JPS63285910A - Permanent magnet and manufacture thereof - Google Patents

Permanent magnet and manufacture thereof

Info

Publication number
JPS63285910A
JPS63285910A JP62120710A JP12071087A JPS63285910A JP S63285910 A JPS63285910 A JP S63285910A JP 62120710 A JP62120710 A JP 62120710A JP 12071087 A JP12071087 A JP 12071087A JP S63285910 A JPS63285910 A JP S63285910A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
permanent magnet
transition metal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62120710A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62120710A priority Critical patent/JPS63285910A/en
Publication of JPS63285910A publication Critical patent/JPS63285910A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To increase weather resistance while improving performance and reducing cost by forming a permanent magnet only from two phase of phase rich in a transition metal as a ferromagnetic intermetallic compound and phase rich in a nonmagnetic rare earth in the permanent magnet using a rare earth element, the transition metal and boron as basic ingredients. CONSTITUTION:In a permanent magnet employing a rare earth element (where including Y), a transition metal and boron as basic ingredients, the magnet is shaped only from two phase of phase rich in the transition metal as a ferromagnetic intermetallic compound and phase rich in a nonmagnetic rare earth. For form such a permanent magnet, the basic ingredients are dissolved, casted, thermally treated at a temperature of 250 deg.C or higher, and cured magnetically. The basic ingredients are dissolved, cast and hot-worked at a temperature of 500 deg.C or higher, thus orienting the crystal axis of a crystal grain in the specified direction, then changing the magnet into anisotropy. The magnet is further hot-worked, and thermally treated at a temperature of 250 deg.C or higher, thus magnetically curing the magnet. A magnet alloy after hot working is crushed, and alloy powder acquired is kneaded with an organic binder, and pressure- molded, thus obtaining the magnet. Accordingly, a low-cost permanent magnet having high performance and excellent weather resistance can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類元素と遷移金属とボロンを生成分とす
る永久磁石及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a permanent magnet containing a rare earth element, a transition metal, and boron as generated components, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

−永久磁石は、一般家庭の各種電気製品から大型コンピ
ューターの周辺端末機器まで幅広い分野で使用されてい
る重要な電気、電子材料の一つである。
-Permanent magnets are important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers.

最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。現在使用さ
れている永久磁石のうち代表的なものはアルニコ、ハー
ドフェライト及び希土類−遷移金属系磁石である。特に
希土類−遷移金属系磁石であるR−Co系永久磁石やR
−Fe−B系永久磁石は、高い磁気性能が得られるので
従来から多くの研究開発が成されている。
With the recent demand for smaller and more efficient electrical products,
Permanent magnets are also required to have increasingly higher performance. Typical permanent magnets currently in use are alnico, hard ferrite, and rare earth-transition metal magnets. In particular, R-Co permanent magnets, which are rare earth-transition metal magnets, and R
Since -Fe-B permanent magnets provide high magnetic performance, much research and development has been carried out on them.

従来、これらR−Fe−B系永久磁石の製造方法に関し
ては、以下の文献に示すような方法がある。
Conventionally, there are methods for manufacturing these R-Fe-B permanent magnets as shown in the following documents.

(1)  粉末冶金法に基づく焼結による方法。(1) Sintering method based on powder metallurgy.

(文献11文献2) ■ アモルファス合金を製造するに用いる急冷薄帯製造
装置で、厚さ30μm程度の急冷薄片を作り、その薄片
を樹脂結合法で磁石にするメルトスピニング法による急
冷薄片を用いた樹脂結合方法。(文献3、文献4) (3)  上述の(2)の方法で使用した急冷薄片を2
段階のホットプレス法で、機械的配向処理を行う方法。
(Reference 11 Reference 2) ■ A quenched thin strip with a thickness of about 30 μm is made using a quenched ribbon manufacturing device used to produce an amorphous alloy, and the quenched thin section is made into a magnet using a resin bonding method. Resin bonding method. (Reference 3, Reference 4) (3) The quenched flakes used in method (2) above were
A method of mechanical alignment using a step-by-step hot press method.

(文献4、文献5) ここで、 文献1:特開昭59−46008号公報;文献2:M、
Sagawa、   S、Fuj imura、  N
、Togawa、  H,Yamamoto、   a
nd  Y、Matsuura;J。
(Document 4, Document 5) Here, Document 1: JP-A-59-46008; Document 2: M,
Sagawa, S., Fuji imura, N.
, Togawa, H., Yamamoto, a.
nd Y, Matsuura; J.

