JPH01175207A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH01175207A
JPH01175207A JP62335685A JP33568587A JPH01175207A JP H01175207 A JPH01175207 A JP H01175207A JP 62335685 A JP62335685 A JP 62335685A JP 33568587 A JP33568587 A JP 33568587A JP H01175207 A JPH01175207 A JP H01175207A
Authority
JP
Japan
Prior art keywords
strain rate
alloy
coercive force
hot
basic components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62335685A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Nobuyasu Kawai
河合 伸泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Kobe Steel Ltd
Original Assignee
Seiko Epson Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Kobe Steel Ltd filed Critical Seiko Epson Corp
Priority to JP62335685A priority Critical patent/JPH01175207A/en
Publication of JPH01175207A publication Critical patent/JPH01175207A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To improve a remanent magnetic flux density remarkably and to enhance a coercive force by a method wherein an alloy, whose basic components are at least rare-earth elements (including Y), a transition metal and boron, is melted and cast and then hot-worked at a strain rate in a specific range. CONSTITUTION:An alloy of a desired composition whose basic components are rare-earth elements (including Y), a transition metal and boron is melted in an induction furnace and is cast in a mold. Then, in order to give anisotropy to a magnet, the alloy is hot-worked between 500 and 1100 deg.C; its strain rate is increased; its remanent magnetic flux density Br and its coercive force iHc are increased; its maximum energy product (BH)max is also increased. Among others, a plastic working temperature of 800-1050 deg.C is good. When the strain rate of a hot-working process is fast, a crystal particle is made fine; on the other hand, orientation of the crystal particle becomes insufficient and a crack is produced. Accordingly, in order to eliminate the crack at an orientation rate of 80% or more, the strain rate of 10<2>/sec or less is desirable. If the strain rate is small, productivity is lowered remarkably, the crystal particle is grown intensely; a coercive force is lowered; therefore, the strain rate of 10<-4>/sec or more is desirable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類、鉄及びボロンを基本成分とする永久
磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a permanent magnet whose basic components are rare earth elements, iron, and boron.

〔従来の技術〕[Conventional technology]

永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器まで幅広い分野で使用されている
重要な電気、電子材料の−っである。
Permanent magnets are important electrical and electronic materials used in a wide range of fields, from various household electrical appliances to peripheral terminal equipment for large computers.

最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている、現在使用さ
れている永久磁石のうち代表的なものはアルニコ・ハー
ドフェライト及び希土類−遷移金属系磁石である。特に
希土類−遷移金属系磁石であるR−Co系永久磁石やR
−Fe−B系永久磁石は、高い磁気性能が得られるので
従来から多くの研究開発が成されている。
With the recent demand for smaller and more efficient electrical products,
Permanent magnets are also required to have increasingly higher performance, and among the permanent magnets currently in use, representative ones are alnico hard ferrite and rare earth-transition metal magnets. In particular, R-Co permanent magnets, which are rare earth-transition metal magnets, and R
Since -Fe-B permanent magnets provide high magnetic performance, much research and development has been carried out on them.

従来、これらR−Fe−B系永久磁石の製造方法に関し
ては、以下の文献に示すような方法がある。
Conventionally, there are methods for manufacturing these R-Fe-B permanent magnets as shown in the following documents.

(1)粉末冶金法に基づく焼結による方法、(文献1、
文献2) (2)アモルファス合金を製造するに用いる急冷薄帯製
造装置で、厚さ30μm程度の急冷薄片を作り、その薄
片を樹脂結合法で磁石にするメルトスピニング法による
急冷薄片を用いた樹脂結合方法、(文献3、文献4) (3)上記(2)の方法で使用した急冷薄片を2段階の
ホットプレス法で、機械的配向処理を行う方法、(文献
4、文献5) ここで、 文献1:特開昭59−46008号公報;文献2 : 
M、 Saaawa、 S、 FujilIura、 
N、 Togawa、  H,Yanamoto  a
nd   Y、  Hatuura;J  、  八p
pl。
(1) Sintering method based on powder metallurgy, (Reference 1,
Reference 2) (2) A quenched thin strip with a thickness of about 30 μm is made using a quenched ribbon production device used to produce an amorphous alloy, and the quenched flake is made into a magnet using a resin bonding method.Resin using the quenched thin strip made by the melt spinning method. Bonding method, (References 3, References 4) (3) A method of mechanically orienting the rapidly cooled flakes used in the method (2) above using a two-step hot press method, (References 4, References 5) , Document 1: Japanese Unexamined Patent Publication No. 59-46008; Document 2:
M, Saaawa, S, Fujiilura,
N, Togawa, H, Yanamoto a
nd Y, Hatsuura; J, 8p.
pl.

Phys、νof 、55(6) 15 March 
1984. P2O83文献3:特開昭59−2115
49号公報:文献4 : R,W、 Lee; App
l、 Phys、 Lett、Vol。
Phys, νof, 55(6) 15 March
1984. P2O83 Document 3: JP-A-59-2115
Publication No. 49: Document 4: R, W, Lee; App
l, Phys, Lett, Vol.

46(8)、15 April 1985. P790
;文献5:特開昭60−100402号公報次に上記の
従来方法について説明する。
46(8), 15 April 1985. P790
Reference 5: Japanese Patent Application Laid-Open No. 60-100402 Next, the above conventional method will be explained.

先ず(1)の焼結法では、溶解・鋳造により合金インゴ
ットを作製し、粉砕して、適当な粒度(数μm)の磁石
粉を得る。磁石粉は成形助剤のバインダーと混練され、
磁場中でプレス成形されて成形体が出来上がる。成形体
はアルゴン中で、1100℃前後の温度で1時間焼結さ
れ、その後室温まで急冷される。焼結後、600℃前後
の温度で熱処理することにより更に、保磁力を向上させ
る。(2)のメルトスピニング法による急冷薄片を用い
た樹脂結合方法では、先ず急冷薄帯製造装置の最適な回
転数でR−Fe−B合金薄帯を作る。得られた厚さ30
μmのリボン状薄帯は、直径が1000Å以下の結晶の
集合体であり、脆くて割れ易く、結晶粒は等友釣に分布
しているので、磁気的にも等方性である。こめ薄帯を適
当な粒度に粉砕して、樹脂と混練してプレス成形すれば
7ton/−程度の圧力で、約85体積%の充填が可能
となる。
First, in the sintering method (1), an alloy ingot is produced by melting and casting, and then pulverized to obtain magnet powder with an appropriate particle size (several μm). Magnet powder is kneaded with a binder, which is a molding aid,
The molded body is completed by press molding in a magnetic field. The compact is sintered in argon at a temperature around 1100° C. for 1 hour and then rapidly cooled to room temperature. After sintering, the coercive force is further improved by heat treatment at a temperature of around 600°C. In the resin bonding method using quenched flakes by the melt spinning method (2), first, an R-Fe-B alloy ribbon is produced at an optimal rotation speed of a quenched ribbon manufacturing apparatus. The resulting thickness is 30
A μm ribbon-like thin strip is an aggregate of crystals with a diameter of 1000 Å or less, is brittle and easily broken, and since the crystal grains are distributed equidistantly, it is also magnetically isotropic. By crushing the rice ribbon to a suitable particle size, kneading it with a resin, and press-molding it, it is possible to fill it to about 85% by volume with a pressure of about 7 tons/-.

(3)の製造方法は、初めにリボン状の急冷薄帯あるい
は薄帯の片を、真空中あるいは不活性雰囲気中で約70
0℃で予備加熱したグラフディトあるいは他の耐熱用の
プレス型に入れる。該リボンが所望の温度に到達した時
−軸性の圧力が加えられる。温度、時間は特定しないが
、充分な塑性が出る条件として、T=725±25℃、
圧力はP〜1 、4 tQn/cJ程度が適している。
In the manufacturing method (3), first, a ribbon-like quenched ribbon or piece of ribbon is heated in a vacuum or in an inert atmosphere for about 70 minutes.
Place in a Graffito or other heat-resistant press mold preheated to 0°C. When the ribbon reaches the desired temperature - axial pressure is applied. Although the temperature and time are not specified, the conditions for sufficient plasticity are T = 725 ± 25 °C,
A suitable pressure is about P~1,4 tQn/cJ.

この段階では磁石は血かにプレス方向に配向していると
は言え、全体的には等方性である0次のホットプレスは
、大面積を有する型で行なわれる。I&も一般的には7
00℃でQ、7ton/−で数秒間プレスする。すると
試料は最初の厚みの172になりプレス方向と平行に配
向して、合金は異方性化する。これらの工程による方法
は二段階ホットプレス法と呼ばれている。この方法で緻
密で異方性を有するR−Fe−B磁石を得るものである
。尚、最初のメルトスピニング法で作られるリボン薄帯
の結晶粒は、それが最大の保磁力を示す時の粒径よりも
小さめにしておき、後のホットプレス中に結晶粒の粗大
化が生じて最適の粒径になるようにしておく。
Although the magnets are oriented in the pressing direction at this stage, the zero-order hot pressing, which is generally isotropic, is performed in a mold having a large area. I& is also generally 7
Press at 00°C, Q, and 7 ton/- for several seconds. The sample now has an initial thickness of 172 mm and is oriented parallel to the pressing direction, making the alloy anisotropic. A method using these steps is called a two-step hot press method. By this method, a dense and anisotropic R-Fe-B magnet is obtained. It should be noted that the crystal grains of the ribbon produced by the initial melt spinning method are made smaller than the grain size at which the ribbon exhibits its maximum coercive force, so that coarsening of the crystal grains may occur during subsequent hot pressing. to obtain the optimum particle size.

しかし、この方法では高温例えば800℃以上では結晶
粒の粗大化が著しく、それによって保持力iHcが極端
に低下し、実用的な永久磁石にはならない。
However, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force iHc, and the magnet cannot be used as a practical permanent magnet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

叙上の従来技術で一応R−Fe−B系磁石は製造出来る
が、これらの製造方法には次の如き欠点を有している。
Although it is possible to manufacture R-Fe-B magnets using the above-mentioned conventional techniques, these manufacturing methods have the following drawbacks.

(1)の焼結法は、合金を粉末にするのが必須であるが
、R−Fe−B系合金は大変酸素に対して活性であるの
で、粉末化すると余計酸化が激しくなり、焼結体中の酸
素濃度はどうしても高くなつてしまう、又粉末を成形す
るときに、例えばステリアン酸亜鉛のような成形助剤を
使用しなければならず、これは焼結工程で前もって取り
除かれるのであるが、散開は磁石体の中に炭素の形で残
ってしまう、この炭素は著しくR−Fe−8の磁気性能
を低下させ好ましくない。
In the sintering method (1), it is essential to turn the alloy into powder, but since R-Fe-B alloys are very active against oxygen, oxidation becomes even more intense when they are turned into powder. The oxygen concentration in the body is inevitably high, and when the powder is compacted, compacting aids, such as zinc stearate, must be used, which are removed beforehand during the sintering process. , the scattering remains in the form of carbon within the magnet, and this carbon is undesirable as it significantly reduces the magnetic performance of R-Fe-8.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われる。これは大変脆く、ハンドリングが難しい
、従って焼結炉にきれいに並べて入れるのには、相当の
手間が掛かることも大きな欠点である。
The molded body after press molding with the addition of a molding aid is called a green body. This is very fragile and difficult to handle, and therefore, it takes a considerable amount of effort to arrange them neatly in the sintering furnace.

これらの欠点があるので、−船釣に言ってR−Fe−B
系の焼結磁石の製造には、高価な設備が必要になるばか
りでなく、生産効率が悪く、結局磁石の製造コストが高
くなってしまう、従って、比較的原料費の安いR−Fe
−B光磁石の長所を活かすことが出来る方法とは言い難
い。
Because of these drawbacks, -R-Fe-B in terms of boat fishing.
The production of sintered magnets in this type not only requires expensive equipment, but also has poor production efficiency, resulting in high magnet production costs.
-B It is hard to say that this is a method that can take advantage of the advantages of optical magnets.

次に(2)並びに(3)の方法は、真空メルトスピニン
グ装置を使用するがこの装置は現在では、大変生産性が
悪くしかも高価である。
Next, methods (2) and (3) use a vacuum melt spinning device, which currently has very low productivity and is expensive.

(2)の方法では原理的に等方性であるので低エネルギ
ー積であり、しステリシスループの角形性もよくないの
で温度特性に対しても、使用する面においても不利であ
る。
Method (2) is isotropic in principle, resulting in a low energy product, and the squareness of the steresis loop is also poor, which is disadvantageous in terms of temperature characteristics and usage.

(3)の方法は、ホットプレスを二段階に使うというユ
ニークな方法であるが、実際に量産を考えると大変非効
率になることは否めないであろう。
Method (3) is a unique method that uses a hot press in two stages, but it cannot be denied that it is extremely inefficient when considering actual mass production.

更にこの方法では、高温例えば800℃以上では結晶粒
の粗大化が著しく、それによって保磁力iHcが極端に
低下し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force iHc, making it impossible to produce a practical permanent magnet.

本発明は、以上の従来技術の欠点を解決するものであり
、その目的とするところは鋳造法をペースの工程とし熱
間加工を併用することにより高性能且つ低コストな希土
類−鉄系永久磁石の製造方法を提供することにある。
The present invention solves the above-mentioned drawbacks of the prior art, and its purpose is to create a high-performance, low-cost rare earth-iron permanent magnet by using the casting method as a pace process and also using hot working. The purpose of this invention is to provide a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の永久磁石の製造方法の第1は、希土類元素(但
しYを含む)、遷移金属及びボロンを基本成分とする磁
石の製造方法において、少なくとも、前記基本成分から
なる合金を溶解及び鋳造する工程、鋳造後歪速度が、1
0−4〜102/秒の範囲で熱間加工する工程とからな
ることを特徴とする永久磁石の製造方法であり、第2の
方法は、 。
The first method of manufacturing a permanent magnet of the present invention is a method of manufacturing a magnet whose basic components are a rare earth element (including Y), a transition metal, and boron, in which at least an alloy consisting of the basic components is melted and cast. In the process, the strain rate after casting is 1
A method for producing a permanent magnet is characterized in that it consists of a step of hot working in the range of 0-4 to 102/sec, and the second method is as follows.

第1の方法の鋳造後歪速度が10−4〜101/秒の範
囲で熱間加工する工程に次いで熱処理する工程を付加し
たことを特徴とする永久磁石の製造方法であり、第3の
方法は、第2の方法の熱処理する工程の後、鋳造合金を
粉砕する工程と、次いで粉砕された合金の粉末を有機バ
インダーと共に混練し加圧成形する工程とからなること
を特徴とする永久磁石の製造方法である。
A method for producing a permanent magnet, which is characterized in that a step of heat treatment is added to the step of hot working at a post-casting strain rate of 10-4 to 101/sec in the first method; is a permanent magnet characterized by comprising, after the heat treatment step of the second method, a step of pulverizing the cast alloy, and then a step of kneading the pulverized alloy powder with an organic binder and press-forming it. This is the manufacturing method.

〔作 用〕[For production]

前記のように希土類−鉄系磁石の製造方法である焼結法
、急冷法は夫々粉砕による粉末管理の困麹さ、生産性の
悪さといった大きな欠点を有している。
As mentioned above, the sintering method and the quenching method, which are methods for manufacturing rare earth-iron magnets, each have major drawbacks such as difficulty in powder control due to pulverization and poor productivity.

本発明者等は、これらの欠点を改良するため、バルクの
状態での磁石化の研究に着目し、先ず前記希土類元素、
鉄及びボロンを基本成分とする磁石の組成域で熱間加工
による異方性化と高保磁力化が出来、更にこの鋳造イン
ゴットを粉砕して粉末化と高保磁力化し、有機物バイン
ダーと混練硬化させて樹脂結合型磁石を得ることが出来
ることを知見した。この方法における異方性化と高保磁
−力化の為の熱間加工は、前記文献4に示すような急冷
法のような2段階でなく、1段階のみでよく、バルクの
まま加工出来るので生産性は著しく高い。
In order to improve these drawbacks, the present inventors focused on research on magnetization in the bulk state, and first, the rare earth elements,
Anisotropy and high coercive force can be achieved by hot working in the composition range of magnets whose basic components are iron and boron.Furthermore, this cast ingot is pulverized to powder and high coercive force, and then kneaded and hardened with an organic binder. It was discovered that a resin-bonded magnet can be obtained. In this method, the hot processing for anisotropy and high coercive force requires only one step, instead of two steps as in the quenching method shown in the above-mentioned document 4, and it can be processed in bulk. Productivity is extremely high.

また鋳造インゴットを粉砕する必要がないので、焼結法
はどの厳密な雰囲気管理を行う必要はなく、設備費が大
きく低減される。
Furthermore, since there is no need to crush the cast ingot, the sintering method does not require any strict atmosphere control, and equipment costs are greatly reduced.

更に樹脂結合磁石においてら、急冷法によった磁石のよ
うに原理的に等方性があるといった問題点がなく、異方
性の樹脂結合磁石が得られ、R−Fe−BFa石の高性
能、低コストという特徴を生かすことができる。
Furthermore, resin-bonded magnets do not have the problem of being isotropic in principle like magnets produced by the quenching method, and an anisotropic resin-bonded magnet can be obtained, which improves the high performance of R-Fe-BFa stones. , it is possible to take advantage of the feature of low cost.

従来のR−Fe−B光磁石の組成は、文献2に示される
ようにR+sF e 778 sが最適とされていた。
As shown in Document 2, the optimal composition of a conventional R-Fe-B photomagnet was R+sFe 778 s.

この組成は主相R2Fe+4B化合物を原子百分率にし
た組成R++、tF e at、 4B s、 *に比
してR−Bに富む側に移行している。このことは保磁力
を得るためには、主相のみでなくRリッチ相・Bリッチ
相という非磁性相が必要であるという点から説明されて
いる。
This composition is shifted to the side rich in R-B compared to the composition R++, tFe at, 4B s, *, which is the atomic percentage of the main phase R2Fe+4B compound. This is explained from the point that in order to obtain a coercive force, not only a main phase but also nonmagnetic phases such as an R-rich phase and a B-rich phase are required.

ところが本発明では逆にBが少ない側に移行したところ
に保磁力のピーク値が存在する。この組成域では、焼結
法の場合、保磁力が激減するので、これまであまり問題
にされていなかった。しかし、鋳造法ではむしろこの組
成域で高い保磁力が得られ熱間加工を施すことによって
更に高い保磁力が得られる。
However, in the present invention, on the contrary, the peak value of the coercive force exists when the amount of B is shifted to the side where there is less B. In this composition range, the coercive force is drastically reduced in the case of the sintering method, so it has not been much of a problem so far. However, in the casting method, a high coercive force can be obtained in this composition range, and an even higher coercive force can be obtained by hot working.

これらの点は以下のように考えられる。先ず焼結法を用
いても鋳造法を用いても、保磁力機構そのものはnuc
leation、 1odelに従っている。これは、
両者の初磁化曲線がSmCo、のように急峻な立上がり
を、示すことかられかる。このタイプの磁石の保磁力は
基本的には単磁区モデルによっている。即ちこの場合、
大きな結晶磁気異方性を有するRzFe+*B化合物が
、大きすぎると粒内に、磁壁を有するようになるため、
磁化の反転は磁壁の移動によって容易に起きて、保磁力
は小さい。
These points can be considered as follows. First of all, whether a sintering method or a casting method is used, the coercive force mechanism itself is nuc.
leation, according to 1 model. this is,
This is because the initial magnetization curves of both exhibit a steep rise like that of SmCo. The coercive force of this type of magnet is basically based on a single domain model. That is, in this case,
If the RzFe+*B compound, which has large magnetocrystalline anisotropy, is too large, it will have domain walls within the grains.
Magnetization reversal easily occurs due to movement of domain walls, and the coercive force is small.

一方、粒子が小さくなって、ある寸法以下になると、粒
子内に磁壁を有さなくなり、磁化の反転は回転のみによ
って進行するため、保磁力は大きくなる。つまり適切な
保磁力を得るためにはR2F e 14B相が適切な粒
径を有することが必要である。この粒径としては10μ
m前後が適当であり、焼結タイプの場合は、焼結前の粉
末粒度の調整によって粒径を適合させることが出来る。
On the other hand, when the particles become smaller to a certain size or less, the particles no longer have domain walls, and the reversal of magnetization proceeds only by rotation, so the coercive force increases. In other words, in order to obtain an appropriate coercive force, it is necessary that the R2F e 14B phase has an appropriate particle size. This particle size is 10μ
A suitable value is around m, and in the case of a sintered type, the particle size can be adjusted by adjusting the powder particle size before sintering.

ところが鋳造法と熱間加工法とを組合わせた場合、Rz
Fe+4B化合物の結晶の大きさは先ず初めに溶湯から
凝固する段階で決定されるが、熱間加工によって結晶が
微細化されるので、磁石の最終の結晶の大きさは熱間加
工の処理条件を選定することによって調節出来、十分な
保磁力を作り出すことが出来る。
However, when the casting method and hot working method are combined, Rz
The crystal size of the Fe+4B compound is first determined at the stage of solidification from the molten metal, but since the crystals are made finer by hot working, the final crystal size of the magnet depends on the hot working conditions. It can be adjusted by selecting the desired amount, and a sufficient coercive force can be created.

次に、樹脂結合化であるが前記文献4の急冷法でも確か
に樹脂結合磁石は作成出来る。
Next, regarding resin bonding, resin bonded magnets can certainly be created using the quenching method described in Document 4.

しかし、急冷法で作成される粉末は、直径が1000A
以下の多結晶が等友釣に集合したものであるため磁気的
にも等方性であり、異方性磁石は作成出来ず、R−Fe
−B系の低コスト・高性能という特徴が生かせない0本
発明の場合、水素粉砕のような機械的な歪みの小さな粉
砕を行えば、保磁力がかなり維持出来るので樹脂結合化
を行なえる。この方法の最大のメリットは、文献4と異
なり、異方性磁石の作成が可能な点にある。
However, the powder created by the rapid cooling method has a diameter of 1000A.
Since the following polycrystals are assembled equidistantly, it is magnetically isotropic, and an anisotropic magnet cannot be created.
In the case of the present invention, where the features of low cost and high performance of the -B system cannot be utilized, if pulverization with small mechanical strain such as hydrogen pulverization is performed, the coercive force can be maintained considerably, so resin bonding can be performed. The biggest advantage of this method is that, unlike Document 4, it is possible to create an anisotropic magnet.

以下、本発明による永久磁石の好ましい組成範囲につい
て説明する。
The preferred composition range of the permanent magnet according to the present invention will be explained below.

希土類としては、Y、La、Ce、Pr、Nd、Sm5
Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
uが候補として挙げられ、これらのうちの1種あるいは
2種以上を組合わせて用いられる。Mも高い磁気性能は
、Pr、Ndで得られる。従って実用的にはPr、Nd
、Pr−Nd合金、Ce−Pr−Nd合金等が用いられ
る。また少量の添加元素、例えば重希土元素Dy、Tb
等は保磁力の向上に有効である。
Rare earths include Y, La, Ce, Pr, Nd, Sm5
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
u is listed as a candidate, and one or more of these may be used in combination. Magnetic performance that is also high in M can be obtained with Pr and Nd. Therefore, Pr, Nd
, Pr-Nd alloy, Ce-Pr-Nd alloy, etc. are used. Also, a small amount of additive elements, such as heavy rare earth elements Dy, Tb
etc. are effective for improving coercive force.

R−Fe−B光磁石の主相はR,Fe+4Bである。従
ってRが8原子%未溝では、もはや上記化合物を形成せ
ずα−鉄と同一構造の立方晶組織となるため高磁気特性
は得られない、一方Rが30原子%を越えると非磁性の
Rリッチ相が多くなり磁気特性は著しく低下する。よっ
てRの範囲は8〜30原了%が適当である。しかし高い
残留磁束密度とするため、好ましくはR8〜25原子%
が適当である。
The main phases of the R-Fe-B photomagnet are R, Fe+4B. Therefore, if R is 8 atomic % ungrooved, the above compound is no longer formed and a cubic crystal structure with the same structure as α-iron is formed, so high magnetic properties cannot be obtained.On the other hand, if R exceeds 30 atomic %, non-magnetic The R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the appropriate range for R is 8 to 30%. However, in order to obtain a high residual magnetic flux density, preferably R8 to 25 at%
is appropriate.

Bは、R2F 614B相を形成するための必須元素で
あり、2原子%未満では菱面体のR−Fe系になるなめ
、高保磁力は望めない。また28原子%を越えるとBに
富む非磁性相が多くなり、残留磁束密度は著しく低下し
てくる。しかし高保磁力を得るため、好ましくはB88
原子以下がよく、それ以上では特殊な冷却を施さないか
ぎり、v&4flなR2F 614B相を得ることが出
来ず、保磁力は小さい。
B is an essential element for forming the R2F 614B phase, and if it is less than 2 atomic %, it becomes a rhombohedral R-Fe system, so a high coercive force cannot be expected. Moreover, when it exceeds 28 at %, the amount of B-rich nonmagnetic phase increases, and the residual magnetic flux density decreases significantly. However, in order to obtain a high coercive force, B88 is preferably
It is better to have a coercive force of less than an atomic amount, and if it is more than that, a v&4fl R2F 614B phase cannot be obtained unless special cooling is performed, and the coercive force is small.

C・0は本系磁石のキュリー点を増加させるのに有効な
元素であり、基本的にFeのサイトを置換しRzCo+
<Bを形成するのだが、この化合物は結晶異方性磁界が
小さく、その量が増すにつれて磁石全体としての保磁力
は小さくなる。そのため永久磁石として考えられるIK
Oe以上の保磁力を与えるには50原子%以内がよい。
C.0 is an effective element for increasing the Curie point of this magnet, and basically replaces the Fe site and becomes RzCo+
<B is formed, but this compound has a small crystal anisotropy magnetic field, and as the amount of this compound increases, the coercive force of the magnet as a whole becomes smaller. Therefore, IK can be considered as a permanent magnet.
In order to provide a coercive force of Oe or more, the content is preferably within 50 atomic %.

AIは保磁力の増大効果を示す、(文献6:2hang
 Haocai他Proceedings of th
e 8th International WOrkS
hOD On Rare−Earth Ha!1lne
ts、 1985、 P541) この文献6は焼結磁石に対する効果を示したものである
が、その効果は鋳、造磁石でも同様に存在する。しかし
AIは非磁性元素であるため、その添加量を増すと、残
留磁束密度が低下し、15原子%を越えるとハードフェ
ライト以下の残留磁束密度になってしまうので、希土類
磁石としての目的を果たし得ない、よって、AIの添加
量は15原子%以下がよい。
AI shows the effect of increasing coercive force (Reference 6: 2hang
Haocai et al. Proceedings of th
e 8th International Works
hOD On Rare-Earth Ha! 1lne
TS, 1985, P541) This document 6 shows the effect on sintered magnets, but the same effect exists on cast and manufactured magnets as well. However, since AI is a non-magnetic element, increasing the amount added will reduce the residual magnetic flux density, and if it exceeds 15 at %, the residual magnetic flux density will be lower than hard ferrite, so it cannot fulfill its purpose as a rare earth magnet. Therefore, the amount of AI added is preferably 15 atomic % or less.

また、Cu、Ni、Ga、Mo、Sl等も保磁力の向上
に有効な添加元素である。
Further, Cu, Ni, Ga, Mo, Sl, etc. are also effective additive elements for improving the coercive force.

又、本発明において、熱間加工とは冷間加工に対する概
念であり、塑性加工によって生じる加工歪みの大半を加
工中に取除きながら加工する高温での塑性加工を指す、
従って、熱間加工中には、再結晶による結晶粒の微細化
及びそれに続く結晶粒の成長も起り、これらの現象も熱
間加工には含まれることは明らかである。
In addition, in the present invention, hot working is a concept with respect to cold working, and refers to plastic working at high temperatures in which most of the working strain caused by plastic working is removed during processing.
Therefore, during hot working, crystal grain refinement due to recrystallization and subsequent growth of crystal grains also occur, and it is clear that these phenomena are also included in hot working.

熱間加工における温度は再結晶温度以上が望ましく、本
発明R−Fe−B系合金においては好ましくは500℃
以上である。
The temperature during hot working is desirably higher than the recrystallization temperature, preferably 500°C in the R-Fe-B alloy of the present invention.
That's all.

そして、本発明の磁石の製造方法における熱間加工の歪
速度は重要な因子となっている。熱間加工の工程におい
ては、結晶軸の配向と結晶粒の微細化の二つの効果がも
たらせるわけであるが、歪速度が速ければ結晶粒の微細
化にはより良好な結果をもたらす一方結晶粒の配向が不
十分になり、割れも生じる。このため、配向率が80%
以上の割れのない熱間加工のためには歪速度が102/
秒以下であることが望ましい、そして、その歪速度が小
さければ、配向性も良好で割れの可能性もなくなるのだ
が生産性が著しく低下し、結晶粒の成長も激しく起こり
始め、保磁力も低下するのでその歪速度は10−’/秒
以上が望ましい。
In the magnet manufacturing method of the present invention, the strain rate during hot working is an important factor. The hot working process can bring about two effects: orientation of crystal axes and refinement of grains, but a faster strain rate brings about better results in grain refinement. Grain orientation becomes insufficient and cracks also occur. Therefore, the orientation rate is 80%
For hot working without cracking, the strain rate is 102/
It is desirable that the strain rate be less than 1 second, and if the strain rate is small, the orientation will be good and there will be no possibility of cracking, but productivity will drop significantly, grains will begin to grow rapidly, and the coercive force will decrease. Therefore, the strain rate is preferably 10-'/sec or more.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

〔実 施 例〕〔Example〕

(実施例1) 本発明による製造法の工程図を第1図に示す。 (Example 1) A process diagram of the manufacturing method according to the present invention is shown in FIG.

先ず第1図に示す如く所望の組成の合金を誘導炉で溶解
し、鋳型に鋳造する。
First, as shown in FIG. 1, an alloy having a desired composition is melted in an induction furnace and cast into a mold.

次に磁石に異方性を付与するために、各種の熱間加工を
施す。
Next, various types of hot working are performed to impart anisotropy to the magnet.

各種の熱間加工として第2図に押出し加工の説明図、第
3図に圧延加工の説明図、第4図にスタンプ加工の説明
図を示す。
As various hot workings, Fig. 2 shows an explanatory diagram of extrusion processing, Fig. 3 shows an explanatory diagram of rolling processing, and Fig. 4 shows an explanatory diagram of stamping processing.

押出し加工については、等友釣に力が加わるようにダイ
側からも力が加わるように工夫した。
Regarding the extrusion process, we devised a way to apply force from the die side, just as force is applied to the tomo fishing.

圧延加工及びスタンプ加工については、極力歪速度が小
さくなるようにロール、スタンプの速度を調整した。
Regarding rolling and stamping, the speeds of the rolls and stamps were adjusted to minimize the strain rate.

いずれの方法でも、高温領域(500〜1100℃)に
おいて矢視する如く合金の押される方向に平行になるよ
うに結晶の磁化容易軸は配向する。
In either method, the axis of easy magnetization of the crystal is oriented parallel to the direction in which the alloy is pushed, as shown by the arrow, in the high temperature region (500 to 1100°C).

本発明者等は、希土類元素、鉄及びボロンを基本成分と
する合金を溶解・鋳造した後、塑性加工実験を広範囲に
亘り行い次の実験結果を得た。
After melting and casting an alloy whose basic components are rare earth elements, iron, and boron, the present inventors conducted extensive plastic working experiments and obtained the following experimental results.

(1)室温から500℃の間の低温で歪速度1秒以上で
塑性加工すると大半の組成の合金インゴットには割れが
生じる。
(1) Cracks occur in alloy ingots of most compositions when plastically worked at a strain rate of 1 second or more at a low temperature between room temperature and 500°C.

割れていない小片を用いて磁気測定すると保磁力iHc
は加工率に見合って増大するが、結晶の配向はほとんど
起こらず、従って残留磁束密度Brはほとんど増大しな
い、このようなことから、この範囲の塑性加工では最大
エネルギー積(B H)maxはほとんど増大しない。
Coercive force iHc when magnetically measured using a small piece that is not broken
increases in proportion to the working rate, but crystal orientation hardly occurs, so the residual magnetic flux density Br hardly increases.For this reason, in this range of plastic working, the maximum energy product (B H)max almost never occurs. Does not increase.

(2)一方、1100℃を越える高温で塑性加工すると
102/秒という大きな歪速度でも割れ欠けは発生せず
、加工性は良好となるとともに良好な結晶配向が生じる
。しかし、eA磁力i Hcは低下してくる。
(2) On the other hand, when plastic working is performed at a high temperature exceeding 1100° C., no cracking occurs even at a high strain rate of 10 2 /sec, and the workability becomes good and good crystal orientation occurs. However, the eA magnetic force i Hc decreases.

(3)500〜1100℃の間で熱間加工すると歪速度
が大きくとれるとともに、残留磁束密度Br及び保磁力
、iHcが増大し、最大エネルギー積(BH)maxも
増大する。なかでも塑性加工温度は800〜1050℃
が良好である。
(3) Hot working between 500 and 1100° C. increases the strain rate, increases the residual magnetic flux density Br, coercive force, and iHc, and increases the maximum energy product (BH) max. Among them, the plastic working temperature is 800-1050℃
is good.

(4)本発明の合金組成を鋳造したインゴットはその融
点近くまで加熱しても結晶粒の粗大化はわずかしか生し
ない。
(4) Even when an ingot made of the alloy composition of the present invention is heated to near its melting point, coarsening of crystal grains occurs only slightly.

(5)また加工温度と歪速度が最適の場合加工度と平均
C軸の配向性の関係は加工度が20%でC軸配向率が6
0〜70%、加工度が40%でC軸配向率が65〜75
%、加工度60%でC軸配向率75〜85%、加工度8
0%でC軸配向率85〜95%、加工度90%でC軸配
向率85〜98%となる。
(5) In addition, when the processing temperature and strain rate are optimal, the relationship between the processing degree and the average C-axis orientation is 20% and the C-axis orientation rate is 6.
0-70%, processing degree is 40% and C-axis orientation rate is 65-75
%, processing degree 60%, C-axis orientation rate 75-85%, processing degree 8
At 0%, the C-axis orientation rate is 85 to 95%, and at 90%, the C-axis orientation rate is 85 to 98%.

第1表の組成の合金を溶解し、第1図に示した工程に従
って磁石を作製した。但し用いた熱間加工法は、第1表
中に併記した。これらの熱間加工は、加工温度が500
〜1100℃、加工度が10〜90%、歪速度が10−
4〜1/秒の間で種々の条件を組合わせて行なった。そ
の中から加工温度が1000℃、加工度が80%、歪速
度が10−4〜10−’/秒、アニール処理が1000
℃×24時間の場合の磁気特性を第2表に示す。参考デ
ータとして熱間加工を行なわない試料の特性も示した。
An alloy having the composition shown in Table 1 was melted and a magnet was produced according to the steps shown in FIG. However, the hot working method used is also listed in Table 1. These hot workings are performed at a processing temperature of 500°C.
~1100℃, working degree 10~90%, strain rate 10-
Various combinations of conditions were performed between 4 and 1/sec. Among them, processing temperature is 1000℃, processing degree is 80%, strain rate is 10-4 to 10-'/sec, and annealing is 1000℃.
The magnetic properties in the case of 24 hours at ℃ are shown in Table 2. The characteristics of a sample without hot working are also shown as reference data.

アニール処理の最適条件即ち温度と時間は合金の組成と
加工条件によって変化する0組成によっては500〜8
00℃の低温領域が、熱間加工条件によっては800〜
1000°Cの領域が良好になる。
The optimum conditions for annealing, i.e. temperature and time, vary depending on the alloy composition and processing conditions.
The low temperature range of 00℃ is 800℃ or more depending on the hot processing conditions.
Good results are obtained in the 1000°C region.

第2表により、押出し、圧延、スタンプのすべての熱間
加工法で残留磁束密度が増加し磁気的に異方化されたこ
とがわかる。なかでも押出し法が勝れている。
Table 2 shows that all the hot working methods of extrusion, rolling, and stamping increased the residual magnetic flux density and caused magnetic anisotropy. Among these, the extrusion method is superior.

第  1  表 第  2  表 (実施例2) 第3表は、組成としてP r 17F e7gB4、N
d36F e ssB +s及びCe s N d r
oF r roF e sac 0+7zr 2 B 
mを、代表例にとり、押出加工を行なった場合の塑性加
工温度と加工性・1HC−C軸配向率との関係を示した
ものである。加工度は80%を目標としΔ印は塑性加工
中割れが生じたもの、X印は塑性加工できながうたちの
を指す。
Table 1 Table 2 (Example 2) Table 3 shows the composition of P r 17F e7gB4, N
d36F e ssB +s and Ce s N d r
oF r roF e sac 0+7zr 2 B
Taking m as a representative example, the relationship between the plastic working temperature, workability, and 1HC-C axis orientation ratio when extrusion processing is performed is shown. The target degree of processing is 80%, and the Δ mark indicates a crack that occurred during plastic working, and the X mark indicates a work that could not be plastic worked.

塑性加工温度は500〜1100℃に亘って良好である
が、その中でも800〜1050℃が優れている。磁気
特性と生産性の双方を併せて評価すると900〜105
0℃が最適である。歪速度は高温になる程そして希土類
元素とボロンの含有量が低い程大きくとることができる
The plastic working temperature ranges from 500 to 1,100°C, and among them, 800 to 1,050°C is excellent. When both magnetic properties and productivity are evaluated together, it is 900-105
0°C is optimal. The strain rate can be increased as the temperature increases and the content of rare earth elements and boron decreases.

本実験での歪速度は10−4〜1027秒の範囲を変化
させ、第3表の特性値は歪速度が10−2〜10−’/
秒の場合の値を示す、1000℃前後では歪速度を1〜
102/秒とすることが押出成形においては加工応力が
圧縮応力が主で引張応力が小さいため可能であることが
判明した。
The strain rate in this experiment was varied in the range of 10-4 to 1027 seconds, and the characteristic values in Table 3 show that the strain rate was 10-2 to 10-'/
The strain rate is 1 to 1 at around 1000℃.
It has been found that setting the processing stress to 102/sec is possible in extrusion molding because the processing stress is mainly compressive stress and tensile stress is small.

又、C軸配向率が高くなると残留磁束密度Brが大きく
なり、(BH)maxは急激に増大する。
Furthermore, as the C-axis orientation rate increases, the residual magnetic flux density Br increases, and (BH)max increases rapidly.

第3表 方口 80%   161σ岨  10−’〜10−1
汚(実施例3) 第4表は、P r 14F e iaB 4とCe5P
rroNd +oF e tsB 4の組成の鋳造合金
に対して加工温度1000℃において歪速度を10−5
〜10ゝ/秒と変化させ、加工率80%のホットプレス
を行なった時の磁気特性を示す。
3rd front mouth 80% 161σ岨 10-'~10-1
Stains (Example 3) Table 4 shows P r 14F e iaB 4 and Ce5P
For a cast alloy with a composition of rroNd + oF e tsB 4, the strain rate was set to 10-5 at a processing temperature of 1000°C.
The magnetic properties are shown when hot pressing is performed at a working rate of 80% by changing the speed to ~10°/sec.

第  4  表 ×は割れが生じたもの (実施例4) 第5表に示ず組成の合金を真空溶解炉で溶解、鋳造し、
得られたインゴットをステンレスケースに入れて熱間圧
延を施した。この時、加工温度は900℃、加工度は8
0%として、歪速度を10−1〜1017秒の範囲で変
化させた。加工されたサングルの磁気特性を第6表に示
す、この結果かられかるように102/秒までの歪速度
での熱間加工が高保磁力化に有効である。
Table 4 × shows cracks (Example 4) An alloy having a composition not shown in Table 5 was melted and cast in a vacuum melting furnace,
The obtained ingot was placed in a stainless steel case and hot rolled. At this time, the processing temperature was 900℃, and the processing degree was 8
The strain rate was changed in the range of 10-1 to 1017 seconds, assuming that the strain rate was 0%. The magnetic properties of the processed sample are shown in Table 6. As can be seen from the results, hot working at a strain rate of up to 102/sec is effective in increasing the coercive force.

第  5  表 第  6  表 X印は割れが生じたもの (実施例6) P t” tsD 3’2 F e 71B4とPrt
2Nds FettCOsBsCuiの2種の組成の合
金を溶解、鋳造してインゴットを得た。このインゴット
に対して1000℃、加工度70%、歪速度を101〜
104/秒の範囲で変化させて、熱間押出加工を施した
。その後、900℃、10時間のアニール処理を施して
から磁気特性を測定した。結果は、第7表に示すように
、10−3〜1027秒の間の歪速度において、10K
OettMAえる保磁力が得られ、高保磁力化が成され
た。
Table 5 6 Marked X in Table 6 shows cracks (Example 6) P t” tsD 3'2 F e 71B4 and Prt
Ingots were obtained by melting and casting alloys of two types of compositions, 2Nds FettCOsBsCui. For this ingot, the temperature was 1000℃, the working degree was 70%, and the strain rate was 101~
Hot extrusion processing was performed by changing the speed within a range of 104/sec. Thereafter, the magnetic properties were measured after annealing at 900° C. for 10 hours. The results are shown in Table 7, at strain rates between 10-3 and 1027 seconds, 10K
A coercive force comparable to that of OettMA was obtained, and a high coercive force was achieved.

第  7  表 X印は加工できなかったもの (実施例7) 先ず第8表のような組成の合金を誘導炉で溶解し鉄鎖型
にて鋳造し、1000℃におけるホットプレスの後イン
ゴットを磁気的に硬化させるため1000’CX24時
間のアニール処理を施した。
Items marked with X in Table 7 cannot be processed (Example 7) First, an alloy having the composition shown in Table 8 is melted in an induction furnace, cast in an iron chain mold, and after hot pressing at 1000°C, the ingot is magnetically molded. An annealing treatment was performed at 1000'CX for 24 hours to harden the material.

このときアニール後の平均粒径は約15μmであった。At this time, the average grain size after annealing was about 15 μm.

この階段で切断・研削を施せば、異方性磁石となる。If this step is used to cut and grind the material, it will become an anisotropic magnet.

樹脂結合タイプの磁石の場合は、室温において18−8
ステンレス鋼製容器中、lO気圧程度の水素ガス雰囲気
のものでの水素の吸蔵と10−’torrでの脱水素を
くりかえし行ない粉砕後、エポキシ樹脂を4重量%混練
した、10KOeの磁場で横磁場成形を行なった。
For resin-bonded type magnets, 18-8 at room temperature.
In a stainless steel container, hydrogen absorption in a hydrogen gas atmosphere of about 10 atm and dehydrogenation at 10-'torr were repeated, and after pulverization, 4% by weight of epoxy resin was kneaded and a transverse magnetic field of 10 KOe was applied. I did the molding.

以上の結果を第9表に示す。The above results are shown in Table 9.

第8表 第  9  表 〔発明の効果〕 蒸上の如く本発明の永久磁石のv、遣方法によれば、希
土類元素等を、鋳造した後、歪速度が10−4〜102
/秒の範囲で熱間加工することにより、次の如き効果を
奏するものである。
Table 8 Table 9 [Effects of the Invention] According to the method of using the permanent magnet of the present invention as described above, after casting rare earth elements, etc., the strain rate is 10-4 to 102.
The following effects can be achieved by hot working in the range of /second.

(1)C軸配向率を高めることができ、残留磁束密度B
rを著しく改善することができた。
(1) The C-axis orientation rate can be increased, and the residual magnetic flux density B
It was possible to significantly improve r.

(2)又、結晶粒をam化することにより、保磁力iH
cを著しく高めることができた。
(2) Also, by changing the crystal grains to am, coercive force iH
It was possible to significantly increase c.

(3)(1)及び(2)の相乗効果により最大エネルギ
ー積(B H) m a xを各段に高めることができ
た。
(3) Due to the synergistic effect of (1) and (2), the maximum energy product (B H) max could be increased to various levels.

(4)従来の焼結法と比較し、加工工数及び生産設備投
資額を著しく低減させることができた。
(4) Compared to conventional sintering methods, processing man-hours and production equipment investment can be significantly reduced.

(5)従来のメルトスピニング法と比較し、高性能でし
かも低コストの磁石をつくることができた。
(5) Compared to the conventional melt spinning method, it was possible to produce magnets with high performance and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のR−Fe−B光磁石の製造工程図。 第2図は、熱間押出しによる磁石合金の配向処理図。 1・・・油圧プレス 2・・・ダイ(型) 3・・・磁石合金 4・・・圧力を示す矢印 5・・・磁石合金の磁化容易方向を示す矢印第3図は、
熱間圧延による磁石合金の配向処理図。 1・・・ロール 2・・・磁石合金 3・・・ロールの回軸方向を示す矢印 4・・・磁石合金の進行方向を示す矢印5・・・磁化容
易方向を示す矢印 第4図は、熱間スタンプ加工による磁石合金の配向処理
図。 1・・・スタンプ 2・・・磁石合金 3・・・基板 4・・・磁化容易方向を示す矢印 5・・・スタンプの上下動を示す矢印 6・・・基板の移動方向を示す矢印 以上 出願人 セイコーエプソン株式会社
FIG. 1 is a manufacturing process diagram of the R-Fe-B photomagnet of the present invention. FIG. 2 is a diagram showing the orientation treatment of the magnetic alloy by hot extrusion. 1...Hydraulic press 2...Die (mold) 3...Magnetic alloy 4...Arrow indicating pressure 5...Arrow indicating easy magnetization direction of magnet alloy
A diagram showing the orientation treatment of a magnetic alloy by hot rolling. 1...Roll 2...Magnetic alloy 3...Arrow 4 indicating the direction of rotation of the roll...Arrow 5 indicating the traveling direction of the magnetic alloy 5...Arrow indicating the direction of easy magnetization. Diagram of orientation treatment of magnetic alloy by hot stamping. 1... Stamp 2... Magnet alloy 3... Substrate 4... Arrow indicating the direction of easy magnetization 5... Arrow indicating vertical movement of the stamp 6... Arrow indicating the direction of movement of the substrate People Seiko Epson Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)希土類元素(但しYを含む)、遷移金属及びボロ
ンを基本成分とする永久磁石の製造方法において、少な
くとも、前記基本成分からなる合金を溶解及び鋳造する
工程、鋳造後歪速度が、10^−^4〜10^2/秒の
範囲で熱間加工する工程とからなることを特徴とする永
久磁石の製造方法。
(1) In a method for manufacturing a permanent magnet whose basic components are rare earth elements (including Y), transition metals, and boron, at least a step of melting and casting an alloy consisting of the basic components, and a strain rate of 10 A method for producing a permanent magnet, comprising a step of hot working in the range of ^-^4 to 10^2/sec.
(2)希土類元素(但しYを含む)、遷移金属及びボロ
ンを基本成分とする永久磁石の製造方法において、少な
くとも、前記基本成分からなる合金を溶解及び鋳造する
工程、鋳造後歪速度が、10^−^4〜10^2/秒の
範囲で熱間加工する工程次いで熱処理する工程とからな
ることを特徴とする永久磁石の製造方法。
(2) In a method for manufacturing a permanent magnet whose basic components are rare earth elements (including Y), transition metals, and boron, at least the step of melting and casting an alloy consisting of the basic components, and the strain rate after casting is 10 A method for producing a permanent magnet, comprising the steps of hot working in the range of ^-^4 to 10^2/sec, and then heat treatment.
(3)希土類元素(但しYを含む)、遷移金属及びボロ
ンを基本成分とする、磁石の製造方法において、少なく
とも、前記基本成分からなる合金を溶解及び鋳造する工
程、鋳造後歪速度が、10^−^4〜10^2/秒の範
囲で熱間加工する工程と前記鋳造合金を熱処理後粉砕す
る工程と、次いで粉砕された合金の粉末を有機バインダ
ーと共に混練し加圧成型する工程とからなることを特徴
とする永久磁石の製造方法。
(3) A method for manufacturing a magnet whose basic components are a rare earth element (including Y), a transition metal, and boron, at least a step of melting and casting an alloy consisting of the basic components, and a strain rate of 10 A step of hot working in the range of ^-^4 to 10^2/sec, a step of pulverizing the cast alloy after heat treatment, and a step of kneading the pulverized alloy powder with an organic binder and press-molding it. A method for manufacturing a permanent magnet characterized by:
JP62335685A 1987-12-28 1987-12-28 Manufacture of permanent magnet Pending JPH01175207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335685A JPH01175207A (en) 1987-12-28 1987-12-28 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335685A JPH01175207A (en) 1987-12-28 1987-12-28 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH01175207A true JPH01175207A (en) 1989-07-11

Family

ID=18291353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335685A Pending JPH01175207A (en) 1987-12-28 1987-12-28 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH01175207A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536421A1 (en) * 1991-04-25 1993-04-14 Seiko Epson Corporation Method of producing a rare earth permanent magnet
JPH097871A (en) * 1995-06-19 1997-01-10 Mando Mach Co Ltd Permanent magnet preparation
US6592682B1 (en) * 1998-05-28 2003-07-15 Santoku Corporation Method for preparing a magnetic material by forging and magnetic material in powder form

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276803A (en) * 1985-08-13 1987-12-01 Seiko Epson Corp Rare earth-iron permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276803A (en) * 1985-08-13 1987-12-01 Seiko Epson Corp Rare earth-iron permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536421A1 (en) * 1991-04-25 1993-04-14 Seiko Epson Corporation Method of producing a rare earth permanent magnet
US5352302A (en) * 1991-04-25 1994-10-04 Seiko Epson Corporation Method of producing a rare-earth permanent magnet
JPH097871A (en) * 1995-06-19 1997-01-10 Mando Mach Co Ltd Permanent magnet preparation
US6592682B1 (en) * 1998-05-28 2003-07-15 Santoku Corporation Method for preparing a magnetic material by forging and magnetic material in powder form

Similar Documents

Publication Publication Date Title
JPS62276803A (en) Rare earth-iron permanent magnet
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JPH01175207A (en) Manufacture of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JPS63286515A (en) Manufacture of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH01175209A (en) Manufacture of permanent magnet
JPS63107009A (en) Manufacture of permanent magnet
JPS63286514A (en) Manufacture of permanent magnet
JPS63213317A (en) Rare earth iron permanent magnet
JPS63286516A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPH01161802A (en) Manufacture of permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPS63213322A (en) Rare earth iron permanent magnet
JPH01175211A (en) Manufacture of rare-earth elements-iron-based permanent magnet
JPH01175206A (en) Rare-earth element-iron-based permanent magnet
JPS63286512A (en) Manufacture of permanent magnet
JPS63213323A (en) Rare earth iron permanent magnet
JPH03249125A (en) Production of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH023208A (en) Permanent magnet