JPS62203302A - Cast rare earth element-iron system permanent magnet - Google Patents

Cast rare earth element-iron system permanent magnet

Info

Publication number
JPS62203302A
JPS62203302A JP61045872A JP4587286A JPS62203302A JP S62203302 A JPS62203302 A JP S62203302A JP 61045872 A JP61045872 A JP 61045872A JP 4587286 A JP4587286 A JP 4587286A JP S62203302 A JPS62203302 A JP S62203302A
Authority
JP
Japan
Prior art keywords
cast
rare earth
permanent magnet
iron
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61045872A
Other languages
Japanese (ja)
Other versions
JPH07120576B2 (en
Inventor
Koji Akioka
宏治 秋岡
Tatsuya Shimoda
達也 下田
Osamu Kobayashi
理 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61045872A priority Critical patent/JPH07120576B2/en
Publication of JPS62203302A publication Critical patent/JPS62203302A/en
Publication of JPH07120576B2 publication Critical patent/JPH07120576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Abstract

PURPOSE:To obtain a uniform and high performance permanent magnet with high productivity by a method wherein R-Fe-B system alloy with specific composition is melted and cast by unidirectional solidification and then subjected to a heat treatment at a temperature above a specific value. CONSTITUTION:Alloy composed of 8-25atom% of R (at least one of rare earth elements including Y), 2-8atom% of B and the balance of iron and other impurities which are unavoidable from the manufacturing point of view is melted and cast by unidirectional solidification. Then this cast ingot is subjected to a heat treatment at the temperature higher than 500 deg.C to harden magnetically. Moreover, by employing continuous casting, the productivity can be improved significantly. With this constitution, a coercive force can be obtained under the bulk state and, as the anisotropy of solidified structure can be utilized, a uniform and high performance permanent magnet can be obtained. Moreover, with this method, the cast ingot need not be ground. Therefore, strict environmental control is not necessary.

Description

【発明の詳細な説明】 〔、産業上の利用分野〕 本発明は希土鶏−鉄系永久磁石に関する。[Detailed description of the invention] [, Industrial application field] The present invention relates to rare earth chicken-iron permanent magnets.

〔発明の概安〕[Summary of the invention]

本発明は、v4漬インゴットを粉砕・焼結等に行なわず
、一方凝固法全用いて判マクロ組織が柱状晶のみと・な
るように刈a後、熱処理を施すだけで磁気的に硬化させ
、また熱間加工によって、磁気的に異方化させることに
より、希土:a−鉄系永久磁石を得んとするものである
In the present invention, the V4-soaked ingot is not subjected to pulverization, sintering, etc., but after being harvested using a solidification method so that the size macrostructure becomes only columnar crystals, it is magnetically hardened by only heat treatment. Furthermore, the present invention aims to obtain rare earth:a-iron permanent magnets by magnetically anisotropically forming them through hot working.

〔従来の技術〕[Conventional technology]

従来、R−1!′e−B系の磁石の製造には次の5通り
の方法が報告されている。
Conventionally, R-1! The following five methods have been reported for producing 'e-B magnets.

(1)粉末冶金法に基づく焼結法(参考文献1)。(1) Sintering method based on powder metallurgy (Reference 1).

(2)アモルファス合金を製造するに用いる腫、冷薄帯
!!!!造装置で、厚さ60μm8度の急冷薄片を作り
、その薄片全樹脂、結合法で磁石にする(参考文献2)
(2) Cold ribbon used to produce amorphous alloys! ! ! ! A quenched thin piece with a thickness of 60 μm and 8 degrees is made using a molding device, and the thin piece is made into a magnet using a bonding method using all resin (Reference 2).
.

(31+21の方法で使用した同じ薄片を、2段階のホ
ットプレス法で機械的配向処理を行う方法(参考文献2
)。
(Method of mechanically orienting the same flakes used in method 31+21 using a two-step hot press method (Reference 2)
).

参考文献I  M、SagaWa、S、Fujimur
a、N、TOgaWaH,’yamamoto and
 Y、Matsuura ; J、Appl、Phys
References I M, SagaWa, S, Fujimur
a, N, TOgaWaH,'yamamoto and
Y, Matsuura; J, Appl, Phys.
.

VOl、55(6)、15 March 198!、P
2O85参考文#2.  R,W、Lee;Appl、
Ph7B、Lett、vol。
VOl, 55(6), 15 March 198! , P
2O85 reference text #2. R, W, Lee; Appl;
Ph7B, Lett, vol.

46(13)、15 Apri11985.P790文
献に庵って上記の従来技術を説明する。まずfilの焼
結法では、溶解・鋳造により会合インゴットを作製し、
粉砕されて5μmくらいの粒径を有する磁石粉にされる
。磁石粉は成形助剤となるバインダーと混練され、磁場
中でプレス成形されて、成形体ができあがる。成形体は
アルゴン中で1100℃前後の温度で1時間焼結され、
その後宿TMLまで急冷される。焼結後、60G’C前
後の温度で熱処理すると保磁力はさらに向上する。
46(13), 15 Apri11985. The above-mentioned prior art will be explained with reference to the P790 document. First, in the fil sintering method, an aggregate ingot is produced by melting and casting.
It is crushed into magnetic powder with a particle size of about 5 μm. Magnetic powder is kneaded with a binder, which serves as a molding aid, and press-molded in a magnetic field to complete a molded product. The compact was sintered in argon at a temperature of around 1100°C for 1 hour.
After that, it is rapidly cooled down to the inn TML. After sintering, the coercive force is further improved by heat treatment at a temperature of around 60 G'C.

+21 d、1ず急冷薄帝製逍装耐の最適な回転数でR
−Fe−B合金の急冷薄帯を作る。得られ九4fは厚さ
60μmのリボン状金しており、直径が10001以下
の多結晶が集合している。薄帯は脆くて割れやすく、結
晶粒は等号的に分布しているので磁気的にも等方性であ
る、この薄帯ft適度な粒度にして、樹脂と混練してプ
レス成形すれば7 ton /−程匿の圧力で、約85
体積チの充填が可能となる。
+21 d, R at the optimum rotation speed of 1zu quenched and made by Tei Seisaku.
-Make a rapidly solidified ribbon of Fe-B alloy. The obtained specimen 94f is a ribbon-shaped gold with a thickness of 60 μm, and polycrystals with a diameter of 10,001 or less are aggregated. The ribbon is brittle and easily cracked, and since the crystal grains are distributed equivocally, it is also magnetically isotropic.If this ribbon is made into an appropriate particle size, kneaded with resin, and press-molded, it will become 7. ton/- under pressure of Cheng Hui, about 85
It becomes possible to fill the volume.

(3)の製造方法は、始めにリボン状の急冷薄帯あるい
は薄帯の片を、真空中あるいは不活性雰囲気中で約70
0℃で予備加熱したグラファイトあるいは他の耐熱用の
プレス型に入れる。該リボンが所望の温度に到達したと
き一軸の圧力が加えられる。温度、時間は特定しないが
、充分な塑性が出る条件としてT=725±250℃、
圧力はP〜1、 a ton / cd8度が適してい
る。この段階では磁石はわずかにプレス方向に配向して
いるとはいえ。
In the manufacturing method (3), first, a ribbon-like quenched ribbon or piece of ribbon is heated in a vacuum or in an inert atmosphere for about 70 minutes.
Place in a graphite or other heat-resistant press mold preheated to 0°C. Uniaxial pressure is applied when the ribbon reaches the desired temperature. Although the temperature and time are not specified, the conditions for sufficient plasticity are T = 725 ± 250°C,
A suitable pressure is P~1, aton/cd8 degrees. Although at this stage the magnet is slightly oriented in the pressing direction.

全体的には等方性である。次のホットプレスは。Overall, it is isotropic. Next hot press.

大面積を有する型で行なわれる。最も一般的には700
℃で0.7 tonで数秒間プレスする。すると試料は
最初の厚みの通になシブレス方向と平行に磁化容易軸が
配向してきて、会合は異方性化する。
It is carried out in a mold with a large area. most commonly 700
Press at 0.7 ton for a few seconds at °C. Then, the axis of easy magnetization of the sample becomes oriented parallel to the shibres direction through the initial thickness, and the association becomes anisotropic.

これらの工程は、二段階ホットプレス法(tWO−8t
a7ehot−press proceaure )と
呼ばれているこの方法によ#)緻密で異方性を有するR
−Pa−B磁石が製造できる。なお、最初のメルトスピ
ニング法で作られるリボン薄帯の結晶粒は、それが最大
の保磁力を示す時の粒径よりも小さめにしておき、後に
ホットプレス中に結晶粒の粗大化が生じて最適の粒径に
なるようにしておく。
These steps are performed using a two-step hot press method (tWO-8t
This method, called a7ehot-press procedure), produces dense and anisotropic R.
-Pa-B magnets can be manufactured. It should be noted that the crystal grains of the ribbon produced by the initial melt spinning method are made smaller than the grain size at which they exhibit their maximum coercive force, so that coarsening of the crystal grains occurs later during hot pressing. Make sure the particle size is optimal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来技術で、R−Fe−B系の磁石は一応作製
できるのであるが、これらの技術を利用した製造方法は
次のような欠点を有している。filの焼結法は1合金
を粉末にするのが必須であるが、R−Fe−B系合金は
7ヒいへん酸素に対して活性であるので、粉末化すると
宗計酸1ヒが激しくなシ、焼結体中の酸素濃度はどうし
ても高くなってしまう。また粉末を成形するときに1例
えばステアリン酸亜鉛のような成形助剤を使用しなけれ
ばならず、これは焼結工程で前もって嘔り除かれるので
あるが、数割は磁石体の甲に炭素の形で残ってしまう。
Although R-Fe-B magnets can be manufactured using the above-mentioned conventional techniques, manufacturing methods using these techniques have the following drawbacks. In the sintering method of fil, it is essential to turn the alloy into powder, but since the R-Fe-B alloy is active against oxygen, when it is pulverized, Sokei's acid is violently released. However, the oxygen concentration in the sintered body inevitably becomes high. Furthermore, when molding the powder, a molding aid such as zinc stearate must be used, and this is removed in advance during the sintering process, but several percent of the carbon is added to the back of the magnet. It remains in the form of

この炭素は著しくR−Fe−Bの磁気性能を低下させる
、成形助剤を加えてプレス成形した後の成形体はグリー
ン体と言われる。これfdたいへん脆く、ハンドリング
カド碓しい。従って焼結炉にきれいに並べて入れるのに
は、相当の手間がかかることも大きな欠点である。これ
らの欠点があるので一般的に言ってR−Fe−B系の焼
結磁石の製造には、高価な設備が必要になるばか9でな
く、生産効率が悪く、磁石の製造費が高くなってしまう
。従って、R−Fe−B系磁石の原料費の安さを充分に
引き出せる製造法とは言い難い。
This carbon significantly reduces the magnetic performance of R-Fe-B.The molded product after press molding with the addition of a molding aid is called a green product. This fd is very fragile and has poor handling. Therefore, another major drawback is that it takes a considerable amount of effort to neatly arrange them in the sintering furnace. Because of these drawbacks, generally speaking, manufacturing R-Fe-B sintered magnets requires expensive equipment9, production efficiency is low, and magnet manufacturing costs are high. I end up. Therefore, it cannot be said that this is a manufacturing method that can fully take advantage of the low raw material costs of R-Fe-B magnets.

12+ ト+31の製造法は、X窒メルトスピニング伎
置金使う。この装置は現在では、たいへん生産性が悪く
、しかも高価である。(2)では原理的4C,q方性で
あるので低エネルギー積であシ、ヒステリシスループの
角形性もよくないので温度特性に対しても、使用する面
においても不利である。(3)の方法は、ホットプレス
を2段1嘴に1!2うというユニークな方法であるが、
実際に量産を考えるとたいへん非効率になることは否め
ないであろう。
The manufacturing method for 12+ To+31 uses X nitrogen melt spinning metal. This equipment is currently very unproductive and expensive. In (2), since it is 4C,q-tropic in principle, the energy product is low, and the squareness of the hysteresis loop is also poor, which is disadvantageous in terms of temperature characteristics and usage. Method (3) is a unique method in which the hot press is applied 1 to 2 times per beak in two stages.
If we actually consider mass production, it cannot be denied that it will be extremely inefficient.

本発明によるR−Fe−B系磁石の製造方法はこれらの
欠点を解決するものであり、その目的とするところは、
低コストでしかも高性能な磁石全提供するところにある
The method of manufacturing an R-Fe-B magnet according to the present invention solves these drawbacks, and its purpose is to:
We offer all kinds of low-cost, high-performance magnets.

〔間頃全解決するための手段〕[Means to solve all problems]

本発明の永久磁石は、希土唄−鉄系永久磁石に関するも
のであり、具体的にばRが8〜25原子係、B力12〜
8原子優、残部が鉄及びその他の製造上不可避な不純物
からなる合金を溶、麻し、一方凝固法を用いて賛成した
後、該鋳造インゴットを500℃以上の@度で熱処理す
ることにより、磁気的に硬化させることを特徴とし、電
離性を上げるためには、これに連続鋳造法を用いて任意
形状の磁石を得ることを特徴とし、さらなる磁気特性の
向上の定めには、A遺インゴット”1500c以上の温
度で熱間刀ロエすることにより、結晶粒の結晶軸を特定
の方向に配向させ、該鋳11インゴットを磁気的に異方
化することを特徴とする。
The permanent magnet of the present invention relates to a rare earth iron-based permanent magnet, and specifically has an R of 8 to 25 atoms and a B force of 12 to 25 atoms.
By melting and melting an alloy consisting of more than 8 atoms, the remainder of which is iron and other impurities unavoidable in manufacturing, and after agreeing using a solidification method, the cast ingot is heat-treated at a temperature of 500 degrees Celsius or higher, It is characterized by being hardened magnetically, and in order to increase the ionizability, it is characterized by using a continuous casting method to obtain a magnet of any shape. ``The cast 11 ingot is characterized by being hot-rolled at a temperature of 1500 C or more to orient the crystal axes of the crystal grains in a specific direction, thereby making the cast 11 ingot magnetically anisotropic.

前記のように現存の希土類−鉄系永久磁石の製造方法で
ある焼結法・1頭、冷性は、それぞれ粉砕による粉末管
理の困難さ、生産性の悪きといった大きな欠点を有して
いる。本発明者らは、これらの欠点全改良するため、バ
ルク状態で保磁力を得ることができるような合金の研究
に着手し、前記のような組成においてバルク状態での保
磁力の獲得が可能であり、このとき鋳造組織が乱れのな
い一方向凝固組織となるようにすると保磁力が得やすく
、また凝固組織の異方性全利用できるため、通常の凝固
組織を用いるよシも、より均一な高性能永久磁石が得ら
れ、これに連続鋳造全応用すると生産性を大幅に上げる
ことが可能であり、熱間刀口工により異方化することも
可能であることを発明した。この方法では、鋳造インゴ
ットを粉砕する必要がないので、焼結法はどの厳密な雰
囲気管理を行なう必要はなく、設備費が大きく低減され
る。
As mentioned above, the existing methods for producing rare earth-iron permanent magnets, sintering, single head, and cold, each have major drawbacks such as difficulty in powder control through pulverization and poor productivity. In order to improve all of these drawbacks, the present inventors began research on an alloy that can obtain coercive force in the bulk state, and found that it is possible to obtain coercive force in the bulk state with the above composition. At this time, it is easier to obtain coercive force by making the casting structure a unidirectional solidification structure with no disturbance, and since it is possible to fully utilize the anisotropy of the solidification structure, it is possible to achieve more uniform high performance than using a normal solidification structure. He discovered that permanent magnets can be obtained, and that productivity can be greatly increased by applying continuous casting to them, and that it is also possible to make them anisotropic by hot cutting. In this method, there is no need to crush the cast ingot, so the sintering method does not require any strict atmosphere control, and equipment costs are greatly reduced.

さらに熱間刀ロエによる異方型も急冷伝のように2段階
ではなく、一段階でよく、バルクの1まカロエできるの
でプレスだけでなく、圧延・スタンプ・押し出し・絞り
等も可能で、形状任意性・生産性はJL(高する、同系
統の研究には、参考文献6三保広晃他(日本余端学会、
昭和60年度秋期講演会、講演番% (5A 4 ) 
)があるが同研究は本発明と組成域を異にするのみなら
ず、マクロ組織による性能変fヒについてrrl−切、
言及しておらず性能的にも本発明て大きく劣っている。
Furthermore, the anisotropic molding by hot rolling can only be done in one step, rather than in two stages as in the case of rapid cooling, and the bulk can be molded in one step, so it is possible not only to press, but also to roll, stamp, extrude, draw, etc., and shape it. Arbitrarity and productivity are increased by JL (JL).References 6 Miho Hiroaki et al.
1985 Autumn Lecture, Lecture number% (5A 4)
), but this research not only differs from the present invention in the composition range, but also in terms of performance changes due to macrostructure.
This is not mentioned and the present invention is greatly inferior in terms of performance.

また求める形状を得る之めの2次加工も、杢糸の場合、
従来のサマリウムコバルト系希土類磁石に比して曲げ強
さ・圧縮強さ等が大きいので、冷間でも非常にやりやす
い。
In addition, the secondary processing to obtain the desired shape is also done in the case of heathered yarn.
It has greater bending strength and compressive strength than conventional samarium cobalt rare earth magnets, so it is very easy to work with in cold conditions.

従及のR−Fe−B系磁石の組成は参考文献1に代表さ
れるように、R0Fθ1.B8が最適組成とされていた
。この組成1・まR−Fe−B系磁石の主相R,Fθ1
4B化合物を原子百分率で表わした組成R11,?Fθ
814 BIl、11に比してR−B両元素に富む側に
移行している。これは保磁力を得るためには、主相のみ
でなく R−rich相・B−rich相と呼ばれる非
磁性相が8妥であるという点から説明されている。
The composition of the conventional R-Fe-B magnet is R0Fθ1. B8 was considered to be the optimal composition. The main phase R, Fθ1 of this composition 1 R-Fe-B magnet
Composition R11, ?4B compound expressed in atomic percentage? Fθ
Compared to 814 BIl and 11, it has shifted to the side rich in both R and B elements. This is explained from the point that in order to obtain coercive force, not only the main phase but also non-magnetic phases called R-rich phase and B-rich phase are required.

ところが本発明による組成では、これとは逆にBが少な
い側に移行したところにビーク唾が存在する。この組成
域では、焼結法によると保磁力が激減するので、これま
であ1り注目されていなかった。しかし鋳造法によると
本組成域でのみ高保磁力が得られ、通常のBに富む側で
は十分な保磁力が得られない。このことは保磁力機構に
なんらかの変化が起ったことによると考えられる。
However, in the composition according to the present invention, on the contrary, beak saliva exists where B is shifted to the side where there is less B. In this composition range, the coercive force is drastically reduced by the sintering method, so it has not received much attention so far. However, according to the casting method, a high coercive force can be obtained only in this composition range, and a sufficient coercive force cannot be obtained in the normal B-rich side. This is considered to be due to some change in the coercive force mechanism.

永久磁石材料に、一方凝固法?用いることはアルニコ磁
石を初め、希土類磁石系のセリウム−コバルト−銅−鉄
系鋳造磁石(参考文献4.  G、Y。
On the other hand, solidification method for permanent magnet materials? In addition to alnico magnets, rare earth magnets such as cerium-cobalt-copper-iron cast magnets are used (Reference 4. G, Y).

OR工N 119、工EKK Uransaction
s or Maghevics。
OR Engineering N 119, Engineering EKK Uranaction
s or Maghevics.

Mo1.MAG−8,41,Marcn 1972 P
29)でも行なわれており、本発名者らのひとりも19
81年、−万凝固ではない力(、柱状晶組織の効果を樹
脂結合型サマリウムコバルト磁石への応用として発表し
ている(参考文献5.  T、8himodailp、
Proceedingsof the fifth 1
ntsrnational Workshop onR
are Earth−Cobalt Permanen
t Magnets、1981P595)。本発明にお
いても鋳造状態で一万凝固組織を得ることは、高性能磁
石化の重要点となっている。すなわち、不磁石は熱処理
によって保磁力を得る過程か拡散によるものであり、参
考文献5のサマリウムコバルトと同様1等軸晶よシも一
方向、疑固組織による方が保磁力が得やすい。さらに本
系磁石は、一方向凝固組織に垂直な面に磁化容易III
!llが配向する性質があるので、これを利用すれば1
面同異方性磁石となる。一般に鋳造磁石の最大の課4,
4は異方化をいかに行なうかという点にある。アルニコ
磁石では磁界中制御冷却等の手段が採られているが、杢
糸では熱間加工による機械的な配向が可能である。すな
わち変形方間に磁化容易l1IIy!fi配向する性質
を有する。一方向凝固ではなく、通常の金型に鋳込んだ
柱状晶m織では1組織の乱れによる磁気特性の悪化だけ
でな(、d壁周辺部と中心部で柱状晶組織の発達方向に
差が生じるので、熱間加工によっても配向を均一に行な
うことは困雉である、ところが一方向凝固の場合には、
配向バラツキが生じに<<、容易に配向が可能となる。
Mo1. MAG-8, 41, Marcn 1972 P
29), and one of the present authors also said that 19)
In 1981, he published the effect of columnar crystal structure as an application to resin-bonded samarium cobalt magnets (References 5. T, 8himodailp,
Proceedings of the fifth 1
ntsrnational Workshop onR
are Earth-Cobalt Permanent
t Magnets, 1981P595). In the present invention as well, obtaining a 10,000-solidified structure in a cast state is an important point for producing a high-performance magnet. That is, nonmagnets acquire coercive force through heat treatment or diffusion, and as with samarium cobalt in Reference 5, it is easier to obtain coercive force when the uniaxial crystal structure is unidirectional and the quasi-solid structure is used. Furthermore, this magnet is easily magnetized in the plane perpendicular to the unidirectionally solidified structure.
! Since ll has the property of being oriented, if you use this, 1
It becomes a plane anisotropic magnet. Generally speaking, the biggest problem with cast magnets is 4.
The fourth point is how to perform anisotropy. For alnico magnets, methods such as controlled cooling in a magnetic field are used, but for heathered yarn, mechanical orientation through hot processing is possible. In other words, magnetization is easy l1IIy during deformation! It has the property of fi orientation. In the case of columnar crystal m weave cast in a normal mold instead of unidirectional solidification, the magnetic properties are not only deteriorated due to the disturbance of one structure (there is a difference in the direction of development of the columnar crystal structure between the periphery of the d-wall and the center). Therefore, it is difficult to achieve uniform orientation even by hot working. However, in the case of unidirectional solidification,
Orientation becomes possible easily even though orientation variation occurs.

配向方向も、縦・横だけでなく、ロータリースウエージ
/グのように多方向から変形圧力がかかる’*+噌に用
いれば、ラジアル配向も可能となる。
The orientation direction is not limited to the vertical and horizontal orientations; radial orientation is also possible when used in rotary swaging, where deformation pressure is applied from multiple directions.

以下、本発明による永久磁石の組成風足理由を説明する
0希土類としては、Y、La、Ce、Pr、Nd。
Hereinafter, the rare earths to explain the compositional characteristics of the permanent magnet according to the present invention include Y, La, Ce, Pr, and Nd.

Sm、F’u、Gd、T’b、Dy、Ha、Eu、Tm
、Y’b、Luが候補として挙げられ、これらのうちの
1種あるいは1種以上を組み会わせて用いられる。最も
高い磁気特性はPrで得られる。従って実用的にはPr
Sm, F'u, Gd, T'b, Dy, Ha, Eu, Tm
, Y'b, and Lu are listed as candidates, and one or more of these may be used in combination. The highest magnetic properties are obtained with Pr. Therefore, practically Pr
.

Pr−N(L合金、 0e−Pr−Nd @−金等が用
いられる。
Pr-N(L alloy, Oe-Pr-Nd@-gold, etc.) are used.

また少量の添加元素1例えば重希土元素のD7.Tb等
やAffi、MO,Si等は保磁力の向上に有効である
Additionally, a small amount of additive elements 1, such as heavy rare earth elements D7. Tb, Affi, MO, Si, etc. are effective in improving coercive force.

R−IF e −B系磁石の主相はRtF’e、4Bで
ある。従ってRが8原子幅未満では。もはや上記化合物
を形放せず、α−鉄と同−h4ffiの立方晶組織とな
るため高磁気特性は得られない。−万Rが25原子係を
越えると非磁性のRrich相が多くなり磁気特性は著
しく低下する。よって只の範囲は、8〜25原子%が適
当である。
The main phase of the R-IF e -B magnet is RtF'e, 4B. Therefore, if R is less than 8 atoms wide. Since the above compound can no longer be released and forms a cubic crystal structure of -h4ffi, which is the same as α-iron, high magnetic properties cannot be obtained. - If R exceeds 25 atoms, the nonmagnetic Rrich phase increases and the magnetic properties deteriorate significantly. Therefore, a suitable range is 8 to 25 atom %.

Bは、馬Fe、、 B相全形成するための必須元素でら
シ、2原子係未満では菱面体のR−Fe系になるので高
保磁力は望めない。しかし従来のI屍紹法による磁石の
ように8原子幅以上も冷加すると、逆に@造状態での保
磁力は得られなくなってしまう。
B is an essential element for the complete formation of the B phase, and if the ratio is less than 2 atoms, it becomes a rhombohedral R-Fe system, so a high coercive force cannot be expected. However, if the magnet is cooled by a width of 8 atoms or more, as in the case of the conventional magnet made by the I-shaso method, the coercive force in the @-formed state cannot be obtained.

従ってBの祉は2〜8原子釜が範囲として適している。Therefore, a suitable range for the welfare of B is a 2 to 8 atom pot.

〔実施ガ1〕 本発明による製造工程図例を第1図に示す。1ず所望の
組成の合金全誘導炉で溶解し、加熱鋳凰を用いて連続的
に一方向、凝固を行ない、引き続き熱間加工? 500
’以上の温度範囲で行なって、異方性を付与し、次にア
ニールを500℃〜1050℃の温度範囲で行い磁気的
fL硬化を行つ之後、切断・研削により凌終形状に仕上
げる。本実施例では41表の組成を溶J憚し、刀Ω熱a
両型に20mwXIG園の大きさを用い、800℃の熱
閣鍛遺によってI Q燗X 10mMの大きさに仕上げ
、熱(■加工は800℃で行ないアニールはベルト炉に
より100口CX24時間行った。
[Embodiment 1] An example of a manufacturing process diagram according to the present invention is shown in FIG. First, an alloy of the desired composition is melted in an induction furnace, continuously solidified in one direction using a heated caster, and then hot worked? 500
' to impart anisotropy, then annealing is performed at a temperature range of 500° C. to 1050° C. to perform magnetic fL hardening, and then cutting and grinding are performed to finish the final shape. In this example, the composition shown in Table 41 was melted, and the composition of Table 41 was melted.
The size of 20 mw .

第1表 得られた結果を第2表に示す。Table 1 The results obtained are shown in Table 2.

第2表 〔実施レリ2〕 実施例1や最高性能が得られた組hY Pr 15 F
 egl B4を用い、連続−万凝固伝により、外径5
0喘、内径10珊の管状試@を作り、これを(ン)2に
示すロータリースウエジングマシンを用いて約900℃
でラジアル配向させ、外径201.内径101だ力ロエ
した(&ベルト炉により1000℃X24H−i熱処理
を行つfco性能測定は、できあがった試料から約IA
を切シ出し、反磁場補正全行つ之後、vsMで行った結
果を第3民に示す。
Table 2 [Example 2] Example 1 and the group that achieved the highest performance hY Pr 15 F
Using egl B4, the outer diameter is 5 by continuous - ten thousand solidification process.
A tubular sample with an inner diameter of 10 mm and 0 mm was prepared and heated to approximately 900°C using the rotary swaging machine shown in (n) 2.
with an outer diameter of 201. The inner diameter of the sample was 101 mm (fco performance measurement was performed using a belt furnace at 1000℃
After cutting out and performing all the demagnetizing field corrections, I showed the results of vsM to the third person.

46表 本実施例の性能は試料8個の平均である。表のようにロ
ータリースウエージングにより、通常の異方性磁石の約
80%程1更の性能が得られた。
Table 46 The performance of this example is the average of 8 samples. As shown in the table, rotary swaging resulted in approximately 80% better performance than normal anisotropic magnets.

〔発明の効果〕〔Effect of the invention〕

以上述べtように本発明によれば、従来の焼結法では保
磁力1Hcの得られなかった組成域で、しかもバルク状
態で保磁力を得ることができ、製造工程も著しく単純化
することができる。
As described above, according to the present invention, it is possible to obtain a coercive force in the bulk state in a composition range where a coercive force of 1Hc could not be obtained using conventional sintering methods, and the manufacturing process can also be significantly simplified. can.

4、  tI21面の簡単な説明 刊1(ソ1は、本発明のR−Fθ−B系磁石の製造工程
図。
4. Brief explanation of tI21 side Issue 1 (S1 is a manufacturing process diagram of the R-Fθ-B magnet of the present invention.

第2図、ロータリースウエージングマシンの図。Figure 2, diagram of a rotary swaging machine.

以   上 出願人 セイコーエプソン休式会社 第2図that's all Applicant: Seiko Epson Closed Company Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)原子百分率においてR8〜25%(但しRはYを
含む希土類元素の少なくとも、1種、B2〜8%及び残
部が鉄及びその他の製造上不可避な不純物からなる合金
を溶解し、一方向凝固法を用いて鋳造した後、該鋳造イ
ンゴットを500℃以上の温度で熱処理することにより
、磁気的に硬化させることを特徴とする鋳造希土類−鉄
系永久磁石。
(1) R8 to 25% in atomic percentage (where R is at least one kind of rare earth element including Y, B2 to 8%, and the balance is iron and other impurities unavoidable in manufacturing, melting the alloy and unidirectional A cast rare earth-iron permanent magnet characterized by being magnetically hardened by heat-treating the cast ingot at a temperature of 500° C. or higher after casting using a solidification method.
(2)連続鋳造法を用いて、任意形状の磁石を製造する
ことを特徴とする特許請求の範囲第1項記載の鋳造希土
類−鉄系永久磁石。
(2) The cast rare earth-iron permanent magnet according to claim 1, wherein a magnet of any shape is manufactured using a continuous casting method.
(3)鋳造インゴットを500℃以上の温度で熱間加工
することにより、結晶粒の結晶軸を特定の方向に配向さ
せ、該鋳造インゴットを磁気的に異方化することを特徴
とする特許請求の範囲第1項または第2項記載の鋳造希
土類−鉄系永久磁石。
(3) A patent claim characterized in that by hot working a cast ingot at a temperature of 500°C or higher, the crystal axes of crystal grains are oriented in a specific direction, thereby making the cast ingot magnetically anisotropic. A cast rare earth-iron permanent magnet according to item 1 or 2.
JP61045872A 1986-03-03 1986-03-03 Cast rare earth-method for manufacturing iron-based permanent magnets Expired - Lifetime JPH07120576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045872A JPH07120576B2 (en) 1986-03-03 1986-03-03 Cast rare earth-method for manufacturing iron-based permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045872A JPH07120576B2 (en) 1986-03-03 1986-03-03 Cast rare earth-method for manufacturing iron-based permanent magnets

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5042977A Division JPH0684628A (en) 1993-03-03 1993-03-03 Radial anisotropic rare earth-iron based permanent magnet

Publications (2)

Publication Number Publication Date
JPS62203302A true JPS62203302A (en) 1987-09-08
JPH07120576B2 JPH07120576B2 (en) 1995-12-20

Family

ID=12731294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045872A Expired - Lifetime JPH07120576B2 (en) 1986-03-03 1986-03-03 Cast rare earth-method for manufacturing iron-based permanent magnets

Country Status (1)

Country Link
JP (1) JPH07120576B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317504A (en) * 1986-07-10 1988-01-25 Namiki Precision Jewel Co Ltd Permanent magnet and its manufacture
JPH01171204A (en) * 1987-12-25 1989-07-06 Kobe Steel Ltd Manufacture of rare earth-fe-b magnet
JPH01318216A (en) * 1988-06-17 1989-12-22 Seiko Epson Corp Manufacture of permanent magnet for magnetic bearing
JPH01321609A (en) * 1988-06-22 1989-12-27 Seiko Epson Corp Manufacture of magnetic gear
JPH02252206A (en) * 1989-03-25 1990-10-11 Seiko Epson Corp Manufacture of permanent magnet
US5009706A (en) * 1989-08-04 1991-04-23 Nippon Steel Corporation Rare-earth antisotropic powders and magnets and their manufacturing processes
JPH0684628A (en) * 1993-03-03 1994-03-25 Seiko Epson Corp Radial anisotropic rare earth-iron based permanent magnet
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
CN112074919A (en) * 2018-03-07 2020-12-11 达姆施塔特工业大学 Method for producing permanent magnets or hard magnetic materials

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5597425A (en) * 1985-08-13 1997-01-28 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5565043A (en) * 1985-08-13 1996-10-15 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5560784A (en) * 1985-08-13 1996-10-01 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
JPS6317504A (en) * 1986-07-10 1988-01-25 Namiki Precision Jewel Co Ltd Permanent magnet and its manufacture
JPH01171204A (en) * 1987-12-25 1989-07-06 Kobe Steel Ltd Manufacture of rare earth-fe-b magnet
JPH01318216A (en) * 1988-06-17 1989-12-22 Seiko Epson Corp Manufacture of permanent magnet for magnetic bearing
JPH01321609A (en) * 1988-06-22 1989-12-27 Seiko Epson Corp Manufacture of magnetic gear
JPH02252206A (en) * 1989-03-25 1990-10-11 Seiko Epson Corp Manufacture of permanent magnet
US5009706A (en) * 1989-08-04 1991-04-23 Nippon Steel Corporation Rare-earth antisotropic powders and magnets and their manufacturing processes
JPH0684628A (en) * 1993-03-03 1994-03-25 Seiko Epson Corp Radial anisotropic rare earth-iron based permanent magnet
CN112074919A (en) * 2018-03-07 2020-12-11 达姆施塔特工业大学 Method for producing permanent magnets or hard magnetic materials
JP2021515992A (en) * 2018-03-07 2021-06-24 テクニシエ ユニベルシテイト ダルムシュタット How to make permanent magnets or hard magnetic materials

Also Published As

Publication number Publication date
JPH07120576B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US4710239A (en) Hot pressed permanent magnet having high and low coercivity regions
JPS62276803A (en) Rare earth-iron permanent magnet
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
EP1180772A2 (en) Anisotropic magnet and process of producing the same
JPH01171209A (en) Manufacture of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JPH0444301A (en) Manufacture of rare-earth permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
GB2206241A (en) Method of making a permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH01175207A (en) Manufacture of permanent magnet
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JPH04187722A (en) Production of permanent magnet
JPH0684628A (en) Radial anisotropic rare earth-iron based permanent magnet
JPS63286515A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPS63213317A (en) Rare earth iron permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPS63287005A (en) Permanent magnet and manufacture thereof
JPS63286514A (en) Manufacture of permanent magnet
JPH0766892B2 (en) Permanent magnet manufacturing method
JPH01105503A (en) Rare earth-fe permanent magnet
JPS63213322A (en) Rare earth iron permanent magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term