App 1.  Ph1s、  Vo 1.  55 
(6)15Maroh   1984.    p20
83゜文献3:特開昭59−211549号公報;文献
4:R,W、Lee;  APf)1.  Phys、
  Lett、  Vol、  4B (8)+15 
 APri 1 1985.   p790;文献5:
特開昭EIO−100402号公報次に上記の従来方法
について説明する。
App 1. Ph1s, Vo 1. 55
(6) 15Maroh 1984. p20
83° Document 3: Japanese Patent Application Laid-Open No. 59-211549; Document 4: R, W, Lee; APf) 1. Phys.
Lett, Vol, 4B (8)+15
APri 1 1985. p790; Reference 5:
JP-A-100402-1 Next, the above-mentioned conventional method will be explained.

先ず(1)の焼結法では、溶解、鋳造により合金インゴ
ットを作製し、粉砕して適当な粒度(数μm)の磁石粉
を得る。磁石粉は成形助剤のバインダーと混練され、磁
場中でプレス成形されて成形体が出来上がる。成形体は
アルゴン中で11009C前後の温度で1時間焼結され
、その後室温まで急冷される。焼結後、600℃前後の
温度で熱処理することにより保磁力を向上させる。
First, in the sintering method (1), an alloy ingot is produced by melting and casting, and then pulverized to obtain magnet powder with an appropriate particle size (several μm). Magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature around 11009C for 1 hour and then rapidly cooled to room temperature. After sintering, the coercive force is improved by heat treatment at a temperature of around 600°C.

(2)のメルトスピニング法による急冷薄片を用いた樹
脂結合方法では、先ず急冷薄帯製造装置の最適な回転数
で、R−F e −B合金の急冷薄帯を作る。得られた
厚さ30μmのリボン吠薄帯は、直径が1000λ以下
の結晶の集合体であり、脆くて割れ易く結晶粒は等方的
に分布しているので、磁気的にも等方性である。この薄
帯を適当な粒度に粉砕して樹脂と混練してプレス成形す
る。
In the resin bonding method (2) using quenched flakes by the melt spinning method, first, a quenched ribbon of R-Fe-B alloy is made at an optimal rotation speed of a quenched ribbon manufacturing apparatus. The obtained ribbon thin strip with a thickness of 30 μm is an aggregate of crystals with a diameter of 1000λ or less, and is brittle and easy to break.Since the crystal grains are distributed isotropically, it is also magnetically isotropic. be. This ribbon is pulverized to a suitable particle size, kneaded with resin, and press-molded.

(3) ノEl遣方法は、(1)におけるリボン状急冷
薄帯あるいは薄片を、真空中あるいは不活性雰囲気中で
二段階ホットプレス法と呼ばれる方法で緻密で異方性を
存するR−Fe−B磁石を得るものである。
(3) In the No.1 method, the ribbon-like quenched ribbon or flake in (1) is processed into dense and anisotropic R-Fe- by a method called a two-step hot pressing method in vacuum or an inert atmosphere. This is to obtain a B magnet.

このプレス過程では一軸性の圧力が加えられ、磁化容易
軸がプレス方向と平行に配向して、合金は異方性化する
In this pressing process, uniaxial pressure is applied, the axis of easy magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic.

尚、最初のメルトスピニング法で作られるリボン伏薄帯
の結晶粒は、それが最大の保磁力を示す時の粒径よりも
小さめにしておき、後のホットプレス中に結晶粒の粗大
化が生じて最適の粒径になるようにしておく。
Note that the crystal grains of the ribbon produced by the initial melt spinning method are made smaller than the grain size at which it exhibits its maximum coercive force, to avoid coarsening of the crystal grains during the subsequent hot pressing. Allow the particles to grow to the optimum particle size.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

叙上の従来技術で一応希土類元素と鉄とポロンを主成分
とする永久磁石は製造出来るが、これらの製造方法には
次の如き欠点を有している。
Although it is possible to manufacture permanent magnets whose main components are rare earth elements, iron, and poron using the conventional techniques described above, these manufacturing methods have the following drawbacks.

(1)の焼結法は、合金を粉末にするのが必須であるが
、R−Fe−B系合金は大変酸素に対して活性であるの
で、粉末化すると余計酸化が激しくなり、焼結体中の酸
素濃度はどうしても高くなってしまう。このため、酸化
が起こりやすく耐候性が劣っている。又粉末を成形する
ときに、例えばステアリン酸亜鉛のような成形助剤を使
用しなければならず、これは焼結工程で前もって取り除
かれるのであるが、成形助剤中の数刻は、磁合体の中に
炭素の形で残ってしまう、この炭素は著しくR−Fe−
B合金の磁気性能、特に保磁力を低下させ好ましくない
In the sintering method (1), it is essential to turn the alloy into powder, but since R-Fe-B alloys are very active against oxygen, oxidation becomes even more intense when they are turned into powder. The oxygen concentration in the body inevitably increases. For this reason, it is prone to oxidation and has poor weather resistance. Also, when compacting the powder, a compacting aid, such as zinc stearate, must be used, which is removed beforehand during the sintering process; This carbon remains in the form of carbon in the R-Fe-
This is undesirable because it lowers the magnetic performance of the B alloy, especially the coercive force.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われ、これは大変脆く、ハンドリングか難しい。
The molded product after press molding with the addition of a molding aid is called a green product, which is extremely brittle and difficult to handle.

従って焼結炉にきれいに並べて入れるのには、相当の手
間が掛かることも大きな欠点である。これらの欠点があ
るので、一般的に言ってR−Fe−B系の永久磁石の製
造には、高価な設備が必要になるばかりでなく、生産効
率が悪く、結局磁石の製造コストが高くなってしまう。
Therefore, a major drawback is that it takes a considerable amount of effort to arrange them neatly in the sintering furnace. Because of these drawbacks, generally speaking, manufacturing R-Fe-B permanent magnets not only requires expensive equipment, but also has low production efficiency, resulting in high magnet manufacturing costs. It ends up.

従って、比較的原料費の安いR−Fe−B系磁石の長所
を活かすことが出来る方法とは言い難い。
Therefore, it cannot be said that this is a method that can take advantage of the advantages of R-Fe-B magnets, which have relatively low raw material costs.

次に(2)並びに(3)の方法は、真空メルトスピニン
グ装置を使用するがこの装置は現在では、大変生産性が
悪くしかも高価である。
Next, methods (2) and (3) use a vacuum melt spinning device, which currently has very poor productivity and is expensive.

(2)の樹脂結合による方法は原理的に等方性であるの
で低エネルギー積であり、ヒステリシスループの角形性
もよくないので温度特性に対しても、使用する面におい
ても不利である。
The method (2) using resin bonding is isotropic in principle, resulting in a low energy product, and the squareness of the hysteresis loop is also poor, which is disadvantageous in terms of temperature characteristics and usage.

(3)の方法は、ホットプレスを二段階に使うというユ
ニークな方法であるが、実際に量産を考えると大変非効
率になることは否めないであろう。
Method (3) is a unique method that uses a hot press in two stages, but it cannot be denied that it is extremely inefficient when considering actual mass production.

更にこの方法では、高温例えば800℃以上では結晶粒
の粗大化が蒼しく、それによって保磁力iHcが極端に
低下し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains tend to coarsen, resulting in an extremely low coercive force iHc, making it impossible to produce a practical permanent magnet.

本発明は、以上の従来技術の欠点を解決するものであり
、その目的とするところは耐候性に優れ高性能且つ低コ
ストな希土類−鉄系永久磁石及びその製造方法を提供す
ることにある。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, and its purpose is to provide a rare earth-iron permanent magnet with excellent weather resistance, high performance, and low cost, and a method for manufacturing the same.

〔間盟点を解決するための手段〕[Means for resolving conflicts]

本発明の永久磁石は、希土類元素(但しYを含む)と遷
移金属とボロンを基本成分とする永久磁石において、該
磁石が強磁性の金属間化合物である遷移金r14r i
 ch相と非磁性の希土類rich相の2相のみからな
ることを特徴とする。
The permanent magnet of the present invention is a permanent magnet whose basic components are a rare earth element (including Y), a transition metal, and boron, in which the magnet is a transition gold r14r i which is a ferromagnetic intermetallic compound.
It is characterized by consisting of only two phases: a ch phase and a non-magnetic rare earth rich phase.

しかして、その製造方法のtilは、希土類元素(但し
Yを含む)と遷移金属とボロンを基本成分とし、強磁性
の金属間化合物である遷移金属rich相と非磁性の希
土類rich相の2相のみからなる永久磁石の製造方法
において、溶解、鋳造後、250℃以上の温度で熱処理
し磁気的に硬化せしめることを特徴とする永久磁石の製
造方法であり、その製造方法の第2は、溶解、鋳造後、
500@C以上の温度で、熱間加工することにより、結
晶粒の結晶軸を特定の方向へ配向せしめ該磁石を異方性
化することを特徴とする永久磁石の製造方法であり、更
にその製造方法の第3は、前記第2の製造方法の熱間加
工後、250℃以上の温度で熱処理することにより、磁
気的に硬化せしめたことを特徴とする永久磁石の製造方
法であり、また更にその製造方法の第4は、前記第2の
製造方法の熱間加工後の磁石合金を粉砕し、得られた合
金粉末を仔機バインダーと共に混疎し加圧成形すること
を特徴とする永久磁石の製造方法である。
Therefore, the manufacturing method of TIL has rare earth elements (including Y), transition metals, and boron as basic components, and has two phases: a transition metal rich phase, which is a ferromagnetic intermetallic compound, and a nonmagnetic rare earth rich phase. The second method of manufacturing a permanent magnet is to magnetically harden it by heat treatment at a temperature of 250°C or higher after melting and casting. , after casting,
A method for producing a permanent magnet, characterized by orienting the crystal axes of crystal grains in a specific direction and making the magnet anisotropic by hot working at a temperature of 500@C or higher, and further comprising: A third manufacturing method is a method for manufacturing a permanent magnet, which is characterized in that after hot working in the second manufacturing method, the permanent magnet is magnetically hardened by heat treatment at a temperature of 250° C. or higher, and Furthermore, a fourth manufacturing method is a permanent one, characterized by pulverizing the magnetic alloy after hot working in the second manufacturing method, mixing the obtained alloy powder with a slave binder, and press-molding. This is a method for manufacturing magnets.

〔作用〕[Effect]

前記のように希土類−鉄系永久磁石の製造方法である焼
結法、急冷法は夫々粉砕による粉末管理の困難さ、生産
性の悪さ、そして共に耐候性の悪さといった欠点を存し
ている。
As mentioned above, the sintering method and the quenching method, which are methods for producing rare earth-iron permanent magnets, each have drawbacks such as difficulty in powder control through pulverization, poor productivity, and poor weather resistance.

本発明者は、これらの欠点を改良するため、バルク状態
での磁石化の研究に着手し、先ず前記希土類元素、遷移
金属及びボロンを基本成分とする磁石の組成域で鋳造後
熱間加工することにより異方化し、次に熱処理を施せば
充分な保磁力と良好な耐候性が得られることを知見した
In order to improve these drawbacks, the present inventor started research on magnetization in the bulk state, and first hot-worked the magnet after casting in the composition range of the magnet whose basic components are rare earth elements, transition metals, and boron. It has been found that sufficient coercive force and good weather resistance can be obtained by making the material anisotropic and then subjecting it to heat treatment.

この方法では、管理困難な粉末状態を経過せずとも高性
能の磁石が製造出来るので、熱処理も厳密な雰囲気管理
が必要なくなり、磁石の生産性が高まり、設備費も大き
く低減出来る。
With this method, high-performance magnets can be manufactured without going through the difficult-to-control powder state, so heat treatment and strict atmosphere control are no longer required, magnet productivity is increased, and equipment costs can be greatly reduced.

従来のR−Fe−B系磁石の組成は、文献2に代表され
るようなR,、Fe、“insが最適とされていた。
The optimal composition of conventional R-Fe-B magnets is R, Fe, "ins, as typified by Document 2.

この組成は主相R*Fe1aB化合物を原子百分率にし
た組成Rtt、tFea*、aBi、’sに比してR,
Bに富む側に移行している。このことは保磁力を得るた
めには、主相のみ゛でなくRリッチ相、Bリッチ相とい
う非磁性相が必要であるという点から説明されている。
This composition is R,
It is shifting to the side rich in B. This is explained from the point that in order to obtain a coercive force, not only the main phase but also non-magnetic phases such as an R-rich phase and a B-rich phase are required.

ところが本発明による適切組成では逆にBが少ない側に
移行したところに保磁力のピーク値が存在する。この組
成域では、焼結法の場合、保磁力が激減するので、これ
まであまり問題にされていな−かった。
However, in the case of the appropriate composition according to the present invention, the peak value of the coercive force exists where the B content shifts to the side where there is less B. In this composition range, in the case of the sintering method, the coercive force is drastically reduced, so it has not been much of a problem so far.

しかし鋳造法を用いると、化学量論組成より低B側の方
が保磁力が得られやすく、高B側では得難い。
However, when a casting method is used, it is easier to obtain a coercive force on the low B side than the stoichiometric composition, and it is difficult to obtain it on the high B side.

これらの点は以下のように考えられる。先ず焼結法を用
いても鋳造法を用いても、保磁力機構そのものはnuc
leation  modelに従っている。これは両
者の切目化曲線がSmCo5のように急峻な立上がりを
示すことかられかる。
These points can be considered as follows. First of all, whether a sintering method or a casting method is used, the coercive force mechanism itself is nuc.
It follows the leation model. This can be seen from the fact that the cutting curves of both exhibit a steep rise like SmCo5.

このタイプの磁石の保磁力は基本的には単磁区モデルに
よっている。即ちこの場合、大きな結晶磁気異方性を育
するR* Fe、a B化合物が、大きすぎると粒内に
磁壁を有するようになるため、磁化の反転は磁壁の移動
によって容易に起きて、保磁力は小さい。
The coercive force of this type of magnet is basically based on a single domain model. That is, in this case, if the R*Fe, a B compound that develops a large crystal magnetic anisotropy is too large, it will have domain walls within the grains, so the reversal of magnetization will easily occur due to the movement of the domain walls, and the retention will be reduced. Magnetic force is small.

一方、粒子が小さくなって、ある寸法以下になると、粒
子内に磁壁を育さなくなり、磁化の反転は回転のみによ
って進行するため、保磁力は大きくなる。
On the other hand, when the particles become smaller to a certain size or less, domain walls no longer grow within the particles, and the reversal of magnetization proceeds only by rotation, so the coercive force increases.

つまり適切な保持力を得るためにはRzFe+、B相が
適切な粒径を有することが必要である。
In other words, in order to obtain an appropriate holding force, it is necessary that the RzFe+ and B phases have an appropriate particle size.

この粒径としてはlOμm前後が適当であり、焼結タイ
プの場合は、焼結前の粉末粒度の調整によって粒径を適
合させることが出来る。
The appropriate particle size is around 10 μm, and in the case of a sintered type, the particle size can be adjusted by adjusting the powder particle size before sintering.

これに対して、鋳造法においては、低ボロン領域で、鋳
型・鋳込温度等の工夫で容易に結晶を微細化出来る。こ
の領域は、見方を変えれば、RtFe+ a Bに比し
てF’eリッチな相とも言え、凝固段階では先ず初品と
してFeが出現し、続いて包晶反応によって、R3pe
l J B相が現れる。
On the other hand, in the casting method, crystals can be easily refined in the low boron region by adjusting the mold, casting temperature, etc. Viewed from a different perspective, this region can be said to be a phase rich in F'e compared to RtFe+ a B. At the solidification stage, Fe first appears as an initial product, and then, through a peritectic reaction, R3pe
l J B phase appears.

このとき冷却スピードは平衡反応に比して遥かに速いた
め、初晶FeのまわりにR* Fet a B相が取り
囲むような形で凝固する。この組成域ではBがより少な
い領域であるため、当然のことながら焼結タイプの代表
組成R1*FettBaのようなりリッチな相は存在し
ない。熱処理は初晶Feを拡散させ、平衡吠態に到達さ
せるためのもので保磁力は、とのFe相の拡散に大きく
依存している。
At this time, since the cooling speed is much faster than the equilibrium reaction, the primary crystal Fe is solidified in such a manner that the R* Feta B phase surrounds it. Since this composition range contains less B, it goes without saying that a rich phase such as the typical composition R1*FettBa of the sintered type does not exist. The heat treatment is for diffusing primary Fe to reach an equilibrium state, and the coercive force is largely dependent on the diffusion of the Fe phase.

また、鋳造時のマクロ組織としては、柱状晶組織が好ま
しい。この柱吠晶組織を用いることにより、鋳造時の面
内異方性化、更に熱間加工時の高性能化が可能になる。
Further, as the macrostructure during casting, a columnar crystal structure is preferable. By using this columnar crystal structure, it is possible to achieve in-plane anisotropy during casting and further improve performance during hot working.

そして、本発明の永久磁石が強磁性の金属間化合物であ
る遷移金属rich相、すなわちNd。
The permanent magnet of the present invention is a transition metal rich phase, which is a ferromagnetic intermetallic compound, that is, Nd.

Fet a Bを代表とする相と非磁性の希土類ric
h相の2相のみからなるということは、焼結法などによ
る場合の3相共存状態から非磁性のBr1ch相がなく
なり、性のR,’rM;、B相が増加することを意味し
、より飽和磁化が大きくなるので磁気特性が向上し、か
つ鋳造時の粒径をより容易に微細化することも可能にな
る。さらにR80、相という酸化物相もないので、磁石
中の酸素量が減り、酸化しにくくなる。
Phases typified by Fet a B and non-magnetic rare earth ric
Consisting of only two phases, the h phase, means that the non-magnetic Br1ch phase disappears from the three-phase coexistence state when using a sintering method, etc., and the magnetic R, 'rM;, and B phases increase. Since the saturation magnetization becomes larger, the magnetic properties are improved, and the particle size during casting can be more easily refined. Furthermore, since there is no oxide phase called R80 phase, the amount of oxygen in the magnet is reduced, making it difficult to oxidize.

以下、本発明による永久磁石の好ましい組成範囲につい
て説明する。
The preferred composition range of the permanent magnet according to the present invention will be explained below.

希土類としては、Y’、’La、  Ce、   Pr
、  Nd、   Sm、  Eu、  Gd、  T
b。
Rare earths include Y', 'La, Ce, Pr
, Nd, Sm, Eu, Gd, T
b.

Dy、  Ho、   Er、  Tm、  Yb、 
 Luが候補として挙げられ、これらのうち1種あるい
は2種以上を組合わせて用いられる。最も高い磁気性能
はPrで得られる。
Dy, Ho, Er, Tm, Yb,
Lu is listed as a candidate, and one or a combination of two or more of these may be used. The highest magnetic performance is obtained with Pr.

従って実用的にはPr、  Pr−Nd合金、Ce−P
r−Nd合金等が用いられる。また少量の添加元金、例
えば重希土元素のDy5Tb等やA1、MOlSi等は
保磁力の向上に可動である。
Therefore, Pr, Pr-Nd alloy, Ce-P
An r-Nd alloy or the like is used. Further, a small amount of additive elements such as heavy rare earth elements such as Dy5Tb, A1, MOlSi, etc. can be used to improve the coercive force.

R−Fe−B系磁石の主相はRtFe’+;Bである。The main phase of the R-Fe-B magnet is RtFe'+;B.

従ってRが8原子%未溝では、もはや上記化合物を形成
せずα−鉄と同一構造の立方晶組織となるため高磁気特
性は得られない。
Therefore, when R is 8 atomic % ungrooved, the above compound is no longer formed and a cubic crystal structure having the same structure as α-iron is formed, so that high magnetic properties cannot be obtained.

一方Rが30原子%を越えると、非磁性のRリッチ相が
多くなり磁気特性は著しく低下する。よってRの範囲8
〜30原子%が適当である。しかし鋳造磁石とするため
、好ましくはR8〜258〜25原子である。
On the other hand, when R exceeds 30 atomic %, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the range of R is 8
~30 atomic % is suitable. However, in order to form a cast magnet, preferably R8 to 258 to 25 atoms.

Bは、R*Fe+aB相を形成するための必須元素であ
り、2原子%未溝では菱面体のR−Fe系になるため高
保磁力は望めない、また6原子%を越えると非磁性のB
r i ch相が多くなり、残留磁束密度は低下し、し
かも微細なR; F e;−”B相を得ることが困難に
なるのでBの範囲は2〜6原子%が適当である。
B is an essential element for forming the R*Fe+aB phase, and if it is not grooved by 2 at%, it becomes a rhombohedral R-Fe system, so high coercive force cannot be expected, and if it exceeds 6 at%, it becomes non-magnetic B.
Since the r ich phase increases, the residual magnetic flux density decreases, and it becomes difficult to obtain a fine R;Fe;-''B phase, it is appropriate that the B content ranges from 2 to 6 at.%.

Coは水系磁石のキュリ一点を増加させるのに有効な元
素であり、基本的にFeのサイトを置換しR2Co’+
7Bを形成するのだが、この化合物は結晶異方性磁界が
小さく、その量が増すにつれて磁石全体としての保磁力
は小さくなる。そのため永久磁石として考えられるIK
Oe以上の保磁力を与えるには50原子%以内がよい。
Co is an effective element for increasing the Curie point of water-based magnets, and basically replaces Fe sites to create R2Co'+
7B, but this compound has a small crystal anisotropy magnetic field, and as the amount of this compound increases, the coercive force of the magnet as a whole decreases. Therefore, IK can be considered as a permanent magnet.
In order to provide a coercive force of Oe or more, the content is preferably within 50 atomic %.

A1は、保磁力の増大効果を存する。  (文献7:Z
hang  Maocai他、Proceedings
ofthe  8th  International
  Workshop  on  Rare−Fart
h  Magnets、   1985゜p541) この文献7は、焼結磁石に対する効果を示したものであ
るが、その効果は鋳造磁石でも同様に存在する。しかし
A1は非磁性元素であるため、その添加量を増すと残留
磁束密度が低下し、15原子%を越えるとバードウエラ
イト以下の残留磁束密度になってしまうので、希土類磁
石としての目的を果たし得ない。よってA1の添加量は
15原子%以下がよい。
A1 has the effect of increasing coercive force. (Reference 7: Z
Hang Maocai et al., Proceedings
of the 8th International
Workshop on Rare-Fart
h Magnets, 1985, p. 541) This document 7 shows the effect on sintered magnets, but the same effect also exists on cast magnets. However, since A1 is a non-magnetic element, increasing the amount added will reduce the residual magnetic flux density, and if it exceeds 15 atomic percent, the residual magnetic flux density will be lower than birdwellite, so it cannot fulfill its purpose as a rare earth magnet. I don't get it. Therefore, the amount of A1 added is preferably 15 atomic % or less.

よれることは明らかである。It is obvious that it will be distorted.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

〔実施例〕〔Example〕

(実施例1) m1表に示すような組成の合金を誘導炉で溶解し、鉄鋳
型に鋳造し柱状晶を形成せしめた。
(Example 1) An alloy having a composition as shown in Table m1 was melted in an induction furnace and cast into an iron mold to form columnar crystals.

次にインゴットを磁気的に硬化させるため、1000℃
×24時間のアニール処理を施した。
Next, in order to harden the ingot magnetically, it was heated to 1000°C.
Annealing treatment was performed for 24 hours.

鋳造タイプの場合は、この段階で切断・研削を施せば、
柱状晶の異方性を利用した面内異方性磁石となる。
In the case of a cast type, if cutting and grinding are performed at this stage,
This is an in-plane anisotropic magnet that utilizes the anisotropy of columnar crystals.

異方性タイプの場合はアニール処理前に先ず熱間加工を
施し次いでアニールする。
In the case of an anisotropic type, hot working is first performed before annealing treatment, and then annealing is performed.

本実施例では、熱間加工として1000′″Cにおいて
ホットプレスを行なった。結果を第2表に示す。
In this example, hot pressing was performed at 1000''C as hot working. The results are shown in Table 2.

第  1  表 第  2  表 (実施例2) 実施例1のN002の組成、Prs ff Fes *
B、と文献2の焼結法の最適組成であるNd、。
Table 1 Table 2 (Example 2) Composition of N002 in Example 1, Prs ff Fes *
B, and Nd, which is the optimum composition of the sintering method of Document 2.

Few y Bsについて、鉄鋳型を利用して柱状晶を
形成せしめたものと、振動鋳型を用いて等軸晶を形成せ
しめたもの、更にセラミック鋳型を用いて粗大粒を形成
させたものの3者を比較した。その結果を第3表に示す
Regarding Few Bs, three methods were used: one in which columnar crystals were formed using an iron mold, one in which equiaxed crystals were formed using a vibration mold, and one in which coarse grains were formed using a ceramic mold. compared. The results are shown in Table 3.

第  3  表 (実施例3) 先ず第4表のような組成の合金をN導炉で溶解し鉄鋳型
にて鋳造し、熱間加工の後インゴットを磁気的に硬化さ
せるため1000″″C×24時間のアニール処理を施
した。
Table 3 (Example 3) First, an alloy having a composition as shown in Table 4 was melted in an N induction furnace, cast in an iron mold, and after hot working, the ingot was magnetically hardened to 1000″C× Annealing treatment was performed for 24 hours.

このときアニール後の平均粒径は約15μmであった。At this time, the average grain size after annealing was about 15 μm.

この段階で切断・研削を施せば、異方性磁石となる。If it is cut and ground at this stage, it will become an anisotropic magnet.

一1樹鮨詰合タイプの磁石の場合は、室温において18
−8ステンレス鋼製容器中、10気圧程度の水素ガス雰
囲気のもとての水素の吸蔵と10−′torrでの脱水
素をくりかえし行ない粉砕後、エポキシ樹脂を4重量%
混練した、10KOeの磁場での横磁場成形を行った。
In the case of a 11 tree sushi filling type magnet, 18
-8 In a stainless steel container, hydrogen is absorbed in a hydrogen gas atmosphere of approximately 10 atm and dehydrogenation is repeated at 10-'torr. After pulverization, 4% by weight of epoxy resin is
After kneading, transverse magnetic field molding was performed in a magnetic field of 10 KOe.

以上の結果を第5表に示す。The above results are shown in Table 5.

fJ4表 第5表 (実施例4) 実施例1において作製した、試料No、2とNo、8の
熱間加工タイプのものと、比較例としてNd+ ’s 
Few t Baの焼結磁石を60℃X95%の恒温恒
湿槽に入れて、その表面の腐食状況を調べた。この時N
o、2.8の磁石中にPryO′、′相は含まれていな
かった。その結果を第6表に示す。
fJ4 Table 5 (Example 4) Hot-processed samples No. 2 and No. 8 prepared in Example 1 and Nd+'s as a comparative example.
A sintered Few Ba magnet was placed in a constant temperature and humidity chamber at 60° C. and 95%, and the state of corrosion on its surface was examined. At this time N
PryO',' phase was not contained in the magnet of o, 2.8. The results are shown in Table 6.

第  6  表 〔発明の効果〕 叙上の如(本発明の永久磁石及びその製造方法によれば
、鋳造インゴットを粉砕することなくバルク状態で保磁
力が得られるので、製造工程を著しく単純化でき、低コ
ストで高性能でかつ耐候性の良好な永久磁石の製造が可
能となる。
Table 6 [Effects of the Invention] As mentioned above (according to the permanent magnet of the present invention and its manufacturing method, coercive force can be obtained in the bulk state without pulverizing the cast ingot, so the manufacturing process can be significantly simplified. , it becomes possible to manufacture permanent magnets with low cost, high performance, and good weather resistance.

以  上that's all

Claims (5)

【特許請求の範囲】[Claims] (1)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする永久磁石において、該磁石が強磁性の
金属間化合物である遷移金属rich相と非磁性の希土
類rich相の2相のみからなることを特徴とする永久
磁石。
(1) In a permanent magnet whose basic components are rare earth elements (including Y), transition metals, and boron, the magnet has two phases: a transition metal rich phase, which is a ferromagnetic intermetallic compound, and a nonmagnetic rare earth rich phase. A permanent magnet characterized by consisting of only
(2)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする永久磁石の製造方法において、溶解・
鋳造後、250℃以上の温度で熱処理することにより磁
気的に硬化せしめた強磁性の金属間化合物である遷移金
属rich相と非磁性の希土類rich相の2相のみと
することを特徴とする永久磁石の製造方法。
(2) In the manufacturing method of permanent magnets whose basic components are rare earth elements (including Y), transition metals, and boron, melting and
After casting, it is magnetically hardened by heat treatment at a temperature of 250°C or higher to form only two phases: a transition metal rich phase, which is a ferromagnetic intermetallic compound, and a nonmagnetic rare earth rich phase. How to manufacture magnets.
(3)希土類元素(但しYを含む)を遷移金属とボロン
を基本成分とする永久磁石の製造方法において、溶解・
鋳造後、500℃以上の温度で熱間加工することにより
、結晶粒の結晶軸を特定の方向に配向せしめて磁気的に
異方性化した、強磁性の金属間化合物である遷移金属r
ich相と非磁性の希土類rich相の2相のみとする
ことを特徴とする永久磁石の製造方法。
(3) In the method of manufacturing permanent magnets whose basic components are rare earth elements (including Y), transition metals, and boron,
After casting, transition metal r is a ferromagnetic intermetallic compound that is magnetically anisotropic by orienting the crystal axes of the crystal grains in a specific direction by hot working at a temperature of 500°C or higher.
A method for manufacturing a permanent magnet, characterized in that only two phases are formed: an ich phase and a non-magnetic rare earth rich phase.
(4)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする永久磁石の製造方法において、溶解・
鋳造後、500℃以上の温度で熱間加工し、次に250
℃以上の温度で熱処理することにより磁気的に硬化せし
めた強磁性の金属間化合物である遷移金属rich相と
非磁性の希土類rich相の2相のみとすることを特徴
とする永久磁石の製造方法。
(4) In the method of manufacturing permanent magnets whose basic components are rare earth elements (including Y), transition metals, and boron, melting and
After casting, hot working at a temperature of 500℃ or higher, then 250℃
A method for producing a permanent magnet characterized by forming only two phases: a transition metal rich phase, which is a ferromagnetic intermetallic compound, and a nonmagnetic rare earth rich phase, which are magnetically hardened by heat treatment at a temperature of ℃ or higher. .
(5)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする永久磁石の製造方法において溶解、鋳
造後、500℃以上の温度で熱間加工してから粉砕し、
得られた強磁性の金属間化合物である遷移金属rich
相と非磁性の希土類rich相の2相のみからなる合金
粉末を有機バインダーと共に混練し加圧成形することを
特徴とする永久磁石の製造方法。
(5) In the method for manufacturing permanent magnets whose basic components are rare earth elements (including Y), transition metals, and boron, after melting and casting, hot working at a temperature of 500°C or higher and then pulverizing;
The resulting ferromagnetic intermetallic compound, transition metal rich
1. A method for producing a permanent magnet, which comprises kneading an alloy powder consisting of only two phases, a rich phase and a non-magnetic rare earth rich phase, with an organic binder and press-forming the mixture.
JP62120710A 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof Pending JPS63285910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62120710A JPS63285910A (en) 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62120710A JPS63285910A (en) 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63285910A true JPS63285910A (en) 1988-11-22

Family

ID=14793076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62120710A Pending JPS63285910A (en) 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63285910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214102A (en) * 1988-02-23 1989-08-28 Daido Steel Co Ltd Manufacture of plastic magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214102A (en) * 1988-02-23 1989-08-28 Daido Steel Co Ltd Manufacture of plastic magnet

Similar Documents

Publication Publication Date Title
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPS62198103A (en) Rare earth-iron permanent magnet
US5186761A (en) Magnetic alloy and method of production
EP0288637B1 (en) Permanent magnet and method of making the same
JPH01171209A (en) Manufacture of permanent magnet
US5460662A (en) Permanent magnet and method of production
JP2530185B2 (en) Manufacturing method of permanent magnet
JPS63285910A (en) Permanent magnet and manufacture thereof
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2746111B2 (en) Alloy for permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPS63287006A (en) Permanent magnet and manufacture thereof
JP2573865B2 (en) Manufacturing method of permanent magnet
EP0599815B1 (en) Magnetic alloy and method of making the same
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH07135120A (en) Manufacture of rare earth-iron based permanent magnet
JPH03249125A (en) Production of permanent magnet
JPH01161802A (en) Manufacture of permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPS63296317A (en) Permanent magnet and manufacture thereof
JPH03196601A (en) Permanent magnet and manufacture thereof
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof