steps, the density after sintering will not increase, and the resulting magnetic properties will be poor. If the average particle size exceeds 80 .mu.m, the average particle size of the fine powder is preferably 1 to 40 pm, and most preferably 2 to 20 gm, in order to achieve excellent magnetic properties. Average particle size 0
.. In the case of forming an anisotropic magnet, 3 to 80 gm of powder is pressure-molded in a magnetic field (for example, 5 kOe or more). The pressure used for molding is preferably 0.5 to 3.0 tons/cm2.

磁界中の加圧成形には粉末をそのま\成形する方法、ア
セトン、トルエン等有機溶媒中で成形する方法のいずれ
も用いることが出来る。得られた成形体を還元性又は非
酸化性雰囲気中、例えば10”” To r r以下の
真空中あるいは1〜760Torrの圧力下で99.9
%以上の不活性ガスないし還元性ガスの雰囲気中で90
0〜1200℃の温度で所定時間焼結する。焼結温度が
900℃未満では十分な焼結密度が得られず、又高い残
留磁束密度も得られない。また1200℃をこえると焼
結体が変形し結晶粒の配向がくずれるため残留磁束密度
の低下と減磁曲線の角形性が低下する。また焼結時間は
5分以上あればよいが余り長時間では量産性の点〜4時
間が好ましい、なお焼結雰囲気は組成分中のRが高温で
極めて酸化されやすいので非酸化性雰囲気である高真空
、不活性ガス又は還元性ガス等の雰囲気を高度に確保す
ることが好ましい。不活性ガスを用いる場合には高い焼
結密度を得るため1〜760Torr未渦の減圧雰囲気
下で行なうことも出来る。
For pressure molding in a magnetic field, either a method of molding the powder as it is or a method of molding it in an organic solvent such as acetone or toluene can be used. The obtained molded body is heated to 99.9% in a reducing or non-oxidizing atmosphere, for example in a vacuum of 10" Torr or less or under a pressure of 1 to 760 Torr.
90% or more in an atmosphere of inert gas or reducing gas
Sintering is performed at a temperature of 0 to 1200°C for a predetermined time. If the sintering temperature is less than 900° C., sufficient sintered density and high residual magnetic flux density cannot be obtained. Moreover, if the temperature exceeds 1200° C., the sintered body is deformed and the orientation of crystal grains is lost, resulting in a decrease in residual magnetic flux density and a decrease in the squareness of the demagnetization curve. Also, the sintering time should be at least 5 minutes, but if it is too long, 4 hours is preferable from the viewpoint of mass production.The sintering atmosphere should be a non-oxidizing atmosphere since R in the composition is extremely easily oxidized at high temperatures. It is preferable to ensure a high degree of atmosphere such as high vacuum, inert gas, or reducing gas. When an inert gas is used, the sintering can be carried out under a reduced pressure atmosphere of 1 to 760 Torr without swirling in order to obtain a high sintering density.

焼結時の昇温速度は特に規定する必要はないが湿式成形
方式を用いた場合は有機溶媒の溶媒除去のため40℃/
分以下で昇温を行なうかあるいは昇温途中200〜80
0℃の温度範囲で0.5時間以上保持することが好まし
い。焼結後冷却する場合の冷却速度は20℃/分以上が
製品のバラツキを少なくするために好ましく、引き続く
熱処理の時効処理による磁石特性を高めるためには焼結
後の冷却速度は100℃/分以上が好ましい、但し、焼
結に続いて直ちに熱処理工程に入ることもできる。
There is no need to specify the temperature increase rate during sintering, but if a wet molding method is used, the rate of temperature increase during sintering is 40℃/30℃ to remove the organic solvent.
Raise the temperature within minutes or 200~800℃ during heating.
It is preferable to hold the temperature in the 0°C temperature range for 0.5 hours or more. When cooling after sintering, a cooling rate of 20°C/min or higher is preferable in order to reduce product variation, and in order to improve the magnetic properties due to aging treatment in the subsequent heat treatment, the cooling rate after sintering is preferably 100°C/min. The above is preferred, however, it is also possible to immediately enter a heat treatment step following sintering.

焼結後の熱処理は以下の工程から成る。先ず焼結体を7
50〜1000℃の温度で1段目の熱処理をした後、3
〜b で680℃以下まで冷却した後480〜700℃の温度
で2段目の熱処理をし、その後10〜2000℃/ m
 i nの冷却速度で200℃以下まで冷却し、その後
再び10〜b の昇温速度で昇温し、350〜450℃の温度で3段目
の熱処理を行い、10〜2 000℃/minの冷却速度で200℃以下まで冷却す
ることから成る。
The heat treatment after sintering consists of the following steps. First, the sintered body 7
After the first heat treatment at a temperature of 50 to 1000℃, 3
~b After cooling to below 680°C, a second heat treatment is performed at a temperature of 480 to 700°C, and then a temperature of 10 to 2000°C/m
Cool down to 200°C or less at a cooling rate of 100°C, then raise the temperature again at a rate of 10°C to 450°C, perform a third heat treatment at a temperature of 350°C to 450°C, and It consists of cooling to below 200°C at a cooling rate.

1段目の熱処理温度は、750℃未満では1段目の熱処
理が有効とならず、得られる保磁力が低く、1000℃
を越えると焼結体の結晶が粒成長を起こし保磁力が低下
する。
If the first stage heat treatment temperature is less than 750°C, the first stage heat treatment will not be effective and the obtained coercive force will be low;
If it exceeds this value, grain growth will occur in the crystals of the sintered body and the coercive force will decrease.

1段目の熱処理後の冷却速度は、冷却速度3℃/min
未満では保磁力および減磁曲線の角形性が低下し、20
00℃/mtnを越えると焼結体にマイクロ・クラック
が発生し保磁力が低下する。この所定冷却速度を保つべ
き温度範囲は、1段目の熱処理温度から680℃以下の
範囲に限定する。680℃以下の冷却速度は徐冷、急冷
いずれも可能である。所定冷却速度での冷却温度範囲下
限値が680℃以下になると保磁力が著しく低下する。
The cooling rate after the first stage heat treatment is 3°C/min.
If it is less than 20, the coercive force and the squareness of the demagnetization curve will decrease.
When the temperature exceeds 00° C./mtn, micro-cracks occur in the sintered body and the coercive force decreases. The temperature range in which this predetermined cooling rate should be maintained is limited to a range from the first stage heat treatment temperature to 680° C. or less. As for the cooling rate of 680° C. or less, both slow cooling and rapid cooling are possible. When the lower limit of the cooling temperature range at a predetermined cooling rate is 680° C. or less, the coercive force decreases significantly.

2段目の熱処理は1次熱処理を施した後680℃以下ま
で所定の急冷により冷却した後さらに480〜700℃
の温度範囲にて行う。1次熱処理を施した後炉冷等の冷
却により、そのまま引続いて2次熱処理を行った場合に
は、得られる磁気特性は低い。
In the second stage heat treatment, after the first heat treatment, the temperature is further cooled to 480 to 700 degrees Celsius by a prescribed rapid cooling process to below 680 degrees Celsius.
The temperature range is as follows. If the secondary heat treatment is performed by cooling such as furnace cooling after the primary heat treatment, the obtained magnetic properties are poor.

なお、2次熱処理は、1次熱処理後の所定冷却に引続い
て行うことができるが、所定冷却の後、放冷した後に行
うこともできる。
Note that the secondary heat treatment can be performed following the predetermined cooling after the primary heat treatment, but it can also be performed after the predetermined cooling and cooling.

2段目の熱処理温度は480〜700℃に限定する。4
80℃未満あるいは700℃を越えると保磁力および減
磁曲線の角形性が低下する。
The second stage heat treatment temperature is limited to 480 to 700°C. 4
If the temperature is lower than 80°C or higher than 700°C, the coercive force and the squareness of the demagnetization curve will decrease.

2段目の熱処理後10〜2000℃/ m i nの冷
却速度で200℃以下まで冷却し、再び10〜b るが、冷却速度および昇温速度は10°O/min特性
とりわけ保磁力および減磁曲線の角形性が低下する。こ
の所定冷却速度を保つべき温度範囲は、2段目の熱処理
温度から温度200℃以下の範囲に限定する。200℃
以下での冷却速度は徐冷、急冷いずれも可能である。所
定冷却速度での冷却温度範囲下限値が200℃以上にな
ると保磁力および減磁曲線の角形性が著しく低下する。
After the second heat treatment, it is cooled to below 200°C at a cooling rate of 10 to 2000°C/min, and then heated again to 10°C/min. The cooling rate and heating rate are 10°O/min. The squareness of the magnetic curve decreases. The temperature range in which this predetermined cooling rate should be maintained is limited to a range from the second stage heat treatment temperature to 200° C. or less. 200℃
As for the cooling rate below, both slow cooling and rapid cooling are possible. When the lower limit of the cooling temperature range at a predetermined cooling rate is 200° C. or higher, the coercive force and the squareness of the demagnetization curve are significantly reduced.

磁石特性を高め、バラツキを減少させるには、所定速度
での冷却温度範囲下限値は150℃以下が望ましく、さ
らには100″C以下が最も望ましい。
In order to improve magnetic properties and reduce variations, the lower limit of the cooling temperature range at a predetermined speed is preferably 150°C or less, and most preferably 100''C or less.

保磁力および減磁曲線の角形性を高め磁石特性のバラツ
キを軽減するためには2段目熱処理後の冷却速度および
引続く昇温速度は20〜1500’C/minが望まし
くさらに40〜2000℃/minが最も望ましい。
In order to increase the squareness of the coercive force and demagnetization curve and reduce variations in magnetic properties, the cooling rate after the second heat treatment and the subsequent temperature increase rate are preferably 20 to 1500'C/min, and preferably 40 to 2000C. /min is most desirable.

木3段熱処理の特徴は480〜700℃の温度で2次熱
処理を施した後200 ’C!以下まで冷却して300
〜250℃の間を所定の急冷により通過させた後再び3
段目の熱処理温度まで昇温してさせた後保磁力及び減磁
曲線の角形性改善に有効な350〜450 ’Oの所定
温度範囲の昇温を行い、3火熱処理後10〜2000℃
/ m i nの冷却速度で200℃以下まで冷却する
ことにある。2次熱処理を施した後炉冷等の冷却により
、そのまま引続いて昇温を行うと、得られる磁石特性の
増大幅は低い、また2次熱処理後200℃以下まで冷却
した後昇温を施す温度まで昇温する際、並びに昇温後2
00℃以下まで冷却する際に250〜300℃の間の磁
石特性を劣化させる金相的不安定領域による影響を除去
するために所定速度の冷却、及び昇温を行うものである
The feature of wood 3-stage heat treatment is 200'C after secondary heat treatment at a temperature of 480 to 700 degrees Celsius! Cool to below 300℃
After passing through a temperature range of ~250°C by prescribed rapid cooling,
After raising the temperature to the stage heat treatment temperature, the temperature was raised within a predetermined temperature range of 350 to 450'O, which is effective for improving the coercive force and the squareness of the demagnetization curve, and after 3-fire heat treatment, the temperature was increased to 10 to 2000 °C.
The objective is to cool down to 200°C or less at a cooling rate of /min. If the temperature is subsequently raised by cooling such as furnace cooling after performing secondary heat treatment, the increase in magnetic properties obtained will be small. When heating up to temperature, and after heating up 2
When cooling down to 00°C or lower, cooling and temperature raising are performed at a predetermined rate in order to eliminate the influence of the metal phase instability region that deteriorates the magnetic properties between 250 and 300°C.

うものである。Is Umono.

なお、昇温は、2次熱処理後の所定冷却に引続いて行う
ことができるが、この所定冷却の後、放冷した後に行う
こともできる。
Note that the temperature increase can be performed following the predetermined cooling after the secondary heat treatment, but it can also be performed after the predetermined cooling and cooling.

3段目の熱処理温度は350〜450℃に限定する。3
50℃未満あるいは450℃を越えると保磁力および減
磁曲線の角形性が低下する。保磁力および減磁曲線の角
形性を高め、磁石特性のバラツキを軽減するためには3
段目熱処理の温度範囲として360〜440℃が望まし
くさらには375〜425℃が最も望ましい。
The third stage heat treatment temperature is limited to 350 to 450°C. 3
If the temperature is less than 50°C or more than 450°C, the coercive force and the squareness of the demagnetization curve will decrease. In order to improve the squareness of the coercive force and demagnetization curve and reduce the variation in magnet characteristics, 3.
The temperature range for the stage heat treatment is preferably 360 to 440°C, and most preferably 375 to 425°C.

1段目の熱処理時間は特に限定しないが、短時間では温
度制御しにくく、長時間では工業的メリットが低下する
ので0.5〜8.Ohrが望ましい。
The first stage heat treatment time is not particularly limited, but it is difficult to control the temperature in a short time, and the industrial merit decreases in a long time, so it should be 0.5 to 8. Ohr is preferred.

2段目、3段目の熱処理時間も特に限定しないが同様に
短時間では温度制御しにくく、長時間では工業的メリッ
トが低下するので0.5〜12.Ohrが望ましい、特
に3段目熱処理の時間としては保磁力および減磁曲線の
角形性を高めるためには、1.0〜6.Ohrが最も望
ましい。
The heat treatment times for the second and third stages are also not particularly limited, but similarly, it is difficult to control the temperature if it is short, and the industrial merits are reduced if it is long, so it is 0.5 to 12. Ohr is desirable, especially for the third stage heat treatment time, in order to improve the coercive force and the squareness of the demagnetization curve, it is 1.0 to 6. Ohr is most preferred.

時効処理の雰囲気は合金組成分中のRが高温で酸素又は
水分と急激に反応するので真空の場合は真空度1O−3
Torr以下、不活性ガス、還元性ガスの雰囲気の場合
は雰囲気の純度99.99%以上が望ましい。なお焼結
温度は永久磁石材料の組成により前記範囲内で選択され
、時効処理温度は当該焼結温度以下で選択される。
The atmosphere for aging treatment is vacuum degree 1O-3 because R in the alloy composition reacts rapidly with oxygen or moisture at high temperatures.
Torr or less, in the case of an inert gas or reducing gas atmosphere, the purity of the atmosphere is preferably 99.99% or more. Note that the sintering temperature is selected within the above range depending on the composition of the permanent magnet material, and the aging treatment temperature is selected below the sintering temperature.

なお、これら1段、2段および3段の熱処理を含む時効
処理は焼結に引続いて行うか又は焼結後一旦室温まで冷
却し再び昇温して行うことも出来、いずれの場合も同等
の磁石特性が得られる。
In addition, the aging treatment including these 1-stage, 2-stage, and 3-stage heat treatments can be performed following sintering, or can be performed by cooling to room temperature after sintering and then raising the temperature again; in either case, the results are the same. magnetic properties are obtained.

但し一旦室温まで冷却する場合、焼結温度から200 
’C以下までの温度範囲は10〜b/ m i nの冷
却速度で冷却するものとする。
However, once cooled to room temperature, 200% lower than the sintering temperature.
The temperature range up to 'C or less shall be cooled at a cooling rate of 10 to b/min.

また1本発明の3段目の時効処理工程において磁界を印
加すると、磁界無の場合と比べて同等以上の磁石特性が
得られるが、磁界を印加して行う場合は磁石特性を高め
るために5kOe以上の磁界の大きさが必要である。ま
た、特に温度範囲としては200〜350℃の温度範囲
で磁界を印加することが磁石特性とりわけ保磁力を高め
るために望ましい。
In addition, if a magnetic field is applied in the third aging treatment step of the present invention, magnetic properties equivalent to or better than those without a magnetic field can be obtained, but when carried out with a magnetic field applied, 5 kOe is required to improve the magnetic properties. A magnetic field larger than this is required. Further, it is particularly desirable to apply a magnetic field within a temperature range of 200 to 350° C. in order to improve magnetic properties, especially coercive force.

以上は磁気異方性永久磁石の場合について記述したが、
本発明は磁気異方性永久磁石の場合に限らず磁気等方性
永久磁石の場合にも工程中成形を磁界をかけずに行うこ
とにより全く同様な方法を以上詳述の通り本発明はCo
を含まないFe・B−Rを主成分とする新規な永久磁石
材料の磁石特性とりわけ保磁力および減磁曲線の角形性
を改善し、耐高温性に優れ、逆磁界の強い用途にも耐え
得る永久磁石であり、工業的にきわめて高い価値を有す
るものである。
The above has been described for the case of magnetically anisotropic permanent magnets, but
The present invention is not limited to the case of magnetically anisotropic permanent magnets, but also to the case of magnetically isotropic permanent magnets, by performing molding during the process without applying a magnetic field.
The magnetic properties of the new permanent magnet material, which is mainly composed of Fe/B-R and does not contain any It is a permanent magnet and has extremely high industrial value.

以下本発明の態様及び効果について、さらに実施例に従
って説明する。但し実施例及び記載の態様は、本発明を
これらに限定するものではない。
Hereinafter, aspects and effects of the present invention will be further explained according to examples. However, the present invention is not limited to the examples and described aspects.

実施例1 原子百分率組成73FelOB9Nd8Prなる合金を
Arガスアーク中溶解後、水冷銅鋳型に鋳造して得た。
Example 1 An alloy having an atomic percentage composition of 73FelOB9Nd8Pr was melted in an Ar gas arc and then cast into a water-cooled copper mold.

本合金をスタンプ・ミルにより40me s h以下に
粗粉砕後、有機溶媒中で平均粒度2.5μmにポール・
ミル微粉砕した。得られた粉末を15kOe磁界中で1
.5ton/crrr′の圧力で加圧成型した後、99
.999%純度(7) 220 T o r r A 
r中で1100℃、2時間温まで冷却した。さらに3X
10’Torr真空中にて1段目の時効処理を820℃
にて2時間行ない、冷却速度400℃/minで600
℃以下まで冷却した後さらに2段目の時効処理を620
℃14hr行なった後400℃/minで150℃まで
冷却し、その後、50℃/ m i nで昇温し表1に
示す温度で3段目の時効処理を2時間行なった後200
℃/minで150℃まで冷却し本発明の磁石を得た。
After coarsely pulverizing this alloy to 40 me s h or less using a stamp mill, it was pulverized in an organic solvent to an average particle size of 2.5 μm.
Mill pulverized. The obtained powder was heated at 1 in a 15 kOe magnetic field.
.. After pressure molding at a pressure of 5 tons/crrr', 99
.. 999% purity (7) 220 T o r r A
The mixture was cooled to 1100° C. for 2 hours in a r. 3X more
First stage aging treatment at 820℃ in 10'Torr vacuum
600°C at a cooling rate of 400°C/min for 2 hours.
After cooling to below ℃, a second aging treatment is performed at 620℃.
°C for 14 hours, then cooled to 150 °C at 400 °C/min, then heated at 50 °C/min, and performed the third aging treatment at the temperature shown in Table 1 for 2 hours.
The magnet of the present invention was obtained by cooling to 150°C at a rate of °C/min.

磁石特性結果を比較例(2段時効処理を行った磁石)と
ともに表1に示す。
The magnet characteristics results are shown in Table 1 along with a comparative example (magnet subjected to two-stage aging treatment).

表1 実施例2 表2に示す原子百分率組成を有するFe−B−R合金を
Arガスアーク中溶解後、水冷銅鋳型に鋳造して得た。
Table 1 Example 2 An Fe-B-R alloy having the atomic percentage composition shown in Table 2 was melted in an Ar gas arc and then cast into a water-cooled copper mold.

本合金をスタンプ・ミルにより50mesh以下に粗粉
砕後、有機溶媒中で平均粒度3.2pmにポール・ミル
微粉砕した。得られた粉末を15kOe磁界中ff1l
 、 5ton / cm′の圧力で加圧成型した後、
99.999%純度の180To r rAr中で10
80℃、3時間焼結し、焼結後は冷却速度800℃/m
i nで室温まで急速冷却した。さらに500Torr
高純度Ar中にて1段目の時効処理を800℃で3時間
行ない、350℃/ m i nで630℃以下まで冷
却した後600℃、4hrの2段目の時効処理を行なっ
た後450℃/ m i nで120℃まで冷却した後
、80°Q/minで昇温し3段目の時効処理を400
℃で1時間行なった後250℃/1sinで120℃ま
で冷却して本合金磁石を得た。磁石特性結果を比較例(
2段時効処理を行った磁石)とともに表2に示す。
This alloy was coarsely ground to a size of 50 mesh or less using a stamp mill, and then finely ground using a pole mill to an average particle size of 3.2 pm in an organic solvent. The obtained powder was heated to ff1l in a 15kOe magnetic field.
, After pressure molding at a pressure of 5 tons/cm',
10 in 99.999% pure 180 Tor rAr
Sintered at 80℃ for 3 hours, cooling rate 800℃/m after sintering
It was rapidly cooled to room temperature by in. Another 500 Torr
The first aging treatment was performed at 800°C for 3 hours in high-purity Ar, and after cooling to 630°C or less at 350°C/min, the second aging treatment was performed at 600°C for 4 hours. After cooling to 120℃ at ℃/min, the temperature was raised at 80℃/min and the third aging treatment was performed at 400℃.
C. for 1 hour, and then cooled to 120.degree. C. at 250.degree. C./1 sin to obtain the present alloy magnet. Comparative example of magnet characteristics results (
These are shown in Table 2 along with magnets subjected to two-stage aging treatment.

表2 実施例3 下記原子百分率組成を有するFe−B−R合金をArガ
スアーク中溶解後、水冷銅鋳型に鋳造して得た。本合金
をスタンプ争ミルにより35 rsesh以下に粗粉砕
後、有機溶媒中で平均粒度3.5gmにポール・ミル微
粉砕した。得られた粉末を無磁界中で1.0ton/c
m’の圧力で加圧成型した後、99.99%純度(7)
180TOr rA r中で1080℃、4時間焼結し
、焼結後は冷却速度300℃/ m i nで室温まで
急速冷却した。さら理を800℃で2時間行ない、25
0℃/minの冷却速度で600℃以下まで冷却した後
さらに2段目の時効処理を600℃、lhr行った後4
0()”0/minで100’C!まで冷却した後10
0℃/ m i nで昇温し3段目時効処理を400℃
で1時間行った後200’C/minで150℃まで冷
却して本発明の磁石を得た6m石特性の結果を2段時効
処理を行った試料(比較例)とともに表3に示す。
Table 2 Example 3 An Fe-B-R alloy having the following atomic percentage composition was melted in an Ar gas arc and then cast into a water-cooled copper mold. This alloy was coarsely pulverized by a stamp mill to a particle size of 35 sesh or less, and then finely pulverized by a pole mill to an average particle size of 3.5 gm in an organic solvent. The obtained powder was heated at 1.0 ton/c in a non-magnetic field.
After pressure molding at a pressure of m', 99.99% purity (7)
Sintering was performed at 1080° C. for 4 hours in 180 TorrAr, and after sintering, it was rapidly cooled to room temperature at a cooling rate of 300° C./min. Paring at 800℃ for 2 hours, 25
After cooling to 600°C or less at a cooling rate of 0°C/min, a second aging treatment was performed at 600°C for 1 hour.
After cooling to 100'C! at 0()''0/min 10
Raise the temperature at 0°C/min and perform the third aging treatment at 400°C.
The results of the characteristics of the 6m stone obtained by cooling the magnet at 200'C/min to 150°C for 1 hour are shown in Table 3 together with a sample subjected to two-stage aging treatment (comparative example).

表3 実施例4 下記原子百分率組成を有するFe−B−R合金をArガ
ス中高周波溶解後、水冷銅鋳型に鋳造して得た。
Table 3 Example 4 An Fe-B-R alloy having the following atomic percentage composition was high-frequency melted in Ar gas and then cast into a water-cooled copper mold.

本合金をスタンプ・ミルにより35mesh以下に粗粉
砕後、有機溶媒中で平均粒度2.OBmにボールミル微
粉砕した。得られた粉末を15koe磁界中で1.5t
on/cm’の圧力で加圧成形した後、99.99%純
度の200TorrAr中で1060℃、2時間焼結を
行い焼結後は冷却速度500℃/minで室温まで急速
冷却した。
After coarsely pulverizing this alloy to a size of 35 mesh or less using a stamp mill, the average particle size was 2.5 mm in an organic solvent. Ball milled to OBm. The obtained powder was heated to 1.5t in a 15koe magnetic field.
After pressure molding at a pressure of on/cm', sintering was performed at 1060° C. for 2 hours in 200 TorrAr with a purity of 99.99%, and after sintering, it was rapidly cooled to room temperature at a cooling rate of 500° C./min.

さらに760TorrAr中にて800℃、1時間の1
段目時効処理を行い300℃/winの冷却速度で室温
まで冷却した後、さらに620℃、3時間の2段目時効
処理を行った$400℃/minで100℃まで冷却し
、その後120℃/ m i nで昇温し3段目時効処
理を375℃で1時間行った後200℃/ m i n
で150℃まで冷却して本発明の磁石を得た。
Further, 1 hour at 800°C in 760 TorrAr
After performing a stage aging treatment and cooling to room temperature at a cooling rate of 300°C/win, a second stage aging treatment was performed at 620°C for 3 hours, cooling to 100°C at a rate of $400°C/min, and then to 120°C. The temperature was raised at 375℃/min for 1 hour, and then the temperature was increased to 200℃/min for 1 hour.
The magnet was cooled to 150° C. to obtain a magnet of the present invention.

磁石特性結果を比較例(2段時効処理後)とともに表4
に示す。
Table 4 shows the magnet characteristics results along with a comparative example (after two-stage aging treatment).
Shown below.

表4 (1覚¥3) 実施例5 平均粒度1〜6gm、表5に示す原子百分率組成を有す
るFe−B−R−M合金粉末を15kOe磁界中で1.
5  Ton/am″の圧力で加圧成形した後、99.
999%純度cy)180TorrAr中で1100℃
12時間焼結し、焼結後は冷却速度600’C/min
で室温まで急速冷却した。さらに550  Torrの
高純度Ar中にて時効処理を800℃で2時間行い、3
00℃/winで550℃以下まで冷却した後600℃
、2hrの2段目の時効処理を行った後350℃/ m
 i nで120℃まで冷却した後150’O/min
で昇温し3段目の時効処理を380℃で1時間行なった
後250℃/ m 5 nで120 ”Oまで冷却して
本永久磁石を得た。磁石特性結果を比較例(2段時効処
理後の磁石特性)とともに表5に示す。
Table 4 (1 yen 3) Example 5 Fe-BRM alloy powder having an average particle size of 1 to 6 gm and the atomic percentage composition shown in Table 5 was heated in a 15 kOe magnetic field for 1.5 gm.
After pressure molding at a pressure of 5 Ton/am'', 99.
999% purity cy) 1100°C in 180TorrAr
Sintered for 12 hours, cooling rate 600'C/min after sintering
It was rapidly cooled to room temperature. Furthermore, aging treatment was performed at 800°C for 2 hours in high purity Ar at 550 Torr.
600℃ after cooling to 550℃ or less at 00℃/win
, 350℃/m after 2hr second aging treatment
150'O/min after cooling to 120℃
The temperature was raised at It is shown in Table 5 along with the magnet properties after treatment.

表5 (注)Feは残部 実施例6 下記原子百分率組成を有するFe−B−R−M合金をA
rガス中高周波溶解後、水冷銅鋳型に鋳造して得た。
Table 5 (Note) The remaining Fe is Example 6 A Fe-BRM alloy having the following atomic percentage composition is
After high-frequency melting in r gas, the product was cast in a water-cooled copper mold.

本合金をスタンプ番ミルにより35mesh以下に粗粉
砕後、有機溶媒中で平均粒度2.54mにボールミル微
粉砕した。得られた粉末を12kOe磁界中’t’l 
、 5 t On/ cm2(y)圧力で加圧成形した
後、99.999%純度の200TorrAr中で1l
oo℃、2時間焼結を行ない焼結後は冷却速度600℃
/ m i nで室温まで急速冷却した。
This alloy was coarsely pulverized to a size of 35 mesh or less using a stamp mill, and then finely pulverized by a ball mill in an organic solvent to an average particle size of 2.54 m. The obtained powder was placed in a 12 kOe magnetic field.
, 1 l in 200 TorrAr with 99.999% purity after pressure molding at 5 t On/cm2(y) pressure.
oo℃, sintering for 2 hours, cooling rate 600℃ after sintering
/min to room temperature.

さらに760TorrAr中にて800℃、1時間の1
段目時効処理を行ない250℃/minの冷却速度で室
温まで冷却した後、さらに600℃、2時間の2段目時
効処理を行なった後、450℃/ m i nで120
℃まで冷却した後150℃/ m i nで昇温し3段
目の時効処理を38α℃で4時間行なった後250℃/
 m i nで150℃まで冷却して本発明の磁石を得
た。
Further, 1 hour at 800°C in 760 TorrAr
After performing a stage aging treatment and cooling to room temperature at a cooling rate of 250°C/min, a second stage aging treatment was performed at 600°C for 2 hours, and then a cooling rate of 120°C at 450°C/min was performed.
After cooling to ℃, the temperature was raised at 150℃/min, and the third aging treatment was performed at 38α℃ for 4 hours, and then heated to 250℃/min.
The magnet of the present invention was obtained by cooling to 150° C. at min.

磁石特性結果を比較例(2段時効処理後)とともに表6
に示す。
Table 6 shows the magnet characteristics results along with a comparative example (after two-stage aging treatment).
Shown below.

表6 出願人  住友特殊金属株式会社 代理人   弁理士  加 藤 朝 道(他1名)Table 6 Applicant: Sumitomo Special Metals Co., Ltd. Agent: Patent attorney Asami Kato (1 other person)

Claims (4)

【特許請求の範囲】[Claims] (1)原子百分率として8〜30%のR(但しRはYを
包含する希土類元素の少なくとも一種)、2〜28%の
B、および残部Feを主成分とした合金粉末を成形焼結
し、焼結後750〜1000℃の温度で1次熱処理後3
〜2000℃/minの冷却速度で680℃以下まで冷
却した後、480〜700℃の温度で2次熱処理し10
〜2000℃/minの冷却速度で200℃以下まで冷
却し、その後再び10〜2000℃/minの昇温速度
で昇温し350〜450℃の温度で3次熱処理し10〜
2000℃/minの冷却速度で200℃以下まで冷却
して成る永久磁石材料。
(1) Forming and sintering an alloy powder whose main components are 8 to 30% R (where R is at least one rare earth element including Y), 2 to 28% B, and the balance Fe as atomic percentages, 3 After primary heat treatment at a temperature of 750-1000℃ after sintering
After cooling to 680°C or less at a cooling rate of ~2000°C/min, secondary heat treatment was performed at a temperature of 480 to 700°C for 10
Cool to 200°C or less at a cooling rate of ~2000°C/min, then raise the temperature again at a heating rate of 10~2000°C/min, and perform a tertiary heat treatment at a temperature of 350~450°C.
Permanent magnetic material made by cooling to 200°C or less at a cooling rate of 2000°C/min.
(2)前記Feの一部に代り、下記の添加元素Mの一種
以上を全組成に対し合計3原子%以下含有することを特
徴とする特許請求の範囲第1項記載の永久磁石材料: V、Nb、Ta、Mo、W、Cr、Al、 Ti、Zr、Hf、Mn、Ni、Ge、Sn、Bi、S
b、Si、及びZn(但しSbは1%以下、Znは0.
5%以下とする)。
(2) Permanent magnet material according to claim 1, characterized in that, in place of a part of the Fe, one or more of the following additive elements M are contained in a total of 3 atomic % or less based on the total composition: V , Nb, Ta, Mo, W, Cr, Al, Ti, Zr, Hf, Mn, Ni, Ge, Sn, Bi, S
b, Si, and Zn (however, Sb is 1% or less, Zn is 0.
5% or less).
(3)原子百分率として8〜30%のR(但しRはYを
包含する希土類元素の少なくとも一種)、2〜28%の
B、および残部Feを主成分とした合金粉末を成形焼結
する工程、焼結後750〜1000℃の温度で1次熱処
理後3〜2000℃/minの冷却速度で680℃以下
まで冷却する工程、480〜700℃の温度で2次熱処
理し10〜2000℃/minの冷却速度で200℃以
下まで冷却する工程、さらにその後再び10〜2000
℃/minの昇温速度で昇温し350〜450℃の温度
で3次熱処理し10〜2000℃/minの冷却速度で
200℃以下まで冷却する工程からなることを特徴とす
る永久磁石材料の製造方法。
(3) Process of forming and sintering an alloy powder whose main components are 8 to 30% R (R is at least one of rare earth elements including Y), 2 to 28% B, and the balance Fe as atomic percentages. , After sintering, first heat treatment at a temperature of 750 to 1000°C, followed by cooling to 680°C or less at a cooling rate of 3 to 2000°C/min, and second heat treatment at a temperature of 480 to 700°C, at a cooling rate of 10 to 2000°C/min. A step of cooling down to 200℃ or less at a cooling rate of 10 to 2000℃.
A permanent magnet material characterized by comprising a step of heating at a heating rate of 10°C/min, tertiary heat treatment at a temperature of 350 to 450°C, and cooling to 200°C or less at a cooling rate of 10 to 2000°C/min. Production method.
(4)前記Feの一部に代り、下記の添加元素Mの一種
以上を全組成に対し下記の所定%以下含有する(但し、
2種以上の添加元素Mが含まれるときは当該含有添加元
素の下記の所定%のうち最大のもの以下とする)ことを
特徴とする特許請求の範囲第3項記載の方法。 V9.5%、Nb12.5%、Ta10.5%、Mo9
.5%、W9.5%、Cr8.5%、Al9.5%、T
i4.5%、Zr5.5%、Hf5.5%、Mn8.0
%、Ni8.0%Ge7.0%、Sn3.5%、Bi5
.0%、Sb2.5%、Si5.0%、及びZn2.0
%。
(4) Instead of a part of the Fe, one or more of the following additive elements M are contained in the following predetermined percentage or less based on the total composition (however,
4. The method according to claim 3, wherein when two or more types of additive elements M are included, the amount is less than or equal to the largest of the following predetermined percentages of the contained additive elements. V9.5%, Nb12.5%, Ta10.5%, Mo9
.. 5%, W9.5%, Cr8.5%, Al9.5%, T
i4.5%, Zr5.5%, Hf5.5%, Mn8.0
%, Ni8.0%Ge7.0%, Sn3.5%, Bi5
.. 0%, Sb2.5%, Si5.0%, and Zn2.0
%.
JP60103946A 1985-05-17 1985-05-17 Permanent magnet alloy and its manufacture Granted JPS61264133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60103946A JPS61264133A (en) 1985-05-17 1985-05-17 Permanent magnet alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60103946A JPS61264133A (en) 1985-05-17 1985-05-17 Permanent magnet alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS61264133A true JPS61264133A (en) 1986-11-22
JPH0549737B2 JPH0549737B2 (en) 1993-07-27

Family

ID=14367603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60103946A Granted JPS61264133A (en) 1985-05-17 1985-05-17 Permanent magnet alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS61264133A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293908A (en) * 1985-10-19 1987-04-30 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS63164403A (en) * 1986-12-26 1988-07-07 Shin Etsu Chem Co Ltd Rare earth permanent magnet and manufacture of the same
JP2013045844A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp Manufacturing method of rare earth magnet, and rare earth magnet
JP2019169621A (en) * 2018-03-23 2019-10-03 Tdk株式会社 R-t-b-based sintered magnet
JP2019220689A (en) * 2018-06-15 2019-12-26 スターグループ インダストリアル カンパニー リミテッド MANUFACTURING METHOD OF HEAVY RARE EARTH GRAIN BOUNDARY DIFFUSION TYPE RE-Fe-B BASED RARE EARTH MAGNET AND HEAVY RARE EARTH GRAIN BOUNDARY DIFFUSION TYPE RE-Fe-B BASED RARE EARTH MAGNET MANUFACTURED BY THE SAME
CN111633212A (en) * 2020-06-24 2020-09-08 福建省长汀金龙稀土有限公司 Method for processing sintered neodymium iron boron blank

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293908A (en) * 1985-10-19 1987-04-30 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS63164403A (en) * 1986-12-26 1988-07-07 Shin Etsu Chem Co Ltd Rare earth permanent magnet and manufacture of the same
JP2013045844A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp Manufacturing method of rare earth magnet, and rare earth magnet
US9761358B2 (en) 2011-08-23 2017-09-12 Toyota Jidosha Kabushiki Kaisha Method for producing rare earth magnets, and rare earth magnets
JP2019169621A (en) * 2018-03-23 2019-10-03 Tdk株式会社 R-t-b-based sintered magnet
JP2019220689A (en) * 2018-06-15 2019-12-26 スターグループ インダストリアル カンパニー リミテッド MANUFACTURING METHOD OF HEAVY RARE EARTH GRAIN BOUNDARY DIFFUSION TYPE RE-Fe-B BASED RARE EARTH MAGNET AND HEAVY RARE EARTH GRAIN BOUNDARY DIFFUSION TYPE RE-Fe-B BASED RARE EARTH MAGNET MANUFACTURED BY THE SAME
CN111633212A (en) * 2020-06-24 2020-09-08 福建省长汀金龙稀土有限公司 Method for processing sintered neodymium iron boron blank

Also Published As

Publication number Publication date
JPH0549737B2 (en) 1993-07-27

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
US5110377A (en) Process for producing permanent magnets and products thereof
JP2720040B2 (en) Sintered permanent magnet material and its manufacturing method
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH0320046B2 (en)
JPS61264133A (en) Permanent magnet alloy and its manufacture
JPH045740B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0461042B2 (en)
JPH045739B2 (en)
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH0320048B2 (en)
JPH0524975B2 (en)
JPH045737B2 (en)
JPH0320047B2 (en)
JPH0527241B2 (en)
JPH044383B2 (en)
JPS6318603A (en) Permanent magnet
JPS59219452A (en) Permanent magnet material and its production
JPH044384B2 (en)
JPS61143553A (en) Production of material for permanent magnet
JP3143181B2 (en) Manufacturing method of rare earth permanent magnet
JPH0527242B2 (en)
JPH05182814A (en) Manufacture of rare earth permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term