JP2720040B2 - Sintered permanent magnet material and its manufacturing method - Google Patents

Sintered permanent magnet material and its manufacturing method

Info

Publication number
JP2720040B2
JP2720040B2 JP63044951A JP4495188A JP2720040B2 JP 2720040 B2 JP2720040 B2 JP 2720040B2 JP 63044951 A JP63044951 A JP 63044951A JP 4495188 A JP4495188 A JP 4495188A JP 2720040 B2 JP2720040 B2 JP 2720040B2
Authority
JP
Japan
Prior art keywords
permanent magnet
coercive force
temperature
sintering
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63044951A
Other languages
Japanese (ja)
Other versions
JPH01219143A (en
Inventor
浩 永田
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP63044951A priority Critical patent/JP2720040B2/en
Publication of JPH01219143A publication Critical patent/JPH01219143A/en
Application granted granted Critical
Publication of JP2720040B2 publication Critical patent/JP2720040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fe−B−Rを基本系としCoを含有する希
土類焼結永久磁石とその製造方法に係り、Cuを含有して
磁石特性を著しく改良した永久磁石、並びに熱処理条件
の最適範囲が広く、製造性が極めてよい焼結永久磁石材
料とその製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth sintered permanent magnet containing Fe-BR as a basic system and containing Co, and a method of manufacturing the same. The present invention relates to a permanent magnet, a sintered permanent magnet material having a wide optimum range of heat treatment conditions, and extremely excellent manufacturability, and a method for producing the same.

背景技術 本出願人は先に、高価なSmやCoを必須としないNdやPr
を中心とし資源的に豊富な軽希土類を用いて、B、Feを
主成分とし、従来の希土類コバルト磁石の最高特性を大
幅に超える新しい高性能磁石して、Fe−B−R系永久磁
石を提案した(特公昭61−34242号)。
BACKGROUND ART The present applicant has previously described Nd and Pr that do not require expensive Sm or Co.
A new high-performance magnet that uses B and Fe as main components, and greatly exceeds the highest characteristics of conventional rare-earth cobalt magnets, using Fe-BR-based permanent magnets. It was proposed (Japanese Patent Publication No. 61-34242).

また、これらの磁石材料において、Feの一部をCoで置
換して、キューリー温度が上昇させ、磁石の温度特性を
改善した永久磁石を提案した(特開昭59−64733号)。
Further, in these magnet materials, a permanent magnet was proposed in which part of Fe was replaced with Co to increase the Curie temperature and improve the temperature characteristics of the magnet (Japanese Patent Application Laid-Open No. 59-64733).

さらに、今日の永久磁石に要求される苛酷な環境、す
なわち高温雰囲気での使用や、モーターなどに組込まれ
時の電機子反作用による減磁界にさらされる場合等にお
いて、安定した保磁力を得るため、添加元素M(=Nb、
Cr、Mo、W、Al等)を添加したもの(特開昭59−64733
号、特開昭59−132104号)、さらに高保磁力を得るため
に前記Nd、Prの一部をTb、Dy等の重希土類元素に置換し
たもの(特開昭58−141850号)、時効処理を行なうこと
により保磁力の向上を図った永久磁石(特開昭59−2173
04号、特開昭59−218704号)を提案した。
Furthermore, in order to obtain a stable coercive force in the harsh environment required for today's permanent magnets, that is, when used in a high temperature atmosphere or when exposed to a demagnetizing field due to armature reaction when incorporated in a motor etc. Additional element M (= Nb,
(Cr, Mo, W, Al, etc.) (JP-A-59-64733)
And Japanese Patent Application Laid-Open No. Sho 58-132104) and those in which a part of the above-mentioned Nd and Pr are substituted with heavy rare earth elements such as Tb and Dy to obtain a higher coercive force (Japanese Patent Application Laid-Open No. 58-141850). Permanent magnet with improved coercive force by performing
No. 04, JP-A-59-218704).

上記の各永久磁石において、Coを含むFe−Co−B−R
系磁石は、磁石の温度特性や耐食性を改善するものの、
高い保磁力を得るためには、熱処理条件の最適温度範囲
が狭く、これを保持することが困難であり、保磁力及び
減磁曲線角型性を低下させる等の影響があった。
In each of the above permanent magnets, Fe-Co-BR containing Co is used.
Although system magnets improve the temperature characteristics and corrosion resistance of magnets,
In order to obtain a high coercive force, the optimum temperature range of the heat treatment condition is narrow, and it is difficult to maintain the temperature range. This has the effect of reducing the coercive force and the demagnetization curve squareness.

また、前記添加元素Mや重希土類元素は、高い保磁力
を得るためには、多量に用いなければならず、保磁力は
上がるものの、その分残留磁束密度Brが低下し、高いエ
ネルギー積が得られない問題があった。
Further, in order to obtain a high coercive force, the additive element M and heavy rare earth element must be used in a large amount. Although the coercive force increases, the residual magnetic flux density Br decreases by that amount, and a high energy product is obtained. There was no problem.

発明の目的 この発明は、Coを含んだFe−Co−B−R系永久磁石材
料において、40MGOe級の高い磁気特性を発揮し、高い保
磁力と優れた角型性を有する永久磁石材料の提供と、前
記永久磁石を製造性よく得るための製造方法を目的とし
ている。
SUMMARY OF THE INVENTION The present invention provides a Fe-Co-BR-based permanent magnet material containing Co, which exhibits high magnetic properties of the order of 40MGOe, and has high coercive force and excellent squareness. And a manufacturing method for obtaining the permanent magnet with good productivity.

発明の概要 この発明は、かかる目的を達成するため、永久磁石材
料の組成について種々検討したところ、Fe−Co−B−R
系をベースとし、ごく少量のCuを含むFe−Co−B−R−
Cu系の一定の組成範囲の合金粉末を成形し、これを焼結
し、さらに特定の温度で熱処理することにより、磁石特
性、特に残留磁束密度の低下がなく、保磁力と減磁曲線
の角型性が著しく向上した永久磁石材料が得られること
を知見し、この発明を完成したものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention has conducted various studies on the composition of a permanent magnet material, and found that Fe-Co-BR
Fe-Co-BR- containing a small amount of Cu based on the system
By molding a Cu-based alloy powder of a certain composition range, sintering it, and heat-treating it at a specific temperature, there is no decrease in magnet properties, especially residual magnetic flux density, and the coercive force and demagnetization curve angle The inventors have found that a permanent magnet material with significantly improved moldability can be obtained, and have completed the present invention.

原子比でNdとPrの合計が12〜17at%(但しNd,Prの一
部をDy,Tbなどの重希土類元素で0.2at%〜3.0at%置換
できる)、 B5〜14at%、Co20at%以下、 Cu0.02〜0.5at%、 残部Fe及び不可避的不純物からなることを特徴とする焼
結永久磁石材料であり、 また、 前記組成からなる平均粒度0.5μm〜10μmの合金粉末
を成形し、 非酸化性または還元性雰囲気中で、 900〜1200℃で焼結し、 焼結後、430〜600℃の温度で熱処理することを特徴とす
る焼結永久磁石材料の製造方法である。
Atomic ratio of Nd and Pr is 12-17at% (However, part of Nd and Pr can be replaced with heavy rare earth elements such as Dy and Tb at 0.2at% -3.0at%), B5-14at%, Co20at% or less A sintered permanent magnet material comprising 0.02 to 0.5 at% of Cu, the balance being Fe and unavoidable impurities; and forming an alloy powder having an average particle size of 0.5 μm to 10 μm having the above-mentioned composition. A method for producing a sintered permanent magnet material, comprising: sintering at 900 to 1200 ° C in an oxidizing or reducing atmosphere; and performing heat treatment at a temperature of 430 to 600 ° C after sintering.

発明の効果 Fe−Co−B−R−Cu系永久磁石は、Fe−B−R系をベ
ースとする化合物磁石として、従来のアモルファス薄膜
や超急冷リボンとは全く異なる結晶性のX線解析パター
ンを示し、正方晶系結晶構造を主相とする。
Effect of the Invention The Fe-Co-BR-Cu permanent magnet is a compound magnet based on the Fe-BR system, and has an X-ray analysis pattern of crystallinity completely different from conventional amorphous thin films and super-quenched ribbons. And the main phase is a tetragonal crystal structure.

この発明の特徴である極少量のCuの含有は、Coを含有
するFe−Co−B−R系永久磁石材料の熱処理条件を緩和
し、残留磁束密度を低下させることなく、13kOe以上の
高い保磁力と優れた減磁曲線の角型性を得ることがで
き、その結果として25MGOe以上の高い最大エネルギー積
が得ることができる。
The inclusion of a very small amount of Cu, which is a feature of the present invention, relaxes the heat treatment conditions for the Fe-Co-BR-based permanent magnet material containing Co, and does not lower the residual magnetic flux density. It is possible to obtain a magnetic force and an excellent squareness of a demagnetization curve, and as a result, a high maximum energy product of 25 MGOe or more can be obtained.

この発明においてCuは、Coを含有する従来のFe−B−
R系において要求される厳しい熱処理条件、すなわち、
狭い最適温度範囲と早い冷却速度条件を緩和し、広い最
適温度と自由な冷却速度を選ぶことが可能となる。これ
らは大型の磁石の熱処理や、熱処理後の冷却時の磁石の
ヒビ割れに対しても極めて有効である。
In the present invention, Cu is a conventional Fe-B-
Rigorous heat treatment conditions required in the R system, ie,
The narrow optimum temperature range and fast cooling rate conditions are relaxed, and a wide optimum temperature and a free cooling rate can be selected. These are extremely effective for heat treatment of large magnets and for cracking of magnets during cooling after heat treatment.

永久磁石組成の限定理由 希土類元素Rは、永久磁石の保磁力を12kOe以上、最
大エネルギー積を25MGOe以上とするために12at%以上の
添加が必要であり、17at%を超えると、Brの減少、並び
にBrの減少に伴ない(BH)maxが低下するため、 NdとPrの合計は12at%〜17at%とする必要があり、より
好ましい範囲は、12.5at%〜15at%である。
Reasons for limiting the permanent magnet composition Rare earth element R needs to be added in an amount of 12 at% or more in order to make the coercive force of the permanent magnet 12 kOe or more and the maximum energy product 25 MGOe or more. In addition, since (BH) max decreases with the decrease in Br, the total of Nd and Pr must be 12 at% to 17 at%, and a more preferable range is 12.5 at% to 15 at%.

なお、本系永久磁石において、NdとPrとは元素として
その機能はほぼ同等であり、いずれかを単独含有可能で
あるが、原料の都合上Ndを添加すると、必ず数%程度は
Prが含有され、Prを積極的に添加するか否かは原料に応
じて適宜選定すればよい。
In the present permanent magnet, Nd and Pr have almost the same function as elements and can contain either one alone. However, when Nd is added for convenience of the raw material, about several% is always required.
Whether or not Pr is contained and Pr is positively added may be appropriately selected according to the raw material.

また、Nd、Prの一部を、Dy、Tbなどの重希土類元素で
0.2at%〜3.0at%置換することにより、さらに高い保磁
力を得ることができる。
Some of Nd and Pr are replaced by heavy rare earth elements such as Dy and Tb.
A higher coercive force can be obtained by substituting 0.2 at% to 3.0 at%.

さらに、希土類元素中に含まれる不純物の内、La、Ce
などは少量、例えば全希土類元素中の5at%以下、の範
囲で含有してもよい。
Furthermore, of the impurities contained in the rare earth elements, La, Ce
And the like may be contained in a small amount, for example, 5 at% or less of all rare earth elements.

本系永久磁石材料において、Coは、例えば1at%程度
の少量でも耐酸化性向上に効果があり、また、Tc増大に
有効であり、Coの置換量により約310〜750℃の任意のTc
をもつ合金が得られる。
In the present permanent magnet material, Co is effective for improving oxidation resistance even in a small amount of, for example, about 1 at%, and is effective for increasing Tc.
Is obtained.

Co量は、永久磁石のiHcを12kOe以上とするため添加す
るが、Tcの改善効果とコストの点を考慮して、20at%以
下の含有とする。Co成分としては、R−Co合金等を添加
することもできる。Co量の好ましい範囲は1〜8at%で
ある。
The amount of Co is added to make the iHc of the permanent magnet 12 kOe or more, but the content is made 20 at% or less in consideration of the Tc improvement effect and cost. As the Co component, an R-Co alloy or the like can be added. The preferred range of the Co amount is 1 to 8 at%.

Bは、永久磁石の保磁力を10kOe以上とするために5at
%以上の添加が必要であり、添加につれてiHcは増大す
るが、(BH)maxを20MGOe以上とするために、14at%以
下とする必要がある。
B is 5 at to make the coercive force of the permanent magnet 10 kOe or more.
% Or more is required, and iHc increases with the addition. However, in order to set (BH) max to 20MGOe or more, it is necessary to set it to 14at% or less.

この発明においてCuは、Fe−Co−B−R系永久磁石に
おいて、他の磁気特性、すなわち残留磁束密度Bや最大
エネルギー積(BH)maxを全く低下させることなく、熱
処理条件の緩和が可能であり、その結果として保磁力を
上げ、かつ減磁曲線の角型性を改善し、(BH)maxの向
上を図ることが可能となるため添加する。
In the present invention, Cu makes it possible to relax the heat treatment conditions in the Fe-Co-BR-based permanent magnet without reducing other magnetic properties, that is, the residual magnetic flux density B and the maximum energy product (BH) max at all. Yes, as a result, the coercive force is increased, the squareness of the demagnetization curve is improved, and (BH) max can be improved.

第1図にCu量と得られた磁気特性の変化を示す如く、
Cuは極僅かの添加でもCoを含有するFe−B−R系磁石の
磁気特性を大幅に改善する。
As shown in FIG. 1 showing changes in the amount of Cu and the obtained magnetic properties,
Cu greatly improves the magnetic properties of Fe-BR-based magnets containing Co even with a very small addition.

この発明において、Cu量は、磁気特性の改善のため少
なくとも0.01at%の添加が必要であるが、0.5at%を超
えると焼結密度が低下するため、上限は0.5at%とす
る。好ましい範囲は0.03at%〜0.3at%である。更に好
ましくは(BH)maxの観点から0.05at%〜0.2at%であ
る。
In the present invention, the amount of Cu needs to be added at least 0.01 at% in order to improve the magnetic properties. However, if it exceeds 0.5 at%, the sintered density decreases, so the upper limit is 0.5 at%. A preferred range is from 0.03 at% to 0.3 at%. More preferably, it is 0.05 at% to 0.2 at% from the viewpoint of (BH) max.

この発明に用いるCuは、原料として用いられる鉄やフ
ェロボロンとの混合物でもよい。
Cu used in the present invention may be a mixture with iron or ferroboron used as a raw material.

さらに、使用原料中に含まれ、あるいは製造工程中に
混入する少量のC、S、P、Ca、Mg、O、Al、Siの存在
はこの発明の効果を損ねるものではない。
Furthermore, the presence of small amounts of C, S, P, Ca, Mg, O, Al, and Si contained in the raw materials used or mixed in the production process does not impair the effects of the present invention.

製造方法 まず、出発原料となるFe−Co−B−R−Cu組成の合金
粉末を得る。
Manufacturing Method First, an alloy powder having a Fe-Co-BR-Cu composition as a starting material is obtained.

通常の合金溶解後、例えば、鋳造等、アモルファス状
態とならない条件で冷却して得た合金鋳塊を粉砕して分
級、配合等により合金粉末化してもよく、あるいはFe、
Co、FeB粉等と共にCa等の還元剤を用いて希土類酸化物
から還元法によって得た合金粉末を用いことができる。
After normal alloy melting, for example, casting, such as alloy ingot obtained by cooling under conditions that do not become amorphous state, may be pulverized and classified into alloy powder by blending, etc., or Fe,
An alloy powder obtained by a reduction method from a rare earth oxide by using a reducing agent such as Ca together with Co, FeB powder or the like can be used.

本系合金粉末の平均粒度は、合金粉末の平均粒度が0.
5μm未満では、微粉砕中あるいはその後の製造工程に
おいて、粉末の酸化が著しくなり、また焼結後の密度が
上らず得られる磁石特性も低くなり、また10μmを超え
ると、すぐれた磁石特性が得られないため、平均粒度は
0.5〜10μmの範囲とする。すぐれた磁石特性を得るた
めには、平均粒度1.0〜5μmが最も望ましい。
The average particle size of the alloy powder is 0.
If it is less than 5 μm, the powder is oxidized remarkably during pulverization or in the subsequent manufacturing process, and the density after sintering does not increase, resulting in low magnet properties. Average particle size
The range is 0.5 to 10 μm. In order to obtain excellent magnet properties, the average particle size is most preferably from 1.0 to 5 μm.

微粉砕は湿式、乾式のいずれでも可能であるが、乾式
で行なうことが好ましく、粉末の酸化を防止するために
窒素やアルゴン等の不活性ガス雰囲気中で行なうことが
必要である。乾式の微粉砕法としては、ディスクミル、
ジェットミル等がある。
The pulverization can be performed by either a wet method or a dry method, but is preferably performed by a dry method. In order to prevent the powder from being oxidized, it is necessary to perform the pulverization in an atmosphere of an inert gas such as nitrogen or argon. Dry milling methods include disc mills,
There are jet mills and the like.

次に合金粉末を成形するが、成形方法は通常の粉末冶
金法と同様に行なうことができ、加圧成形が好ましく、
異方性とするためには、例えば、合金粉末を5kOe以上の
磁界中で0.5〜3.0ton/cm2の圧力で加圧する。
Next, the alloy powder is molded, and the molding method can be performed in the same manner as a normal powder metallurgy method, and pressure molding is preferable.
In order to make the alloy anisotropic, for example, the alloy powder is pressed at a pressure of 0.5 to 3.0 ton / cm 2 in a magnetic field of 5 kOe or more.

成型体の焼結は、通常の還元性ないし非酸化性雰囲気
中で所定温度、900〜1200℃にて焼結するとよい。
The sintering of the molded body may be performed at a predetermined temperature of 900 to 1200 ° C. in a normal reducing or non-oxidizing atmosphere.

例えば、この成形体を10-2Torr以下の真空中ないし、
1〜76Torr、純度99%以上の不活性ガスないし還元性ガ
ス雰囲気中で900〜1200℃の温度範囲で0.5〜4時間焼結
する。
For example, this compact is not placed in a vacuum of 10 -2 Torr or less,
Sintering is carried out in an atmosphere of an inert gas or a reducing gas having a purity of 1 to 76 Torr and a purity of 99% or more at a temperature of 900 to 1200 ° C. for 0.5 to 4 hours.

なお、焼結は、所定の結晶粒径、焼結密度が得られる
よう温度、時間等の条件を調節して行なう。
The sintering is performed by adjusting conditions such as temperature and time so as to obtain a predetermined crystal grain size and sintering density.

焼結体の密度は理論密度(比)の95%以上が磁気特性
上好ましく、例えば、焼結温度1040〜1160℃で、密度7.
2g/cm3以上が得られ、これは理論密度の95%以上に相当
する。さらに、1060〜1100℃の焼結では、理論密度比99
%以上にも達し、特に好ましい。
The density of the sintered body is preferably 95% or more of the theoretical density (ratio) in terms of magnetic characteristics. For example, at a sintering temperature of 1040 to 1160 ° C, the density of the sintered body is 7.
2 g / cm 3 or more are obtained, which corresponds to more than 95% of the theoretical density. Furthermore, in sintering at 1060 to 1100 ° C, the theoretical density ratio is 99
%, Which is particularly preferred.

焼結後、室温までの冷却速度は、Cuを有しない従来の
Fe−Co−B−R磁石では、焼結後の冷却速度は磁気特性
のばらつきを防ぐために100℃/min以上が必要であっ
た。
After sintering, the cooling rate to room temperature is
In the case of the Fe-Co-BR magnet, the cooling rate after sintering was required to be 100 ° C / min or more in order to prevent variations in magnetic properties.

ところが、Cuを含有するこの発明においては、実施例
に示す如く、極徐冷、例えば3℃/min以上もあれば十分
である。このような遅い冷却条件下では前記の430〜600
℃間を十分に長い時間滞留することができ、一旦室温近
くまで冷却することなく、焼結後の徐冷で、この発明と
同等の効果を得ることもできる。
However, in the present invention containing Cu, as shown in the examples, it is sufficient if the temperature is extremely slow cooling, for example, 3 ° C./min or more. Under such slow cooling conditions, the aforementioned 430-600
C. can be retained for a sufficiently long time, and the same effect as that of the present invention can be obtained by slow cooling after sintering without cooling to near room temperature once.

時効処理は、真空ないし不活性ガスないし還元性ガス
雰囲気中で430℃〜600℃の温度範囲で、おそよ5分から
40時間行なう。
The aging treatment is performed in a temperature range of 430 ° C to 600 ° C in a vacuum, an inert gas, or a reducing gas atmosphere for about 5 minutes.
Perform for 40 hours.

時効処理後の徐冷も、Cuを含有しない従来の場合は保
磁力の低下を防止するため、200℃/min以上の早い冷却
速度を必要としていた。
Slow cooling after aging treatment also required a high cooling rate of 200 ° C./min or more in order to prevent a decrease in coercive force in the conventional case containing no Cu.

しかし、この発明においては、3〜200℃/minという
広い範囲の冷却速度で冷却でき、磁石の変形やヒビ割れ
を防止でき、また熱処理炉の損傷を防ぐ意味からも極め
て有利である。
However, in the present invention, cooling can be performed at a cooling rate in a wide range of 3 to 200 ° C./min, and deformation and cracking of a magnet can be prevented, and the heat treatment furnace is extremely advantageous in terms of preventing damage.

また、本系焼結磁石の時効処理として、焼結後一旦65
0〜900℃の温度に5分から10時間保持し、続いて所定の
温度で熱処理を行なう2段以上の多段時効処理も有効で
ある。
In addition, as an aging treatment for the sintered magnet,
A two-stage or more multi-stage aging treatment in which the temperature is maintained at 0 to 900 ° C. for 5 minutes to 10 hours and then heat treatment is performed at a predetermined temperature is also effective.

また、保磁力をさらに高めたり、磁石や粉末の耐酸化
性を向上させるために、1at%以下のTi、V、Nb、Cr、M
o、W、Al、Zr、Hf、Zn、Ca、Siを含有してもよい。
In order to further increase the coercive force and improve the oxidation resistance of magnets and powders, Ti, V, Nb, Cr, M
o, W, Al, Zr, Hf, Zn, Ca, and Si may be contained.

実施例 実施例1 出発原料として純度99.9wt%の電解鉄、銅、純度99.7
wt%以上のCo、19wt%Bを含有するフェロボロン、純度
97wt%以上のNdを使用して、原子比で Fe−4Co−14.5Nd−7B−xCu(x=0.01〜0.4at%) の組成合金を真空及びアルゴン雰囲気で溶製し、鋳塊を
得た。
EXAMPLES Example 1 Electrolytic iron and copper having a purity of 99.9% by weight as starting materials and a purity of 99.7%
Ferroboron containing more than wt% Co and 19wt% B, purity
Using Nd of 97 wt% or more, a composition alloy of Fe-4Co-14.5Nd-7B-xCu (x = 0.01 to 0.4 at%) in atomic ratio was melted in a vacuum and an argon atmosphere to obtain an ingot. .

その後、この鋳塊をジョークラッシャーで粗粉砕し、
さらにN2ガス気流によるジェットミルで微粉砕し、平均
粒度3.5μmの微粉砕粉をプレス装置の金型に装入し、1
0kOeの磁界中で配向、磁界に直角方向に1.5ton/cm2の圧
力で成形した。
After that, this ingot is coarsely crushed with a jaw crusher,
Further, finely pulverized by a jet mill with N 2 gas flow, finely pulverized powder having an average particle size of 3.5 μm was charged into a mold of a press device, and
It was oriented in a magnetic field of 0 kOe and formed at a pressure of 1.5 ton / cm 2 in a direction perpendicular to the magnetic field.

得られた成形体を、1060〜1100℃、2時間、Ar雰囲気
中の条件で焼結し、 さらにAr雰囲気中で、500〜600℃で熱処理し、その後、
約30℃/minの速度で冷却した。
The obtained molded body is sintered at 1060 to 1100 ° C. for 2 hours in an Ar atmosphere, and further heat-treated at 500 to 600 ° C. in an Ar atmosphere.
It was cooled at a rate of about 30 ° C./min.

得られた種々の永久磁石の保磁力、最大エネルギー
積、焼結密度を測定し、Cu添加量の変化との関係として
を第1図に示す。図には各々の組成で得られた最高値を
プロットした。
The coercive force, maximum energy product, and sintered density of the obtained various permanent magnets were measured, and the relationship with the change in the amount of Cu added is shown in FIG. The figure plots the highest values obtained for each composition.

また、この発明の実施例と同様の方法で作製したCuを
含有しない場合、並びに少量の添加で保磁力を上昇させ
ることが知られているAlを添加した比較例の場合を、同
様に、比較例永久磁石の保磁力、最大エネルギー積を測
定し、Al添加量の変化との関係としてを第1図に示す。
In addition, in the same manner, the case of not containing Cu produced by the same method as in the example of the present invention and the case of a comparative example to which Al added, which is known to increase the coercive force with a small amount of addition, were compared. Example The coercive force and the maximum energy product of a permanent magnet were measured, and the relationship with the change in the amount of Al added is shown in FIG.

第1図から明らかな如く、比較例のAlを添加した場
合、Alの添加増量にともない、保磁力は増加するが、十
分な保磁力の増加を得る程の添加では、逆に最大エネル
ギー積が低下している。
As is clear from FIG. 1, when Al of the comparative example was added, the coercive force increased with an increase in the amount of Al added. However, when the coercive force was sufficiently increased, the maximum energy product was conversely increased. Is declining.

これに対して、この発明によるCuの添加場合は、Cuは
極少量の添加で保磁力、最大エネルギー積が著しく増加
することが分る。
On the other hand, in the case of adding Cu according to the present invention, it can be seen that the coercive force and the maximum energy product are remarkably increased by adding a very small amount of Cu.

実施例2 実施例1で得られた、Cuを0.1at%含有する本発明試
料及びCuを全く含有しない比較例試料を用いて、焼結
後、430〜620℃の種々の温度にて1時間の熱処理した
後、80℃/minの速度で冷却した場合、各磁石の保磁力の
変化を熱処理温度との関係として第2図に示す。
Example 2 Using the sample of the present invention containing 0.1 at% of Cu obtained in Example 1 and a comparative sample containing no Cu at all, after sintering, at various temperatures of 430 to 620 ° C. for 1 hour. FIG. 2 shows the change in coercive force of each magnet as a function of the heat treatment temperature when cooled at a rate of 80 ° C./min after the heat treatment.

比較例の場合、高い保磁力を得るには、最適熱処理温
度範囲が極狭い範囲でしか得られないのに対し、Cuを含
有するこの発明による磁石の場合は、広い温度範囲で高
い保磁力が得られることが分る。
In the case of the comparative example, in order to obtain a high coercive force, the optimal heat treatment temperature range can be obtained only in an extremely narrow range, whereas in the case of the magnet according to the present invention containing Cu, a high coercive force can be obtained in a wide temperature range. You can see that it is obtained.

実施例3 実施例1と同様の製造方法にて、原子比でFe−2Co−1
3.5Nd−1.5Dy−7Bに、0.1at%Cuを含む本発明試料、及
び比較例としてCuを含まない試料を作製した。
Example 3 The same manufacturing method as in Example 1 was used to obtain Fe-2Co-1 at an atomic ratio.
A sample of the present invention containing 0.1 at% Cu in 3.5Nd-1.5Dy-7B and a sample containing no Cu as a comparative example were produced.

製造に際し、焼結後、430〜620℃の種々の温度にて1
時間の熱処理し、さらに、熱処理後の冷却速度を種々変
化させ、得られた各永久磁石の保磁力を測定し、熱処理
温度と冷却速度と保磁力の関係として、本発明の場合を
第3図、比較例の場合を第4図に示す。なお、図中の数
字は保磁力iHc(kOe)を示す。
At the time of production, after sintering,
After the heat treatment for a time, the cooling rate after the heat treatment is variously changed, and the coercive force of each of the obtained permanent magnets is measured. The relationship between the heat treatment temperature, the cooling rate and the coercive force is shown in FIG. FIG. 4 shows the case of the comparative example. The numbers in the figure indicate the coercive force iHc (kOe).

第3図と第4図より明らかな如く、従来は、高い保磁
力を得るには、熱処理後の冷却速度を所要の範囲に保持
しなければならない。
As is clear from FIGS. 3 and 4, conventionally, in order to obtain a high coercive force, the cooling rate after the heat treatment must be maintained within a required range.

これに対して、Cuを含有するこの発明の場合、極徐冷
から急速冷却まで、いずれの冷却速度でもよく、製造条
件に左右されることなく、極めて高い保磁力を有する永
久磁石が得られることが分る。
In contrast, in the case of the present invention containing Cu, any cooling rate may be used, from extremely slow cooling to rapid cooling, and a permanent magnet having an extremely high coercive force can be obtained without being affected by manufacturing conditions. I understand.

【図面の簡単な説明】[Brief description of the drawings]

第1図はCu(Al)の添加量の変化に対する永久磁石の保
磁力、最大エネルギー積、密度の変化を示すグラフであ
る。 第2図は熱処理温度と保磁力iHcとの関係を示すグラフ
である。 第3図と第4図は熱処理温度と冷却速度と保磁力の関係
を示すグラフであり、本発明の場合を第3図、比較例の
場合を第4図に示す。
FIG. 1 is a graph showing changes in coercive force, maximum energy product, and density of a permanent magnet with respect to changes in the amount of Cu (Al) added. FIG. 2 is a graph showing the relationship between the heat treatment temperature and the coercive force iHc. FIGS. 3 and 4 are graphs showing the relationship between the heat treatment temperature, the cooling rate, and the coercive force. FIG. 3 shows the case of the present invention, and FIG. 4 shows the case of the comparative example.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子比でNdとPrの合計が12〜17at%(但し
Nd,Prの一部をDy,Tbなどの重希土類元素で0.2at%〜3.0
at%置換できる)、 B5〜14at%、Co20at%以下、 Cu0.02〜0.5at%、 残部Fe及び不可避的不純物からなることを特徴とする焼
結永久磁石材料。
(1) The total of Nd and Pr is 12 to 17 at% in atomic ratio (however,
Part of Nd and Pr are heavy rare earth elements such as Dy and Tb.
A sintered permanent magnet material comprising: B5-14at%, Co20at% or less, Cu0.02-0.5at%, balance Fe and inevitable impurities.
【請求項2】原子比でNdとPrの合計が12〜17at%(但し
Nd,Prの一部をDy,Tbなどの重希土類元素で0.2at%〜3.0
at%置換できる)、 B5〜14at%、Co20at%以下、 Cu0.02〜0.5at%、 残部Fe及び不可避的不純物からなる合金粉末を成形し、 900〜1200℃で焼結し、 焼結後430〜600℃の温度で熱処理することを特徴とする
焼結永久磁石材料の製造方法。
2. The atomic ratio of Nd and Pr is 12 to 17 at% (however,
Part of Nd and Pr are heavy rare earth elements such as Dy and Tb.
can be replaced by at%), B5-14at%, Co20at% or less, Cu0.02-0.5at%, alloy powder consisting of balance Fe and inevitable impurities, sintering at 900-1200 ℃, 430 after sintering A method for producing a sintered permanent magnet material, comprising heat-treating at a temperature of up to 600 ° C.
JP63044951A 1988-02-26 1988-02-26 Sintered permanent magnet material and its manufacturing method Expired - Lifetime JP2720040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044951A JP2720040B2 (en) 1988-02-26 1988-02-26 Sintered permanent magnet material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044951A JP2720040B2 (en) 1988-02-26 1988-02-26 Sintered permanent magnet material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01219143A JPH01219143A (en) 1989-09-01
JP2720040B2 true JP2720040B2 (en) 1998-02-25

Family

ID=12705795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044951A Expired - Lifetime JP2720040B2 (en) 1988-02-26 1988-02-26 Sintered permanent magnet material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2720040B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067249B (en) * 2008-06-13 2014-07-30 日立金属株式会社 R-T-Cu-Mn-B type sintered magnet
US10381139B2 (en) 2014-03-31 2019-08-13 Xiamen Tungsten Co., Ltd. W-containing R—Fe—B—Cu sintered magnet and quenching alloy

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369202A (en) * 1991-06-17 1992-12-22 Isuzu Ceramics Kenkyusho:Kk Composite permanent magnet and manufacture thereof
US5702985A (en) * 1992-06-26 1997-12-30 Staktek Corporation Hermetically sealed ceramic integrated circuit heat dissipating package fabrication method
US7255751B2 (en) 2002-09-30 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet
US7311788B2 (en) 2002-09-30 2007-12-25 Tdk Corporation R-T-B system rare earth permanent magnet
US7314531B2 (en) 2003-03-28 2008-01-01 Tdk Corporation R-T-B system rare earth permanent magnet
US7255752B2 (en) 2003-03-28 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet
US7485193B2 (en) 2004-06-22 2009-02-03 Shin-Etsu Chemical Co., Ltd R-FE-B based rare earth permanent magnet material
US8981888B2 (en) * 2010-12-27 2015-03-17 Tdk Corporation Magnetic body
CN102543342B (en) * 2011-12-31 2015-04-29 北京工业大学 Sintered neodymium-iron-boron-based permanent magnet material with high coercive force and high corrosion resistance, prepared by doping copper nano-particles, and preparation method thereof
JP6265368B2 (en) * 2013-04-22 2018-01-24 昭和電工株式会社 R-T-B rare earth sintered magnet and method for producing the same
JP6399307B2 (en) 2015-02-04 2018-10-03 Tdk株式会社 R-T-B sintered magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609852A (en) * 1983-06-24 1985-01-18 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン High energy stored rare earth-iron magnetic alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067249B (en) * 2008-06-13 2014-07-30 日立金属株式会社 R-T-Cu-Mn-B type sintered magnet
US10381139B2 (en) 2014-03-31 2019-08-13 Xiamen Tungsten Co., Ltd. W-containing R—Fe—B—Cu sintered magnet and quenching alloy

Also Published As

Publication number Publication date
JPH01219143A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
US5110377A (en) Process for producing permanent magnets and products thereof
US4859254A (en) Permanent magnet
JP2720040B2 (en) Sintered permanent magnet material and its manufacturing method
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
EP0237416A1 (en) A rare earth-based permanent magnet
JP2741508B2 (en) Magnetic anisotropic sintered magnet and method of manufacturing the same
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JP2948223B2 (en) High performance permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP2537189B2 (en) permanent magnet
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH0320046B2 (en)
JPH045740B2 (en)
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH045739B2 (en)
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPH0837122A (en) Production of r-t-m-n anisotropic bonded magnet
JPS61264133A (en) Permanent magnet alloy and its manufacture
JP2935376B2 (en) permanent magnet
JP2571403B2 (en) Manufacturing method of rare earth magnet material
EP0338597B1 (en) Permanent magnets
JPH11297518A (en) Pare-earth magnet material
JPH0475303B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11