JPH05234789A - Molding method and manufacture of sintered magnet - Google Patents

Molding method and manufacture of sintered magnet

Info

Publication number
JPH05234789A
JPH05234789A JP4072581A JP7258192A JPH05234789A JP H05234789 A JPH05234789 A JP H05234789A JP 4072581 A JP4072581 A JP 4072581A JP 7258192 A JP7258192 A JP 7258192A JP H05234789 A JPH05234789 A JP H05234789A
Authority
JP
Japan
Prior art keywords
magnetic field
molding
green compact
magnet
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4072581A
Other languages
Japanese (ja)
Other versions
JP3307418B2 (en
Inventor
Katashi Takebuchi
確 竹渕
Kazuo Sato
和生 佐藤
Koichi Yajima
弘一 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP07258192A priority Critical patent/JP3307418B2/en
Publication of JPH05234789A publication Critical patent/JPH05234789A/en
Application granted granted Critical
Publication of JP3307418B2 publication Critical patent/JP3307418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve the degree of orientation of a molded body in manufacturing a rare-earth sintered magnet by applying a pulse magnetic field to a green compact of magnetic powder when the green compact is in a predetermined density range. CONSTITUTION:Magnetic powder containing R (at least one type of rare-earth elements which include Y) and transition elements is subjected to a dry molding. In this event, when a relative density of a green compact of the magnetic powder is in a range of 25-55%, a pulse magnetic field is applied to the compact at least three times. Thereby, a molded body having a considerably high degree of orientation is obtained, and hence it is possible to obtain a sintered magnet of good magnetization having a considerably high residual magnetic flux density. Moreover, it is possible to improve a mechanical strength of the molded body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成形方法およびこの方
法により製造された成形体を用いて希土類焼結磁石を製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding method and a method for manufacturing a rare earth sintered magnet using a molded body manufactured by this method.

【0002】[0002]

【従来の技術】高性能を有する希土類磁石としては、粉
末冶金法によるSm−Co系磁石でエネルギー積32M
GOeのものが量産されている。また、近年Nd−Fe
−B磁石やNd−Fe−Co−B磁石等のR−T−B系
磁石(TはFe、またはFeおよびCo)が開発され、
特開昭59−46008号公報には焼結磁石が開示され
ている。焼結法による磁石では、従来のSm−Co系の
粉末冶金プロセス(溶解→鋳造→インゴット粗粉砕→微
粉砕→成形→焼結→磁石)を適用でき、また、高い磁気
特性を得ることも容易である。
2. Description of the Related Art As a rare earth magnet having high performance, an Sm-Co type magnet manufactured by powder metallurgy has an energy product of 32M.
GOe's are in mass production. In recent years, Nd-Fe
R-T-B magnets (T is Fe, or Fe and Co) such as -B magnets and Nd-Fe-Co-B magnets have been developed,
Japanese Patent Application Laid-Open No. 59-46008 discloses a sintered magnet. For the magnet by the sintering method, the conventional Sm-Co powder metallurgical process (melting → casting → coarse grinding of ingot → fine grinding → molding → sintering → magnet) can be applied, and it is easy to obtain high magnetic characteristics. Is.

【0003】異方性焼結磁石を製造する際には、成形を
磁場中で行なう。異方性焼結磁石の残留磁束密度を向上
させるためには、磁場中成形の際の配向度を向上させる
ことが重要である。配向度が高くなれば、角形性が向上
して高残留磁束密度が得られ、着磁率も改善される。ま
た、成形体の機械的強度も向上する。
When manufacturing an anisotropic sintered magnet, molding is performed in a magnetic field. In order to improve the residual magnetic flux density of the anisotropic sintered magnet, it is important to improve the degree of orientation during molding in a magnetic field. If the degree of orientation is high, the squareness is improved, a high residual magnetic flux density is obtained, and the magnetization rate is also improved. In addition, the mechanical strength of the molded body is also improved.

【0004】湿式成形法では、乾式成形法に比べて高い
配向度が得られるが、希土類磁石、特にR−T−B系磁
石は酸化され易く湿式成形の際に有機溶剤を用いるの
で、焼結磁石中の炭素量が多くなり、高い磁気特性が得
られなくなってしまう。
Although the wet molding method can obtain a higher degree of orientation than the dry molding method, rare earth magnets, particularly R-T-B magnets are easily oxidized and an organic solvent is used during the wet molding, so that sintering is performed. The amount of carbon in the magnet increases, and high magnetic properties cannot be obtained.

【0005】このため、希土類磁石の製造に際しては、
一般に乾式成形法を用い、印加磁界強度を大きくして配
向度を向上させる方法が採用される。しかし、磁界発生
コイルの発熱が大きくなるため、極端に大きな磁界を印
加することは難しい。このため、磁界印加時間の短いパ
ルス磁界を利用して強力な磁界を印加する方法が提案さ
れている(特開昭61−208809号等)。
Therefore, when manufacturing a rare earth magnet,
Generally, a dry molding method is used, and a method of increasing the applied magnetic field strength to improve the degree of orientation is adopted. However, it is difficult to apply an extremely large magnetic field because the heat generation of the magnetic field generating coil becomes large. Therefore, a method of applying a strong magnetic field by utilizing a pulsed magnetic field having a short magnetic field application time has been proposed (Japanese Patent Laid-Open No. 61-208809).

【0006】[0006]

【発明が解決しようとする課題】本発明は、希土類焼結
磁石の製造に際し、成形体の配向度を向上させることを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the degree of orientation of a compact when manufacturing a rare earth sintered magnet.

【0007】[0007]

【課題を解決するための手段】このような目的は、
(1)〜(6)の本発明により達成される。 (1) R(Rは、Yを含む希土類元素の少なくとも1
種である。)および遷移元素を含有する磁石粉末を乾式
成形する方法であって、磁石粉末の圧粉体の相対密度が
25〜55%の範囲内にあるときに、少なくとも3回の
パルス磁界を前記圧粉体に印加することを特徴とする成
形方法。
[Means for Solving the Problems]
It is achieved by the present invention of (1) to (6). (1) R (R is at least 1 of rare earth elements including Y)
It is a seed. ) And a magnetic powder containing a transition element are dry-molded, and when the relative density of the green compact of the magnetic powder is in the range of 25 to 55%, the pulse magnetic field is applied at least three times to the green compact. A molding method comprising applying to a body.

【0008】(2) 前記パルス磁界の強度が20kOe
以上である上記(1)に記載の成形方法。
(2) The intensity of the pulsed magnetic field is 20 kOe
The molding method according to the above (1).

【0009】(3) 前記パルス磁界の持続時間が10
μs 〜0.5sec である上記(1)または(2)に記載
の成形方法。
(3) The duration of the pulsed magnetic field is 10
The molding method according to (1) or (2) above, wherein the time is from μs to 0.5 sec.

【0010】(4) 前記圧粉体が潤滑離型剤を含まな
い上記(1)ないし(3)のいずれかに記載の成形方
法。
(4) The molding method according to any one of (1) to (3) above, wherein the green compact does not contain a lubricant release agent.

【0011】(5) 前記磁石粉末が、R−T−B系の
磁石粉末(Tは、Fe、またはFeおよびCoであ
る。)であるか、R−Co系の磁石粉末である上記
(1)ないし(4)のいずれかに記載の成形方法。
(5) The magnet powder is an RTB-based magnet powder (T is Fe or Fe and Co) or an R-Co magnet powder. ) To (4).

【0012】(6) 上記(1)ないし(5)のいずれ
かに記載の方法により製造された成形体を焼結する焼結
工程を有することを特徴とする焼結磁石の製造方法。
(6) A method for producing a sintered magnet, which comprises a sintering step of sintering a compact produced by the method according to any one of the above (1) to (5).

【0013】[0013]

【作用および効果】本発明では、磁石粉末の圧粉体が所
定の密度範囲にあるときに、少なくとも3回のパルス磁
界を印加する。これにより、配向度の極めて高い成形体
が得られ、残留磁束密度の極めて高い焼結磁石が実現す
る。また、成形体の機械的強度も向上する。
In the present invention, the pulse magnetic field is applied at least three times when the green compact of the magnetic powder is in the predetermined density range. As a result, a molded product having an extremely high degree of orientation is obtained, and a sintered magnet having an extremely high residual magnetic flux density is realized. In addition, the mechanical strength of the molded body is also improved.

【0014】従来、圧粉体中の磁石粒子間の潤滑性向上
のために脂肪酸系化合物などが潤滑離型剤として添加さ
れていたが、本発明ではこのような潤滑離型剤を用いな
くても十分な配向度が得られる。
Conventionally, a fatty acid compound or the like has been added as a lubricant release agent in order to improve the lubricity between the magnet particles in the green compact, but in the present invention, such a lubricant release agent is not used. Also provides a sufficient degree of orientation.

【0015】なお、特開昭61−208809号公報に
は、R−T−B系焼結磁石製造の際に、磁石粉末にステ
アリン酸マグネシウムを添加して成形を行なう旨が開示
されている。同公報には、成形の際にパルス磁場を用い
ることが好ましい旨が開示されており、「上パンチの下
降を開始する前に1回印加すれば十分であるが、多数回
印加すれば配向度はさらに向上する」と記載されてい
る。しかし、上記したように圧粉開始後、所定の密度と
なったときにパルス磁界を印加しなければ配向度の著し
い向上は望めず、また、ステアリン酸マグネシウム等の
有機潤滑離型剤は磁石特性を低下させる。
Japanese Patent Laid-Open No. 61-208809 discloses that magnesium stearate is added to the magnet powder during the production of the R-T-B system sintered magnet for molding. The publication discloses that it is preferable to use a pulsed magnetic field at the time of forming, and "a single application is sufficient before the lowering of the upper punch is started, but a multiple application may result in an orientation degree. Will be further improved. ” However, as described above, a significant improvement in the degree of orientation cannot be expected unless a pulsed magnetic field is applied when the density reaches a predetermined value after the start of compacting.In addition, an organic lubricant release agent such as magnesium stearate has a magnetic property. Lower.

【0016】また、特開平1−245503号公報に
は、R−T−B系焼結磁石製造の際に、成形圧力印加中
に配向磁場を断続的に印加する方法が開示されている
が、同公報には配向磁場印加時の圧粉体の密度の記載は
なく、配向磁場の強度の記載もない。同公報における配
向磁場は印加時間が長くパルス磁界ではないため、高強
度の磁界を印加することは難しい。
Further, Japanese Patent Application Laid-Open No. 1-245503 discloses a method of intermittently applying an orientation magnetic field during application of a molding pressure in manufacturing an RTB based sintered magnet. The publication does not describe the density of the green compact when applying the orientation magnetic field, nor the strength of the orientation magnetic field. It is difficult to apply a high-strength magnetic field because the orientation magnetic field in the publication is long in application time and is not a pulse magnetic field.

【0017】[0017]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。本発明は、R(Rは、Yを含む希土類元素
の少なくとも1種である。)および遷移元素を含有する
磁石粉末を乾式成形する方法に適用される。
[Specific Structure] The specific structure of the present invention will be described in detail below. INDUSTRIAL APPLICABILITY The present invention is applied to a method of dry-molding a magnet powder containing R (R is at least one kind of rare earth element including Y) and a transition element.

【0018】<磁石粉末>磁石粉末の組成は特に限定さ
れず、希土類元素および遷移元素を含むものであれば特
に制限はないが、本発明は特に、R−T−B系焼結磁石
(TはFe、またはFeおよびCoである。)またはR
−Co系焼結磁石の製造に好適である。
<Magnet Powder> The composition of the magnet powder is not particularly limited and is not particularly limited as long as it contains a rare earth element and a transition element. However, the present invention is not limited to the RTB sintered magnet (T). Is Fe, or Fe and Co.) or R
-Suitable for manufacturing Co-based sintered magnets.

【0019】R−T−B系の磁石粉末は、通常、Rを2
7〜38重量%、Tを51〜72重量%、Bを0.5〜
4.5重量%含有することが好ましい。R含有量が少な
すぎると鉄に富む相が析出して高保磁力が得られなくな
り、R含有量が多すぎると高残留磁束密度が得られなく
なる。B含有量が少なすぎると高保磁力が得られなくな
り、B含有量が多すぎると高残留磁束密度が得られなく
なる。なお、T中のCo量は30重量%以下とすること
が好ましい。さらに、保磁力を改善するために、Al、
Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、
V、Zr、Ti、Moなどの元素を添加してもよいが、
添加量が6重量%を超えると残留磁束密度が低下してく
る。
In the R-T-B type magnet powder, R is usually 2
7-38 wt%, T 51-72 wt%, B 0.5-
It is preferable to contain 4.5% by weight. If the R content is too small, a phase rich in iron precipitates and high coercive force cannot be obtained, and if the R content is too large, high residual magnetic flux density cannot be obtained. If the B content is too small, a high coercive force cannot be obtained, and if the B content is too large, a high residual magnetic flux density cannot be obtained. The amount of Co in T is preferably 30% by weight or less. Further, in order to improve the coercive force, Al,
Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W,
Elements such as V, Zr, Ti and Mo may be added,
If the amount added exceeds 6% by weight, the residual magnetic flux density will decrease.

【0020】磁石粉末中には、これらの元素の他、不可
避的不純物あるいは微量添加物として、例えば炭素や酸
素が含有されていてもよい。
In addition to these elements, the magnet powder may contain unavoidable impurities or trace additives such as carbon and oxygen.

【0021】このような組成を有する磁石粉末は、実質
的に正方晶系の結晶構造の主相を有する。そして、通
常、体積比で0.5〜10%程度の非磁性相を含むもの
である。
The magnet powder having such a composition has a main phase having a substantially tetragonal crystal structure. Further, it usually contains a non-magnetic phase of about 0.5 to 10% by volume.

【0022】磁石粉末の製造方法は特に限定されない
が、通常、母合金インゴットを鋳造し、これを粉砕して
製造するか、還元拡散法によって得られた合金粉末を粉
砕して製造する。磁石粉末の平均粒子径は、通常、1〜
10μm 程度とする。
The method for producing the magnet powder is not particularly limited, but it is usually produced by casting a mother alloy ingot and crushing it, or by crushing the alloy powder obtained by the reduction diffusion method. The average particle size of the magnet powder is usually 1 to
It is about 10 μm.

【0023】R−Co系の磁石粉末は、Rと、Fe、N
i、MnおよびCrから選ばれる1種以上の金属と、C
oとを含有する。この場合、好ましくは前記に加えさら
にCuまたは、Nb、Zr、Ta、Hf、TiおよびV
から選ばれる1種以上の金属を含有し、特に好ましくは
前記に加えさらにCuと、Nb、Zr、Ta、Hf、T
iおよびVから選ばれる1種以上の金属とを含有する。
これらのうち特に、SmとCoとの金属間化合物、好ま
しくはSm2 Co17金属間化合物を主相とし、この主相
が実質的にロンボヘドラルの結晶構造を有するものが好
ましい。この場合、粒界には、SmCo5 系を主体とす
る副相が存在する。具体的組成は、製造方法や要求され
る磁気特性等に応じて適宜選択すればよいが、例えば下
記の組成が好ましい。
The R-Co type magnet powder is composed of R, Fe, and N.
at least one metal selected from i, Mn and Cr, and C
contains o and. In this case, preferably, in addition to the above, Cu or Nb, Zr, Ta, Hf, Ti and V
Containing at least one metal selected from among the above, particularly preferably Cu, Nb, Zr, Ta, Hf, and T in addition to the above.
and one or more metals selected from i and V.
Among these, it is particularly preferable that the main phase is an intermetallic compound of Sm and Co, preferably the Sm 2 Co 17 intermetallic compound, and the main phase has a substantially rhombohedral crystal structure. In this case, the grain boundary has a subphase mainly composed of SmCo 5 system. The specific composition may be appropriately selected according to the manufacturing method, required magnetic properties, etc., but the following compositions are preferable, for example.

【0024】R:20〜30重量%、特に22〜28重
量%程度、Fe、Ni、MnおよびCrの1種以上:1
〜35重量%程度、Nb、Zr、Ta、Hf、Tiおよ
びVの1種以上:0〜6重量%、特に0.5〜4重量%
程度、Cu:0〜10重量%、特に1〜10重量%程
度、Co:残部。
R: 20 to 30% by weight, particularly about 22 to 28% by weight, one or more of Fe, Ni, Mn and Cr: 1
~ 35 wt%, one or more of Nb, Zr, Ta, Hf, Ti and V: 0-6 wt%, especially 0.5-4 wt%
%, Cu: 0 to 10% by weight, particularly about 1 to 10% by weight, Co: balance.

【0025】前記希土類元素の具体例としては、例え
ば、Y、La、Ce、Pr、Nb、Sm、Eu、Gd、
Tb、Dy、Ho、Er、Tm、Yb、Lu等を挙げる
ことができ、特に、Smおよび/またはCeを含むこと
が好ましい。
Specific examples of the rare earth element include, for example, Y, La, Ce, Pr, Nb, Sm, Eu, Gd,
Examples thereof include Tb, Dy, Ho, Er, Tm, Yb and Lu, and it is particularly preferable that Sm and / or Ce are contained.

【0026】また、Fe、Ni、MnおよびCrの1種
以上としては、Feが好ましく、特に、Feを含み必要
に応じNi、MnおよびCrの1種以上を含むことが好
ましい。
Further, as one or more kinds of Fe, Ni, Mn and Cr, Fe is preferable, and particularly, it is preferable to contain Fe and, if necessary, one or more kinds of Ni, Mn and Cr.

【0027】また、Nb、Zr、Ta、Hf、Tiおよ
びVの1種以上としてはZrが好ましく、特に、Zrを
含み必要に応じNb、Ta、Hf、TiおよびVの1種
以上を含むことが好ましい。
Further, Zr is preferable as one or more of Nb, Zr, Ta, Hf, Ti and V. Particularly, Zr is contained and, if necessary, one or more of Nb, Ta, Hf, Ti and V is contained. Is preferred.

【0028】また、必要に応じて前記元素の他、Si、
Mo、Ca、O、C等の他の元素の1種以上を全体の3
重量%程度以下添加してもよい。なお、これらは不純物
として全体の3重量%程度以下含まれていてもよい。
In addition to the above elements, Si,
One or more of other elements such as Mo, Ca, O, and C are included in the total 3
You may add about less than weight%. Note that these may be contained as impurities in an amount of about 3% by weight or less of the whole.

【0029】R−Co系磁石粉末の製造方法は、特に限
定されない。
The method for producing the R-Co magnet powder is not particularly limited.

【0030】<成形工程>本発明では、乾式成形の際
に、磁石粉末の圧粉体の相対密度が25〜55%、好ま
しくは30〜45%の範囲内にあるときに、少なくとも
3回のパルス磁界を圧粉体に印加する。本明細書におい
て相対密度とは、実測密度を理論密度で除した値の百分
率である。実測密度は、成形装置の成形空間内に充填し
た磁石粉末の重量と、成形空間の内容積から算出する。
<Molding Step> In the present invention, at least three times of the dry compacting are carried out when the relative density of the green compact of the magnetic powder is in the range of 25 to 55%, preferably 30 to 45%. A pulsed magnetic field is applied to the green compact. In this specification, the relative density is a percentage of a value obtained by dividing the measured density by the theoretical density. The measured density is calculated from the weight of the magnet powder filled in the molding space of the molding device and the internal volume of the molding space.

【0031】圧粉体の相対密度が前記範囲以外のときに
印加されたパルス磁界は、磁石粉末の配向度向上に対す
る寄与率が低い。従って、パルス磁界の印加回数が3回
以上であっても、圧粉体相対密度が前記範囲であるとき
に少なくとも3回のパルス磁界が印加されなければ、十
分な配向度が得られない。
The pulsed magnetic field applied when the relative density of the green compact is outside the above range has a low contribution to the improvement of the orientation degree of the magnet powder. Therefore, even if the pulse magnetic field is applied three times or more, a sufficient degree of orientation cannot be obtained unless the pulse magnetic field is applied at least three times when the green compact relative density is within the above range.

【0032】パルス磁界の強度は、好ましくは20kOe
以上、より好ましくは30kOe 以上とし、全てのパルス
磁界の強度をこの範囲とすることが好ましい。パルス磁
界の強度が前記範囲未満となると磁石粉末の配向が不十
分となる傾向にある。なお、パルス磁界の強度の上限は
特にないが、磁界発生装置が大型化することや、50kO
e を超える強度としても配向度の向上は殆どみられない
ことなどから、通常、50kOe 以下とする。
The strength of the pulsed magnetic field is preferably 20 kOe
As described above, more preferably 30 kOe or more, and it is preferable that the intensity of all pulse magnetic fields is within this range. When the intensity of the pulse magnetic field is less than the above range, the orientation of the magnet powder tends to be insufficient. Although there is no particular upper limit to the strength of the pulsed magnetic field, the size of the magnetic field generator becomes large and 50 kO
Even if the strength exceeds e, the degree of orientation is hardly improved. Therefore, the strength is usually set to 50 kOe or less.

【0033】パルス磁界の持続時間は、通常、10μs
〜0.5sec 程度とすることが好ましい。持続時間が前
記範囲未満となると配向が不十分となる傾向にあり、前
記範囲を超えると、磁界印加用コイルの発熱が大きくな
りすぎる傾向にある。なお、本明細書において持続時間
とは、磁界印加の開始から終了までの時間である。
The duration of the pulsed magnetic field is usually 10 μs
It is preferably about 0.5 sec. If the duration is less than the above range, the orientation tends to be insufficient, and if it exceeds the above range, the heat generation of the magnetic field applying coil tends to be too large. In this specification, the duration is the time from the start to the end of the magnetic field application.

【0034】パルス磁界印加の間隔は特に限定されな
い。
The interval for applying the pulse magnetic field is not particularly limited.

【0035】また、圧粉体の密度を増加させながら少な
くとも3回のパルス磁界を印加してもよく、圧粉体の密
度をほぼ一定に保って少なくとも3回のパルス磁界を印
加してもよい。
Further, the pulse magnetic field may be applied at least three times while increasing the density of the green compact, or the pulse magnetic field may be applied at least three times while keeping the density of the green compact substantially constant. ..

【0036】成形圧力は、圧粉開始から終了まで一定で
あってもよく、漸増または漸減してもよく、不規則変化
してもよい。成形圧力に特に制限はない。成形圧力が低
いほど配向性は良好となるが、成形圧力が低すぎると成
形体の強度が不足してハンドリングに問題が生じるた
め、通常、1〜3ton/cm2 程度とすることが好ましい。
The molding pressure may be constant from the start to the end of compacting, may be gradually increased or decreased, and may be irregularly changed. There is no particular limitation on the molding pressure. The lower the molding pressure is, the better the orientation is. However, when the molding pressure is too low, the strength of the molded product is insufficient, which causes a problem in handling. Therefore, it is usually preferable that the pressure is about 1 ton / cm 2 .

【0037】本発明では、圧粉体の相対密度が前記範囲
外であるときにも磁界を印加してよい。すなわち、前記
密度範囲においてパルス磁界を印加する前および/また
は印加した後に、パルス磁界や、定常磁界、断続的な磁
界などを印加してもよい。
In the present invention, the magnetic field may be applied even when the relative density of the green compact is outside the above range. That is, a pulse magnetic field, a steady magnetic field, an intermittent magnetic field, etc. may be applied before and / or after applying the pulse magnetic field in the density range.

【0038】なお、圧粉体の最終的な相対密度、すなわ
ち成形体の相対密度は、通常、50〜60%程度であ
る。
The final relative density of the green compact, that is, the relative density of the molded body is usually about 50 to 60%.

【0039】本発明は、圧力印加方向と磁界印加方向と
がほぼ直交するいわゆる横磁場成形法にも、圧力印加方
向と磁界印加方向とがほぼ一致するいわゆる縦磁場成形
法にも適用することができる。横磁場成形法では高い異
方性を有する磁石が得られるが、適用可能な成形体形状
に制限があり、また、成形装置が複雑となってしまう。
本発明による配向度改善効果は、縦磁場成形法において
特に高くなる。
The present invention can be applied to a so-called transverse magnetic field forming method in which the pressure applying direction and the magnetic field applying direction are substantially orthogonal to each other, and to a so-called longitudinal magnetic field forming method in which the pressure applying direction and the magnetic field applying direction substantially coincide with each other. it can. Although a magnet having high anisotropy can be obtained by the transverse magnetic field molding method, applicable shape of the molded body is limited and the molding apparatus becomes complicated.
The effect of improving the degree of orientation according to the present invention is particularly high in the longitudinal magnetic field molding method.

【0040】本発明に用いる成形装置は、パルス磁界発
生手段を有するものであればよく、その他の構成は特に
制限されない。なお、成形装置のパンチやダイスなどが
飽和してしまうような高強度の磁界を印加する場合、パ
ンチやダイスなどを非磁性材で構成した空芯コイルタイ
プの磁場成形装置を用いることが好ましい。
The molding apparatus used in the present invention may be any apparatus having a pulse magnetic field generating means, and other configurations are not particularly limited. When applying a high-strength magnetic field that saturates the punches and dies of the forming apparatus, it is preferable to use an air-core coil type magnetic field forming apparatus in which the punches and dies are made of a non-magnetic material.

【0041】<焼結工程>上記のようにして得られた成
形体は、焼結されて磁石化される。
<Sintering Step> The molded body obtained as described above is sintered and magnetized.

【0042】焼結時の各種条件に特に制限はないが、例
えば1000〜1200℃で0.5〜12時間、特に1
〜5時間程度焼結し、その後、急冷することが好まし
い。なお、焼結雰囲気は、真空中またはArガス等の非
酸化性ガス雰囲気であることが好ましい。
There are no particular restrictions on the various conditions during sintering, but for example, at 1000 to 1200 ° C. for 0.5 to 12 hours, especially 1
It is preferable to sinter for about 5 hours and then quench. The sintering atmosphere is preferably vacuum or a non-oxidizing gas atmosphere such as Ar gas.

【0043】焼結後、時効処理、着磁処理等が必要に応
じて施される。
After sintering, an aging treatment, a magnetizing treatment and the like are carried out if necessary.

【0044】[0044]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES The present invention will be described in more detail below by showing specific examples of the present invention.

【0045】[実施例1]組成が31.5Nd−1.5
Dy−1B−bal.Fe(重量%)である合金インゴ
ットを、鋳造により作製した。この合金インゴットをジ
ョークラッシャおよびブラウンミルにより−#32にま
で粗粉砕し、次いで、ジェットミルにより微粉砕し、平
均粒子径4μm の磁石粉末を得た。
[Example 1] The composition was 31.5 Nd-1.5.
Dy-1B-bal. An alloy ingot of Fe (wt%) was made by casting. The alloy ingot was roughly crushed to-# 32 by a jaw crusher and a brown mill, and then finely crushed by a jet mill to obtain a magnetic powder having an average particle diameter of 4 µm.

【0046】この磁石粉末を、縦磁場成形法により磁場
中成形し、得られた成形体をAr雰囲気中で1100℃
にて3時間焼結した後、急冷し、さらに、Ar雰囲気中
で600℃にて3時間時効処理を行なって、下記表1に
示される焼結磁石を得た。
This magnet powder was molded in a magnetic field by a vertical magnetic field molding method, and the obtained molded body was heated at 1100 ° C. in an Ar atmosphere.
After sintering for 3 hours, the mixture was rapidly cooled, and further subjected to an aging treatment at 600 ° C. for 3 hours in an Ar atmosphere to obtain a sintered magnet shown in Table 1 below.

【0047】磁場中成形では、1ton/cm2 の圧力を印加
しながら、35kOe のパルス磁界(持続時間0.5mse
c)を印加し、磁石粉末の圧粉体の相対密度が59%と
なるまで加圧を続けた。なお、実測密度を求めるために
必要な成形空間の内容積は、成形装置の上パンチの移動
量から算出した。また、理論密度は7.62g/cm3 とし
て計算した。パルス磁界は、表1において○または×を
付した密度のときに印加した。×は、圧粉体の相対密度
が25〜55%以外のときに印加されたパルス磁界を表
わす。
In the magnetic field molding, while applying a pressure of 1 ton / cm 2 , a pulse magnetic field of 35 kOe (duration 0.5 mse) was applied.
c) was applied and the pressurization was continued until the relative density of the green compact of the magnetic powder reached 59%. The internal volume of the forming space required to obtain the measured density was calculated from the moving amount of the upper punch of the forming apparatus. The theoretical density was calculated as 7.62 g / cm 3 . The pulsed magnetic field was applied when the density was marked with O or X in Table 1. X represents the pulsed magnetic field applied when the relative density of the green compact was other than 25 to 55%.

【0048】比較のために、15kOe の直流磁界を印加
しながら成形を行なった他は上記と同様にして、焼結磁
石を製造した。
For comparison, a sintered magnet was manufactured in the same manner as above except that the molding was performed while applying a DC magnetic field of 15 kOe.

【0049】これらの焼結磁石について、成形時に磁界
を印加した方向の残留磁束密度(Br )を測定した。結
果を表1に示す。
With respect to these sintered magnets, the residual magnetic flux density (Br) in the direction in which a magnetic field was applied during molding was measured. The results are shown in Table 1.

【0050】[0050]

【表1】 [Table 1]

【0051】[実施例2]パルス磁界の強度を下記表2
に示されるように変更し、その他は実施例1の焼結磁石
No. 1−4の製造のときと同様にして焼結磁石を製造し
た。これらの焼結磁石の残留磁束密度(Br )を表2に
示す。
[Example 2] Table 2 below shows the strength of the pulse magnetic field.
Other than that, the sintered magnet of Example 1 was changed.
Sintered magnets were manufactured in the same manner as in manufacturing No. 1-4. Table 2 shows the residual magnetic flux density (Br) of these sintered magnets.

【0052】[0052]

【表2】 [Table 2]

【0053】表2に示される結果から、パルス磁界の強
度が20kOe 以上となると、特に高い残留磁束密度が得
られることがわかる。
From the results shown in Table 2, it is understood that a particularly high residual magnetic flux density can be obtained when the intensity of the pulse magnetic field is 20 kOe or more.

【0054】[実施例3]下記組成を有し、平均粒子径
4μm のR−Co系磁石粉末を製造した。
Example 3 An R-Co magnet powder having the following composition and an average particle diameter of 4 μm was produced.

【0055】Sm:25.5重量%、Co:50.9重
量%、Fe:14.0重量%、Zr:2.6重量%、C
u:7.0重量% この磁石粉末を、実施例1の焼結磁石No. 1−4と同様
な条件にて成形し、1150℃で3時間焼結後、800
℃で3時間時効処理を施し、焼結磁石No. 3−1を製造
した。
Sm: 25.5% by weight, Co: 50.9% by weight, Fe: 14.0% by weight, Zr: 2.6% by weight, C
u: 7.0 wt% This magnet powder was molded under the same conditions as the sintered magnet No. 1-4 of Example 1, sintered at 1150 ° C. for 3 hours, and then 800
Aging treatment was performed at ℃ for 3 hours to produce a sintered magnet No. 3-1.

【0056】また、比較のために、成形条件を実施例1
の焼結磁石No. 1−11と同様とし、その他は焼結磁石
No. 3−1と同様にして焼結磁石No. 3−2を製造し
た。
For comparison, the molding conditions were set as in Example 1.
Sintered magnet No. 1-11 and other sintered magnets
Sintered magnet No. 3-2 was manufactured in the same manner as No. 3-1.

【0057】これらの焼結磁石について、残留磁束密度
(Br )を測定した。結果は以下のとおりであった。 焼結磁石No. 3−1:11.0kG 焼結磁石No. 3−2:10.4kG 以上の実施例の結果から、本発明により配向度が向上
し、高い残留磁束密度を有する焼結磁石が得られること
が明らかである。
The residual magnetic flux density (Br) of these sintered magnets was measured. The results were as follows. Sintered magnet No. 3-1: 11.0kG Sintered magnet No. 3-2: 10.4kG From the results of the above examples, the present invention improves the orientation degree and has a high residual magnetic flux density. It is clear that

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/08 B 7371−5E Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/08 B 7371-5E

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 R(Rは、Yを含む希土類元素の少なく
とも1種である。)および遷移元素を含有する磁石粉末
を乾式成形する方法であって、 磁石粉末の圧粉体の相対密度が25〜55%の範囲内に
あるときに、少なくとも3回のパルス磁界を前記圧粉体
に印加することを特徴とする成形方法。
1. A method for dry-molding magnet powder containing R (R is at least one kind of rare earth element including Y) and a transition element, wherein the relative density of the green compact of the magnet powder is A molding method, wherein a pulsed magnetic field is applied to the green compact at least three times when it is in the range of 25 to 55%.
【請求項2】 前記パルス磁界の強度が20kOe 以上で
ある請求項1に記載の成形方法。
2. The molding method according to claim 1, wherein the intensity of the pulsed magnetic field is 20 kOe or more.
【請求項3】 前記パルス磁界の持続時間が10μs 〜
0.5sec である請求項1または2に記載の成形方法。
3. The duration of the pulsed magnetic field is 10 μs
The molding method according to claim 1 or 2, wherein the molding time is 0.5 sec.
【請求項4】 前記圧粉体が潤滑離型剤を含まない請求
項1ないし3のいずれかに記載の成形方法。
4. The molding method according to claim 1, wherein the green compact does not contain a lubricant release agent.
【請求項5】 前記磁石粉末が、R−T−B系の磁石粉
末(Tは、Fe、またはFeおよびCoである。)であ
るか、R−Co系の磁石粉末である請求項1ないし4の
いずれかに記載の成形方法。
5. The magnet powder is an RTB-based magnet powder (T is Fe or Fe and Co) or an R—Co magnet powder. The molding method according to any one of 4 above.
【請求項6】 請求項1ないし5のいずれかに記載の方
法により製造された成形体を焼結する焼結工程を有する
ことを特徴とする焼結磁石の製造方法。
6. A method for manufacturing a sintered magnet, comprising a sintering step of sintering a molded body manufactured by the method according to claim 1.
JP07258192A 1992-02-21 1992-02-21 Molding method and method for manufacturing sintered magnet Expired - Fee Related JP3307418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07258192A JP3307418B2 (en) 1992-02-21 1992-02-21 Molding method and method for manufacturing sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07258192A JP3307418B2 (en) 1992-02-21 1992-02-21 Molding method and method for manufacturing sintered magnet

Publications (2)

Publication Number Publication Date
JPH05234789A true JPH05234789A (en) 1993-09-10
JP3307418B2 JP3307418B2 (en) 2002-07-24

Family

ID=13493489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07258192A Expired - Fee Related JP3307418B2 (en) 1992-02-21 1992-02-21 Molding method and method for manufacturing sintered magnet

Country Status (1)

Country Link
JP (1) JP3307418B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045092B2 (en) 2002-04-12 2006-05-16 Neomax Co., Ltd. Method for press molding rare earth alloy powder and method for producing sintered object of rare earth alloy
US7416613B2 (en) 2004-01-26 2008-08-26 Tdk Corporation Method for compacting magnetic powder in magnetic field, and method for producing rare-earth sintered magnet
JP2009302256A (en) * 2008-06-12 2009-12-24 Tdk Corp Method of manufacturing rare earth magnet
US8545641B2 (en) 2004-07-01 2013-10-01 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy
CN104505246A (en) * 2014-12-05 2015-04-08 横店集团东磁股份有限公司 Preparation method of magnet for automobile idle speed motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028744A (en) * 2014-06-04 2014-09-10 中磁科技股份有限公司 Method for raising orientation degree of Nd-Fe-B powder particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045092B2 (en) 2002-04-12 2006-05-16 Neomax Co., Ltd. Method for press molding rare earth alloy powder and method for producing sintered object of rare earth alloy
US7416613B2 (en) 2004-01-26 2008-08-26 Tdk Corporation Method for compacting magnetic powder in magnetic field, and method for producing rare-earth sintered magnet
US8545641B2 (en) 2004-07-01 2013-10-01 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy
JP2009302256A (en) * 2008-06-12 2009-12-24 Tdk Corp Method of manufacturing rare earth magnet
CN104505246A (en) * 2014-12-05 2015-04-08 横店集团东磁股份有限公司 Preparation method of magnet for automobile idle speed motor

Also Published As

Publication number Publication date
JP3307418B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
US7416613B2 (en) Method for compacting magnetic powder in magnetic field, and method for producing rare-earth sintered magnet
JP2904667B2 (en) Rare earth permanent magnet alloy
JP4484063B2 (en) Magnetic field forming method, rare earth sintered magnet manufacturing method
JP4433282B2 (en) Rare earth magnet manufacturing method and manufacturing apparatus
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP3540438B2 (en) Magnet and manufacturing method thereof
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3307418B2 (en) Molding method and method for manufacturing sintered magnet
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP2004303909A (en) Rare earth permanent magnet and manufacturing method thereof
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP2005197301A (en) Rare earth sintered magnet and manufacturing method thereof
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP2005213544A (en) Compacting method in magnetic field and method for producing rare-earth sintered magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP2005288493A (en) Method and apparatus for producing alloy strip, and method for producing alloy powder
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP2005206909A (en) Compacting method in magnetic field, and method for producing rare earth sintered magnet
JP2006299402A (en) Raw material alloy for r-t-b system sintered magnet and r-t-b system sintered magnet and producing method therefor
JP3053344B2 (en) Rare earth magnet manufacturing method
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP4057561B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees