JP2857824B2 - Rare earth-iron permanent magnet manufacturing method - Google Patents
Rare earth-iron permanent magnet manufacturing methodInfo
- Publication number
- JP2857824B2 JP2857824B2 JP5149548A JP14954893A JP2857824B2 JP 2857824 B2 JP2857824 B2 JP 2857824B2 JP 5149548 A JP5149548 A JP 5149548A JP 14954893 A JP14954893 A JP 14954893A JP 2857824 B2 JP2857824 B2 JP 2857824B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- atomic
- permanent magnet
- magnet
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0576—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、希土類−鉄系永久磁石
の製造方法に関する。
【0002】
【従来の技術】従来、R-Fe-B系の磁石の製造には次の3
通りの方法が報告されている。
【0003】(1)粉末治金法に基づく焼結法(参考文
献1)
(2)アモルファス合金を製造するに用いる急冷薄帯製
造装置で、厚さ30μm程度の急冷薄片を作り、その薄片
を樹脂結合法で磁石にする(参考文献2)
(3)(2)の方法で使用した同じ薄片を、2段階のホ
ットプレス法で機械的配向処理を行う方法(参考文献
2)
参考文献1.M.Sagawa, S.Fujimura,N.Togawa, H.Yama
moto and Y.Matsuura ;J.Appl.Phys.Vol.55(6),15 Maro
h 1984,P2083
参考文献2.R.W.Lee; Appl.Phys.Lett.Vol.46(8), 15
April 1985,P790。
【0004】文献に添って上記の従来技術を説明する。
まず(1)の焼結法では、溶解・鋳造により合金インゴ
ットを作製し、粉砕されて3μmくらいの粒径を有する磁
石粉にされる。磁石粉は成形助剤となるバインダーと混
練され、磁場中でプレス成形されて、成形体ができあが
る。成形体はアルゴン中で1100℃前後の温度で1時間焼
結され、その後室温まで急冷される。焼結後、600℃前
後の温度で熱処理すると保磁力はさらに向上する。
【0005】(2)は、まず急冷薄帯製造装置の最適な
回転数でR-Fe-B合金の急冷薄帯を作る。得られた薄帯は
厚さ30μm のリボン状をしており、直径が1000Å以下の
多結晶が集合している。薄帯は脆くて割れやすく、結晶
粒は等方的に分布しているので磁気的にも等方性であ
る。この薄帯を適度な粒度にして、樹脂と混練してプレ
ス成形すれば7 ton/cm2 程度の圧力で、約85体積%の充
眞が可能となる。
【0006】(3)の製造方法は、始めにリボン状の急
冷薄帯あるいは薄帯の片を、真空中あるいは不活性雰囲
気中で約700℃ で予備加熱したグラファイトあるいは他
の耐熱用のプレス型に入れる。該リボンが所望の温度に
到達したとき一軸の圧力が加えられる。温度・時間は特
定しないが、充分な塑性が出る条件としてT=725±25
℃、圧力はP〜1.4 ton/cm2 程度が適している。この段
階では磁石はわずかにプレス方向に配向しているとはい
え、全体的には等方性である。次のホットプレスは、大
面積を有する型で行なわれる。最も一般的には700℃で
0.7 ton で数秒間プレスする。すると試料は最初の厚み
の1/2になりプレス方向と平行に磁化容易軸が配向して
きて、合金は異方性化する。これらの工程は、二段階ホ
ットプレス法(two-stage hot-pressing procedure)
と呼ばれている、この方法により緻密で異方性を有する
R-Fe-B磁石が製造できる。なお、最初のメルトスピニン
グ法で作られるリボン薄帯の結晶粒は、それが最大の保
磁力を示す時の粒径よりも小さめにしておき、後にホッ
トプレス中に結晶粒の粗大化が生じて最適の粒径になる
ようにしておく。
【0007】
【発明が解決しようとする課題】上述した従来技術で、
R-Fe-B系の磁石は一応製作できるのであるが、これらの
技術を利用した製造方法は次のような欠点を有してい
る。(1) の焼結法は、合金を粉末にするのが必須である
が、R-Fe-B系合金はたいへん酸素に対して活性であるの
で、粉末化すると余計酸化が激しくなり、焼結体中の酸
素濃度はどうしても高くなってしまう。また粉末を成形
するときに、例えばステアリン酸亜鉛のような成形助剤
を使用しなければならず、これは焼結工程で前もって取
り除かれるのであるが、数割は磁石体の中に炭素の形で
残ってしまう。この炭素は著しくR-Fe-Bの磁気性能を低
下させる。成形助剤を加えてプレス成形した後の成形体
はグリーン体と言われる。これはたいへん脆く、ハンド
リングが難しい。従って焼結炉にきれいに並べて入れる
のには、相当の手間がかかることも大きな欠点である。
これらの欠点があるので一般的に言ってR-Fe-B系の焼結
磁石の製造には、高価な設備が必要になるばかりでな
く、生産効率が悪く、磁石の製造費が高くなってしま
う。従って、R-Fe-B系磁石の原料費の安さを充分に引き
出せる製造方法とは言い難い。
【0008】(2)と(3)の製造法は真空メルトスピニング
装置を使う。この装置は現在では、たいへん生産性が悪
くしかも高価である。(2) では原理的に等方性であるの
で低エネルギー積であり、ヒステリシスループの角形性
もよくないので温度特性に対しても、使用する面におい
ても不利である。(3)の方法は、ホットプレスを2段階
に使うというユニークな方法であるが、実際に量産を考
えるとたいへん非効率になることは否めないであろう。
【0009】本発明によるR-Fe-B系磁石の製造方法はこ
れらの欠点を解決するものであり、その目的とするとこ
ろは高性能低コストな希土類−鉄系永久磁石を得ること
にある。
【0010】本発明は、R(ただしRは、Yを含む希土
類元素のうちの少なくとも1種):8〜30原子%、ボ
ロン(B):2〜8原子%、Co:50原子%以下、A
1:15原子%以下を含む鉄系合金を溶解および鋳造す
る第1の工程と、前記第1の工程で得られた鋳造インゴ
ットを500℃以上の温度で一方向に加圧して熱間加工
し、結晶粒を微細化するとともに、その磁化容易軸を特
定の方向に配向せしめ、磁気的に異方性化する第2の工
程とを有し、前記各工程を順次行って、磁石の磁気エネ
ルギー積(BH)max を4.1MGOe以上とすることを特徴と
する希土類−鉄系永久磁石の製造方法である。また、前
記熱間加工の前もしくは後に、250℃以上の温度で熱
処理を施す工程を有するのが好ましい。
【0011】前記のように現存の希土類−鉄系永久磁石
の製造方法である焼結法、急冷法はそれぞれ粉砕による
粉末管理の困難さ、生産性の悪さといった大きな欠点を
有している。本発明者らは、これらの欠点を改良するた
め、バルクの状態での磁石化の研究に着手し、請求項1
に述べた組成領域(上記文献よりも低ボロン領域に組成
を限定)では結晶粒が微細化するので鋳造状態のまま熱
処理するだけで十分な保磁力が得られることを見いだし
た。さらに熱間加工も容易であり、熱間加工により結晶
粒のC軸(磁化容易軸)が圧下方向に配向し、磁場を用
いることなく異方性化することができ、その結果、高い
磁気エネルギー積が得られることを発見した。この方法
では、熱間加工による異方化は参考文献2に示した急冷
法のような2段階ではなく、1段階のみでよく、加工後
の保磁力は粒子の微細化による大幅に増加するという全
く異なった現象を呈する。また鋳造インゴットを粉砕す
る必要がないので、焼結法ほどの厳密な雰囲気管理を行
なう必要はなく、設備費が大きく低減される。
【0012】バルク状態で磁石化するという研究には、
参考文献3、三保広晃(日本金属学会、昭和60年度秋
期講演会、講演番号(544))があるが同研究はNd
16.2Fe50.7Co22.6V1.3 B9.2 という組成でのアル
ゴンガス吹きつけ大気中溶解で吸い上げた小型サンプル
によるものであり、小量採取のために結晶粒の急冷微細
化効果が出たものと考えられる。この組成では通常の鋳
造では主相であるNd2 Fe14B相が粗大化してしま
い、熱間加工による異方化は可能だが、永久磁石として
十分な保磁力が得にくいことを我々は実験的に確かめ
た。通常の鋳造で十分な保磁力を得るには、本発明の請
求項1に示したような低B組成であることが必須であ
る。
【0013】従来のR−Fe−B系磁石の組成は、参考
文献1に代表されるようなR15Fe77B8 が最適とされ
ていた。この組成は主相R2 Fe14B化合物を原子百分
率にした組成R11.7Fe82.4B5.9 に比してR・Bに富
む側に移行している。このことは保磁力を得るために
は、主相のみではなくRrich相・Brich相という非磁性
相が必要であるという点から説明されている。ところが
本発明による組成では逆にBが少ない側に移行したとこ
ろに保磁力のピーク値が存在する。この組成域では、焼
結法の場合、保磁力が激減するので、これまであまり問
題にされていなかった。しかし通常の鋳造法では、本発
明の請求項1の組成範囲でのみ、高保磁力が得られ、逆
に焼結法の主流組成であるBに富む側では十分な保磁力
は得られない。
【0014】これらの点は以下のように考えられる。ま
ず焼結法を用いても鋳造法を用いても、保磁力機構その
ものはnucleation modelに従っている。これは、両者の
初磁気化曲線がSmCo5 のように急峻な立ち上がりを
示すことからわかる。このタイプの磁石の保磁力は基本
的には単磁区モデルによっている。すなわちこの場合、
大きな結晶磁気異方性を有するR2 Fe14B化合物が、
大きすぎると粒内に磁壁を有するようになるため、磁化
の反転は磁壁の移動によって容易に起きて、保磁力は小
さい。一方、粒子が少なくなって、ある寸法以下になる
と、粒子内に磁壁を有さなくなり、磁化の反転は回転の
みによって進行するため、保磁力は大きくなる。つまり
適切な保磁力を得るには、R2 Fe14B相が適切な粒径
を有することが必要である。この粒径としては10μm
前後が適当であり、焼結タイプの場合は、焼結前の粉末
粒度の調整によって粒径を適合させることができる。と
ころが鋳造法の場合、R2 Fe14B化合物の大きさは溶
融から凝固する段階で決定されるため、組成と凝固過程
に注意を払う必要がある。特に組成の意味合いは大き
く、Bが8原子%を超えると、鋳造上がりのR2 Fe14
B相の大きさが容易に100μm を超えてしまい、参考
文献2のような急冷装置を用いないと鋳造状態では保磁
力を得ることは困難である。これに対して、請求項1で
述べたような低ボロン領域では、鋳型・鋳込温度等の工
夫で容易に粒径を微細化できる。しかしいずれの場合で
も、熱間加工を施せば主相R2 Fe14B相が微細化する
ので、加工前よりは保磁力は増大する。鋳造状態で保磁
力を得られる領域は、見方を変えればR2 Fe14Bに比
べてFeに富んだ組成とも言え、凝固段階ではまず初晶
としてFeが出現し、続いて包晶反応によってR2 Fe
14B相が現れる。このとき冷却スピードは平衡反応に比
してはるかに速いため、初晶FeのまわりをR2 Fe14
B相が取り囲むような形で凝固する。この組成域では低
Bな領域であるため、当然のことながら焼結タイプの代
表組成R15Fe77B8 の磁石に見られるようなBrich相
は量的にはほとんど無視できる。熱処理は初晶Feを拡
散させ、平衡状態に到達させることに関連しており、保
磁力はこのFe相の拡散に大きく依存している。
【0015】熱間加工の手段としては、特に限定されな
いが、圧延が特に好ましい。参考文献3で問題となった
加工生産性を改良する最適の方法が圧延加工だからであ
る。以上のようにして製造される希土類−鉄系永久磁石
は、その製造工程に由来して生じる結晶粒の微細化およ
び磁化容易軸の配向度の高さから、後述する実施例1、
2で示すように、高い磁気特性、特に(BH)max が4.1
MGOe以上という高い磁気エネルギー積を有する。
【0016】以下、本発明による永久磁石の組成限定理
由を説明する。希土類としては、Y,La,Ce,P
r,Nd,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Luが候補として挙げられ、これらの
うち1種あるいは1種以上を組合せて用いられる。最も
高い磁気性能はPrで得られる。従って実用的にはP
r,Pr−Nd合金、Ce−Pr−Nd合金等が用いら
れる。また少量の添加元素、例えば重希土元素のDy,
Tb等やAl,Mo,Si等は保磁力の向上に有効であ
る。R−Fe−B系磁石の主相はR 2 Fe 14 Bであ
る。従ってRが8原子%未満では、もはや上記化合物を
形成せずα−鉄と同一構造の立方晶組織となるため高磁
気特性は得られない。一方Rが25原子%を越えると非
磁性のR rich相が多くなり磁気特性は著しく低下
する。
【0017】Bは、R 2 Fe 14 B相を形成するための
必須元素であり、2原子%未満では菱面体のR−Fe系
になるため高保磁力は望めない。また8原子%を越える
とBに富む非磁性相が多くなるとともに、結晶粒が粗大
化し、圧延加工が困難となる。
【0018】Coは本系磁石のキュリー点を増加させる
のに有効な元素であり、基本的にFeのサイトを置換し
R 2 Co 14 Bを形成するのだが、この化合物は結晶異
方性磁界が小さく、その量が増すにつれて磁石全体とし
ての保磁力は小さくなる。そのため永久磁石として考え
られる1k0e以上の保磁力を与えるには50原子%以
内がよい。
【0019】Alは元来アルミナ坩堝を用いて溶解した場
合、合金に必ず一定量含まれてしまう元素であるが、本
願では積極的に添加する場合も考慮して、とくに上限を
定めた。参考文献4 Zhang Maocai 他 Proceeding softh
e 8th Intenational Work-shop on Rare Earth Magnets
,1985,P541に示されるよう保磁力の増大効果を有して
いる。同文献は焼結磁石に対する効果を示したものであ
るが、その効果は鋳造磁石でも同様に存在する。しかし
Alは非磁性元素であるため、その添加量を増すと残留磁
束密度が低下し、15原子% を越えるとハードフェライト
以下の残留磁束密度になってしまうので、希土類磁石と
しての目的を果たし得ない。よってAlの添加量は15原子
%以下がよい。
【0020】(実施例1)本発明による製造法の工程図
の例を図1に示す。まず所望の組成の合金を誘導炉で溶
解し、鋳造型に鋳造する。次に磁石に異方性を付与する
ために、各種の熱間加工を施す。本実施例では、一般的
な鋳造法でなく、特殊鋳造法として急冷による結晶粒微
細効果の大きなLiquid dynamic compation法(参考文献
5,T.S.Chin他, J.Appl.Phys.59(4),15 February 1986,P
1297 )を用いた。また、熱間加工として(1)押し出し加
工(図2)、 (2)圧延加工(図3)、(3)スタンプ加工
(図4)のいずれかを1000℃で施した。押し出し加工に
ついては、一軸に力が加えられるように角形状の型押出
を工夫した。圧延加工の歪速度及びスタンプについて
は、極力ひずみ速度が小さくなるようにスタンプの速度
を調整した。いずれの方法でも合金の押される方向に平
行になるように結晶の磁化容易軸は配向する。
【0021】次なる表の組成の合金を溶解し、図1に示
す方法で磁石を製造した。ただし熱間加工法は、圧延加
工のみでなく各種の加工法を用いた。また用いた熱間加
工法は表中に併記した。また熱間加工後のアニール処理
はすべて1000℃×24時間行なった。
【0022】
【表1】
【0023】次に結果を示す。
【0024】
【表2】【0025】表2より、押出し、圧延、スタンプのすべ
ての熱間加工法で残留磁束密度が増加し磁気的に異方化
されたことがわかる。なお、熱間圧延を施したものは、
他に比べて表面性状が良く、特に優れた方法であると言
える。
【0026】(実施例2)
ここでは、通常の鋳造法を用いた実施例を紹介する。ま
ず表3のような組成を誘導炉で溶解し鉄鋳型に鋳造し、
柱状晶を形成せしめる。加工率約70%の圧延加工(そ
の他は実施例1と同条件)を行なった後、インゴットを
磁気的に硬化させるため1000℃×24時間のアニー
ル処理を施した。このときアニール後の平均粒径は約1
5μm であった。
【0027】
【表3】【0028】
【表4】【0029】表4より、熱間圧延加工によって(BH)max,
iHcとも大幅な増加を示していることがわかる。これ
は加工により結晶粒が特定方向に配向し、B−Hカーブ
の角形性が大巾に改善されたためである。参考文献2の
急冷法では、加工によりむしろiHcは減る傾向にあ
り、よって、(BH)max,iHcの大巾な増加は本発明の大
きな特徴となっている。
【0030】
【発明の効果】以上述べたように、特に、鋳造インゴッ
トを500℃以上の温度で一方向に加圧して熱間加工
し、結晶粒を微細化するとともに、その磁化容易軸を特
定の方向に配向せしめ、磁気的に異方性化することによ
り、加圧された方向に鋳造インゴットの結晶粒の磁化容
易軸が配向するため、磁気特性に優れた永久磁石を製造
することができるようになる。しかも、熱間加工が1段
階で済むので、大量生産に適するという優れた効果を奏
する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-iron permanent magnet. 2. Description of the Related Art Conventionally, the following three methods have been used to manufacture R-Fe-B magnets.
The exact method has been reported. (1) Sintering method based on powder metallurgy (Reference Document 1) (2) A quenched thin strip manufacturing apparatus used for manufacturing an amorphous alloy, quenched flakes having a thickness of about 30 μm, and Making a magnet by a resin bonding method (Reference 2) (3) A method in which the same flake used in the method of (2) is subjected to a mechanical orientation treatment by a two-stage hot press method (Reference 2). M.Sagawa, S.Fujimura, N.Togawa, H.Yama
moto and Y.Matsuura; J.Appl.Phys.Vol.55 (6), 15 Maro
h 1984, P2083 Reference 2. RWLee; Appl.Phys.Lett.Vol.46 (8), 15
April 1985, P790. The above prior art will be described with reference to the literature.
First, in the sintering method (1), an alloy ingot is produced by melting and casting, and is then pulverized into magnet powder having a particle size of about 3 μm. The magnet powder is kneaded with a binder serving as a molding aid, and is press-molded in a magnetic field to complete a compact. The compact is sintered in argon at a temperature of around 1100 ° C. for 1 hour and then quenched to room temperature. After sintering, if heat treatment is performed at a temperature of about 600 ° C., the coercive force is further improved. [0005] (2) First, a quenched ribbon of an R-Fe-B alloy is produced at an optimum rotation speed of a quenched ribbon manufacturing apparatus. The obtained ribbon has a ribbon shape with a thickness of 30 μm, and polycrystals having a diameter of 1000 mm or less are gathered. The ribbon is brittle and easily broken, and since the crystal grains are distributed isotropically, it is magnetically isotropic. If the ribbon is adjusted to an appropriate particle size, kneaded with a resin and press-molded, it is possible to achieve a filling of about 85% by volume at a pressure of about 7 ton / cm 2 . [0006] The manufacturing method of (3) is a method in which a quenched ribbon or a strip of ribbon is preliminarily heated at about 700 ° C. in a vacuum or an inert atmosphere at a temperature of about 700 ° C. Put in. Uniaxial pressure is applied when the ribbon reaches the desired temperature. Although temperature and time are not specified, T = 725 ± 25
C. and a pressure of about P to 1.4 ton / cm 2 are suitable. At this stage, the magnets are generally isotropic, although slightly oriented in the pressing direction. The next hot press is performed in a large area mold. Most commonly at 700 ° C
Press for 0.7 seconds at 0.7 ton. Then, the sample becomes half the initial thickness, the easy axis of magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic. These steps are a two-stage hot-pressing procedure
This method is dense and anisotropic by this method
R-Fe-B magnets can be manufactured. In addition, the crystal grain of the ribbon ribbon made by the first melt spinning method is set to be smaller than the grain size when it shows the maximum coercive force, and the crystal grain becomes coarse later during hot pressing. Keep the optimum particle size. [0007] In the prior art described above,
Although R-Fe-B magnets can be manufactured for the time being, manufacturing methods using these technologies have the following disadvantages. In the sintering method (1), it is essential to make the alloy into a powder.However, since the R-Fe-B alloy is very active against oxygen, oxidization becomes excessive when powdered, resulting in sintering. The oxygen concentration in the body will inevitably increase. Also, when molding the powder, a molding aid such as zinc stearate must be used, which is removed in advance in the sintering process. Will remain. This carbon significantly reduces the magnetic performance of R-Fe-B. A molded body after the addition of a molding aid and press molding is called a green body. It is very brittle and difficult to handle. Therefore, it is a great disadvantage that it takes a considerable amount of time to neatly arrange them in the sintering furnace.
Due to these drawbacks, generally speaking, the production of R-Fe-B based sintered magnets requires not only expensive equipment but also poor production efficiency and high magnet production costs. I will. Therefore, it cannot be said that this is a manufacturing method that can sufficiently bring out the low raw material cost of the R-Fe-B-based magnet. The production methods (2) and (3) use a vacuum melt spinning apparatus. This device is currently very productive and expensive. In (2), the product is low energy product because it is isotropic in principle, and the squareness of the hysteresis loop is not good, which is disadvantageous in terms of temperature characteristics and use. Method (3) is a unique method that uses hot pressing in two stages, but it is unavoidable that it will be very inefficient when considering mass production. The method for producing an R-Fe-B magnet according to the present invention solves these disadvantages, and an object thereof is to obtain a rare earth-iron permanent magnet of high performance and low cost. In the present invention, R (where R is at least one of the rare earth elements including Y): 8 to 30 atomic%, boron (B): 2 to 8 atomic%, Co: 50 atomic% or less, A
1: A first step of melting and casting an iron-based alloy containing 15 atomic% or less, and hot-working the cast ingot obtained in the first step by pressing in one direction at a temperature of 500 ° C. or more. A second step of refining crystal grains, orienting the easy axis of magnetization in a specific direction, and magnetically making it anisotropic. A method for producing a rare-earth-iron-based permanent magnet, wherein the product (BH) max is 4.1 MGOe or more. It is preferable that the method further includes a step of performing a heat treatment at a temperature of 250 ° C. or more before or after the hot working. As described above, the sintering method and the quenching method, which are the existing methods for producing rare earth-iron permanent magnets, have major drawbacks such as difficulty in powder control by pulverization and poor productivity. In order to remedy these drawbacks, the present inventors have started research on magnetization in a bulk state.
In the composition region described above (the composition is limited to a lower boron region than in the above document), it has been found that sufficient coercive force can be obtained only by performing heat treatment in a cast state because the crystal grains are refined. Further, hot working is easy, and the C axis (easy axis of magnetization) of the crystal grains is oriented in the rolling direction by the hot working , and can be made anisotropic without using a magnetic field.
Magnetic energy product obtained found Rukoto. According to this method, the anisotropy by hot working is not two steps as in the quenching method shown in Reference Document 2, but only one step, and the coercive force after working is greatly increased due to finer grains. It has a completely different phenomenon . Further, since it is not necessary to pulverize the cast ingot, it is not necessary to perform strict atmosphere control as in the sintering method, and the equipment cost is greatly reduced. For research on magnetizing in a bulk state,
There is reference 3, Hiroaki Miho (The Japan Institute of Metals, Autumn 1985 lecture, lecture number (544)).
16.2 Fe 50.7 Co 22.6 V 1.3 B 9.2 This is a small sample sucked up by dissolving in the air by blowing argon gas with a composition of 9.2. . Usually the casting will be a main phase Nd 2 Fe 14 B phase is coarsened in this composition, the anisotropy by hot working but can, as a permanent magnet
That sufficient coercive force is difficult to obtain We have experimentally confirmed. To obtain a sufficient coercive force in normal casting, it is essential that claim 1 is a low B composition, such as shown in the present invention. [0013] The composition of the conventional R-Fe-B magnets is, R 15 Fe 77 B 8, as represented by reference 1 has been optimized. This composition has shifted to the side richer in R and B as compared with the composition R 11.7 Fe 82.4 B 5.9 in which the main phase R 2 Fe 14 B compound is made in atomic percentage. This is explained from the fact that in order to obtain a coercive force, not only a main phase but also a non-magnetic phase such as an Rrich phase and a Brich phase are required. However, in the composition according to the present invention, the peak value of the coercive force exists at the point where the amount of B shifts to the smaller side. In this composition range, the coercive force is drastically reduced in the case of the sintering method, so that it has not been a problem so far. However, in conventional casting methods, only the composition range of the first aspect of the present invention, a high coercive force is obtained, sufficient coercive force on the side rich the mainstream composition B of the sintered process conversely can not be obtained. These points can be considered as follows. First, whether using the sintering method or the casting method, the coercive force mechanism itself follows the nucleation model. This can be seen from the fact that both initial magnetization curves show a steep rise like SmCo 5 . The coercive force of this type of magnet is basically based on a single domain model. That is, in this case,
R 2 Fe 14 B compound having large crystal magnetic anisotropy is
If it is too large, the grains will have domain walls in the grains, so that the reversal of magnetization easily occurs due to the movement of the domain walls, and the coercive force is small. On the other hand, when the number of particles decreases and becomes smaller than a certain size, the particles have no domain wall and the reversal of magnetization proceeds only by rotation, so that the coercive force increases. That is, in order to obtain an appropriate coercive force, the R 2 Fe 14 B phase needs to have an appropriate particle size. The particle size is 10 μm
The front and rear are appropriate, and in the case of the sintering type, the particle size can be adjusted by adjusting the powder particle size before sintering. However, in the case of the casting method, the size of the R 2 Fe 14 B compound is determined at the stage of solidification from melting, so it is necessary to pay attention to the composition and solidification process. In particular, the meaning of the composition is significant. When B exceeds 8 atomic% , the R 2 Fe 14
The size of the B phase could easily exceeded the 100 [mu] m, it is difficult to obtain a coercive force in the cast state without using a quenching apparatus, such as a reference 2. On the other hand, in the low boron region as described in the first aspect, the particle size can be easily reduced by devising the mold and casting temperature. However, in any case, if the hot working is performed, the main phase R 2 Fe 14 B phase becomes finer, so that the coercive force increases as compared with before the working. From a different point of view, the region where the coercive force can be obtained in the casting state can be said to be a composition richer in Fe than R 2 Fe 14 B. In the solidification stage, Fe appears as primary crystals first, and then R 2 Fe
14 B phase appears. At this time, since the cooling speed is much faster than the equilibrium reaction, R 2 Fe 14
It solidifies in such a way that the B phase surrounds it. Low in this composition range
Since it is a B region, the Brich phase as seen in a magnet of the typical composition R 15 Fe 77 B 8 of the sintered type can be almost neglected quantitatively. Heat treatment to diffuse the primary crystal Fe, is related to the Turkey allowed to reach equilibrium, the coercive force is highly dependent on the diffusion of the Fe phase. The means for hot working is not particularly limited.
However, rolling is particularly preferred. This is because the optimal method for improving the processing productivity, which has become a problem in Reference 3, is rolling. Rare earth-iron permanent magnet produced as described above
Is to refine and refine the crystal grains resulting from the manufacturing process.
Example 1 to be described later,
As shown by 2, high magnetic properties, especially (BH) max of 4.1
It has a high magnetic energy product of MGOe or more. Hereinafter, the reasons for limiting the composition of the permanent magnet according to the present invention will be described. As rare earths, Y, La, Ce, P
r, Nd, Sm, Eu, Gd, Tb, Dy, Ho , E
r , Tm, Yb, and Lu are listed as candidates, and one or more of these are used in combination. The highest magnetic performance is obtained with Pr. Therefore, in practice, P
An r, Pr-Nd alloy, Ce-Pr-Nd alloy, or the like is used. Also, a small amount of additional element, for example, heavy rare earth element Dy,
Tb and the like, Al, Mo, Si and the like are effective in improving the coercive force. Main phase of R-Fe-B magnet is R 2 Fe 14 B. Therefore, when R is less than 8 atomic%, the above compound is no longer formed and a cubic structure having the same structure as that of α-iron is obtained, so that high magnetic properties cannot be obtained. On the other hand, if R exceeds 25 atomic%, the non-magnetic R rich phase increases and the magnetic properties are remarkably deteriorated. B is an essential element for forming the R 2 Fe 14 B phase, and if it is less than 2 atomic%, a high coercive force cannot be expected because it becomes a rhombohedral R—Fe system. On the other hand, if the content exceeds 8 atomic%, the nonmagnetic phase rich in B increases, and the crystal grains become coarse, making the rolling process difficult. Co is an effective element for increasing the Curie point of the present magnet, and basically replaces the Fe site.
Although this compound forms R 2 Co 14 B , this compound has a small crystal anisotropic magnetic field, and as its amount increases, the coercive force of the magnet as a whole decreases. Therefore, in order to provide a coercive force of 1 k0e or more which can be considered as a permanent magnet, the content is preferably within 50 atomic%. Al is originally an element that is always contained in an alloy when it is melted using an alumina crucible. However, in the present application, the upper limit is particularly set in consideration of the case where it is positively added. Reference 4 Zhang Maocai et al. Proceeding softh
e 8th Intenational Work-shop on Rare Earth Magnets
1985, P541 has the effect of increasing the coercive force. Although this document shows the effect on sintered magnets, the effect exists similarly in cast magnets. However
Since Al is a non-magnetic element, increasing the amount of addition lowers the residual magnetic flux density, and exceeding 15 atomic% results in residual magnetic flux density equal to or lower than that of hard ferrite, so it cannot fulfill its purpose as a rare earth magnet. . Therefore, the addition amount of Al is 15 atoms
% Or less is good. Embodiment 1 FIG. 1 shows an example of a process chart of the manufacturing method according to the present invention. First, an alloy having a desired composition is melted in an induction furnace and cast into a casting mold. Next, various types of hot working are performed to impart anisotropy to the magnet. In this embodiment, not a general casting method but a special dynamic casting method, a liquid dynamic compation method having a large crystal grain fine effect by quenching (references)
5, TSChin et al., J.Appl.Phys.59 (4), 15 February 1986, P
1297) was used. As hot working, any one of (1) extrusion (FIG. 2), (2) rolling (FIG. 3), and (3) stamping (FIG. 4) was performed at 1000 ° C. As for the extrusion, a square mold extrusion was devised so that a force was applied uniaxially. Regarding the strain rate of the rolling process and the stamp, the speed of the stamp was adjusted so as to minimize the strain rate. In either method, the axis of easy magnetization of the crystal is oriented so as to be parallel to the direction in which the alloy is pressed. An alloy having the composition shown in the following table was melted, and a magnet was manufactured by the method shown in FIG. However, the hot working method does not
Various processing methods were used as well as engineering. The hot working method used is also shown in the table. The annealing treatment after hot working was carried out base and 1000 ° C. × 24 hours to. [Table 1] Next, the results are shown. [Table 2] From Table 2, it can be seen that the residual magnetic flux density increased and became magnetically anisotropic in all the hot working methods of extrusion, rolling and stamping. In addition, those that have been subjected to hot rolling,
It has better surface properties than others and is said to be a particularly excellent method.
I can. Embodiment 2 Here, an embodiment using a normal casting method will be introduced. First, the composition shown in Table 3 is melted in an induction furnace and cast into an iron mold.
Columnar crystals are formed. After rolling at a processing rate of about 70% (the other conditions were the same as in Example 1), annealing was performed at 1000 ° C. for 24 hours to magnetically cure the ingot. At this time, the average particle size after annealing is about 1
It was 5 μm. [Table 3] [Table 4] According to Table 4, (BH) max,
It can be seen that iHc also shows a significant increase. This is because the more crystal grains in the processing oriented in a specific direction, squareness of the B-H curve is improved by a large margin. The quenching method of the reference 2, tend to rather iHc is reduced by the processing, therefore, has become a major feature of the (BH) max, greatly increase the iHc present invention. As described above, in particular, the cast ingot is pressed in one direction at a temperature of 500 ° C. or more and hot-worked to refine the crystal grains and specify its easy axis of magnetization. , And the magnetically anisotropically oriented, the easy axis of the crystal grains of the cast ingot is oriented in the pressed direction, so that a permanent magnet excellent in magnetic properties can be manufactured. Become like In addition, since the hot working is completed in one stage, an excellent effect that it is suitable for mass production is exhibited.
【図面の簡単な説明】
【図1】本発明のR-Fe-B系磁石の製造工程図。
【図2】熱間押出しによる磁石合金の配向処理図。
【図3】熱間圧延による磁石合金の配向処理図。
【図4】熱間スタンプ加工による磁石合金の配向処理
図。
【符号の説明】
1・・油圧プレス
2・・ダイ(型)
3・・磁石合金
4・・圧力を示す矢印
5・・磁石合金の磁化容易方向を示す矢印
6・・ロール
7・・ロールの回転方向を示す矢印
8・・磁石合金の進行方向を示す矢印
9・・基板
10・スタンプの上下動を示す矢印
11・基板の移動方向を示す矢印
12・スタンプBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a manufacturing process diagram of an R-Fe-B based magnet of the present invention. FIG. 2 is a view showing an orientation treatment of a magnet alloy by hot extrusion. FIG. 3 is a view showing an orientation treatment of a magnet alloy by hot rolling. FIG. 4 is a view showing an orientation treatment of a magnet alloy by hot stamping. [Description of Signs] 1. Hydraulic press 2. Die (mold) 3. Magnetic alloy 4. Arrow 5 indicating pressure. Arrow 6 indicating easy magnetization direction of magnet alloy. Roll 7. Arrow 8 indicating the direction of rotation Arrow 9 indicating the traveling direction of the magnet alloy Substrate 10 Arrow 11 indicating the vertical movement of the stamp Arrow 12 indicating the moving direction of the substrate Stamp
Claims (1)
くとも1種):8〜30原子%、ボロン(B):2〜8
原子%、Co:50原子%以下、A1:15原子%以下
を含む鉄系合金を溶解および鋳造する第1の工程と、 前記第1の工程で得られた鋳造インゴットを500℃以
上の温度で一方向に加圧して熱間加工し、結晶粒を微細
化するとともに、その磁化容易軸を特定の方向に配向せ
しめ、磁気的に異方性化する第2の工程とを有し、 前記各工程を順次行って、磁石の磁気エネルギー積(BH)
max を4.1MGOe以上とすることを特徴とする希土類−
鉄系永久磁石の製造方法。 2.前記熱間加工の前もしくは後に、250℃以上の温
度で熱処理を施す工程を有する請求項1に記載の希土類
−鉄系永久磁石の製造方法。(57) [Claims] R (where R is at least one of the rare earth elements including Y): 8 to 30 atomic%, boron (B): 2 to 8
A first step of melting and casting an iron-based alloy containing at least 10 atomic%, 50 atomic% of Co, and 15 atomic% or less of A: at a temperature of 500 ° C. or more at a temperature of 500 ° C. or more. Pressurizing in one direction and performing hot working to refine crystal grains, orient the easy axis of the magnetization in a specific direction, and magnetically anisotropically comprise a second step; The process is performed sequentially, and the magnetic energy product (BH) of the magnet
rare earth characterized by max not less than 4.1 MGOe
Manufacturing method of iron-based permanent magnet. 2. The method for producing a rare earth-iron permanent magnet according to claim 1, further comprising a step of performing a heat treatment at a temperature of 250 ° C. or more before or after the hot working.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5149548A JP2857824B2 (en) | 1985-08-13 | 1993-06-21 | Rare earth-iron permanent magnet manufacturing method |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17811385 | 1985-08-13 | ||
JP2543786 | 1986-02-07 | ||
JP2950186 | 1986-02-13 | ||
JP61-29501 | 1986-02-13 | ||
JP61-25437 | 1986-02-13 | ||
JP60-178113 | 1986-02-13 | ||
JP5149548A JP2857824B2 (en) | 1985-08-13 | 1993-06-21 | Rare earth-iron permanent magnet manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61144532A Division JPS62276803A (en) | 1985-08-13 | 1986-06-20 | Rare earth-iron permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07135120A JPH07135120A (en) | 1995-05-23 |
JP2857824B2 true JP2857824B2 (en) | 1999-02-17 |
Family
ID=27458316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5149548A Expired - Fee Related JP2857824B2 (en) | 1985-08-13 | 1993-06-21 | Rare earth-iron permanent magnet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2857824B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4622767B2 (en) * | 2005-09-20 | 2011-02-02 | パナソニック株式会社 | Manufacturing method of radial magnetic anisotropic multipole magnet |
CN109686555B (en) * | 2017-10-19 | 2022-09-13 | 罗伯特·博世有限公司 | Method and apparatus for producing thermally deformed magnet |
JP7247548B2 (en) * | 2017-12-28 | 2023-03-29 | トヨタ自動車株式会社 | Rare earth magnet and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61238915A (en) * | 1985-04-16 | 1986-10-24 | Hitachi Metals Ltd | Permanent magnet alloy and its manufacture |
-
1993
- 1993-06-21 JP JP5149548A patent/JP2857824B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61238915A (en) * | 1985-04-16 | 1986-10-24 | Hitachi Metals Ltd | Permanent magnet alloy and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPH07135120A (en) | 1995-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5538565A (en) | Rare earth cast alloy permanent magnets and methods of preparation | |
JPS62276803A (en) | Rare earth-iron permanent magnet | |
JP2558095B2 (en) | Rare earth ferrous iron permanent magnet manufacturing method | |
JPS62203302A (en) | Cast rare earth element-iron system permanent magnet | |
JP2857824B2 (en) | Rare earth-iron permanent magnet manufacturing method | |
EP0288637B1 (en) | Permanent magnet and method of making the same | |
US5186761A (en) | Magnetic alloy and method of production | |
JP2530185B2 (en) | Manufacturing method of permanent magnet | |
US5460662A (en) | Permanent magnet and method of production | |
JP2631380B2 (en) | Rare earth-iron permanent magnet manufacturing method | |
JPH07123083B2 (en) | Cast rare earth-method for manufacturing iron-based permanent magnets | |
JP2609106B2 (en) | Permanent magnet and manufacturing method thereof | |
GB2206241A (en) | Method of making a permanent magnet | |
JP2611221B2 (en) | Manufacturing method of permanent magnet | |
JP2730441B2 (en) | Manufacturing method of alloy powder for permanent magnet | |
JPH08250312A (en) | Rare earth-fe permanent magnet and manufacture thereof | |
JPH01175207A (en) | Manufacture of permanent magnet | |
EP0599815B1 (en) | Magnetic alloy and method of making the same | |
JP2746111B2 (en) | Alloy for permanent magnet | |
JPS63286515A (en) | Manufacture of permanent magnet | |
JPH0766892B2 (en) | Permanent magnet manufacturing method | |
KR900006532B1 (en) | Making method for permanent magnets | |
JPS63286514A (en) | Manufacture of permanent magnet | |
JPS63213317A (en) | Rare earth iron permanent magnet | |
JPH01161802A (en) | Manufacture of permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |