JPS63282239A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPS63282239A
JPS63282239A JP62116446A JP11644687A JPS63282239A JP S63282239 A JPS63282239 A JP S63282239A JP 62116446 A JP62116446 A JP 62116446A JP 11644687 A JP11644687 A JP 11644687A JP S63282239 A JPS63282239 A JP S63282239A
Authority
JP
Japan
Prior art keywords
permanent magnet
phase
alloy
magnet alloy
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62116446A
Other languages
Japanese (ja)
Inventor
Masaaki Tokunaga
徳永 雅亮
Noriaki Meguro
目黒 訓昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62116446A priority Critical patent/JPS63282239A/en
Publication of JPS63282239A publication Critical patent/JPS63282239A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a permanent magnet provided with high coercive force by preparing the permanent magnet having the phase consisting of specific ratios of rare earth elements, Fe, B and Co as the main phase and having specific grain size of said phase. CONSTITUTION:The permanent magnet is prepared by a power metallurgy method from the plural phases in which the phase consisting of R2 (Fe14-xCox)14 B (where R denotes the rare earth elements in the combination of or more kinds thereamong in which Nd and Pr are essentially composed, and 0<=X<=8) is regulated as the main phase. Said permanent magnet is then applied to warm working in which the magnet is pressurized in the temp. range of about 600-1,000 deg.C to provide it a strain, and the grain size of R2 (Fe14-xCox) B phase is regulated to 200-10,000Angstrom . The permanent magnet alloy provided with high coercive force is obtd., by such a simple process.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はR−Fe−B系希土R磁石合金に関するもので
あり、特にR−Fe−B系希土類磁石の磁性をになうR
zFe+4B相の結晶粒径を特定の範囲とした改良され
た永久磁石合金に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to an R-Fe-B rare earth R magnet alloy, and in particular, to an R-Fe-B rare earth magnet alloy.
This invention relates to an improved permanent magnet alloy in which the crystal grain size of the zFe+4B phase is within a specific range.

「従来の技術」 R−Fe−B系永久磁石合金は高い残留磁束密度(Br
)と高い固有保磁力(1Hc)を有しており、従来のア
ルニコ、ハードフェライト、5ll−Go系磁石に代わ
る新しい永久磁石材料として注目されてぃる(特開昭5
9−46008号公報参照)。
"Prior art" R-Fe-B permanent magnet alloy has a high residual magnetic flux density (Br
) and a high intrinsic coercive force (1Hc), it is attracting attention as a new permanent magnet material to replace conventional alnico, hard ferrite, and 5ll-Go magnets (Japanese Patent Application Laid-Open No.
(See Publication No. 9-46008).

このR−Fe−B界磁石合金は、8〜30at%のRの
1種又は混合物、2〜28at%のB1残部Feより成
るものが基本組成であり、この基本組成の他、添加物と
して、Co、 A/、 Dy、 Nb+ Ti、 Mo
等を添加した組成も知られている(特開昭59−219
453号公報参照)。
The basic composition of this R-Fe-B field magnet alloy is 8 to 30 at% of one type or mixture of R and 2 to 28 at% of B1 with the balance being Fe. In addition to this basic composition, additives include: Co, A/, Dy, Nb+ Ti, Mo
It is also known that compositions with the addition of
(See Publication No. 453).

一般にNd−Fe−B系永久磁石の製造方法としては次
の様な製造方法が知られている。即ち、原料を所定の組
成に秤量配合した後、高周波誘導炉等により溶解を行な
いインゴットとし、次いで粉砕する。粉末平均粒度0.
3〜50μmの範囲で固有保磁力(、Hc)は、3kO
e以上となる。粉砕を湿式で行なう場合は、アルコール
系溶媒、ヘキサン、トリクロルエタン、トリクロルエチ
レン、キシレン、トルエン、フッ素系溶媒、パラフィン
系溶媒などを用いることができる。このようにして得ら
れた所定の粒度を有する合金粉末を7〜13kOeの磁
界中で成形する。成形圧力は0.5〜8トン/cIlz
の範囲で行なうことが好ましい。
Generally, the following manufacturing methods are known as methods for manufacturing Nd-Fe-B permanent magnets. That is, after weighing and blending raw materials to a predetermined composition, they are melted in a high frequency induction furnace or the like to form an ingot, which is then crushed. Powder average particle size 0.
In the range of 3 to 50 μm, the intrinsic coercive force (, Hc) is 3 kO
It becomes more than e. When pulverization is performed wet, alcohol solvents, hexane, trichloroethane, trichloroethylene, xylene, toluene, fluorine solvents, paraffin solvents, and the like can be used. The thus obtained alloy powder having a predetermined particle size is compacted in a magnetic field of 7 to 13 kOe. Molding pressure is 0.5-8 tons/cIlz
It is preferable to carry out the test within the range of .

得られた成形体は1000〜1180℃で焼結する。焼
結後の熱処理は2段タイプのものを用いる。900’C
X 2 hrsの加熱保持後、常温まで約1℃/min
で制御冷却し、さらに550〜700℃の範囲でlhr
加熱保持し、オイル中に急冷する。得られる組織は図1
に示すようにR2FezB主相、RzFetB、。
The obtained molded body is sintered at 1000 to 1180°C. A two-stage type heat treatment is used after sintering. 900'C
After heating for X 2 hrs, heat to room temperature at approximately 1°C/min.
Controlled cooling in the range of 550 to 700℃
Keep heated and quench in oil. The resulting structure is shown in Figure 1.
As shown in R2FezB main phase, RzFetB.

第2相Ndrichな第3相の3種に分類でき、又磁性
をになうR2Fe+J主相の結晶粒径は10μ以上であ
る。何故なら粉末合金法をその製造法として用いる場合
、過度の微粉砕による粉砕粒度の低下は比表面積増大に
よる酸化量の増加をもたらすため、粉砕粉の粒度は2.
5〜4.5 II m (F、S、S、S)が限界であ
る。したがって焼結体の結晶粒度は10μm以上となら
ざるを得ない。
It can be classified into three types: a second phase, Ndrich, and a third phase, and the crystal grain size of the R2Fe+J main phase, which provides magnetism, is 10 μm or more. This is because when the powder alloy method is used as the manufacturing method, a reduction in the pulverized particle size due to excessive pulverization leads to an increase in the amount of oxidation due to an increase in the specific surface area, so the particle size of the pulverized powder is 2.
The limit is 5 to 4.5 II m (F, S, S, S). Therefore, the crystal grain size of the sintered body must be 10 μm or more.

一方超急冷技術と熱処理を用いることによって200〜
1000人の微細結晶を実現し、高、Hcを得ることは
可能である(特開昭59−64739.211549゜
60−9852号公報参照)。しかしながらこれら合金
は等方性であり、得られる(B)I)maxもLOMG
Oeが限界である。さらに異方性を付与するためには温
間加工を必要とし、工数的にも又製品形状の制限があっ
た(特開昭60−100402公報参照)。
On the other hand, by using ultra-quenching technology and heat treatment,
It is possible to realize microcrystals of 1,000 and obtain high Hc (see Japanese Patent Application Laid-Open No. 59-64739.211549°60-9852). However, these alloys are isotropic, and the obtained (B)I)max is also LOMG
Oe is the limit. Further, in order to impart anisotropy, warm working is required, which limits the number of man-hours and the shape of the product (see Japanese Patent Laid-Open No. 100402/1982).

「発明が解決しようとする問題点」 R−Fe−B系希土類磁石を構成するRは主にNdであ
るがNdzFezB金属間化合物の単磁区粒子径は0.
26μmと報告されている(M、Sagawa et 
alProc、 of 8th Internatio
nal Workshop on R,E。
"Problems to be Solved by the Invention" R constituting the R-Fe-B rare earth magnet is mainly Nd, but the single magnetic domain particle diameter of the NdzFezB intermetallic compound is 0.
It is reported to be 26 μm (M, Sagawa et
alProc, of 8th International
nal Workshop on R,E.

magnets and their applica
tion pp、587〜611参照)。したがって焼
結タイプの結晶粒度は単磁区粒子理論から望ましいとさ
れるそれの10〜10”倍の大きさを持ち、得られる。
magnets and their applica
tion pp, 587-611). Therefore, the grain size of the sintered type can be obtained to be 10 to 10'' times as large as that desired from single domain grain theory.

Hcが小さい欠点を持つ。It has the disadvantage of small Hc.

一方超急冷を用いて製造されるR−Fe−B系磁石は結
晶粒径は200〜1000人と小さいため得られる+l
(cは高いが、異方性を付与するためにホットプレスお
よび温閲すえ込み加工等の工程を必要とするため製造原
価が高くまた最終製品形状に制限もあった(J、Lee
、 Appl、Phys、Lett、vo46. Na
 8790(1985)参照)。
On the other hand, R-Fe-B magnets produced using ultra-quenching have crystal grain sizes as small as 200 to 1000
(Although c is high, manufacturing costs are high because processes such as hot pressing and warming swaging are required to impart anisotropy, and there are restrictions on the final product shape (J, Lee)
, Appl, Phys, Lett, vo46. Na
8790 (1985)).

「問題点を解決するための手段」 前記の問題点を解決するため本願発明はR2(Fe14
−xCox)+nB (ここでRはNd+ Prを中心
とする希土類元素の1種又は2種以上の組み合わせ、0
≦x≦8)なる相を主相とした複数相から構成され、該
Rz(Fe+4−xcox)+aB相の粒子径が200
〜10000人であることを特徴とするものである。
"Means for Solving the Problems" In order to solve the above problems, the present invention provides R2 (Fe14
-xCox)+nB (Here, R is one or a combination of two or more rare earth elements centered around Nd+Pr, 0
≦x≦8) as the main phase, and the particle size of the Rz(Fe+4-xcox)+aB phase is 200
~10,000 people.

すなわち、本発明者らはR−Fe−B系希土類磁石の持
つ本来の+I(cをひき出すためにはその結晶粒径を2
00〜10000人とすることが重要と考えた。
In other words, in order to extract the original +I(c) of the R-Fe-B rare earth magnet, the present inventors reduced the crystal grain size to 2.
We thought it was important to have 00 to 10,000 people.

本結晶粒径を実現するためには上述したように通常の粉
末冶金法では不可能であり、又超急冷技術を用いること
によって実現は可能であるが工数的に問題があり経済的
ではない。
As mentioned above, it is impossible to achieve this crystal grain size using normal powder metallurgy, and although it is possible to achieve this using ultra-quenching technology, it is not economical due to problems in terms of man-hours.

よって経済的に200〜10000人の結晶粒径を実現
するために本発明では粉末冶金法によって作製された試
料を温間で加工し歪を与え、再結晶させる方法を用いる
Therefore, in order to economically realize a crystal grain size of 200 to 10,000, the present invention uses a method in which a sample prepared by powder metallurgy is warm-processed, strained, and recrystallized.

〔作 用〕[For production]

温間加工は600〜1000℃の温度範囲で行なう。 Warm working is performed at a temperature range of 600 to 1000°C.

温間加工は型鍛造、温間押出、静水圧1軸圧縮―よる加
圧等が利用できる。
For warm processing, die forging, warm extrusion, hydrostatic uniaxial compression, etc. can be used.

再結晶現象としては一次再結晶を利用し、再結晶粒度に
与える温間加工温度、加工度および時効温度は組成によ
って異なるが、加工歪は物理的なりラックを生じない範
囲で最大値を使用すべきである。
Primary recrystallization is used as the recrystallization phenomenon, and the warm working temperature, working degree, and aging temperature that affect the recrystallized grain size vary depending on the composition, but the maximum value for working strain is used within the range that does not cause physical racking. Should.

結晶粒径に関する限定理由を述べる。結晶粒径が200
Å以下の場合はNdrich相のまわりごみが不足し充
分な機械的性質が得られず、10000Å以上となると
高1t(Cが得られない。
The reason for the limitation regarding crystal grain size will be explained. Grain size is 200
If it is less than 10,000 Å, there is insufficient dust around the Ndrich phase and sufficient mechanical properties cannot be obtained, and if it is more than 10,000 Å, high 1t (C) cannot be obtained.

(実施例) 以下実施例により本発明をさらに詳細に説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

実施例I Na(Fed、 llIc0O,0IBO,os)s、
 oなる合金を高周波溶解にて作製し、得られた溶解イ
ンゴットをジョー・クラ、7シヤーおよびディスクミル
を用いて粗粉砕した。さらにジェット・ミルを用いて微
粉砕を行ない、3.7ミクロン(FSSS)の粉末を得
た。ジェット・ミルの圧力媒体はN2ガスを用い、圧力
は7kg / cm ”とした。本徽粉砕粉を縦磁場中
で成形した。成形中に印加された磁場強度は8 KOe
である。
Example I Na(Fed, llIc0O,0IBO,os)s,
An alloy named o was produced by high frequency melting, and the obtained melted ingot was coarsely ground using a jaw cracker, a 7 shear, and a disc mill. Further, fine pulverization was performed using a jet mill to obtain a powder of 3.7 microns (FSSS). The pressure medium of the jet mill was N2 gas, and the pressure was 7 kg/cm''. The Honhui pulverized powder was molded in a vertical magnetic field. The magnetic field strength applied during molding was 8 KOe.
It is.

縦磁場成形された成形体を1080℃X2hrs真空中
で焼結した。焼結体を加工し15φ×10tの焼結体を
得た。焼結後に得られた磁気特性はBr−10400G
、 mHc〜80000e、 +)Ic−82000e
、(Bit)max〜25.9MGOeであった。
The compact formed by vertical magnetic field was sintered in vacuum at 1080°C for 2 hours. The sintered body was processed to obtain a sintered body of 15φ×10t. The magnetic properties obtained after sintering are Br-10400G
, mHc~80000e, +)Ic-82000e
, (Bit)max~25.9MGOe.

本磁石を1000℃に加熱し、温間圧縮加工をほどこし
た。本温間加工時の荷重と変形量の関係を第1図に示す
。変形量は高さの変化を%で示している。20%の変形
後温間加工機よりとり出した。
This magnet was heated to 1000°C and subjected to warm compression processing. Figure 1 shows the relationship between the load and the amount of deformation during the main warm working. The amount of deformation indicates the change in height in %. After 20% deformation, it was taken out from the warm processing machine.

約16.8φxBtのサンプルが得られた。本磁石を7
50℃×10分加熱し、2℃/minの冷却速度で室温
まで冷却した。その後620℃×10分の加熱後水中に
急冷した。得られた磁気特性はBr−10600G、J
c〜100000e、 +Hc ”’178000e。
A sample of approximately 16.8φ×Bt was obtained. This magnet is 7
The mixture was heated at 50°C for 10 minutes and cooled to room temperature at a cooling rate of 2°C/min. Thereafter, it was heated at 620° C. for 10 minutes and then rapidly cooled in water. The obtained magnetic properties are Br-10600G, J
c~100000e, +Hc''178000e.

(BH)max 〜27.IMGOeであった。本磁石
の平均結晶粒径は8200人であった。
(BH)max ~27. It was IMGOe. The average crystal grain size of this magnet was 8,200.

実施例2 (Ndo、 J)’o、 +) (Feo、 ’11 
sBo、 otssio、 oυ3.。なる合金を実施
例1と同様の方法で溶解、粉砕、磁場中成形、焼結した
。得られた磁気特性はBr−10200G。
Example 2 (Ndo, J)'o, +) (Feo, '11
sBo, otssio, oυ3. . The alloy was melted, crushed, formed in a magnetic field, and sintered in the same manner as in Example 1. The magnetic properties obtained were Br-10200G.

Jc〜97000e、 +Hc〜132000e、 (
BH)max〜23.9MGOeであった。本磁石を実
施例1と同様の方法で温間加工した。変形は約25%で
1.73φx7,5tのサンプルを得た。本磁石を75
0℃×15分加熱し、3℃/winで常温まで制御冷却
した。さらに580℃×15分加熱後水中に急冷した。
Jc~97000e, +Hc~132000e, (
BH) max~23.9MGOe. This magnet was warm worked in the same manner as in Example 1. The deformation was approximately 25%, and a sample of 1.73φ x 7.5t was obtained. This magnet is 75
The mixture was heated at 0° C. for 15 minutes and cooled to room temperature at a rate of 3° C./win. After further heating at 580° C. for 15 minutes, the mixture was rapidly cooled in water.

得られた磁気特性はBr−10500G、 Jc〜10
0000e。
The obtained magnetic properties are Br-10500G, Jc~10
0000e.

+Hc〜245000e、 (BH)max 〜26.
7MGOeであった。
+Hc~245000e, (BH)max ~26.
It was 7MGOe.

なお本磁石の結晶粒径は7200人であった。The crystal grain size of this magnet was 7200.

(実施例3) 表1に示した組成の合金を実施例1と同様の方法で溶解
、粉砕、磁場中成形、焼結した。得られた磁気特性を表
2に示す。得られた焼結体を1000℃で1間加工した
。変形量は20%一定とした。
(Example 3) An alloy having the composition shown in Table 1 was melted, crushed, formed in a magnetic field, and sintered in the same manner as in Example 1. The obtained magnetic properties are shown in Table 2. The obtained sintered body was processed at 1000°C for 1 hour. The amount of deformation was kept constant at 20%.

得られた磁石を800℃X1hr加熱後水中に急冷し、
さらに600℃×10分加熱し、水中に急冷した。得ら
れた磁気特性を表3に示す。
The obtained magnet was heated at 800°C for 1 hr and then rapidly cooled in water.
The mixture was further heated at 600° C. for 10 minutes and quenched in water. The obtained magnetic properties are shown in Table 3.

以下余白 「発明の効果」 本願発明は、結晶粒径を200〜10000人にするこ
とによって高い保磁力を簡単な工程で付与できる永久磁
石合金である。
The following margin is "Effects of the Invention" The present invention is a permanent magnetic alloy that can impart high coercive force through a simple process by adjusting the crystal grain size to 200 to 10,000.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温間加工時の荷重と変形量の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between load and deformation amount during warm working.

Claims (4)

【特許請求の範囲】[Claims] (1)R_2(Fe_1_4_−_xCo_x)_1_
4B(ここでRはNd、Prを中心とする希土類元素の
1種または2種以上の組みあわせ、0≦x≦8)なる相
を主相とした複数相から構成され、該R_2(Fe_1
_4_−_xCo_x)_1_4B相の粒子径が200
〜10000Åであることを特徴とする永久磁石合金。
(1) R_2(Fe_1_4_-_xCo_x)_1_
4B (here, R is one or a combination of two or more rare earth elements mainly Nd and Pr, 0≦x≦8), and the R_2 (Fe_1
_4_-_xCo_x)_1_4B phase particle size is 200
A permanent magnetic alloy characterized in that it has a diameter of ~10,000 Å.
(2)前記永久磁石合金の組成がR(Fe_1_−_y
_−_zCo_yB_z)_A(ここでRはNd、Pr
を中心とする希土類元素の1種又は2種以上の組み合わ
せ、0≦x≦0.57、0.04≦z≦0.15、4≦
A≦7.5)であることも特徴とする特許請求の範囲第
1項記載の永久磁石合金。
(2) The composition of the permanent magnet alloy is R(Fe_1_-_y
_−_zCo_yB_z)_A(Here, R is Nd, Pr
One type or a combination of two or more rare earth elements, mainly 0≦x≦0.57, 0.04≦z≦0.15, 4≦
The permanent magnet alloy according to claim 1, characterized in that A≦7.5).
(3)前記永久磁石合金の組成が R(Fe_1_−_y_−_z_−_vCo_yB_z
M_v)_A(ここでRはNd、Prを中心とする希土
類元素の1種又は2種以上の組みあわせ、0≦x≦0.
57、0.04≦z≦0.15、0≦v≦0.05、4
≦A≦7.5、MはNb、Ga、Si、Al、W、Mo
の1種または2種以上の組みあわせ)であることを特徴
とする特許請求の範囲第1項記載の永久磁石合金。
(3) The composition of the permanent magnet alloy is R(Fe_1_-_y_-_z_-_vCo_yB_z
M_v)_A (here, R is one type or a combination of two or more rare earth elements, mainly Nd and Pr, and 0≦x≦0.
57, 0.04≦z≦0.15, 0≦v≦0.05, 4
≦A≦7.5, M is Nb, Ga, Si, Al, W, Mo
2. The permanent magnet alloy according to claim 1, wherein the permanent magnet alloy is one type or a combination of two or more types.
(4)前記永久磁石合金の製造方法において特許請求の
範囲第2項記載の組成を有する合金を粉砕、磁場中成形
、焼結、冷間加工、再結晶成長熱処理することを特徴と
する特許請求の範囲第1項記載の永久磁石合金。
(4) A patent claim characterized in that, in the method for manufacturing the permanent magnet alloy, an alloy having the composition according to claim 2 is subjected to pulverization, forming in a magnetic field, sintering, cold working, and heat treatment for recrystallization growth. Permanent magnetic alloy according to item 1.
JP62116446A 1987-05-13 1987-05-13 Permanent magnet alloy Pending JPS63282239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62116446A JPS63282239A (en) 1987-05-13 1987-05-13 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62116446A JPS63282239A (en) 1987-05-13 1987-05-13 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS63282239A true JPS63282239A (en) 1988-11-18

Family

ID=14687315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62116446A Pending JPS63282239A (en) 1987-05-13 1987-05-13 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS63282239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246803A (en) * 1991-01-31 1992-09-02 Mitsubishi Materials Corp Rare earth-fe-b anisotropic magnet
JPH04245403A (en) * 1991-01-30 1992-09-02 Mitsubishi Materials Corp Rare earth-fe-co-b-based anisotropic magnet
JPH04247604A (en) * 1991-02-01 1992-09-03 Mitsubishi Materials Corp Rare earth-fe-co-b anisotropic magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245403A (en) * 1991-01-30 1992-09-02 Mitsubishi Materials Corp Rare earth-fe-co-b-based anisotropic magnet
JPH04246803A (en) * 1991-01-31 1992-09-02 Mitsubishi Materials Corp Rare earth-fe-b anisotropic magnet
JPH04247604A (en) * 1991-02-01 1992-09-03 Mitsubishi Materials Corp Rare earth-fe-co-b anisotropic magnet

Similar Documents

Publication Publication Date Title
EP0187538B1 (en) Permanent magnet and method for producing same
US4921553A (en) Magnetically anisotropic bond magnet, magnetic powder for the magnet and manufacturing method of the powder
US4601875A (en) Process for producing magnetic materials
US4960469A (en) Method of manufacturing magnetically anisotropic magnet materials and device for same
JPH0216368B2 (en)
JPH02288305A (en) Rare earth magnet and manufacture thereof
US5486239A (en) Method of manufacturing magnetically anisotropic R-T-B-M powder material and method of manufacturing anisotropic magnets using said powder material
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
USRE34838E (en) Permanent magnet and method for producing same
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS63317643A (en) Production of rare earth-iron permanent magnetic material
JPS63282239A (en) Permanent magnet alloy
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH0576161B2 (en)
JPS6233402A (en) Manufacture of rare-earth magnet
JPH0568841B2 (en)
JPH08288113A (en) Manufacture of rare-earth magnetic material powder and rare-earth magnet
JPS60165702A (en) Manufacture of permanent magnet
JPH0227425B2 (en)
JPH02285605A (en) Manufacture of permanent magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH01175207A (en) Manufacture of permanent magnet
JPH0119461B2 (en)
JPS63286515A (en) Manufacture of permanent magnet