JP2586198B2 - Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance - Google Patents

Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance

Info

Publication number
JP2586198B2
JP2586198B2 JP2256704A JP25670490A JP2586198B2 JP 2586198 B2 JP2586198 B2 JP 2586198B2 JP 2256704 A JP2256704 A JP 2256704A JP 25670490 A JP25670490 A JP 25670490A JP 2586198 B2 JP2586198 B2 JP 2586198B2
Authority
JP
Japan
Prior art keywords
permanent magnet
recrystallized
magnet powder
corrosion resistance
magnetic anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2256704A
Other languages
Japanese (ja)
Other versions
JPH04133406A (en
Inventor
亮治 中山
拓夫 武下
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2256704A priority Critical patent/JP2586198B2/en
Priority to US07/763,432 priority patent/US5250206A/en
Priority to EP91116115A priority patent/EP0477810B1/en
Priority to DE69108829T priority patent/DE69108829T2/en
Priority to KR1019910016704A priority patent/KR100204256B1/en
Publication of JPH04133406A publication Critical patent/JPH04133406A/en
Application granted granted Critical
Publication of JP2586198B2 publication Critical patent/JP2586198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、優れた磁気特性、特に優れた磁気的異方
性および耐食性を有するR(但し、RはYを含む希土類
元素のうち少くとも1種を示す)−Fe−B系永久磁石粉
末およびそのR−Fe−B系永久磁石粉末を用いて製造し
たボンド磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to R having excellent magnetic properties, particularly excellent magnetic anisotropy and corrosion resistance (where R is at least one of the rare earth elements including Y). The present invention relates to one type) -Fe-B-based permanent magnet powder and a bonded magnet produced using the R-Fe-B-based permanent magnet powder.

〔従来の技術〕[Conventional technology]

R−Fe−B系合金磁石粉末は、R−Fe−B系合金が優
れた磁気特性を示す永久磁石材料として注目されてか
ら、主にボンド磁石用磁石粉末として開発されている。
The R-Fe-B-based alloy magnet powder has been mainly developed as a magnet powder for bonded magnets since the R-Fe-B-based alloy attracted attention as a permanent magnet material exhibiting excellent magnetic properties.

一般に、ボンド磁石は、含有される磁石粉末と同種の
焼結磁石等に比べて磁気特性では劣るにもかかわらず、
物理的強度に優れ、かつ形状の自由度が高いなどの理由
から、近年その利用範囲を急速に広げつつある。このボ
ンド磁石は、磁石粉末と有機バインダー、金属バインダ
ー等とを結合してなるもので、その磁石粉末の磁気特性
によってボンド磁石の磁気特性が左右される。
In general, bond magnets are inferior in magnetic properties compared to sintered magnets and the like of the same type as the contained magnet powder,
In recent years, its use range has been rapidly expanding because of its excellent physical strength and high degree of freedom in shape. The bonded magnet is formed by combining a magnet powder with an organic binder, a metal binder, and the like, and the magnetic characteristics of the bonded magnet are influenced by the magnetic characteristics of the magnet powder.

上記ボンド磁石の製造に用いられるR−Fe−B系永久
磁石粉末の1つの特開平1−132106号公報記載のR−Fe
−B系永久磁石粉末がある。
One of the R-Fe-B-based permanent magnet powders used in the production of the above-mentioned bonded magnet is disclosed in Japanese Patent Application Laid-Open No. 1-132106.
-B-based permanent magnet powder.

このR−Fe−B系永久磁石粉末は、強磁性相であるR2
Fe14B型金属間化合物相(以下、R2Fe14B型相という)を
主相とするR−Fe−B系母合金を原料とし、この母合金
原料を所定の温度範囲のH2雰囲気中で熱処理してRHXとF
e2Bと残部Feの各相に相変態を促した後、脱H2行程でH2
を原料から取り去ることにより再び強磁性相であるR2Fe
14B型相を生成させたもので、その結果得られたR−Fe
−B系永久磁石粉末の組織は、平均粒径:0.05〜3μm
の極めて微細なR2Fe14B型相の再結晶組織を主相とした
集合組織となっている。
This R-Fe-B permanent magnet powder is composed of a ferromagnetic phase of R 2
Fe 14 B type intermetallic compound phase (hereinafter, referred to as R 2 Fe 14 B type phase) the R-Fe-B base alloy as a main phase as a raw material, H 2 atmosphere of this mother alloy materials a predetermined temperature range Heat treatment in RH X and F
After promoting phase transformation to each phase of e 2 B and the balance of Fe, H 2 is removed in the H 2 removal process.
Is removed from the raw material, and the ferromagnetic phase R 2 Fe
14 B type phase was formed, and the resulting R-Fe
The structure of the B-based permanent magnet powder has an average particle size of 0.05 to 3 μm.
Has a texture mainly composed of a recrystallized microstructure of the R 2 Fe 14 B type phase.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来の再結晶集合組織を有するR−Fe−B系永久
磁石粉末は、 (1) 磁気的異性を有するが、合金組成や製造条件の
微少の変動により磁気的異方性が低下することがあり、
安定して優れた磁気的異方性を得ることが難しい。
The conventional R-Fe-B-based permanent magnet powder having a recrystallized texture described above has the following characteristics. (1) Although it has magnetic isomerism, magnetic anisotropy may be reduced due to slight fluctuations in alloy composition and manufacturing conditions. Yes,
It is difficult to stably obtain excellent magnetic anisotropy.

(2) 磁気的異方性を付与する手段として、一般にR
−Fe−B系永久磁石粉末を熱間圧延、熱間押出し等の熱
間塑性加工を施して、R−Fe−B系永久磁石粉末の結晶
粒を偏平化する手段が知られており、かかる熱間塑性加
工を上記再結晶集合組織を有するR−Fe−B系永久磁石
粉末に付与しても磁気的異方性は向上するが、上記熱間
塑性加工は場所により加工率のバラツキが生じることは
避けられず、安定して均一な磁気的異方性に優れたR−
Fe−B系永久磁石粉末が得られないばかりでなく、製造
行程が複雑となってコストがかかる。
(2) As means for imparting magnetic anisotropy, generally R
Means for flattening the crystal grains of the R-Fe-B-based permanent magnet powder by subjecting the Fe-B-based permanent magnet powder to hot rolling, hot extrusion or other hot plastic working is known. Although the magnetic anisotropy is improved by applying hot plastic working to the R-Fe-B-based permanent magnet powder having the recrystallized texture, the hot plastic working causes variation in the working ratio depending on the location. Is inevitable, and R-
Not only is it impossible to obtain Fe-B-based permanent magnet powder, but also the manufacturing process becomes complicated and costs increase.

(3) 上記熱間塑性加工により上記再結晶粒を偏平化
すると、偏平化したR−Fe−B系永久磁石粉末は、再結
晶のままのR−Fe−B系永久磁石粉末よりも腐食されや
すく、このR−Fe−B系永久磁石粉末を工場などの高温
多湿な環境下に長時間保管すると、上記R−Fe−B系永
久磁石粉末の表面が腐食し、磁気特性が低下する。
(3) When the recrystallized grains are flattened by the hot plastic working, the flattened R-Fe-B permanent magnet powder is corroded more than the recrystallized R-Fe-B permanent magnet powder. If the R-Fe-B-based permanent magnet powder is stored for a long time in a high-temperature and high-humidity environment such as a factory, the surface of the R-Fe-B-based permanent magnet powder is corroded, and magnetic properties are deteriorated.

等の問題点があった。And so on.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、上記熱間塑性加工を行うこと
なく安定して優れた磁気的異方性を有する再結晶集合組
織のR−Fe−B系永久磁石粉末を製造すべく研究を行っ
た結果、 (a) Ti,V,Nb,Ta,AlおよびSiのうち1種または2種
以上の合計量:0.001〜5.0%(%は原子%、以下%は原
子%を示す)を含むR2Fe14B型相を主相とする再結晶集
合組織を有するR−Fe−B系永久磁石粉末は、熱間塑性
加工を施すことなく優れた磁気的異方性を示し、かつ優
れた耐食性も示す。
Therefore, the present inventors have conducted research to produce an R-Fe-B-based permanent magnet powder having a recrystallized texture having stable and excellent magnetic anisotropy without performing the hot plastic working. As a result, (a) a total amount of one or more of Ti, V, Nb, Ta, Al, and Si: 0.001 to 5.0% (% represents atomic%, and the following% represents atomic%). R-Fe-B permanent magnet powder having a recrystallized texture having 2 Fe 14 B type phase as a main phase exhibits excellent magnetic anisotropy without performing hot plastic working, and excellent corrosion resistance Also shown.

(b) 上記再結晶集合組織を構成する個々の再結晶粒
の最短粒径をa、最長粒径をbとすると、 b/a<2 となるような形状の再結晶粒が隣接した再結晶集合組織
を有するR−Fe−B系永久磁石粉末は、耐食性が一層優
れている。
(B) Assuming that the shortest grain size of each recrystallized grain constituting the recrystallized texture is a and the longest grain size is b, recrystallized grains having a shape such that b / a <2 are adjacent to each other. The R-Fe-B-based permanent magnet powder having a texture is more excellent in corrosion resistance.

などの知見を得たのである。The knowledge was obtained.

この発明は、かかる知見にもとづいてなされたもので
あって、 (1) R−Fe−B系永久磁石粉末の個々の粉末が、 R:10〜20%、 B:3〜20%、 を含有し、 Ti,V,Nb,Ta,AlおよびSiのうち1種または2種以上の
合計量:0.001〜5.0%を含有し、残りがFeおよび不可避
不純物からなる組成と、 平均再結晶粒径:0.05〜20μmの寸法および個々の再
結晶粒の最短粒径aと最長粒径bの比b/aの値が2より
小さい形状を有し、正方晶構造をとるR2Fe14B型金属間
化合物相を主相とする再結晶粒が隣接した再結晶集合組
織と、 からなる磁気的異方性および耐食性に優れたR−Fe−B
系永久磁石粉末、 (2) 上記磁気的異方性および耐食性に優れたR−Fe
−B系永久磁石粉末を用いて製造したボンド磁石、 に特徴を有するものである。
The present invention has been made based on such findings, and (1) each of the R-Fe-B-based permanent magnet powders contains: R: 10 to 20%, and B: 3 to 20%. And the total amount of one or more of Ti, V, Nb, Ta, Al and Si: 0.001 to 5.0%, the balance being Fe and unavoidable impurities, and the average recrystallized grain size: R 2 Fe 14 B type metal having a size of 0.05 to 20 μm and a shape in which the value of the ratio b / a of the shortest particle diameter a to the longest particle diameter b of each recrystallized grain is smaller than 2 and having a tetragonal structure R-Fe-B having excellent magnetic anisotropy and corrosion resistance consisting of:
-Based permanent magnet powder, (2) R-Fe having excellent magnetic anisotropy and corrosion resistance
-A bonded magnet manufactured using a B-based permanent magnet powder.

この発明の磁気的異方性および耐食性に優れたR−Fe
−B系永久磁石粉末は、溶解鋳造してTi,V,Nb,Ta,Alお
よびSiのうち1種または2種以上を含有する所定の成分
組成を有するR−Fe−B系母合金を製造し、このR−Fe
−B系母合金を水素ガス雰囲気中で昇温し、温度:500〜
1000℃、水素ガス雰囲気中または水素ガスと不活性ガス
の混合雰囲気中で熱処理し、ついで、温度:500〜1000
℃、水素ガス圧力:1Torr以下の真空雰囲気または水素ガ
ス分圧:1Torr以下の不活性ガス雰囲気になるまで脱水素
処理したのち、冷却することにより製造される。
R-Fe excellent in magnetic anisotropy and corrosion resistance of the present invention
-B-based permanent magnet powder is melt-cast to produce an R-Fe-B-based mother alloy having a predetermined component composition containing one or more of Ti, V, Nb, Ta, Al and Si. And this R-Fe
-The temperature of the B-based master alloy is raised in a hydrogen gas atmosphere,
Heat treatment at 1000 ° C. in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and an inert gas, then temperature: 500 to 1000
C., hydrogen gas pressure: 1 Torr or less, or hydrogen gas partial pressure: 1 Torr or less.

上記R−Fe−B系母合金を温度:600〜1200℃で均質化
処理する工程および上記脱水素処理したのち温度:300〜
1000℃で熱処理する工程を付加することにより一層優れ
た磁気的異方性および耐食性を有するR−Fe−B系永久
磁石粉末を製造することができる。
Step of homogenizing the R-Fe-B-based master alloy at a temperature of 600 to 1200 ° C and performing the dehydrogenation treatment, and then the temperature: 300 to
By adding a heat treatment at 1000 ° C., an R—Fe—B permanent magnet powder having more excellent magnetic anisotropy and corrosion resistance can be produced.

このようにして製造されたこの発明のR−Fe−B系永
久磁石粉末の組織は、粒内おび粒界部に不純物や歪がな
い、R2Fe14B型金属間化合物相の再結晶粒が隣接した再
結晶集合組織から構成されている。この再結晶集合組織
を構成する再結晶粒の平均再結晶粒径は0.05〜20μmの
範囲内にあれば十分であるが、単磁区粒径の寸法(約0.
3μm)に近い0.05〜3μmの範囲内にあることが一層
好ましい。上記寸法を有する個々の再結晶粒は、最短粒
径aと最長粒径bの比がb/a<2の形状を有することが
好ましく、この形状を有する再結晶粒は個々の粉末の組
織の全再結晶粒の50容量%以上存在することが必要であ
る。上記最短粒径aと最長粒径bの比b/aが2より小さ
い再結晶粒の形状を有することによりR−Fe−B系永久
磁石粉末の保磁力が改善されるとともに耐食性も向上
し、従来の熱間塑性加工を行って得られた磁気的異方性
を有するR−Fe−B系永久磁石粉末よりも耐食性に優
れ、磁気的異方性にバラツキがなく、歩留りよく安定し
て優れた磁気特性を得ることができる。
The structure of the R-Fe-B-based permanent magnet powder of the present invention produced in this manner is such that the recrystallized grains of the R 2 Fe 14 B type intermetallic compound phase have no impurities or strains in the grains and grain boundaries. Are composed of adjacent recrystallized textures. The average recrystallized grain size of the recrystallized grains constituting this recrystallized texture is sufficient if it is in the range of 0.05 to 20 μm.
More preferably, it is in the range of 0.05 to 3 μm close to 3 μm). The individual recrystallized grains having the above dimensions preferably have a shape in which the ratio of the shortest particle size a to the longest particle size b is b / a <2. It must be present in at least 50% by volume of all recrystallized grains. The ratio b / a of the shortest particle diameter a to the longest particle diameter b has a shape of recrystallized grains smaller than 2, thereby improving the coercive force of the R-Fe-B-based permanent magnet powder and improving the corrosion resistance, It has better corrosion resistance than R-Fe-B permanent magnet powder with magnetic anisotropy obtained by performing conventional hot plastic working, has no variation in magnetic anisotropy, and has excellent yield and stability. Magnetic properties can be obtained.

さらに、このようにして製造されたこの発明のR−Fe
−B系永久磁石粉末の再結晶組織は、粒界相がほとんど
存在しない実質的にR2Fe14B型金属間化合物相だけから
構成された再結晶集合組織を有しているために、粒界相
のない分だけ磁化の値を高めることができるとともに、
粒界相を介して進行する腐食を抑止し、さらに熱間塑性
加工による応力歪も存在しないことから応力腐食の可能
性も少なく、耐食性が向上するものと考えられる。
Further, the R-Fe of the present invention thus produced
-The recrystallized structure of the B-based permanent magnet powder has a recrystallized texture substantially composed only of the R 2 Fe 14 B type intermetallic compound phase in which almost no grain boundary phase is present. The value of magnetization can be increased by the absence of the field phase,
It is considered that corrosion that progresses through the grain boundary phase is suppressed, and since there is no stress strain due to hot plastic working, the possibility of stress corrosion is small and the corrosion resistance is improved.

したがって、磁気的異方性および耐食性に優れたこの
発明のR−Fe−B系永久磁石粉末を使用して製造したボ
ンド磁石も、優れた磁気的異方性および耐食性を有する
ものである。
Therefore, the bonded magnet manufactured using the R-Fe-B-based permanent magnet powder of the present invention having excellent magnetic anisotropy and corrosion resistance also has excellent magnetic anisotropy and corrosion resistance.

つぎに、この発明の磁気的異方性耐食性に優れたR−
Fe−B系永久磁石粉末の成分組成および平均再結晶粒径
を上記の如く限定した理由について説明する。
Next, R- according to the present invention, which is excellent in magnetic anisotropic corrosion resistance, is used.
The reason why the component composition and the average recrystallized particle size of the Fe-B-based permanent magnet powder are limited as described above will be described.

(a) R Rは、Nd,Pr,Tb,Dy,La,Ce,Ho,Er,Eu,Sm,Gd,Tm,Yb,Lu
およびYのうち1種または2種以上の元素を示し、一般
にNdを主体とし、これにその他の希土類元素を添加して
用いられるが、特にTb,DyおよびPrは保磁力iHcを向上さ
せる効果があり、Rの含有量が10%より低くても、また
20%よりも高くても永久磁石粉末の保磁力が低下し、優
れた磁気特性が得られない。したがって、Rの含有量は
10〜20%に定めた。
(A) R R is Nd, Pr, Tb, Dy, La, Ce, Ho, Er, Eu, Sm, Gd, Tm, Yb, Lu
And one or more elements of Y, and generally contains Nd as a main component, and is used by adding other rare earth elements. Particularly, Tb, Dy, and Pr have an effect of improving the coercive force iHc. Yes, even if the content of R is lower than 10%,
Even if it is higher than 20%, the coercive force of the permanent magnet powder decreases, and excellent magnetic properties cannot be obtained. Therefore, the content of R is
It was set to 10-20%.

(b) B Bの含有量が3%より低くても、また20%より高くて
も永久磁石粉末の保磁力が低下し、優れた磁気特性が得
られないので、B含有量は3〜20%と定めた。また、B
の一部をN,P,F,Cの1種または2種で置換してもよい。
(B) BB If the B content is lower than 3% or higher than 20%, the coercive force of the permanent magnet powder is reduced, and excellent magnetic properties cannot be obtained. %. Also, B
May be substituted with one or two of N, P, F and C.

(c) Ti,V,Nb,Ta,AlおよびSi Ti,V,Nb,Ta,Alおよび
Siは、R−Fe−B系永久磁石粉末の成分として含有し、
保磁力を向上させるとともに優れた磁気的異方性および
耐食性を安定的に付与する作用を有するが、Ti,V,Nb,T
a,AlおよびSiのうち1種または2種以上の合計含有量が
0.001%未満では所望の効果を得られず、一方、5.0%を
越えて含有すると磁気特性が低下する。したがって、T
i,V,Nb,Ta,AlおよびSiのうち1種または2種以上の合計
含有量は0.001〜5.0%に定めた。
(C) Ti, V, Nb, Ta, Al and Si Ti, V, Nb, Ta, Al and
Si is contained as a component of the R-Fe-B-based permanent magnet powder,
It has the effect of improving coercive force and stably giving excellent magnetic anisotropy and corrosion resistance.
The total content of one or more of a, Al and Si
If it is less than 0.001%, the desired effect cannot be obtained, while if it exceeds 5.0%, the magnetic properties deteriorate. Therefore, T
The total content of one or more of i, V, Nb, Ta, Al, and Si is set to 0.001 to 5.0%.

なお、さらにCo,Ni,Cu,Zn,Ga,Ge,Zr,Mo,Hf,Wの少なく
とも1種を0.001〜5.0%含有しても、優れた磁気的異方
性および耐食性を有するR−Fe−B系永久磁石粉末が得
られる。
Even if at least one of Co, Ni, Cu, Zn, Ga, Ge, Zr, Mo, Hf, and W is contained in an amount of 0.001 to 5.0%, R-Fe having excellent magnetic anisotropy and corrosion resistance can be obtained. -B type permanent magnet powder is obtained.

(d) 平均再結晶粒径 R−Fe−B系永久磁石粉末の個々の粉末の組織を構成
する再結晶粒の平均再結晶粒径が0.05μmより小さいと
着磁が困難になるので好ましくなく、一方20μmより大
きいと保磁力や角型性が低下し、高磁気特性が得られな
いので好ましくない。
(D) Average recrystallized grain size If the average recrystallized grain size of the recrystallized grains constituting each powder structure of the R-Fe-B-based permanent magnet powder is smaller than 0.05 μm, magnetization becomes difficult, which is not preferable. On the other hand, if it is larger than 20 μm, the coercive force and the squareness decrease, and high magnetic properties cannot be obtained, which is not preferable.

したがって、平均再結晶粒径は0.05〜20μmに定め
た。この場合、平均再結晶粒径は単磁区粒径に近い0.05
〜3μmが一層好ましい。
Therefore, the average recrystallized grain size is set to 0.05 to 20 μm. In this case, the average recrystallized grain size is 0.05
33 μm is more preferred.

以上、R−Fe−B系永久磁石粉末について述べたが、
上記限定理由は、上記R−Fe−B系永久磁石粉末に限定
されることなく、上記R−Fe−B系永久磁石粉末から製
造されたR−Fe−B系ボンド磁石についてもあてはまる
ことである。
As described above, the R-Fe-B-based permanent magnet powder has been described.
The reason for the limitation is not limited to the R-Fe-B-based permanent magnet powder, but is also applicable to an R-Fe-B-based bonded magnet manufactured from the R-Fe-B-based permanent magnet powder. .

〔実 施 例〕〔Example〕

この発明を実施例および比較例にもとづいて具体的に
説明する。
The present invention will be specifically described based on examples and comparative examples.

実施例1〜46、比較例1〜14、および従来例1〜2 プラズマ溶解し鋳造して得られた第1表に示されるT
i,V,Nb,Ta,AlおよびSiのうち1種または2種以上を含む
各種合金インゴットおよび上記Ti,V,Nb,Ta,Al,Siのいず
れも含まない合金インゴットをそれぞれアゴンガス雰囲
気中、温度:1140℃、20時間保持の条件で均質化処理し
たのち、この均質化処理インゴットを約20mm角まで砕い
て原料合金とした。この原料合金を1気圧の水素雰囲気
中で室温から840℃まで昇温し、840℃で4時間保持の水
素雰囲気中熱処理を施し、ついで、830℃で真空度:1×1
0-1Torr以下になるまで脱水素を行った後、直ちにアル
ゴンガスを流入して急冷した。かかる水素処理を終えた
後、アルゴンガス中、650℃の熱処理を行った。得られ
た原料合金を、乳鉢で軽く粉枠し、平均粒度:40μmを
有する実施例1〜46、比較例1〜14および従来例1の磁
石粉末を得た。また、上記従来例1の水素処理を終えた
原料合金の一部をさらに680℃、1×10-3Torrの真空中
で密度比98%までホットプレスを行い、続けて750℃で
高さ1/4まで塑性加工したのち、このバルクを平均粒径:
40μmとなるように粉砕し、従来例2の磁石粉末を得
た。このようにして得られた上記実施例1〜46、比較例
1〜14および従来例1〜2のR−Fe−B系永久磁石粉末
の平均再結晶粒径および最長粒径/最短粒径が2より小
さい再結晶粒の存在量(容量%)を測定したのち、これ
らR−Fe−B系永久磁石粉末をふるい分けして、50〜42
0μmの間の粒径の粉末に揃え、これら粉末を、それぞ
れ100gづつとり、そのまま温度:80℃、湿度:95%の雰囲
気中に放置して湿潤試験を行い、1000時間経過後の粉末
の酸化による重量変化を測定し、重量変化率(重量%)
になおしてそれらの結果を第1表に示した。
Examples 1-46, Comparative Examples 1-14 and Conventional Examples 1-2 T shown in Table 1 obtained by plasma melting and casting.
Various alloy ingots containing one or more of i, V, Nb, Ta, Al and Si, and alloy ingots not containing any of the above Ti, V, Nb, Ta, Al, Si are each placed in an agon gas atmosphere. After homogenizing at a temperature of 1140 ° C. and holding for 20 hours, this homogenized ingot was crushed to about 20 mm square to obtain a raw material alloy. This raw material alloy is heated from room temperature to 840 ° C. in a hydrogen atmosphere at 1 atm, and is subjected to a heat treatment in a hydrogen atmosphere maintained at 840 ° C. for 4 hours.
After dehydrogenation to 0 -1 Torr or less, the mixture was immediately cooled by flowing argon gas. After the completion of the hydrogen treatment, a heat treatment at 650 ° C. was performed in an argon gas. The obtained raw material alloy was lightly powdered in a mortar to obtain magnet powders of Examples 1 to 46, Comparative Examples 1 to 14 and Conventional Example 1 having an average particle size of 40 μm. Further, a part of the raw material alloy after the hydrogen treatment in Conventional Example 1 was further hot-pressed to a density ratio of 98% in a vacuum of 680 ° C. and 1 × 10 −3 Torr. After plastic working to / 4, this bulk is averaged in particle size:
The powder was pulverized to 40 μm to obtain Conventional Example 2 magnet powder. The average recrystallized particle size and the longest particle size / the shortest particle size of the R-Fe-B-based permanent magnet powders of Examples 1 to 46, Comparative Examples 1 to 14, and Conventional Examples 1 and 2 obtained as described above are as follows. After measuring the abundance (volume%) of recrystallized grains smaller than 2, these R-Fe-B-based permanent magnet powders were sieved to obtain 50-42.
A powder having a particle size between 0 μm was prepared, 100 g of each of these powders was taken, and left as it was in an atmosphere at a temperature of 80 ° C. and a humidity of 95% to perform a wet test. Change in weight due to weight change (weight%)
The results are shown in Table 1.

上記実施例1〜46、比較例1〜14および従来例1〜2
のR−Fe−B系永久磁石粉末を3.0重量%のエポキシ樹
脂と混合し、25KOeの横磁場中または無磁場中、圧力:6T
on/cm2でプレス成形し、ついで温度:120℃、2時間保持
の熱硬化処理を施して実施例1〜46、比較例1〜14およ
び従来例1〜2のボンド磁石を製造し、上記横磁場中 プレス成形して得られたボンド磁石および無磁場中プレ
ス成形して得られたボンド磁石の磁気特性をそれぞれ測
定し、それらの磁気特性を比較して磁気的異方性を評価
した。
Examples 1-46, Comparative Examples 1-14 and Conventional Examples 1-2
R-Fe-B-based permanent magnet powder is mixed with 3.0% by weight of epoxy resin, and in a transverse magnetic field of 25 KOe or in a non-magnetic field, pressure: 6T
Press molding at on / cm 2 , and then subjected to a thermosetting treatment at a temperature of 120 ° C. for 2 hours to produce the bonded magnets of Examples 1 to 46, Comparative Examples 1 to 14 and Conventional Examples 1 to 2, In a transverse magnetic field The magnetic properties of the bond magnet obtained by press molding and the bond magnet obtained by press molding in the absence of a magnetic field were measured, and the magnetic properties were compared to evaluate the magnetic anisotropy.

第1表の結果から、この発明のTi,V,Nb,Ta,AlおよびS
iのうち1種または2種以上を含むR−Fe−B系永久磁
石粉末を実施例1〜46の横磁場中プレス成形して得られ
たボンド磁石は、無磁場中プレス成形して得られたボン
ド磁石に比べて磁気特性、特に最大エネルギー積(BH)
maxおよび残留磁束密度Brが優れており、磁気的異方性
の優れたR−Fe−B系永久磁石粉末が得られていること
がわかる。しかしながら、比較例1〜14に示されるよう
に、Ti,V,Nb,Ta,AlおよびSiのうち1種または2種以上
の含有量がこの発明の条件から外れると磁気的異方性が
低下し、平均再結晶粒系またはRとBがこの発明の条件
から外れると(第1表において、この発明の条件から外
れた値に※印を付して示した)磁気特性が低下し、従来
例1に見られるように、Ti,V,Nb,Ta,Al,Siをいずれをも
含まないものは、同じ製造条件では充分な磁気的異方性
を示さないと共に、耐食性が劣っており、さらに磁気的
異方性を付与するために熱間塑性加工を行って再結晶粒
を偏平状にし、再結晶粒を最長粒径/最短粒径の値が2
未満の再結晶粒が約40容量%しか存在しない従来例2の
R−Fe−B系永久磁石粉末は、実施例1〜46のTi,V,Nb,
Ta,AlおよびSiのうち1種または2種以上含むR−Fe−
B系永久磁石粉末に比べて磁気的異方性は格別劣るもの
ではないが、湿潤試験による重量変化率が大きくなり、
耐食性が低下していることもわかる。
From the results in Table 1, it can be seen that Ti, V, Nb, Ta, Al and S
Bond magnets obtained by press-molding an R-Fe-B-based permanent magnet powder containing one or more of i in a horizontal magnetic field in Examples 1 to 46 are obtained by press-molding in a non-magnetic field. Magnetic properties, especially the maximum energy product (BH) compared to bonded magnets
It can be seen that the R-Fe-B-based permanent magnet powder having excellent max and residual magnetic flux density Br and excellent magnetic anisotropy was obtained. However, as shown in Comparative Examples 1 to 14, when the content of one or more of Ti, V, Nb, Ta, Al and Si deviates from the conditions of the present invention, the magnetic anisotropy decreases. However, when the average recrystallized grain system or R and B deviate from the conditions of the present invention (in Table 1, the values deviating from the conditions of the present invention are marked with *), the magnetic properties are reduced. As can be seen in Example 1, those containing none of Ti, V, Nb, Ta, Al, and Si do not show sufficient magnetic anisotropy under the same manufacturing conditions and have poor corrosion resistance. Further, in order to impart magnetic anisotropy, hot plastic working is performed to make the recrystallized grains flat, and the recrystallized grains have a value of (longest particle diameter / shortest particle diameter) of 2
The R-Fe-B permanent magnet powder of Conventional Example 2 in which less than about 40% by volume of recrystallized grains are present is smaller than Ti, V, Nb,
R-Fe- containing one or more of Ta, Al and Si
The magnetic anisotropy is not particularly inferior to B-based permanent magnet powder, but the weight change rate by the wet test is large,
It can also be seen that the corrosion resistance has decreased.

〔発明の効果〕〔The invention's effect〕

この発明は、Ti,V,Nb,Ta,Al,Siのうち1種または2種
以上を含有せしめることにより、H2処理法だけで顕著な
磁気的異方性および耐食性を示すR−Fe−B系永久磁石
粉末を得ることができ、したがって、従来のような熱間
塑性加工等の磁気的異方化手段を行う必要がなく、製造
コストを大幅に削減することができるという効果があ
る。
The present invention, Ti, V, Nb, Ta , Al, by incorporating one or more of Si, R-Fe- showing significant magnetic anisotropy and corrosion resistance by H 2 treatment A B-based permanent magnet powder can be obtained, so that there is no need to perform magnetic anisotropic means such as hot plastic working as in the related art, and there is an effect that the manufacturing cost can be greatly reduced.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−45103(JP,A) 特開 昭63−232301(JP,A) 特開 平1−103805(JP,A) 特開 昭59−222564(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-45103 (JP, A) JP-A-63-232301 (JP, A) JP-A-1-103805 (JP, A) JP-A-59-103 222564 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Yを含む希土類元素のうち少なくとも一種
(以下Rで示す)とFeとBを主成分とするR−Fe−B系
永久磁石粉末の個々の粉末が、 原子百分率で、 R:10〜20%、 B:3〜20%、 Ti,V,Nb,Ta,AlおよびSiのうち1種または2種以上の合
計:0.001〜5.0%、 を含有し、残りがFeおよび不可避不純物からなる組成
と、 製法晶構造をとるR2Fe14型金属間化合物を主相とした再
結晶粒が隣接した再結晶集合組織とを有し、 上記再結晶集合組織は、個々の再結晶粒の最短粒径aと
最長粒径bの比b/aの値が2末端である形状の再結晶粒
が全再結晶粒の50容量%以上存在し、かつ上記再結晶集
合組織を構成する再結晶粒の平均再結晶粒径が0.05〜20
μmの寸法を有することを特徴とする磁気的異方性およ
び耐食性に優れた希土類−Fe−B系永久磁石粉末。
At least one of the rare earth elements containing Y (hereinafter referred to as R) and each of R-Fe-B permanent magnet powders containing Fe and B as main components are represented by the following formula: 10 to 20%, B: 3 to 20%, total of one or more of Ti, V, Nb, Ta, Al and Si: 0.001 to 5.0%, with the balance being Fe and unavoidable impurities And a recrystallized texture in which a recrystallized grain whose main phase is an R 2 Fe 14 type intermetallic compound having a production crystal structure has an adjacent recrystallized texture. The recrystallized grains having a ratio of b / a of the shortest particle diameter a to the longest particle diameter b at two terminals are present at 50% by volume or more of all recrystallized grains, and the recrystallized grains constituting the recrystallized texture The average recrystallized grain size of the grains is 0.05-20
A rare earth-Fe-B-based permanent magnet powder excellent in magnetic anisotropy and corrosion resistance, having a size of μm.
【請求項2】上記平均再結晶粒径は、0.05〜3μmであ
ることを特徴とする請求項1記載の磁気的異方性および
耐食性に優れた希土類−Fe−B系永久磁石粉末。
2. The rare-earth-Fe-B permanent magnet powder according to claim 1, wherein said average recrystallized grain size is 0.05 to 3 μm.
【請求項3】上記請求項1または2記載の磁気的異方性
および耐食性に優れた希土類−Fe−B系永久磁石粉末で
製造されたことを特徴とする希土類−Fe−B系ボンド磁
石。
3. A bonded rare earth-Fe-B magnet made from the rare earth-Fe-B permanent magnet powder according to claim 1 or 2 having excellent magnetic anisotropy and corrosion resistance.
JP2256704A 1990-09-26 1990-09-26 Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance Expired - Fee Related JP2586198B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2256704A JP2586198B2 (en) 1990-09-26 1990-09-26 Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
US07/763,432 US5250206A (en) 1990-09-26 1991-09-19 Rare earth element-Fe-B or rare earth element-Fe-Co-B permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet manufactured therefrom
EP91116115A EP0477810B1 (en) 1990-09-26 1991-09-23 R-Fe-B type permanent magnet powder and bonded magnet therefrom
DE69108829T DE69108829T2 (en) 1990-09-26 1991-09-23 Permanent magnetizable powder of the R-Fe-B type and bonded magnet made of it.
KR1019910016704A KR100204256B1 (en) 1990-09-26 1991-09-25 Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256704A JP2586198B2 (en) 1990-09-26 1990-09-26 Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance

Publications (2)

Publication Number Publication Date
JPH04133406A JPH04133406A (en) 1992-05-07
JP2586198B2 true JP2586198B2 (en) 1997-02-26

Family

ID=17296317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256704A Expired - Fee Related JP2586198B2 (en) 1990-09-26 1990-09-26 Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance

Country Status (2)

Country Link
JP (1) JP2586198B2 (en)
KR (1) KR100204256B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536514A (en) * 1995-05-11 1996-07-16 The Nutrasweet Company Carbohydrate/protein cream substitutes
US5849109A (en) * 1997-03-10 1998-12-15 Mitsubishi Materials Corporation Methods of producing rare earth alloy magnet powder with superior magnetic anisotropy
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder
JP4687493B2 (en) * 2006-02-16 2011-05-25 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP4645336B2 (en) * 2005-07-15 2011-03-09 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
DE112006000070T5 (en) 2005-07-15 2008-08-14 Hitachi Metals, Ltd. Rare earth sintered magnet and process for its production
JP5235264B2 (en) * 2005-08-11 2013-07-10 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP4635832B2 (en) * 2005-11-08 2011-02-23 日立金属株式会社 Manufacturing method of rare earth sintered magnet
JP4972919B2 (en) * 2005-12-02 2012-07-11 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
EP1970916B1 (en) * 2006-05-18 2015-04-01 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
CN101379574B (en) * 2006-11-30 2012-05-23 日立金属株式会社 R-Fe-B microcrystalline high-density magnet and process for production thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778269B2 (en) * 1983-05-31 1995-08-23 住友特殊金属株式会社 Rare earth / iron / boron tetragonal compound for permanent magnet
JP2530641B2 (en) * 1986-03-20 1996-09-04 日立金属株式会社 Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JPH01103805A (en) * 1987-07-30 1989-04-20 Tdk Corp Permanent magnet
JPS6445103A (en) * 1987-08-13 1989-02-17 Tdk Corp Manufacture of rare earth alloy magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet

Also Published As

Publication number Publication date
KR920007007A (en) 1992-04-28
KR100204256B1 (en) 1999-06-15
JPH04133406A (en) 1992-05-07

Similar Documents

Publication Publication Date Title
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2000096102A (en) Heat resistant rare earth alloy anisotropy magnet powder
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
EP0477810B1 (en) R-Fe-B type permanent magnet powder and bonded magnet therefrom
JPH0316761B2 (en)
JPH01219143A (en) Sintered permanent magnet material and its production
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JPH0146575B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH045739B2 (en)
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JPS59219453A (en) Permanent magnet material and its production
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JPS6077961A (en) Permanent magnet material and its manufacture
JP3736830B2 (en) Rare earth-Fe-Co-B magnet powder and bonded magnet excellent in squareness and thermal stability
JPH1022110A (en) Rare-earth permanent magnet and method for manufacturing the same, and rare-earth permanent bond magnet
JPS59215466A (en) Permanent magnet material and its production
JPH08181010A (en) Rare earth sintered magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees