JP3196224B2 - Rare earth-Fe-Co-B anisotropic magnet - Google Patents

Rare earth-Fe-Co-B anisotropic magnet

Info

Publication number
JP3196224B2
JP3196224B2 JP06086091A JP6086091A JP3196224B2 JP 3196224 B2 JP3196224 B2 JP 3196224B2 JP 06086091 A JP06086091 A JP 06086091A JP 6086091 A JP6086091 A JP 6086091A JP 3196224 B2 JP3196224 B2 JP 3196224B2
Authority
JP
Japan
Prior art keywords
recrystallized
anisotropic magnet
recrystallized grains
phase
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06086091A
Other languages
Japanese (ja)
Other versions
JPH04247604A (en
Inventor
拓夫 武下
亮治 中山
義成 石井
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06086091A priority Critical patent/JP3196224B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to PCT/JP1992/000073 priority patent/WO1992013353A1/en
Priority to EP92903728A priority patent/EP0522177B2/en
Priority to CA 2079223 priority patent/CA2079223A1/en
Priority to DE69203405T priority patent/DE69203405T3/en
Priority to TW81100770A priority patent/TW209301B/zh
Priority to CN 92101185 priority patent/CN1065152A/en
Publication of JPH04247604A publication Critical patent/JPH04247604A/en
Priority to US08/021,187 priority patent/US5395462A/en
Application granted granted Critical
Publication of JP3196224B2 publication Critical patent/JP3196224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、磁気特性に優れかつ
保磁力温度係数の小さい、Yを含む希土類元素のうち少
くとも1種(以下、Rで示す)、Fe,Co,およびB
を主成分とするR−Fe−Co−B系異方性磁石に関す
るものである。さらに詳細には、ホットプレスまたは熱
間静水圧プレス(以下HIPで示す)成形体からなるR
−Fe−Co−B系異方性磁石に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to at least one of the rare earth elements containing Y (hereinafter, referred to as R) having excellent magnetic properties and a small temperature coefficient of coercive force, Fe, Co, and B.
The present invention relates to an R-Fe-Co-B-based anisotropic magnet mainly composed of: More specifically, R formed of a hot press or hot isostatic press (hereinafter referred to as HIP) formed body
-Fe-Co-B based anisotropic magnet.

【0002】[0002]

【従来の技術】特開平1−132106号公報には、R
−Fe−Co−B系永久磁石粉末が記載されており、こ
のR−Fe−Co−B系永久磁石粉末は、強磁性相であ
るR2(Fe,Co)14B型金属間化合物相を主相とす
るR−Fe−Co−B系母合金を原料とし、この母合金
原料を所定の温度範囲のH2 雰囲気中で熱処理してRH
x と(Fe,Co)2 Bと残部Feの各相に相変態を促
した後、脱H2 工程でH2 を原料から取り去る処理(以
下、この処理をHDDR処理という)を施すことにより
再び強磁性相であるR2 (Fe,Co)14B型相を生成
させたもので、その結果得られたR−Fe−Co−B系
永久磁石粉末の組織は、平均粒径:0.05〜3μmの
極めて微細なR2 (Fe,Co)14B型相の再結晶組織
を主相とした再結晶集合組織となっている。
2. Description of the Related Art Japanese Patent Laid-Open Publication No.
-Fe-Co-B-based permanent magnet powder is described, and this R-Fe-Co-B-based permanent magnet powder has a ferromagnetic phase of R 2 (Fe, Co) 14 B type intermetallic compound phase. the R-Fe-Co-B-based master alloy, a main phase as a raw material, RH by heat-treating the mother alloy material in an H 2 atmosphere in a predetermined temperature range
x and (Fe, Co) after prompting the phase transformation to each phase of the 2 B and the balance Fe, the process of removing of H 2 with deionized H 2 steps from the raw material (hereinafter
This process is hereinafter referred to as an HDDR process) to produce an R 2 (Fe, Co) 14 B-type phase which is a ferromagnetic phase again, and the resulting R-Fe-Co-B system is obtained. organization of the permanent magnet powder has an average particle size: very fine R 2 of 0.05 to 3 [mu] m (Fe, Co) a recrystallized structure of 14 B type phase has a recrystallized texture whose main phase.

【0003】上記R−Fe−Co−B系永久磁石粉末
は、ホットプレスしてホットプレス成形体としただけで
は十分な磁気的異方性が得られないために、特開平2−
39503号公報に記載されているように、上記ホット
プレス成形体をさらに熱間圧延などの熱間圧延加工を施
して、R2 (Fe,Co)14B相の再結晶粒のC軸を配
向せしめた圧延組織とすることにより磁気的異方性を向
上させていた。
The R-Fe-Co-B-based permanent magnet powder cannot be sufficiently hot-pressed into a hot-pressed compact to obtain sufficient magnetic anisotropy.
As described in JP-A-39503, the hot-pressed product is further subjected to hot rolling such as hot rolling to orient the C-axis of the recrystallized grains of the R 2 (Fe, Co) 14 B phase. The magnetic anisotropy was improved by using a reduced rolling structure.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記ホ
ットプレス成形体をさらに熱間圧延して得られたR−F
e−Co−B系圧延磁石は優れた磁気的異方性を有する
ものの、保磁力の温度係数が増大し、このR−Fe−C
o−B系圧延磁石をモータ等に組み込んだ場合に、温度
の変化によってモータ等の性能が変化し、安定性に欠け
るなどの課題があった。
However, the R-F obtained by hot-rolling the above hot-pressed body is further used.
Although the e-Co-B rolled magnet has excellent magnetic anisotropy, the temperature coefficient of the coercive force increases, and this R-Fe-C
When the oB rolled magnet is incorporated in a motor or the like, there is a problem that the performance of the motor or the like changes due to a change in temperature, and the stability is lacking.

【0005】また、R−Fe−Co−B系圧延磁石は、
場所による加工率のばらつきが磁気異方性のばらつきを
もたらし、それを防止するために、熱間塑性加工の工程
が複雑にならざるを得なかった。
[0005] Further, R-Fe-Co-B-based rolled magnets are:
Variations in the working ratio depending on the location lead to variations in the magnetic anisotropy, and in order to prevent this, the process of hot plastic working had to be complicated.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者等は、
上記保磁力の温度係数の増大はホットプレス成形体を熱
間圧延することにより発生するものであるから、上記熱
間圧延することなく磁気的異方性の優れた磁石が得られ
るならば、上記保磁力の温度係数の増大は発生しないと
の認識のもとに研究を行った結果、 R:10〜20%、 Co:0.1〜50%、 B:3〜20%、 Ti,V,Taのうち1種または2種以上の合計:0.
001〜5.0%、を含有し、残りがFeおよび不可避
不純物からなる組成と、個々の再結晶粒の最短粒径aと
最長粒径bの比b/aの値が2未満である形状および平
均再結晶粒径が0.05〜20μmの寸法を有し、かつ
HDDR処理して得られた正方晶構造をとるR2 (F
e,Co)14B型金属間化合物相を主相とする再結晶粒
が相互に隣接して集合した再結晶粒集合組織と、からな
るホットプレス成形体またはHIP成形体で構成された
R−Fe−Co−B系磁石は、優れた磁気的異方性を維
持しつつ保磁力の温度係数を小さくするという知見を得
たのである。
Means for Solving the Problems Accordingly, the present inventors have
Since the increase in the temperature coefficient of the coercive force is caused by hot-rolling a hot-pressed product, if a magnet having excellent magnetic anisotropy can be obtained without performing the hot-rolling, As a result of conducting research based on the recognition that the temperature coefficient of coercive force does not increase, R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, Ti, V, Total of one or more of Ta: 0.
001-5.0%, the balance being Fe and inevitable impurities, and the ratio b / a of the shortest particle size a to the longest particle size b of each recrystallized grain is less than 2. And have an average recrystallized particle size of 0.05 to 20 μm, and
R 2 (F) having a tetragonal structure obtained by HDDR treatment
e, Co) 14 B-type intermetallic compound phase as a main phase. It has been found that Fe-Co-B-based magnets reduce the temperature coefficient of coercive force while maintaining excellent magnetic anisotropy.

【0007】この発明はかかる知見にもとづいてなされ
たものであって、 (1)Yを含む希土類元素のうち少なくとも1種(以
下、Rで示す)とFeとCoとBを主成分とするR−F
e−Co−B系異方性磁石であって、この異方性磁石
は、原子百分率で、 R:10〜20%、 Co:0.1〜50%、 B:3〜20%、 Ti,V,Taのうち1種または2種以上の合計:0.
001〜5.0%、を含有し、残りがFeおよび不可避
不純物からなる組成と、HDDR処理して得られた正方
晶構造をとるR2 (Fe,Co)14B型金属間化合物相
を主相とする再結晶粒が相互に隣接して集合した再結晶
粒集合組織とを有し、上記再結晶粒集合組織は、個々の
再結晶粒の最短粒径aと最長粒径bの比b/aの値が2
未満である形状の再結晶粒が全再結晶粒の50容量%以
上存在し、かつ上記再結晶粒集合組織を構成する再結晶
粒の平均再結晶粒径が0.05〜20μmの寸法を有す
るホットプレス成形体であるR−Fe−Co−B系異方
性磁石、 (2)RとFeとCoとBを主成分とするR−Fe−C
o−B系異方性磁石であって、この異方性磁石は、原子
百分率で、 R:10〜20%、 Co:0.1〜50%、 B:3〜20%、 Ti,V,Taのうち1種または2種以上の合計:0.
001〜5.0%、を含有し、残りがFeおよび不可避
不純物からなる組成と、HDDR処理して得られた正方
晶構造をとるR2 (Fe,Co)14B型金属間化合物相
を主相とする再結晶粒が相互に隣接して集合した再結晶
粒集合組織とを有し、上記再結晶粒集合組織は、個々の
再結晶粒の最短粒径aと最長粒径bの比b/aの値が2
未満である形状の再結晶粒が全再結晶粒の50容量%以
上存在し、かつ上記再結晶粒集合組織を構成する再結晶
粒の平均再結晶粒径が0.05〜20μmの寸法を有す
る熱間静水圧プレス成形体であるR−Fe−Co−B系
異方性磁石、に特徴を有するものである。
The present invention has been made based on this finding. (1) At least one of the rare earth elements containing Y (hereinafter, referred to as R) and R, which contains Fe, Co, and B as main components, -F
This is an e-Co-B based anisotropic magnet, wherein the anisotropic magnet is, in atomic percentage, R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, Ti, Total of one or more of V and Ta: 0.
001-5.0%, with the balance being Fe and unavoidable impurities, and an R 2 (Fe, Co) 14 B type intermetallic compound phase having a tetragonal structure obtained by HDDR treatment. A recrystallized grain texture in which recrystallized grains as phases are assembled adjacent to each other, and the recrystallized grain texture has a ratio b between the shortest grain size a and the longest grain size b of each recrystallized grain. / A value is 2
The recrystallized grains having a shape less than 50% by volume of all recrystallized grains are present, and the average recrystallized grain size of the recrystallized grains constituting the recrystallized grain texture has a size of 0.05 to 20 μm. R-Fe-Co-B-based anisotropic magnet which is a hot-press molded body, (2) R-Fe-C containing R, Fe, Co and B as main components
This is an OB-based anisotropic magnet, wherein the anisotropic magnet has an atomic percentage of R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, Ti, V, Total of one or more of Ta: 0.
001-5.0%, with the balance being Fe and unavoidable impurities, and an R 2 (Fe, Co) 14 B type intermetallic compound phase having a tetragonal structure obtained by HDDR treatment. A recrystallized grain texture in which recrystallized grains as phases are assembled adjacent to each other, and the recrystallized grain texture has a ratio b between the shortest grain size a and the longest grain size b of each recrystallized grain. / A value is 2
The recrystallized grains having a shape less than 50% by volume of all recrystallized grains are present, and the average recrystallized grain size of the recrystallized grains constituting the recrystallized grain texture has a size of 0.05 to 20 μm. An R-Fe-Co-B-based anisotropic magnet, which is a hot isostatic press formed body, is characterized.

【0008】この発明の保磁力の温度係数が小さいR−
Fe−Co−B系異方性磁石は、従来の圧延磁石に比べ
て、場所による磁気異方性のばらつきもほとんどなく耐
食性も優れている。
According to the present invention, the temperature coefficient of the coercive force of R-
The Fe-Co-B-based anisotropic magnet has little variation in magnetic anisotropy depending on the location and has excellent corrosion resistance as compared with the conventional rolled magnet.

【0009】また、この発明のR−Fe−Co−B系異
方性磁石は、再結晶粒集合組織を有するために、R
2 (Fe,Co)14B型化合物組成付近、すなわちR
11.8(Fe,Co) bal 5.9 組成付近でもすぐれた磁
気異方性と高保磁力を有する。
The R-Fe- Co- B anisotropic magnet of the present invention has a recrystallized grain texture,
2 (Fe, Co) 14 B-type compound composition vicinity, that is, R
11.8 (Fe , Co) bal B Even at around 5.9 composition, it has excellent magnetic anisotropy and high coercive force.

【0010】つぎに、この発明のR−Fe−Co−B系
異方性磁石の製造法を説明する。
Next, a method for producing the R-Fe-Co-B-based anisotropic magnet of the present invention will be described.

【0011】この発明のR−Fe−Co−B系異方性磁
石を製造するためのR−Fe−Co−B系永久磁石粉末
は、溶解鋳造してTi,V,Taのうち1種または2種
以上を所定の成分組成となるように含有したR−Fe−
Co−B系母合金を製造し、このR−Fe−Co−B系
母合金を水素ガス雰囲気中で昇温し、温度:500〜1
000℃、水素ガス雰囲気中または水素ガスと不活性ガ
スの混合ガス雰囲気中で熱処理し、ついで、温度:50
0〜1000℃、水素ガス圧力:1Torr以下の真空雰囲
気または水素ガス分圧:1Torr以下の不活性ガス雰囲気
になるまで脱水素処理したのち、冷却することにより製
造される。前記温度:500〜1000℃、水素ガス雰
囲気中または水素ガスと不活性ガスの混合雰囲気中で熱
処理することによりRH x と(Fe,Co) 2 Bと残部
Feの各相に相変態を促し、その後、温度:500〜1
000℃、水素ガス圧力:1Torr以下の真空雰囲気また
は水素ガス分圧:1Torr以下の不活性ガス雰囲気になる
まで脱水素処理することにより再び強磁性相であるR 2
(Fe,Co) 14 B型相を生成させると、R 2 (Fe,
Co) 14 B型相を主相とし平均粒径:0.05〜20μ
mの寸法を有する再結晶粒が相互に隣接して集合した再
結晶粒集合組織となるのである。
The R-Fe-Co-B-based permanent magnet powder for producing the R-Fe-Co-B-based anisotropic magnet of the present invention is prepared by melting and casting, and one or more of Ti, V and Ta or R-Fe- containing two or more kinds so as to have a predetermined component composition
A Co-B-based master alloy was manufactured, and the temperature of the R-Fe-Co-B-based master alloy was increased in a hydrogen gas atmosphere.
Heat treatment at 000 ° C. in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas.
It is manufactured by performing dehydrogenation treatment until it becomes a vacuum atmosphere of 0 to 1000 ° C. and a hydrogen gas pressure of 1 Torr or less or an inert gas atmosphere of a hydrogen gas partial pressure of 1 Torr or less and then cooling. The temperature: 500 to 1000 ° C., hydrogen gas atmosphere
Heat in ambient air or mixed atmosphere of hydrogen gas and inert gas
RH by treating x and (Fe, Co) 2 B and the balance
The phase transformation of each phase of Fe is promoted.
000 ° C, hydrogen gas pressure: 1 Torr or less
Is an inert gas atmosphere of hydrogen gas partial pressure: 1 Torr or less
Dehydrogenation treatment until the ferromagnetic phase R 2
When the (Fe, Co) 14 B type phase is generated, R 2 (Fe,
Co) 14 B type phase as main phase, average particle size: 0.05-20μ
recrystallized grains having a size of m
It becomes a crystal grain texture.

【0012】上記Ti,V,Taのうち1種または2種
以上を所定量含有したR−Fe−Co−B系母合金を温
度:600〜1200℃で均質化処理する工程および上
記脱水素処理したのち温度:300〜1000℃で熱処
理する工程を付加することにより一層優れた磁気的異方
性および耐食性を有するR−Fe−Co−B系永久磁石
粉末を製造することができる。
A step of homogenizing an R-Fe-Co-B-based master alloy containing a predetermined amount of one or more of Ti, V, and Ta at a temperature of 600 to 1200 ° C .; Then, by adding a step of heat treatment at a temperature of 300 to 1000 ° C., an R—Fe—Co—B-based permanent magnet powder having more excellent magnetic anisotropy and corrosion resistance can be produced.

【0013】このようにして製造されたR−Fe−Co
−B系永久磁石粉末の組織は、粒内および粒界部に不純
物や歪がないR2 (Fe,Co)14B型金属間化合物相
の再結晶粒が相互に隣接して集合した再結晶集合組織か
ら構成されている。
The R-Fe-Co thus produced is
-B system tissues of the permanent magnet powder is intragranular and grain boundaries R 2 is not an impurity or strain (Fe, Co) 14 recrystallization recrystallized grains of B-type intermetallic compound phase are assembled adjacent to each other It is composed of a texture.

【0014】この再結晶集合組織を構成する再結晶粒の
平均再結晶粒径は0.05〜20μmの範囲内にあれば
十分であるが、単磁区粒径の寸法(約0.3μm)に近
い0.05〜3μmの範囲内にあることが一層好まし
い。
It is sufficient if the average recrystallized grain size of the recrystallized grains constituting the recrystallized texture is in the range of 0.05 to 20 μm. More preferably, it is within the range of 0.05 to 3 μm.

【0015】上記寸法を有する個々の再結晶粒は、最短
粒径aと最長粒径bの比がb/a<2の形状を有するこ
とが好ましく、この形状を有する再結晶粒は、全再結晶
粒の50容量%以上存在することが必要である。上記最
短粒径aと最長粒径bの比b/aが2より小さい再結晶
粒の形状を有することにより、R−Fe−Co−B系永
久磁石粉末の保磁力が改善されるとともに25〜100
℃における保磁力の温度係数αiHcが−0.6%/℃
より小さくなる。
Each of the recrystallized grains having the above-mentioned dimensions preferably has a shape in which the ratio of the shortest particle size a to the longest particle size b is b / a <2. It is necessary that 50% by volume or more of the crystal grains exist. By having a recrystallized grain shape in which the ratio b / a of the shortest particle diameter a to the longest particle diameter b is smaller than 2, the coercive force of the R-Fe-Co-B-based permanent magnet powder is improved and 25 to 100
The temperature coefficient αiHc of coercive force in ° C. is -0.6% / ° C.
Smaller.

【0016】さらに、このようにして製造されたR−F
e−Co−B系永久磁石粉末の再結晶集合組織は、再結
晶粒が相互に隣接して集合し、粒界相がほとんど存在し
ない実質的にR2 (Fe,Co)14B型金属間化合物相
だけから構成されているために、粒界相のない分だけ磁
化の値を高めることができるとともに、粒界相を介して
進行する腐食を抑止し、さらに熱間塑性加工による応力
歪も存在しないことから応力腐食の可能性も少なく、耐
食性が向上する。
Further, the R-F thus produced is
The recrystallized texture of the e-Co-B-based permanent magnet powder is such that recrystallized grains are aggregated adjacent to each other and substantially no R 2 (Fe, Co) 14 B type metal having almost no grain boundary phase. Because it is composed only of the compound phase, the value of magnetization can be increased by the amount without the grain boundary phase, the corrosion that progresses through the grain boundary phase is suppressed, and the stress strain due to hot plastic working is also reduced. Since it does not exist, the possibility of stress corrosion is small and the corrosion resistance is improved.

【0017】このようにして製造されたR−Fe−Co
−B系永久磁石粉末を磁場中成形して圧粉体としたの
ち、この圧粉体を温度:600〜900℃でホットプレ
スまたはHIPすることにより上記R−Fe−Co−B
系永久磁石粉末の組織および特性を保持した保磁力温度
係数αiHcの小さなこの発明のR−Fe−Co−B系
異方性磁石を得ることができる。
The R-Fe-Co thus produced is
-B-based permanent magnet powder is molded in a magnetic field to form a green compact, and the green compact is hot-pressed or HIPed at a temperature of 600 to 900 ° C. to form the R-Fe-Co-B.
The R-Fe-Co-B anisotropic magnet of the present invention having a small coercive force temperature coefficient αiHc while maintaining the structure and characteristics of the system-based permanent magnet powder can be obtained.

【0018】また、必要に応じて300〜1000℃で
熱処理することにより、保磁力を向上させることができ
る。
The coercive force can be improved by performing a heat treatment at 300 to 1000 ° C. if necessary.

【0019】上記圧粉体を通常の温度で焼結すると上記
焼結温度は一般に高温であるためにR−Fe−Co−B
系永久磁石粉末の微細な再結晶粒は成長し、大きな結晶
粒となって磁気特性、特に保磁力が低下するので好まし
くない。
When the green compact is sintered at a normal temperature, the sintering temperature is generally high, so that R-Fe-Co-B
Fine recrystallized grains of the system-based permanent magnet powder grow and become large crystal grains, which deteriorate magnetic properties, particularly coercive force, which is not preferable.

【0020】したがって、この発明のR−Fe−Co−
B系異方性磁石を製造する方法として、通常の焼結温度
よりも低い温度で焼結することのできるホットプレス法
またはHIP法を採用し、再結晶粒の成長を抑える必要
がある。また、磁気異方性の付与は、磁場中成形で行な
うため、ホットプレス、HIPの後に熱間塑性加工を行
う必要はない。
Accordingly, the R-Fe-Co-
As a method for producing a B-based anisotropic magnet, it is necessary to adopt a hot press method or a HIP method capable of sintering at a temperature lower than a normal sintering temperature to suppress the growth of recrystallized grains. Also, since the application of magnetic anisotropy is performed by molding in a magnetic field, it is not necessary to perform hot plastic working after hot pressing and HIP.

【0021】つぎに、この発明の保磁力温度係数の小さ
なR−Fe−Co−B系異方性磁石の成分組成、平均再
結晶粒径および再結晶粒を上記の如く限定した理由につ
いて説明する。
Next, the reason why the component composition, the average recrystallized grain size and the recrystallized grains of the R-Fe-Co-B anisotropic magnet having a small coercive temperature coefficient of the present invention are limited as described above will be described. .

【0022】(a)R Rは、Nd,Pr,Tb,Dy,La,Ce,Ho,E
r,Eu,Sm,Gd,Tm,Yb,LuおよびYのう
ち1種または2種以上であり、一般にNdを主体とし、
これにその他の希土類元素を添加して用いられるが、特
にTb,DyおよびPrは保磁力iHcを向上させる効
果があり、Rの含有量が10%より低くても、また20
%より高くても異方性磁石の保磁力が低下し、優れた磁
気特性が得られない。したがって、Rの含有量は10〜
20%に定めた。
(A) R R is Nd, Pr, Tb, Dy, La, Ce, Ho, E
one or more of r, Eu, Sm, Gd, Tm, Yb, Lu, and Y, generally mainly Nd;
Tb, Dy, and Pr are particularly effective in improving the coercive force iHc, and may be used by adding other rare earth elements thereto, even if the R content is lower than 10% or 20%.
%, The coercive force of the anisotropic magnet decreases, and excellent magnetic properties cannot be obtained. Therefore, the content of R is 10 to
It was set to 20%.

【0023】(b)B Bの含有量が3%より低くても、また20%より高くて
も異方性磁石の保磁力が低下し、優れた磁気特性が得ら
れないので、B含有量は3〜20%と定めた。また、B
の一部をC,N,O,Fで置換してもよい。
(B) BB If the B content is lower than 3% or higher than 20%, the coercive force of the anisotropic magnet is reduced and excellent magnetic properties cannot be obtained. Was determined to be 3 to 20%. Also, B
May be replaced with C, N, O, F.

【0024】(c)Co Coを添加することにより異方性磁石の保磁力および磁
気的温度特性(例えば、キュリー点)が向上し、さらに
耐食性を向上させる効果があるが、その含有量が0.1
%未満では所望の効果が得られず、一方、50%を越え
て含有してもかって磁気特性が低下するので好ましくな
い。したがって、Coの含有量は0.1〜50%に定め
た。Coの含有量は、0.1〜20%の間では、最も保
磁力が高くなるのでCo:0.1〜20%とするのが一
層好ましい。
(C) Co The addition of Co improves the coercive force and magnetic temperature characteristics (eg, Curie point) of the anisotropic magnet, and further has the effect of improving corrosion resistance. .1
If the content is less than 50%, the desired effect cannot be obtained. On the other hand, if the content exceeds 50%, the magnetic properties are undesirably deteriorated. Therefore, the content of Co is set to 0.1 to 50%. When the content of Co is between 0.1 and 20%, the coercive force becomes highest, so that it is more preferable that the content of Co be 0.1 to 20%.

【0025】(d)Ti,V,Ta これらの成分は、R−Fe−Co−B系異方性磁石の成
分として含有し、保磁力を向上させるとともに優れた磁
気的異方性および耐食性を安定的に付与する作用を有す
るが、その含有量が0.001%未満では所望の効果が
得られず、一方、5.0%を越えて含有すると磁気特性
が低下する。したがって、Ti,V,Taのうち1種ま
たは2種以上の合計は0.001〜5.0%に定めた。
(D) Ti, V, Ta These components are contained as components of the R-Fe-Co-B-based anisotropic magnet to improve coercive force and to provide excellent magnetic anisotropy and corrosion resistance. It has a stabilizing effect, but if the content is less than 0.001%, the desired effect cannot be obtained, while if it exceeds 5.0%, the magnetic properties deteriorate. Therefore, the total of one or more of Ti, V, and Ta is set to 0.001 to 5.0%.

【0026】なお、さらに、Ni,Cu,Zn,Ga,
Ge,Zr,Mo,Hf,Wのうち少なくとも1種を
0.001〜5.0%含有しても優れた磁気的異方性お
よび耐食性を有するR−Fe−Co−B系異方性磁石が
得られる。
Further, Ni, Cu, Zn, Ga,
R-Fe-Co-B-based anisotropic magnet having excellent magnetic anisotropy and corrosion resistance even when at least one of Ge, Zr, Mo, Hf, and W is contained at 0.001 to 5.0%. Is obtained.

【0027】(e)平均再結晶粒径 R−Fe−Co−B系異方性磁石の組織を構成するR2
(Fe,Co)14B型相再結晶粒の平均再結晶粒径が
0.05μmより小さいと着磁が困難になるので好まし
くなく、一方、20μmより大きいと保磁力や角型性が
低下し、高磁気特性が得られないので好ましくない。
(E) Average recrystallized grain size R 2 constituting the structure of the R—Fe—Co—B based anisotropic magnet
If the average recrystallized grain size of the (Fe, Co) 14 B-type phase recrystallized grains is smaller than 0.05 μm, magnetization becomes difficult, which is not preferable. On the other hand, if it is larger than 20 μm, coercive force and squareness are reduced. And high magnetic properties cannot be obtained.

【0028】したがって、平均再結晶粒径は0.05〜
20μmに定めた。この場合、平均再結晶粒径は単磁区
粒径の寸法(0.3μm)に近い0.05〜3μmとす
る方が一層好ましい。
Therefore, the average recrystallized grain size is 0.05 to
It was set to 20 μm. In this case, the average recrystallized grain size is more preferably 0.05 to 3 μm which is close to the size of the single magnetic domain grain size (0.3 μm).

【0029】(f)再結晶粒の形状 上記寸法を有する再結晶粒の形状は、最短粒径aと最長
粒径bの比b/aが2より小さな形状を有することが好
ましく、この形状を有する再結晶粒は全再結晶粒の50
容量%以上存在することが必要である。上記b/a<2
を満足することによりR−Fe−Co−B系異方性磁石
の保磁力が改善されるとともに耐食性も向上し、さらに
保磁力の温度係数も小さくなるからである。
(F) Shape of Recrystallized Grains The shape of the recrystallized grains having the above dimensions is preferably such that the ratio b / a of the shortest particle diameter a to the longest particle diameter b is smaller than 2. Recrystallized grains have 50% of all recrystallized grains.
It must be present in a volume% or more. The above b / a <2
Is satisfied, the coercive force of the R-Fe-Co-B-based anisotropic magnet is improved, the corrosion resistance is improved, and the temperature coefficient of the coercive force is reduced.

【0030】[0030]

【実施例】この発明を実施例および比較例にもとづいて
具体的に説明する。
EXAMPLES The present invention will be specifically described based on Examples and Comparative Examples.

【0031】プラズマ溶解し鋳造して得られたCo、並
びにTi,V,Taのうち1種または2種以上含まれる
R−Fe−Co−B系各種合金インゴット、さらに、T
i,V,Taのいずれをも全く含まないR−Fe−Co
−B系合金インゴットを用意し、これら合金インゴット
をそれぞれアルゴンガス雰囲気中、温度:1130℃、
20時間保持の条件で均質化処理したのち、この均質化
処理インゴットを約15mm角まで砕いて原料合金とし
た。この原料合金を1気圧の水素雰囲気中で室温から8
30℃まで昇温し、830℃で1時間保持の水素雰囲気
中熱処理を施し、ついで、830℃、真空度:1×10
-1Torr以下になるまで脱水素を行った後、直ちにアルゴ
ンガスを流入して急冷した。かかる水素処理を終えた
後、真空中、630℃、2時間熱処理を行った。
Co obtained by plasma melting and casting, and various R-Fe-Co-B-based alloy ingots containing one or more of Ti, V, and Ta;
R-Fe-Co containing no i, V or Ta at all
-B-based alloy ingots were prepared, and these alloy ingots were each placed in an argon gas atmosphere at a temperature of 1130 ° C.
After homogenizing under the condition of holding for 20 hours, the homogenized ingot was crushed to about 15 mm square to obtain a raw material alloy. This raw material alloy was heated from room temperature to 8 in a hydrogen atmosphere at 1 atm.
The temperature was raised to 30 ° C., heat treatment was performed in a hydrogen atmosphere maintained at 830 ° C. for 1 hour, and then 830 ° C., vacuum degree: 1 × 10
After dehydrogenation to -1 Torr or less, the mixture was immediately cooled by flowing argon gas. After finishing the hydrogen treatment, heat treatment was performed at 630 ° C. for 2 hours in a vacuum.

【0032】得られた原料合金を、乳鉢で軽く粉砕し、
平均粒度:40μmを有するR−Fe−Co−B系永久
磁石粉末を得た。
The obtained raw material alloy is lightly pulverized in a mortar,
An R-Fe-Co-B permanent magnet powder having an average particle size of 40 µm was obtained.

【0033】これらR−Fe−Co−B系永久磁石粉末
を25KOeの磁場中でプレス成形することにより圧粉
体を作製し、これら圧粉体に温度:720℃、圧力:
1.5Ton /cm2 のホットプレスまたは温度:710
℃、圧力:1.5 Ton/cm2 のHIPを施し、さらに各
々620℃、2時間真空中保持の熱処理をすることによ
り本発明焼結磁石1〜12および比較焼結磁石1〜4を
製造した。なお、磁場中成形した圧粉体は、配向方向が
ホットプレスのときのプレス方向と一致するように配置
してホットプレスを行った。得られたホットプレス体の
密度は全て7.5〜7.6g/cm3 と充分緻密化してい
た。
The R-Fe-Co-B-based permanent magnet powder is press-molded in a magnetic field of 25 KOe to produce a green compact.
1.5Ton / cm 2 hot press or temperature: 710
The sintered magnets 1 to 12 of the present invention and the comparative sintered magnets 1 to 4 were manufactured by applying HIP at a temperature of 1.5 ° C. and a pressure of 1.5 Ton / cm 2 , and further performing heat treatment at 620 ° C. for 2 hours under vacuum. did. The green compact formed in a magnetic field was hot-pressed by arranging the orientation direction so as to match the pressing direction in hot pressing. The densities of the obtained hot pressed bodies were all 7.5 to 7.6 g / cm 3 and were sufficiently densified.

【0034】さらに比較のために、Ti,V,Taのい
ずれをも含まない合金インゴットから製造されたR−F
e−Co−B系永久磁石粉末を銅製缶に真空中で充填封
入し、720℃に加熱して圧延率80%になるまで数回
圧延を行い、従来異方性磁石を作製した。
For further comparison, R-F manufactured from an alloy ingot not containing any of Ti, V and Ta
The e-Co-B-based permanent magnet powder was filled and sealed in a copper can in a vacuum, heated to 720 ° C., and rolled several times until the rolling reduction reached 80%, to produce a conventional anisotropic magnet.

【0035】このようにして製造された本発明異方性磁
石1〜12、比較異方性磁石1〜4および従来異方性磁
石の成分組成を表1〜2に示し、さらにこれら異方性磁
石の平均再結晶粒径、個々の再結晶粒の最長粒径/最短
粒径の値が2より小さい形状の再結晶粒の存在量(容量
%)、保磁力温度係数αiHc、並びに磁場中プレス成
形して得られた圧粉体にホットプレスまたはHIPを施
して得られたR−Fe−Co−B系異方性磁石の磁気特
性を測定し、これら測定値を表3〜4に示した。
Tables 1 and 2 show the component compositions of the anisotropic magnets 1 to 12 of the present invention, comparative anisotropic magnets 1 to 4 and conventional anisotropic magnets manufactured in this manner. Average recrystallized grain size of magnet, abundance (volume%) of recrystallized grains having a value of smaller than the longest grain size / shortest grain size of individual recrystallized grains (coefficient%), coercive force temperature coefficient αiHc, and pressing in a magnetic field The magnetic properties of the R-Fe-Co-B-based anisotropic magnet obtained by subjecting the green compact obtained by hot pressing or HIP to molding were measured, and the measured values are shown in Tables 3 and 4. .

【0036】上記保磁力温度係数αiHcは、25℃に
おける保磁力iHc25および100℃における保磁力α
iHc100 を測定し、上記保磁力の差の割合(iHc
100 −iHc25)/iHc25を温度差75℃で割った値
である。
The temperature coefficient of coercive force αiHc is defined as the coercive force iHc at 25 ° C. and the coercive force α at 100 ° C.
The iHc 100 was measured, and the ratio of the coercive force difference (iHc
100− iHc 25 ) / iHc 25 divided by a temperature difference of 75 ° C.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】表1〜4の結果から、この発明のTi,
V,Taのうちの1種または2種以上含む本発明異方性
磁石1〜12は、これらの元素を全く含まない圧延磁石
である従来異方性磁石に比べて磁気特性がほぼ同等であ
るが、保磁力温度係数は格段に小さく、さらにTi,
V,Taの含有量がこの発明の条件から外れた比較異方
性磁石1〜4は磁気的異方性が低下しており、再結晶粒
の寸法および形状も磁気特性に大きな影響を与えている
ことがわかる。
From the results shown in Tables 1 to 4, the Ti,
The anisotropic magnets 1 to 12 of the present invention containing one or two or more of V and Ta have almost the same magnetic properties as the conventional anisotropic magnet which is a rolled magnet not containing any of these elements. However, the temperature coefficient of the coercive force is remarkably small.
The comparative anisotropic magnets 1 to 4 in which the contents of V and Ta deviated from the conditions of the present invention have reduced magnetic anisotropy, and the size and shape of the recrystallized grains have a great influence on the magnetic properties. You can see that there is.

【0042】[0042]

【発明の効果】この発明は、CoとともにTi,V,T
aのうち1種または2種以上を含有せしめた水素処理粉
末を用いることにより熱間塑性加工を施すことなく顕著
な磁気的異方性を示すと同時に保磁力温度係数の小さな
R−Fe−Co−B系磁石を得ることができ、モータ等
の電動機器の性能および安定性の向上に優れた効果をも
たらすものである。
According to the present invention, Ti, V, T together with Co
By using a hydrogen-treated powder containing one or two or more of a, R-Fe-Co having remarkable magnetic anisotropy without hot plastic working and having a small temperature coefficient of coercive force. -B-based magnets can be obtained, which brings about an excellent effect of improving the performance and stability of electric devices such as motors.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 義成 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (72)発明者 小川 保 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (56)参考文献 特開 昭63−282239(JP,A) 特開 平2−263404(JP,A) 特開 昭61−139638(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshinari Ishii 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Real Co., Ltd. (72) Inventor Tamotsu Ogawa 1-2297 Kitabukurocho, Omiya City, Saitama Mitsubishi Materials Real (56) References JP-A-63-282239 (JP, A) JP-A-2-263404 (JP, A) JP-A-61-139638 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Yを含む希土類元素のうち少なくとも1
種(以下、Rで示す)とFeとCoとBを主成分とする
R−Fe−Co−B系異方性磁石であって、この異方性
磁石は、 原子百分率で、 R:10〜20%、 Co:0.1〜50%、 B:3〜20%、 Ti,V,Taのうち1種または2種以上の合計:0.
001〜5.0%、を含有し、残りがFeおよび不可避
不純物からなる組成と、 2 雰囲気中で熱処理してRH x と(Fe,Co) 2
と残部Feの各相に相変態を促した後、脱H 2 工程でH
2 を原料から取り去る処理(以下、この処理をHDDR
処理という)して得られた 正方晶構造をとるR2 (F
e,Co)14B型金属間化合物相を主相とする再結晶粒
が相互に隣接して集合した再結晶粒集合組織とを有し、 上記再結晶粒集合組織は、個々の再結晶粒の最短粒径a
と最長粒径bの比b/aの値が2未満である形状の再結
晶粒が全再結晶粒の50容量%以上存在し、かつ上記再
結晶粒集合組織を構成する再結晶粒の平均再結晶粒径が
0.05〜20μmの寸法を有するホットプレス成形体
であることを特徴とするR−Fe−Co−B系異方性磁
石。
1. At least one of rare earth elements containing Y
An R-Fe-Co-B-based anisotropic magnet containing a seed (hereinafter referred to as R), Fe, Co, and B as main components, the anisotropic magnet having an atomic percentage of R: 10 to 10 20%, Co: 0.1 to 50%, B: 3 to 20%, Total of one or more of Ti, V, and Ta: 0.
001-5.0%, with the balance being Fe and unavoidable impurities, and RH x and (Fe, Co) 2 B by heat treatment in a H 2 atmosphere.
After prompting phase transformation to each phase of the balance Fe and, H with deionized H 2 steps
2 from the raw material (hereinafter referred to as HDDR
R 2 (F ) having a tetragonal structure obtained
e, Co) 14B type intermetallic compound phase as the main phase, and a recrystallized grain texture in which the recrystallized grains are aggregated adjacent to each other. Shortest particle size a
And the ratio of the longest particle size b to the recrystallized grains having a value of less than 2 is 50% by volume or more of all recrystallized grains, and the average of the recrystallized grains constituting the recrystallized grain texture An R-Fe-Co-B-based anisotropic magnet, which is a hot pressed compact having a recrystallized grain size of 0.05 to 20 µm.
【請求項2】 RとFeとCoとBを主成分とするR−
Fe−Co−B系異方性磁石であって、この異方性磁石
は、 原子百分率で、 R:10〜20%、 Co:0.1〜50%、 B:3〜20%、 Ti,V,Taのうち1種または2種以上の合計:0.
001〜5.0%、を含有し、残りがFeおよび不可避
不純物からなる組成と、HDDR処理して得られた 正方晶構造をとるR2 (F
e,Co)14B型金属間化合物相を主相とする再結晶粒
が相互に隣接して集合した再結晶粒集合組織とを有し、 上記再結晶粒集合組織は、個々の再結晶粒の最短粒径a
と最長粒径bの比b/aの値が2未満である形状の再結
晶粒が全再結晶粒の50容量%以上存在し、かつ上記再
結晶粒集合組織を構成する再結晶粒の平均再結晶粒径が
0.05〜20μmの寸法を有する熱間静水圧プレス成
形体であることを特徴とするR−Fe−Co−B系異方
性磁石。
2. An R-form containing R, Fe, Co and B as main components.
This is an Fe—Co—B based anisotropic magnet, wherein the anisotropic magnet is: R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, Ti, Total of one or more of V and Ta: 0.
001-5.0%, the balance being Fe and inevitable impurities, and R 2 (F) having a tetragonal structure obtained by HDDR treatment.
e, Co) 14B type intermetallic compound phase as the main phase, and a recrystallized grain texture in which the recrystallized grains are aggregated adjacent to each other. Shortest particle size a
And the ratio of the longest particle size b to the recrystallized grains having a value of less than 2 is 50% by volume or more of all recrystallized grains, and the average of the recrystallized grains constituting the recrystallized grain texture An R-Fe-Co-B anisotropic magnet, which is a hot isostatic press formed body having a recrystallized particle size of 0.05 to 20 µm.
【請求項3】 上記平均再結晶粒径は、0.05〜3μ
mであることを特徴とする請求項1または2記載のR−
Fe−Co−B系異方性磁石。
3. The average recrystallized particle size is 0.05 to 3 μm.
m, wherein R is
Fe-Co-B based anisotropic magnet.
JP06086091A 1991-01-28 1991-02-01 Rare earth-Fe-Co-B anisotropic magnet Expired - Fee Related JP3196224B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP06086091A JP3196224B2 (en) 1991-02-01 1991-02-01 Rare earth-Fe-Co-B anisotropic magnet
EP92903728A EP0522177B2 (en) 1991-01-28 1992-01-28 Anisotropic Rare Earth Magnet
CA 2079223 CA2079223A1 (en) 1991-01-28 1992-01-28 Anisotropic rare earth-fe-b system and rare earth-fe-co-b system magnet
DE69203405T DE69203405T3 (en) 1991-01-28 1992-01-28 Anisotropic rare earth magnet.
PCT/JP1992/000073 WO1992013353A1 (en) 1991-01-28 1992-01-28 Anisotropic rare earth-iron-boron and rare earth-iron-cobalt-boron magnet
TW81100770A TW209301B (en) 1991-02-01 1992-01-31
CN 92101185 CN1065152A (en) 1991-02-01 1992-02-01 Terres rares-iron-cobalt-B anisotropic magnet
US08/021,187 US5395462A (en) 1991-01-28 1993-02-23 Anisotropic rare earth-Fe-B system and rare earth-Fe-Co-B system magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06086091A JP3196224B2 (en) 1991-02-01 1991-02-01 Rare earth-Fe-Co-B anisotropic magnet

Publications (2)

Publication Number Publication Date
JPH04247604A JPH04247604A (en) 1992-09-03
JP3196224B2 true JP3196224B2 (en) 2001-08-06

Family

ID=13154564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06086091A Expired - Fee Related JP3196224B2 (en) 1991-01-28 1991-02-01 Rare earth-Fe-Co-B anisotropic magnet

Country Status (3)

Country Link
JP (1) JP3196224B2 (en)
CN (1) CN1065152A (en)
TW (1) TW209301B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352301A (en) * 1992-11-20 1994-10-04 General Motors Corporation Hot pressed magnets formed from anisotropic powders
US5474623A (en) * 1993-05-28 1995-12-12 Rhone-Poulenc Inc. Magnetically anisotropic spherical powder and method of making same
EP2043114B1 (en) 2006-11-30 2019-01-02 Hitachi Metals, Ltd. R-fe-b microcrystalline high-density magnet and process for production thereof
JP6198103B2 (en) * 2013-02-22 2017-09-20 日立金属株式会社 Manufacturing method of RTB-based permanent magnet
CN111681868B (en) * 2020-07-09 2022-08-16 福建省长汀金龙稀土有限公司 Method for treating neodymium iron boron alloy sheet after smelting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139638A (en) * 1984-12-10 1986-06-26 Sumitomo Special Metals Co Ltd Manufacture of sintered permanent magnet material
JPS63282239A (en) * 1987-05-13 1988-11-18 Hitachi Metals Ltd Permanent magnet alloy
JPH02263404A (en) * 1989-04-04 1990-10-26 Hitachi Metals Ltd Rare earth group iron base permanent magnet

Also Published As

Publication number Publication date
TW209301B (en) 1993-07-11
JPH04247604A (en) 1992-09-03
CN1065152A (en) 1992-10-07

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
EP0197712A1 (en) Rare earth-iron-boron-based permanent magnet
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH01219143A (en) Sintered permanent magnet material and its production
JP2024020341A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2747236B2 (en) Rare earth iron permanent magnet
JPH045740B2 (en)
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JP2001085256A (en) PRODUCTION OF RARE-EARTH-Fe-Co-B MAGNET
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH045739B2 (en)
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH045738B2 (en)
JPH045737B2 (en)
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
EP0522177B2 (en) Anisotropic Rare Earth Magnet
JPS61139638A (en) Manufacture of sintered permanent magnet material
JPH0418441B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980908

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees