JP2576671B2 - Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance - Google Patents

Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance

Info

Publication number
JP2576671B2
JP2576671B2 JP2184779A JP18477990A JP2576671B2 JP 2576671 B2 JP2576671 B2 JP 2576671B2 JP 2184779 A JP2184779 A JP 2184779A JP 18477990 A JP18477990 A JP 18477990A JP 2576671 B2 JP2576671 B2 JP 2576671B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet powder
recrystallized
magnetic anisotropy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2184779A
Other languages
Japanese (ja)
Other versions
JPH03129702A (en
Inventor
亮治 中山
拓夫 武下
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to DE69009335T priority Critical patent/DE69009335T2/en
Priority to US07/560,594 priority patent/US5228930A/en
Priority to EP90114691A priority patent/EP0411571B1/en
Publication of JPH03129702A publication Critical patent/JPH03129702A/en
Priority to US07/978,911 priority patent/US5338371A/en
Application granted granted Critical
Publication of JP2576671B2 publication Critical patent/JP2576671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、優れた磁気特性、特に優れた磁気的異方
性および耐食性を有するR(但し、RはYを含む希土類
元素のうち少くとも1種を示す)−Fe−B系永久磁石粉
末およびそのR−Fe−B系永久磁石粉末を用いて製造し
たボンド磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to R having excellent magnetic properties, particularly excellent magnetic anisotropy and corrosion resistance (where R is at least one of the rare earth elements including Y). The present invention relates to one type) -Fe-B-based permanent magnet powder and a bonded magnet produced using the R-Fe-B-based permanent magnet powder.

〔従来の技術〕[Conventional technology]

R−Fe−B系合金磁石粉末は、R−Fe−B系合金が優
れた磁気特性を示す永久磁石材料として注目されてか
ら、主にボンド磁石用磁石粉末として開発されている。
The R-Fe-B-based alloy magnet powder has been mainly developed as a magnet powder for bonded magnets since the R-Fe-B-based alloy attracted attention as a permanent magnet material exhibiting excellent magnetic properties.

一般に、ボンド磁石は、含有される磁石粉末と同種の
焼結磁石等に比べて磁気特性では劣るにもかかわらず、
物理的強度に優れ、かつ形状の自由度が高いなどの理由
から、近年その利用範囲を急速に広げつつある。このボ
ンド磁石は、磁石粉末と有機バインダー、金属バインダ
ー等とを結合してなるもので、その磁石粉末の磁気特性
によってボンド磁石の磁気特性が左右される。
In general, bond magnets are inferior in magnetic properties compared to sintered magnets and the like of the same type as the contained magnet powder,
In recent years, its use range has been rapidly expanding because of its excellent physical strength and high degree of freedom in shape. The bonded magnet is formed by combining a magnet powder with an organic binder, a metal binder, and the like, and the magnetic characteristics of the bonded magnet are influenced by the magnetic characteristics of the magnet powder.

上記ボンド磁石の製造に用いられるR−Fe−B系永久
磁石粉末の1つに特開平1−132106号公報記載のR−Fe
−B系永久磁石粉末がある。
One of the R-Fe-B-based permanent magnet powders used for the production of the bonded magnet is R-Fe described in JP-A-1-132106.
-B-based permanent magnet powder.

このR−Fe−B系永久磁石粉末は、強磁性相であるR2
Fe14B型金属間化合物相(以下、R2Fe14B型相という)を
主相とするR−Fe−B系母合金を原料とし、この母合金
原料を所定の温度範囲のH2雰囲気中で熱処理してRHXとF
e2Bと残部Feの各相に相変態を促した後、脱H2工程でH2
を原料から取り去ることにより再び強磁性相であるR2Fe
14B型相を生成させたもので、その結果得られたR−Fe
−B系永久磁石粉末の組織は、平均粒径:0.05〜3μm
の極めて微細なR2Fe14B型相の再結晶組織を主相とした
集合組織となっている。
This R-Fe-B permanent magnet powder is composed of a ferromagnetic phase of R 2
Fe 14 B type intermetallic compound phase (hereinafter, referred to as R 2 Fe 14 B type phase) the R-Fe-B base alloy as a main phase as a raw material, H 2 atmosphere of this mother alloy materials a predetermined temperature range Heat treatment in RH X and F
After prompting phase transformation to each phase of e 2 B and the balance Fe, H 2 with deionized H 2 steps
Is removed from the raw material, and the ferromagnetic phase R 2 Fe
14 B type phase was formed, and the resulting R-Fe
The structure of the B-based permanent magnet powder has an average particle size of 0.05 to 3 μm.
Has a texture mainly composed of a recrystallized microstructure of the R 2 Fe 14 B type phase.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来の再結晶集合組織を有するR−Fe−B系永久
磁石粉末は、 (1) 磁気的異方性を有するが、合金組成や製造条件
の微小の変動により磁気的異方性が低下することがあ
り、安定して優れた磁気的異方性を得ることが難しい。
The conventional R-Fe-B-based permanent magnet powder having the recrystallized texture described above has (1) magnetic anisotropy, but the magnetic anisotropy is reduced due to minute fluctuations in the alloy composition and manufacturing conditions. In some cases, it is difficult to stably obtain excellent magnetic anisotropy.

(2) 磁気的異方性を付与する手段として、一般にR
−Fe−B系永久磁石粉末を熱間圧延、熱間押出し等の熱
間塑性加工を施して、R−Fe−B系永久磁石粉末の結晶
粒を偏平化する手段が知られており、かかる熱間塑性加
工を上記再結晶集合組織を有するR−Fe−B系永久磁石
粉末に付与しても磁気的異方性は向上するが、上記熱間
塑性加工は場所により加工率のバラツキが生じることは
避けられず、安定して均一な磁気的異方性に優れたR−
Fe−B系永久磁石粉末が得られないばかりでなく、製造
工程が複雑となってコストがかかる。
(2) As means for imparting magnetic anisotropy, generally R
Means for flattening the crystal grains of the R-Fe-B-based permanent magnet powder by subjecting the Fe-B-based permanent magnet powder to hot rolling, hot extrusion or other hot plastic working is known. Although the magnetic anisotropy is improved by applying hot plastic working to the R-Fe-B-based permanent magnet powder having the recrystallized texture, the hot plastic working causes variation in the working ratio depending on the location. Is inevitable, and R-
Not only cannot Fe-B permanent magnet powder be obtained, but also the manufacturing process becomes complicated and costly.

(3) 上記熱間塑性加工により上記再結晶粒を偏平化
すると、偏平化したR−Fe−B系永久磁石粉末は、再結
晶のままのR−Fe−B系永久磁石粉末よりも腐食されや
すく、このR−Fe−B系永久磁石粉末を工場などの高温
多湿な環境下に長期間保管すると、上記R−Fe−B系永
久磁石粉末の表面が腐食し、磁気特性が低下する。
(3) When the recrystallized grains are flattened by the hot plastic working, the flattened R—Fe—B permanent magnet powder is corroded more than the recrystallized R—Fe—B permanent magnet powder. When the R-Fe-B-based permanent magnet powder is stored for a long time in a high-temperature and high-humidity environment such as a factory, the surface of the R-Fe-B-based permanent magnet powder is corroded, and magnetic properties are deteriorated.

等の問題点があった。And so on.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、上記熱間塑性加工を行うこと
なく安定して優れた磁気的異方性を有する再結晶集合組
織のR−Fe−B系永久磁石粉末を製造すべく研究を行っ
た結果、 (a) Ga,ZrおよびHfのうち1種または2種以上の合
計量:0.001〜5.0%(%は原子%、以下%は原子%を示
す)を含むR2Fe14B型相を主相とする再結晶粒が相互に
隣接した再結晶集合組織を有するR−Fe−B系永久磁石
粉末は、熱間塑性加工を施すことなく優れた磁気的異方
性を示し、かつ優れた耐食性も示す。
Therefore, the present inventors have conducted research to produce an R-Fe-B-based permanent magnet powder having a recrystallized texture having stable and excellent magnetic anisotropy without performing the hot plastic working. As a result, (a) R 2 Fe 14 B type phase containing the total amount of one or more of Ga, Zr and Hf: 0.001 to 5.0% (% indicates atomic%, below% indicates atomic%) R-Fe-B permanent magnet powder having recrystallized textures in which recrystallized grains having a main phase of adjacent to each other show excellent magnetic anisotropy without hot plastic working, and have excellent Also shows corrosion resistance.

(b) 上記再結晶集合組織を構成する個々の再結晶粒
の最短粒径をa、最長粒径をbとすると、 b/a<2 となるような形状の再結晶粒から構成される再結晶集合
組織を有するR−Fe−B系永久磁石粉末は、耐食性が一
層優れている。
(B) Assuming that the shortest grain size of each recrystallized grain constituting the recrystallized texture is a and the longest grain size is b, a recrystallized grain composed of b / a <2 The R-Fe-B-based permanent magnet powder having a crystal texture has more excellent corrosion resistance.

などの知見を得たのである。The knowledge was obtained.

この発明は、かかる知見にもとづいてなされたもので
あって、 (1) R−Fe−B系永久磁石粉末の個々の粉末が、 R:10〜20%、 B:3〜20%、 を含有し、 Ga,ZrおよびHfのうち1種または2種以上の合計:0.00
1〜5.0%、を含有し、残りがFeおよび不可避不純物から
なる組成と、 平均再結晶粒径:0.05〜20μmの寸法および個々の再
結晶粒の最短粒径aと最長粒径bの比b/aの値が2より
小さい形状を有する再結晶粒で構成され、正方晶構造を
とるR2Fe14B型金属間化合物相を主相とする再結晶粒が
相互に隣接した再結晶集合組織と、 を有する磁気的異方性および耐食性に優れたR−Fe−B
系永久磁石粉末、 (2) R−Fe−B系永久磁石粉末の個々の粉末が、 R:10〜20%、 B:3〜20%、 を含有し、 Ga,ZrおよびHfのうち1種または2種以上の合計:0.00
1〜5.0%を含有し、 さらに、Al,VおよびSiのうち1種または2種以上の合
計量:0.1〜2.0%を含有し、残りがFeおよび不可避不純
物からなる組成と、 平均再結晶粒径:0.05〜20μmの寸法および個々の再
結晶粒の最短粒径aと最長粒径bの比b/aの値が2より
小さい形状を有する再結晶粒で構成され、正方晶構造を
とるR2Fe14B型金属間化合物相を主相とする再結晶粒が
相互に隣接した再結晶集合組織と、 を有する磁気的異方性および耐食性に優れたR−Fe−B
系永久磁石粉末、 (3) 上記磁気的異方性および耐食性に優れたR−Fe
−B系永久磁石粉末を用いて製造したボンド磁石、 に特徴を有するものである。
The present invention has been made based on such findings, and (1) each of the R-Fe-B-based permanent magnet powders contains: R: 10 to 20%, and B: 3 to 20%. And the total of one or more of Ga, Zr and Hf: 0.00
1 to 5.0%, with the balance being Fe and unavoidable impurities, and the average recrystallized grain size: a size of 0.05 to 20 μm, and the ratio b of the shortest grain size a to the longest grain size b of each recrystallized grain. Recrystallized texture composed of recrystallized grains having a shape of R 2 Fe 14 B-type intermetallic compound having a tetragonal structure and composed of recrystallized grains having a shape of / a smaller than 2 And R-Fe-B having excellent magnetic anisotropy and corrosion resistance, comprising:
-Based permanent magnet powder, (2) each powder of R-Fe-B-based permanent magnet powder contains: R: 10 to 20%, B: 3 to 20%, and one of Ga, Zr and Hf Or the sum of two or more: 0.00
1 to 5.0%, and the composition of one or more of Al, V and Si: 0.1 to 2.0%, the balance being Fe and unavoidable impurities, and the average recrystallized grains Diameter: A recrystallized grain having a size of 0.05 to 20 μm and a shape in which the ratio b / a of the shortest grain size a to the longest grain size b of each recrystallized grain is smaller than 2 and has a tetragonal structure R-Fe-B with excellent magnetic anisotropy and corrosion resistance having recrystallized texture in which recrystallized grains mainly composed of 2 Fe 14 B-type intermetallic compound phases are adjacent to each other;
(3) R-Fe excellent in magnetic anisotropy and corrosion resistance
-A bonded magnet manufactured using a B-based permanent magnet powder.

この発明の磁気的異方性および耐食性に優れたR−Fe
−B系永久磁石粉末は、溶解鋳造してGa,Zr,Hfを含有す
る所定の成分組成を有するR−Fe−B系母合金およびこ
の合金にさらにAl,V,Siを含有する所定の成分組成を有
するR−Fe−B系母合金を製造し、このR−Fe−B系母
合金を水素ガス雰囲気中で昇温し、温度:500〜1000℃、
水素ガス雰囲気中または水素ガスと不活性ガスの混合雰
囲気中で熱処理し、ついで、温度:500〜100℃、水素ガ
ス圧力:1Torr以下の真空雰囲気または水素ガス分圧:1To
rr以下の不活性ガス雰囲気になるまで脱水素処理したの
ち、冷却することにより製造される。
R-Fe excellent in magnetic anisotropy and corrosion resistance of the present invention
-B-based permanent magnet powder is an R-Fe-B-based master alloy having a predetermined component composition containing Ga, Zr, and Hf by melting and casting, and a predetermined component further containing Al, V, and Si in this alloy. Producing an R-Fe-B-based master alloy having a composition, raising the temperature of the R-Fe-B-based master alloy in a hydrogen gas atmosphere, temperature: 500 to 1000 ° C,
Heat treatment is performed in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and an inert gas.Then, temperature: 500 to 100 ° C., hydrogen gas pressure: 1 Torr or less vacuum atmosphere or hydrogen gas partial pressure: 1 To
It is manufactured by performing dehydrogenation treatment until it becomes an inert gas atmosphere of rr or less and then cooling.

上記R−Fe−B系母合金を温度600〜1200℃で均質化
処理する工程および上記脱水素処理したのち温度:300〜
1000℃で熱処理する工程を付加することにより一層優れ
た磁気的異方性および耐食性を有するR−Fe−B系永久
磁石粉末を製造することができる。
A step of homogenizing the R-Fe-B-based master alloy at a temperature of 600 to 1200 ° C and a temperature of 300 to
By adding a heat treatment at 1000 ° C., an R—Fe—B permanent magnet powder having more excellent magnetic anisotropy and corrosion resistance can be produced.

このようにして製造されたこの発明のR−Fe−B系永
久磁石粉末の組織は、粒内および粒界部に不純物や歪が
ない、R2Fe14B型金属間化合物相の再結晶粒が相互に隣
接した再結晶集合組織を有している。この再結晶集合組
織を構成する再結晶粒の平均再結晶粒径は0.05〜20μm
の範囲内にあれば十分であるが、単磁区粒径の寸法(約
0.3μm)に近い0.05〜3μmの範囲内にあることが一
層好ましい。上記寸法を有する個々の再結晶粒は、最短
粒径aと最長粒径bの比がb/a<2の形状を有すること
が好ましく、この形状を有する再結晶粒は個々の粉末の
組織の全再結晶粒の50容量%以下存在することが必要で
ある。上記最短粒径aと最長粒径bの比b/aが2より小
さい再結晶粒の形状を有することによりR−Fe−B系永
久磁石粉末の保磁力が改善されるとともに耐食性も向上
し、従来の熱間組成加工を行って得られた磁気的異方性
を有するR−Fe−B系永久磁石粉末よりも耐食性に優
れ、磁気的異方性にバラツキがなく、歩留りよく安定し
て優れた磁気特性を得ることができる。
The structure of the R-Fe-B-based permanent magnet powder of the present invention thus produced has a recrystallized grain of the R 2 Fe 14 B-type intermetallic compound phase without any impurities or strains in the grains and grain boundaries. Have recrystallized textures adjacent to each other. The average recrystallized grain size of the recrystallized grains constituting the recrystallized texture is 0.05 to 20 μm
Is sufficient, but the size of the single domain grain size (about
More preferably, it is in the range of 0.05 to 3 μm close to 0.3 μm). The individual recrystallized grains having the above dimensions preferably have a shape in which the ratio of the shortest particle size a to the longest particle size b is b / a <2. It must be present in 50% by volume or less of all recrystallized grains. The ratio b / a of the shortest particle diameter a to the longest particle diameter b has a shape of recrystallized grains smaller than 2, thereby improving the coercive force of the R-Fe-B-based permanent magnet powder and improving the corrosion resistance, It is more excellent in corrosion resistance than R-Fe-B permanent magnet powder having magnetic anisotropy obtained by performing conventional hot composition processing, has no variation in magnetic anisotropy, and has excellent yield and stability. Magnetic properties can be obtained.

さらに、このようにして製造されたこの発明のR−Fe
−B系永久磁石粉末の再結晶組織は、粒界相がほとんど
存在しない実質的にR2Fe14B型金属間化合物相だけから
構成された再結晶集合組織を有しているために、粒界相
のない分だけ磁化の値を高めることができるとともに、
粒界相を介して進行する腐食を抑止し、さらに熱間塑性
加工による応力歪も存在しないことから応力腐食の可能
性も少なく、耐食性が向上するものと考えられる。
Further, the R-Fe of the present invention thus produced
-The recrystallized structure of the B-based permanent magnet powder has a recrystallized texture substantially composed only of the R 2 Fe 14 B type intermetallic compound phase in which almost no grain boundary phase is present. The value of magnetization can be increased by the absence of the field phase,
It is considered that corrosion that progresses through the grain boundary phase is suppressed, and since there is no stress strain due to hot plastic working, the possibility of stress corrosion is small and the corrosion resistance is improved.

したがって、磁気的異方性および耐食性に優れたこの
発明のR−Fe−B系永久磁石粉末を使用して製造したボ
ンド磁石も、優れた磁気的異方性および耐食性を有する
ものである。
Therefore, the bonded magnet manufactured using the R-Fe-B-based permanent magnet powder of the present invention having excellent magnetic anisotropy and corrosion resistance also has excellent magnetic anisotropy and corrosion resistance.

つぎに、この発明の磁気的異方性耐食性に優れたR−
Fe−B系永久磁石粉末の成分組成および平均再結晶粒径
を上記の如く限定した理由について説明する。
Next, R- according to the present invention, which is excellent in magnetic anisotropic corrosion resistance, is used.
The reason why the component composition and the average recrystallized particle size of the Fe-B-based permanent magnet powder are limited as described above will be described.

(a) R Rは、Nd,Pr,Tb,Dy,La,Ce,Ho,Er,Eu,Sm,Gd,Tm,Yb,Lu
およびYのうち1種または2種以上の元素を示し、一般
にNdを主体とし、これにその他の希土類元素を添加して
用いられるが、特にTb,DyおよびPrは保磁力iHcを向上さ
せる効果があり、Rの含有量が10%より低くても、また
20%より高くても永久磁石粉末の保磁力が低下し、優れ
た磁気特性が得られない。したがって、Rの含有量は10
〜20%に定めた。
(A) R R is Nd, Pr, Tb, Dy, La, Ce, Ho, Er, Eu, Sm, Gd, Tm, Yb, Lu
And one or more elements of Y, and generally contains Nd as a main component, and is used by adding other rare earth elements. Particularly, Tb, Dy, and Pr have an effect of improving the coercive force iHc. Yes, even if the content of R is lower than 10%,
If it is higher than 20%, the coercive force of the permanent magnet powder is reduced, and excellent magnetic properties cannot be obtained. Therefore, the content of R is 10
Set to ~ 20%.

(b) B Bの含有量が3%より低くても、また20%より高くて
も永久磁石粉末の保持力が低下し、優れた磁気特性が得
られないので、B含有量は3〜20%と定めた。
(B) BB If the B content is lower than 3% or higher than 20%, the coercive force of the permanent magnet powder is reduced and excellent magnetic properties cannot be obtained. %.

(c) Ga,ZrおよびHf Ga,ZrおよびHfは、R−Fe−B系永久磁石粉末の成分
として含有し、保磁力を向上させるとともに優れた磁気
的異方性および耐食性を安定的に付与する作用を有する
が、Ga,ZrおよびHfのうち1種または2種以上の合計含
有量が0.001%未満では所望の効果が得られず、一方、
5.0%を越えて含有すると磁気特性が低下する。したが
って、Ga,ZrおよびHfのうち1種または2種以上の合計
含有量は0.001〜5.0%に定めた。
(C) Ga, Zr and Hf Ga, Zr and Hf are contained as components of R-Fe-B-based permanent magnet powder to improve coercive force and stably impart excellent magnetic anisotropy and corrosion resistance. However, if the total content of one or more of Ga, Zr, and Hf is less than 0.001%, the desired effect cannot be obtained.
If the content exceeds 5.0%, the magnetic properties deteriorate. Therefore, the total content of one or more of Ga, Zr and Hf is set to 0.001 to 5.0%.

(d) Al,VおよびSi Al,VおよびSiは、必要に応じてR−Fe−B系永久磁石
粉末の成分として含有し、保磁力を向上させるが、Al,V
およびSiのうち1種または2種以上の合計含有量が0.01
%未満では所望の効果が得られず、一方、2.0%を越え
て含有するとかえって磁気特性が低下する。
(D) Al, V and Si Al, V and Si are optionally contained as components of R-Fe-B-based permanent magnet powder to improve coercive force.
And the total content of one or more of Si is 0.01 or more.
If it is less than 2.0%, the desired effect cannot be obtained, while if it exceeds 2.0%, the magnetic properties are rather deteriorated.

したがって、Al,VおよびSiのうち1種または2種以上
の合計含有量は0.01〜2.0%に定めた。
Therefore, the total content of one or more of Al, V and Si is set to 0.01 to 2.0%.

(e) 平均再結晶粒径 R−Fe−B系永久磁石粉末の個々の粉末の組織を構成
する再結晶粒の平均再結晶粒径が0.05μmより小さいと
着磁が困難になるので好ましくなく、一方20μmより大
きいと保磁力や角型性が低下し、高磁気特性が得られな
いので好ましくない。
(E) Average recrystallized grain size If the average recrystallized grain size of the recrystallized grains constituting each powder structure of the R-Fe-B-based permanent magnet powder is smaller than 0.05 μm, magnetization becomes difficult, which is not preferable. On the other hand, if it is larger than 20 μm, the coercive force and the squareness decrease, and high magnetic properties cannot be obtained, which is not preferable.

したがって、平均再結晶粒径は0.05〜20μmに定め
た。この場合、平均再結晶粒径は単磁区粒径に近い0.05
〜3μmが一層好ましい。
Therefore, the average recrystallized grain size is set to 0.05 to 20 μm. In this case, the average recrystallized grain size is 0.05
33 μm is more preferred.

以上、R−Fe−B系永久磁石粉末について述べたが、
上記限定理由は、上記R−Fe−B系永久磁石粉末に限定
されることなく、上記R−Fe−B系永久磁石粉末から製
造されたR−Fe−B系ボンド磁石についてもあてはまる
ことである。
As described above, the R-Fe-B-based permanent magnet powder has been described.
The reason for the limitation is not limited to the R-Fe-B-based permanent magnet powder, but is also applicable to an R-Fe-B-based bonded magnet manufactured from the R-Fe-B-based permanent magnet powder. .

〔実 施 例〕〔Example〕

この発明を実施例および比較例にもとづいて具体的に
説明する。
The present invention will be specifically described based on examples and comparative examples.

実施例1〜28、比較例1〜11、および従来例1〜2 プラズマ溶解し鋳造して得られた第1表に示されるG
a,Zr,Hrのうち1種または2種以上を含む各種合金イン
ゴットおよび上記Ga,Zr,Hfのいずれをも含まない合金イ
ンゴットをそれぞれアルゴンガス雰囲気中、温度:1120
℃、40時間保持の条件で均質化処理したのち、この均質
化処理インゴットを約20mm角まで砕いて原料合金とし
た。この原料合金を1気圧の水素雰囲気中で室温から85
0℃まで昇温し、850℃で4時間保持の水素雰囲気中熱処
理を施し、ついで、830℃で真空度:1×10-1Torr以下に
なるまで脱水素を行った後、直ちにアルゴンガスを流入
して急冷した。かかる水素処理を終えた後、アルゴンガ
ス中、650℃の熱処理を行った。得られた原料合金を、
乳鉢で軽く粉砕し、平均粘度:30μmを有する実施例1
〜28、比較例1〜11および従来例1の磁石粉末を得た。
また、上記従来例1の水素処理を終えた原料合金の一部
をさらに680℃、1×10-3Torrの真空中で密度比98%ま
でホットプレスを行い、続けて、750℃で高さ1/4まで塑
性加工したのち、このバルクを平均粒径:30μmとなる
ように粉砕し、従来例2の磁石粉末を得た。このように
して得られた上記実施例1〜28、比較例1〜11および従
来例1〜2のR−Fe−B系永久磁石粉末の平均再結晶粒
径および最長粒径/最短粒径が2より小さい再結晶粒の
存在量(容量%)を測定したのち、これらR−Fe−B系
永久磁石粉末をふるい分けして、50〜420μmの間の粒
径の粉末に揃え、これら粉末を、それぞれ100gづつと
り、そのまま温度:80℃、湿度:95%の雰囲気中に放置し
て湿潤試験を行い、1000時間経過後の粉末の酸化による
重量変化を測定し、重量変化率(重量%)になおしてそ
れらの結果を第1表に示した。
Examples 1-28, Comparative Examples 1-11, and Conventional Examples 1-2 G shown in Table 1 obtained by plasma melting and casting.
Various alloy ingots containing one or more of a, Zr, and Hr and alloy ingots not containing any of the above Ga, Zr, and Hf were each placed in an argon gas atmosphere at a temperature of 1120.
After homogenizing at 40 ° C. for 40 hours, the homogenized ingot was crushed to about 20 mm square to obtain a raw material alloy. This raw material alloy is heated from room temperature to 85
The temperature was raised to 0 ° C., heat treatment was performed in a hydrogen atmosphere maintained at 850 ° C. for 4 hours, and then dehydrogenation was performed at 830 ° C. until the degree of vacuum became 1 × 10 −1 Torr or less. It flowed in and quenched. After the completion of the hydrogen treatment, a heat treatment at 650 ° C. was performed in an argon gas. The obtained raw material alloy is
Example 1 lightly ground in a mortar and having an average viscosity of 30 μm
To 28, Comparative Examples 1 to 11 and Conventional Example 1 were obtained.
Further, a part of the raw material alloy which has been subjected to the hydrogen treatment in Conventional Example 1 is further hot-pressed to a density ratio of 98% in a vacuum of 680 ° C. and 1 × 10 −3 Torr. After plastic working to 1/4, this bulk was pulverized so as to have an average particle diameter of 30 μm to obtain the magnet powder of Conventional Example 2. The average recrystallized particle size and the longest particle size / the shortest particle size of the R-Fe-B-based permanent magnet powders of Examples 1 to 28, Comparative Examples 1 to 11, and Conventional Examples 1 and 2 thus obtained are as follows. After measuring the abundance (volume%) of recrystallized grains smaller than 2, these R-Fe-B-based permanent magnet powders are sieved to a powder having a particle size of 50 to 420 μm. Wet 100g each, leave it in an atmosphere of temperature: 80 ° C, humidity: 95% and perform a wet test, measure the weight change due to oxidation of the powder after 1000 hours, and calculate the weight change rate (weight%). Table 1 shows the results.

この発明のR−Fe−B系永久磁石粉末の代表例として
第1表の実施例3で得られた磁石粉末について、透過電
子顕微鏡観察し、その透過電子顕微鏡による組織写真を
第1図に示す。第1図の磁石粉末の明視野像から、磁石
粉末中に、一様に平均再結晶粒径:0.3μmのR2Fe14B型
相が存在しており、再結晶粒の最短粒径aと最長粒径b
の比b/aが2より小さい形状の再結晶粒が全再結晶粒の
約90容量%存在していること、及び個々の再結晶粒間に
はほとんど粒界相は存在せず、実質的に、R2Fe14B型相
の再結晶粒だけから構成された再結晶集合組織を有して
いること、がわかる。
As a representative example of the R-Fe-B-based permanent magnet powder of the present invention, the magnet powder obtained in Example 3 in Table 1 was observed with a transmission electron microscope, and the structure photograph by the transmission electron microscope is shown in FIG. . From the bright-field image of the magnet powder shown in FIG. 1, an R 2 Fe 14 B type phase having an average recrystallized grain size: 0.3 μm is uniformly present in the magnet powder, and the shortest grain size a of the recrystallized grain a And the longest particle size b
Of recrystallized grains having a ratio b / a of less than 2 is about 90% by volume of all recrystallized grains, and there is almost no grain boundary phase between individual recrystallized grains, As can be seen from the figure, it has a recrystallized texture composed only of recrystallized grains of the R 2 Fe 14 B type phase.

かかる測定および観察を終了した上記実施例1〜28、
比較例1〜11および従来例1〜2のR−Fe−B系永久磁
石粉末を、3.0重量%のエポキシ樹脂と混合し、25KOeの
横磁場中または無磁場中、圧力:6Ton/cm2でプレス形成
し、ついで温度:120℃、2時間保持の熱硬化処理を施し
て実施 例1〜28、比較例1〜11および従来例1〜2のボンド磁
石を製造し、上記横磁場中プレス成形して得られたボン
ド磁石および無磁場中プレス成形して得られたボンド磁
石の磁気特性をそれぞれ測定し、それらの磁気特性を比
較して磁気的異方性を評価した。
Examples 1-28 above, which completed such measurement and observation,
The R-Fe-B-based permanent magnet powders of Comparative Examples 1 to 11 and Conventional Examples 1 to 2 were mixed with 3.0% by weight of an epoxy resin, and were subjected to a transverse magnetic field of 25 KOe or a non-magnetic field at a pressure of 6 Ton / cm 2 . Press forming, then heat curing at 120 ° C for 2 hours The bonded magnets of Examples 1 to 28, Comparative Examples 1 to 11 and Conventional Examples 1 to 2 were manufactured, and the bonded magnets obtained by press molding in the above-described transverse magnetic field and the bonded magnets obtained by press molding in a non-magnetic field were used. The magnetic properties were measured, and the magnetic properties were compared to evaluate the magnetic anisotropy.

第1表の結果から、この発明のGa,Zr,Hfのうち1種ま
たは2種を含むR−Fe−B系永久磁石粉末を実施例1〜
28の横磁場中プレス成形して得られたボンド磁石は、無
磁場中プレス成形して得られたボンド磁石に比べて磁気
特性、特に最大エネルギー積(BH)maxおよび残留磁束
密度Brが優れており、磁気的異方性の優れたR−Fe−B
系永久磁石粉末が得られていることがわかる。しかしな
がら、比較例1〜11に示されるように、Ga,Zr,Hfの含有
量がこの発明の条件から外れると磁気的異方性が低下
し、平均再結晶粒径またはRとBがこの発明の条件から
外れると(第1表において、この発明の条件から外れた
値に※印を付して示した)磁気特性が低下し、従来例1
のGa,Zr,Hfを添加しないものは、同じ製造条件では充分
な磁気的異方性を示さないと共に、耐食性が劣ってお
り、さらに磁気的異方性を付与するために熱間塑性加工
を行って再結晶粒を偏平状にし、再結晶粒の最長粒径/
最短粒径の値が2未満の再結晶粒が約40容量%しか存在
しない従来例2のR−Fe−B系永久磁石粉末は、実施例
1〜28のGa,Zr,Hfのうち1種または2種以上含むR−Fe
−B系永久磁石粉末に比べて磁気異方性は格別劣るもの
ではないが、浸潤試験による重量変化率が大きくなり、
耐食性が低下していることもわかる。
From the results in Table 1, the R-Fe-B-based permanent magnet powder containing one or two of Ga, Zr, and Hf of the present invention was obtained in Examples 1 to 3.
Bond magnets obtained by press molding in a transverse magnetic field of 28 have superior magnetic properties, especially the maximum energy product (BH) max and residual magnetic flux density Br, compared to bond magnets obtained by press molding in a non-magnetic field. R-Fe-B with excellent magnetic anisotropy
It can be seen that a permanent magnet powder was obtained. However, as shown in Comparative Examples 1 to 11, when the contents of Ga, Zr, and Hf deviate from the conditions of the present invention, the magnetic anisotropy decreases, and the average recrystallized grain size or R and B are reduced by the present invention. (In Table 1, values deviating from the conditions of the present invention are marked with an asterisk).
Those without the addition of Ga, Zr, and Hf do not show sufficient magnetic anisotropy under the same manufacturing conditions, have poor corrosion resistance, and require hot plastic working to impart magnetic anisotropy. To make the recrystallized grains flat, and the longest recrystallized grain size /
The R-Fe-B permanent magnet powder of Conventional Example 2 in which only about 40% by volume of recrystallized grains having the shortest particle size of less than 2 is one of Ga, Zr, and Hf of Examples 1 to 28 Or R-Fe containing two or more kinds
-Magnetic anisotropy is not particularly inferior to that of B-based permanent magnet powder, but the weight change rate by the infiltration test is large,
It can also be seen that the corrosion resistance has decreased.

実施例29〜38および比較例12〜14 プラズマ溶解し鋳造して得られたGa,ZrおよびHfのう
ち1種または2種以上含まれるR−Fe−B系合金に、さ
らにAl,V,Siのうち1種または2種以上含む第2表に示
される成分組成の各種合金インゴットを作製し、これら
インゴットを上記実施例1〜28、比較例1〜12および従
来例1と全く同一条件で、実施例29〜38および 比較例12〜14のR−Fe−B系永久磁石合金粉末を製造
し、再結晶粒の最長粒径/最短粒径の値を測定したの
ち、先の条件と同一条件で湿潤試験による重量変化率
(重量%)を測定し、ついでボンド磁石を製造し、横磁
場中プレス成形して得られたボンド磁石および無磁場中
プレス成形して得られたボンド磁石の磁気特性を測定
し、それらの結果を第2表に示した。
Examples 29 to 38 and Comparative Examples 12 to 14 An R-Fe-B-based alloy containing one or more of Ga, Zr and Hf obtained by plasma melting and casting was further added with Al, V, Si Among them, various alloy ingots having the component compositions shown in Table 2 including one or more kinds were prepared, and these ingots were prepared under the same conditions as in Examples 1 to 28, Comparative Examples 1 to 12, and Conventional Example 1, Examples 29-38 and The R-Fe-B permanent magnet alloy powders of Comparative Examples 12 to 14 were manufactured, and the value of the longest particle diameter / the shortest particle diameter of the recrystallized grains was measured. Rate (% by weight), then a bonded magnet is manufactured, and the magnetic properties of the bonded magnet obtained by press molding in a transverse magnetic field and the bonded magnet obtained by press molding in a non-magnetic field are measured. The results are shown in Table 2.

第2表の結果から、Ga,ZrおよびHfのうち1種または
2種以上:0.001〜5.0%に、さらにAl,VおよびSiのうち
1種または2種以上を0.1〜1.0%添加することにより最
大エネルギー積がさらに向上し、より顕著な磁気的異方
性を示すことがわかる。
From the results in Table 2, one or more of Ga, Zr and Hf: 0.001 to 5.0%, and one or more of Al, V and Si are added by 0.1 to 1.0%. It can be seen that the maximum energy product is further improved and shows more remarkable magnetic anisotropy.

〔発明の効果〕 この発明は、Ga,Zr,Hfを含有せしめることにより、H2
処理法だけで顕著な磁気的異方性および耐食性を示すR
−Fe−B系永久磁石粉末を得ることができ、したがっ
て、従来のような熱間塑性加工等の磁気的異方化手段を
行う必要がなく、製造コストを大幅に削減することがで
きるという効果がある。
[Effects of the Invention] The present invention provides H 2 by adding Ga, Zr, and Hf.
R showing remarkable magnetic anisotropy and corrosion resistance only by the treatment method
-Fe-B-based permanent magnet powder can be obtained, and therefore, there is no need to perform magnetic anisotropic means such as hot plastic working as in the past, and the production cost can be greatly reduced. There is.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明のR−Fe−B系永久磁石粉末の透過
電子顕微鏡による金属組織写真である。
FIG. 1 is a metallographic photograph of a R-Fe-B-based permanent magnet powder of the present invention taken by a transmission electron microscope.

フロントページの続き (56)参考文献 特開 昭59−222564(JP,A) 特開 昭62−276803(JP,A) 特開 昭61−238915(JP,A) 特開 昭64−45103(JP,A) 特開 平1−103805(JP,A)Continuation of front page (56) References JP-A-59-222564 (JP, A) JP-A-62-276803 (JP, A) JP-A-61-238915 (JP, A) JP-A 64-45103 (JP) , A) JP-A-1-103805 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Yを含む希土類元素のうち少なくとも一種
(以下Rで示す)とFeとBを主成分とするR−Fe−B系
永久磁石粉末の個々と粉末が、 原子百分率で、 R:10〜20%、 B:3〜20%、 Ga,ZrおよびHfのうち1種または2種以上の合計:0.001
〜5.0%、 を含有し、残りがFeおよび不可避不純物からなる組成
と、 実質的に正方晶構造をとるR2Fe14B型金属間化合物を主
相とした再結晶粒が相互に隣接した再結晶集合組織とを
有し、 上記再結晶集合組織は、個々の再結晶粒の最短粒径aと
最長粒径bの比b/aの値が2未満である形状の再結晶粒
が全再結晶粒の50容量%以上存在し、かつ上記再結晶集
合組織を構成する再結晶粒の平均再結晶粒径が0.05〜20
μmの寸法を有することを特徴とする磁気的異方性およ
び耐食性に優れた希土類−Fe−B系永久磁石粉末。
An R-Fe-B permanent magnet powder containing at least one of the rare earth elements containing Y (hereinafter referred to as R), Fe and B as main components, and the powder are represented by the following formula: 10-20%, B: 3-20%, total of one or more of Ga, Zr and Hf: 0.001
And a recrystallized grain mainly composed of an R 2 Fe 14 B type intermetallic compound having a substantially tetragonal structure, and a recrystallization grain adjacent to each other. The recrystallized texture has a ratio of the shortest particle diameter a to the longest particle diameter b of each individual recrystallized grain b / a is less than 2 and the recrystallized grains are all recrystallized. The average recrystallized grain size of the recrystallized grains present in 50% by volume or more of the crystal grains and constituting the recrystallized texture is 0.05 to 20%
A rare earth-Fe-B-based permanent magnet powder excellent in magnetic anisotropy and corrosion resistance, having a size of μm.
【請求項2】RとFeとBを主成分とするR−Fe−B系永
久磁石粉末の個々の粉末が、原子百分率で、 R:10〜20%、 B:3〜20%、 Ga,ZrおよびHfのうち1種または2種以上の合計:0.001
〜5.0%、 を含有し、さらに、 Al,VおよびSiのうち1種または2種以上の合計:0.01〜
2.0%を含有し、残りがFeおよび不可避不純物からなる
組成を有することを特徴とする請求項1記載の磁気的異
方性および耐食性に優れた希土類−Fe−B系永久磁石粉
末。
2. An individual R-Fe-B permanent magnet powder comprising R, Fe and B as main components, in atomic percent, R: 10-20%, B: 3-20%, Ga, Total of one or more of Zr and Hf: 0.001
, And a total of one or more of Al, V and Si: 0.01 to
2. The rare-earth-Fe-B permanent magnet powder according to claim 1, wherein the rare-earth-Fe-B permanent magnet powder has excellent magnetic anisotropy and corrosion resistance.
【請求項3】上記平均再結晶粒径は、好ましくは、0.05
〜3μmであることを特徴とする請求項1または2記載
の磁気的異方性および耐食性に優れた希土類−Fe−B系
永久磁石粉末。
3. The average recrystallized particle size is preferably 0.05%.
The rare-earth-Fe-B-based permanent magnet powder according to claim 1 or 2, which is excellent in magnetic anisotropy and corrosion resistance.
【請求項4】上記請求項1,2または3記載の磁気的異方
性および耐食性に優れた希土類−Fe−B系永久磁石粉末
で製造されたことを特徴とする希土類−Fe−B系ボンド
磁石。
4. A rare-earth-Fe-B-based bond produced from the rare-earth-Fe-B-based permanent magnet powder excellent in magnetic anisotropy and corrosion resistance according to claim 1, 2 or 3. magnet.
JP2184779A 1989-07-31 1990-07-12 Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance Expired - Fee Related JP2576671B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69009335T DE69009335T2 (en) 1989-07-31 1990-07-31 Rare earth powder for permanent magnet, manufacturing process and bonded magnet.
US07/560,594 US5228930A (en) 1989-07-31 1990-07-31 Rare earth permanent magnet power, method for producing same and bonded magnet
EP90114691A EP0411571B1 (en) 1989-07-31 1990-07-31 Rare earth permanent magnet powder, method for producing same and bonded magnet
US07/978,911 US5338371A (en) 1989-07-31 1992-11-19 Rare earth permanent magnet powder, method for producing same and bonded magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19883689 1989-07-31
JP1-198836 1989-07-31

Publications (2)

Publication Number Publication Date
JPH03129702A JPH03129702A (en) 1991-06-03
JP2576671B2 true JP2576671B2 (en) 1997-01-29

Family

ID=16397727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2184779A Expired - Fee Related JP2576671B2 (en) 1989-07-31 1990-07-12 Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance

Country Status (1)

Country Link
JP (1) JP2576671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633582B1 (en) * 1992-12-28 1998-02-25 Aichi Steel Works, Ltd. Rare earth magnetic powder, method of its manufacture
US5849109A (en) * 1997-03-10 1998-12-15 Mitsubishi Materials Corporation Methods of producing rare earth alloy magnet powder with superior magnetic anisotropy
JPH1131610A (en) * 1997-07-11 1999-02-02 Mitsubishi Materials Corp Manufacture of rare-earth magnet powder with superior magnetic anisotropy
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder
US6623541B2 (en) 2000-07-31 2003-09-23 Shin-Etsu Chemical Co., Ltd. Sintered rare earth magnet and making method
WO2003058648A1 (en) 2001-12-28 2003-07-17 Shin-Etsu Chemical Co., Ltd. Rare earth element sintered magnet and method for producing rare earth element sintered magnet
US8268093B2 (en) 2006-05-18 2012-09-18 Hitachi Metals, Ltd. R-Fe-B porous magnet and method for producing the same
JP4924615B2 (en) * 2006-11-30 2012-04-25 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
JP5059929B2 (en) 2009-12-04 2012-10-31 住友電気工業株式会社 Magnet powder
JP5059955B2 (en) 2010-04-15 2012-10-31 住友電気工業株式会社 Magnet powder
CN103151130A (en) 2010-05-19 2013-06-12 住友电气工业株式会社 Powder for magnetic member, powder compact, and magnetic member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778269B2 (en) * 1983-05-31 1995-08-23 住友特殊金属株式会社 Rare earth / iron / boron tetragonal compound for permanent magnet
JP2655835B2 (en) * 1985-04-16 1997-09-24 日立金属株式会社 Permanent magnet alloy and manufacturing method thereof
JPS62276803A (en) * 1985-08-13 1987-12-01 Seiko Epson Corp Rare earth-iron permanent magnet
JPH01103805A (en) * 1987-07-30 1989-04-20 Tdk Corp Permanent magnet
JPS6445103A (en) * 1987-08-13 1989-02-17 Tdk Corp Manufacture of rare earth alloy magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet

Also Published As

Publication number Publication date
JPH03129702A (en) 1991-06-03

Similar Documents

Publication Publication Date Title
US4975130A (en) Permanent magnet materials
US4684406A (en) Permanent magnet materials
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JPH0316761B2 (en)
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
JPH01219143A (en) Sintered permanent magnet material and its production
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2009010305A (en) Method for manufacturing rare-earth magnet
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3307418B2 (en) Molding method and method for manufacturing sintered magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JPH045739B2 (en)
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPS59219453A (en) Permanent magnet material and its production
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPH05315120A (en) Rare earth sintered magnet and its manufacture
JPH03177544A (en) Permanent magnet alloy
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees