JPH03196601A - Permanent magnet and manufacture thereof - Google Patents

Permanent magnet and manufacture thereof

Info

Publication number
JPH03196601A
JPH03196601A JP1337605A JP33760589A JPH03196601A JP H03196601 A JPH03196601 A JP H03196601A JP 1337605 A JP1337605 A JP 1337605A JP 33760589 A JP33760589 A JP 33760589A JP H03196601 A JPH03196601 A JP H03196601A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
boron
anisotropic
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337605A
Other languages
Japanese (ja)
Inventor
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Toshiaki Yamagami
利昭 山上
Sei Arai
聖 新井
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1337605A priority Critical patent/JPH03196601A/en
Publication of JPH03196601A publication Critical patent/JPH03196601A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a high quality and low-cost magnet by casting a material composed mainly of rear earth elements (including Y), transition metal, and boron into a copper mold to form a magnet having a macro composition in a columnar structure; and make the magnet anisotropic. CONSTITUTION:A magnetic material, composed of rear earth elements (including Y), transition metal, and boron, is cast into a copper mold to form an anisotropic magnet, which has a macro composition in a columnar form. That is, the cast magnet is subjected to a hot process to make it anisotropic. The magnet is then heat-treated for a sufficient coercive force. According to this method, a high quality magnet is obtained with high productivity simply by heat-treating an ingot without pulverization.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は、希土類元素と遷移金属とボロンを主成分とす
る永久磁石及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a permanent magnet whose main components are a rare earth element, a transition metal, and boron, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器まで幅広い分野で使用されている
重要な電気、電子材料の一つである。
Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers.

最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。現在使用さ
れている永久磁石のうち代表的なものはアルニコ、ハー
ドフェライト及び希土類−遷移金属系磁石である。特に
希土類−遷移金属系磁石であるR−Co系永久磁石やR
−Fe−B系永久磁石は、高い磁気性能が得られるので
従来から多くの研究開発が成されている。
With the recent demand for smaller and more efficient electrical products,
Permanent magnets are also required to have increasingly higher performance. Typical permanent magnets currently in use are alnico, hard ferrite, and rare earth-transition metal magnets. In particular, R-Co permanent magnets, which are rare earth-transition metal magnets, and R
Since -Fe-B permanent magnets provide high magnetic performance, much research and development has been carried out on them.

従来、これらR−Fe−B系永久磁石の製造方法に関し
ては以下の文献に示すような方法がある。
Conventionally, there are methods for manufacturing these R-Fe-B permanent magnets as shown in the following documents.

(1)粉末冶金法に基づく焼結による方法。(1) A sintering method based on powder metallurgy.

(文献l、文献2) (2)アモルファス合金を製造するに用いる急冷薄帯製
造装置で、厚さ30um程度の急冷薄片を作り、その薄
片を樹脂結合法で磁石にするメルトスピニング法による
急冷薄片を用いた樹脂結合方法、(文献3、文献4) (3)上述の(2)の方法で使用した急冷薄片を2段階
のホットプレス法で機械的配向処理を行う方法、(文献
45文献5) ここで、 文献1:特開昭59−46008号公報:文献2 : 
M、Sagawa、 S、Fujimura、 N、T
ogawa、 H。
(References 1 and 2) (2) A quenched thin strip with a thickness of about 30 um is made using a quenched ribbon production device used to manufacture amorphous alloys, and the quenched thin section is made into a magnet using a resin bonding method using the melt spinning method. (References 3, 4) (3) A method of mechanically orienting the rapidly cooled flakes used in method (2) above using a two-step hot press method, (References 45 and 5) ) Here, Document 1: JP-A-59-46008: Document 2:
M, Sagawa, S, Fujimura, N, T
ogawa, H.

Yamamoto、and  Y、Matsuura:
J、Appl、Phys、Vol、5516115Ma
roh 1984.p2083゜文献3:特開昭59−
211549号公報:文献4 : R,W、Lee;A
ppl、Phys、Lett、Vol、45(81゜1
5 April 1985.p790;文献5:特開昭
60−100402号公報次に上記の従来方法について
説明する。
Yamamoto, and Y, Matsuura:
J, Appl, Phys, Vol, 5516115Ma
roh 1984. p2083゜Reference 3: Unexamined Japanese Patent Publication No. 1983-
Publication No. 211549: Document 4: R, W, Lee; A
ppl, Phys, Lett, Vol, 45 (81°1
5 April 1985. p790; Document 5: Japanese Unexamined Patent Publication No. 60-100402 Next, the above conventional method will be explained.

先ず(1)の焼結法では、溶解、鋳造により合金インゴ
ットを作製し、粉砕して適当な粒度(数μm)の磁石粉
を得る。磁石粉は成形助剤のバインダーと混練され、磁
場中でプレス成形されて成形体が出来上がる。成形体は
アルゴン中で1100℃前後の温度で1時間焼結され、
その後室温まで急冷される。焼結後、600℃前後の温
度で熱処理することにより保磁力を向上させる。
First, in the sintering method (1), an alloy ingot is produced by melting and casting, and then pulverized to obtain magnet powder with an appropriate particle size (several μm). Magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact was sintered in argon at a temperature of around 1100°C for 1 hour.
It is then rapidly cooled to room temperature. After sintering, the coercive force is improved by heat treatment at a temperature of around 600°C.

(2)のメルトスピニング法による急冷薄片を用いた樹
脂結合方法では、先ず急冷薄帯製造装置の最適な回転数
でR−Fe−B合金の急冷薄帯を作る。得られた厚さ3
0umのリボン状薄帯は、直径が1000Å以下の結晶
の集合体であり、脆くて割れ易く、結晶粒は等方向に分
布しているので、磁気的にも等方性である。この薄帯を
適当な粒度に粉砕して、樹脂と混線してプレス成形する
In the resin bonding method (2) using quenched flakes by the melt spinning method, first, a quenched ribbon of R-Fe-B alloy is produced at an optimal rotation speed of a quenched ribbon manufacturing apparatus. Obtained thickness 3
A ribbon-like thin strip of 0 um is an aggregate of crystals with a diameter of 1000 Å or less, is brittle and easily broken, and since the crystal grains are distributed in the same direction, it is also magnetically isotropic. This ribbon is crushed to an appropriate particle size, mixed with resin, and press-molded.

(3)の製造方法は、(2)におけるリボン状急冷薄帯
あるいは薄片を、真空中あるいは不活性雰囲気中で二段
階ホットプレス法と呼ばれる方法で緻密で異方性を有す
るR−Fe−B磁石を得るものである。
The manufacturing method of (3) is to process the ribbon-like quenched ribbon or flake in (2) by a method called a two-step hot pressing method in vacuum or in an inert atmosphere to produce dense and anisotropic R-Fe-B. This is what you get from magnets.

このプレス過程では一軸性の圧力が加えられ。Uniaxial pressure is applied during this pressing process.

磁化容易軸がプレス方向と平行に配向して、合金は異方
性化する。
The easy axis of magnetization is oriented parallel to the pressing direction, making the alloy anisotropic.

尚、最初のメルトスピニング法で作られるリボン状薄帯
の結晶粒は、それが最大の保磁力を示す時の粒径よりも
小さめにしてあき、後のホットプレス中に結晶粒の粗大
化が生じて最適の粒径になるようにしてお(。
In addition, the crystal grains of the ribbon-like ribbon produced by the initial melt spinning method are made smaller than the grain size at which they exhibit the maximum coercive force, and the grains become coarser during the subsequent hot pressing. This is done so that the particle size is optimal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

斜上の従来技術で一応希土類元素と鉄とポロンを主成分
とする永久磁石は製造出来るが、これらの製造方法には
次の如き欠点を有している。
Although it is possible to manufacture permanent magnets whose main components are rare earth elements, iron, and poron using the conventional techniques described above, these manufacturing methods have the following drawbacks.

(1)の焼結法は、合金を粉末にするのが必須であるが
、R−Fe−B系合金は大変酸素に対して活性であるの
で、粉末化すると余計酸化が激しくなり、焼結体中の酸
素濃度はどうしても高くなってしまう、又粉末を成形す
るときに、例えばステアリン酸亜鉛のような成形助剤を
使用しなければならず、これは焼結工程で前もって取り
除かれるのであるが、成形助剤中の散開は、磁石体の中
に炭素の形で残ってしまう、この炭素は著しくR−Fe
−B合金の磁気性能を低下させ好ましくない。
In the sintering method (1), it is essential to turn the alloy into powder, but since R-Fe-B alloys are very active against oxygen, oxidation becomes even more intense when they are turned into powder. The oxygen concentration in the body is inevitably high, and when the powder is compacted, compacting aids, such as zinc stearate, must be used, which are removed beforehand during the sintering process. , the dispersion in the forming aid will remain in the magnet body in the form of carbon, and this carbon will significantly increase the R-Fe
- It is undesirable because it lowers the magnetic performance of the B alloy.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われ、これは大変脆°く、ハンドリングが難しい
、従って焼結炉にきれいに並べて入れるのには、相当の
手間が掛かることも大きな欠点である。これらの欠点が
あるので、−船釣に言ってR−Fe−B系の永久磁石の
製造には、高価な設備が必要になるばかりでなく、生産
効率が悪く、結局磁石の製造コストが高くなってしまう
The molded body that has been press-formed with a forming aid added is called a green body, which is very brittle and difficult to handle, so it can take a lot of effort to neatly line it up and put it into the sintering furnace. This is a big drawback. Because of these drawbacks, manufacturing R-Fe-B permanent magnets for boat fishing not only requires expensive equipment, but also has low production efficiency, resulting in high magnet manufacturing costs. turn into.

従って、比較的原料費の安いR−Fe−B系磁石の長所
を活かすことができる方法とは言い難い。
Therefore, it cannot be said that this is a method that can take advantage of the advantages of R-Fe-B magnets, which have relatively low raw material costs.

次に(2)並びに(3)の方法は、真空メルトスピニン
グ装置を使用するがこの装置は現在では、大変生産性が
悪くしかも高価である。
Next, methods (2) and (3) use a vacuum melt spinning device, which currently has very poor productivity and is expensive.

(2)の樹脂結合による方法は、原理的に等方性である
ので低エネルギー積であり、ヒステリシスループの角形
性もよくないので温度特性に対しても、使用する面にお
いても不利である。
The method (2) using resin bonding is isotropic in principle, resulting in a low energy product, and the squareness of the hysteresis loop is also poor, which is disadvantageous in terms of temperature characteristics and usage.

(3)の方法は、ホットプレスを二段階に使うというユ
ニークな方法であるが、実際に量産を考えると大変非効
率になることは否めないであろう。
Method (3) is a unique method that uses a hot press in two stages, but it cannot be denied that it is extremely inefficient when considering actual mass production.

更にこの方法では、高温例えば800℃以上では結晶粒
の粗大化が著しく、それによって保磁力i Hcが極端
に低下し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force i Hc, making it impossible to produce a practical permanent magnet.

本発明は、以上の従来技術の欠点を解決するものであり
、その目的とするところは高性能且つ低コストな希土類
−鉄系永久磁石及びその製造方法を提供することにある
The present invention solves the above-mentioned drawbacks of the prior art, and its purpose is to provide a high-performance, low-cost rare earth-iron permanent magnet and a method for manufacturing the same.

〔課題を解決するための手段] 本発明の永久磁石は、希土類元素(但しYを含む)と遷
移金属とボロンを主成分とする磁石において、銅鋳型を
用いて鋳造した該磁石のマクロ組織が柱状晶であり、異
方性化したことを特徴とする永久磁石である。
[Means for Solving the Problems] The permanent magnet of the present invention is a magnet whose main components are a rare earth element (including Y), a transition metal, and boron, and the macrostructure of the magnet is cast using a copper mold. It is a permanent magnet characterized by columnar crystals and anisotropy.

しかして、その永久磁石の製造方法の第1は、希土類元
素(但しYを含む)と遷移金属とボロンを主成分とする
磁石の製造方法において、Cn鋳型を用いて鋳造して、
該磁石のマクロ組織を柱状晶とし、次いで250℃以上
の温度で熱処理した後、該磁石のマクロ組織を柱状晶と
し、磁気的に硬化せしめたことを特徴とする永久磁石の
製造方法、その永久磁石の製造方法の第2は、銅鋳型を
用いて鋳造後、500℃以上の温度で熱間加工すること
により、結晶粒の結晶軸を特定の方向に配向せしめ次に
500℃以上の温度で熱間加工することにより該磁石を
異方性化することを特徴とする永久磁石の製造方法であ
り、更にその永久磁石の製造方法の第3は、前記第2の
製造方法の熱間加工後、250℃以上の温度で熱処理す
ることにより磁気的に硬化したことを特徴とする永久磁
石の製造方法である。
Therefore, the first method for producing permanent magnets is to produce magnets whose main components are rare earth elements (including Y), transition metals, and boron, by casting using a Cn mold.
A method for manufacturing a permanent magnet, characterized in that the macrostructure of the magnet is made into columnar crystals, and then heat treated at a temperature of 250° C. or higher, the macrostructure of the magnet is made into columnar crystals, and the magnet is magnetically hardened. The second method for manufacturing magnets is to orient the crystal axes of the crystal grains in a specific direction by hot working at a temperature of 500°C or higher after casting using a copper mold, and then hot working at a temperature of 500°C or higher. A method for producing a permanent magnet, characterized in that the magnet is made anisotropic by hot working, and a third method for producing a permanent magnet is a method for producing a permanent magnet after hot working in the second production method. , a method for producing a permanent magnet characterized in that it is magnetically hardened by heat treatment at a temperature of 250° C. or higher.

[作 用] 前記のように希土類−鉄系磁石の一製造方法である焼結
法、急冷法は夫々粉砕による粉末管理の困難さ、生産性
の悪さといった大きな欠点を有している。
[Function] As mentioned above, the sintering method and the quenching method, which are methods for producing rare earth-iron magnets, each have major drawbacks such as difficulty in powder control through pulverization and poor productivity.

本発明者等は、これらの欠点を改良するため、バルク状
態での磁石化の研究に着手し、先ず前記希土類元素、遷
移金属及びボロンを基本成分とする磁石の組成域でCn
鋳型を用いて鋳造し、マクロ組織を微細な柱状晶とした
ものを熱間加工することにより異方化し、次に熱処理を
施せば充分な保磁力が得られることを知見した。即ち、
(1)鋳造時のマクロ組織を微細な柱状晶とすることに
より、鋳造状態のまま熱処理するだけで面内異方性(I
ifi化容易軸の配向度的70%)の磁石が作製出来る
In order to improve these drawbacks, the present inventors undertook research on magnetization in the bulk state, and first, in the composition range of magnets whose basic components are rare earth elements, transition metals, and boron, Cn
It was discovered that sufficient coercive force could be obtained by casting using a mold, making the macrostructure into fine columnar crystals, making it anisotropic by hot working, and then applying heat treatment. That is,
(1) By making the macrostructure during casting into fine columnar crystals, in-plane anisotropy (I
It is possible to produce a magnet with a degree of orientation of the easy-to-ify axis of 70%).

(2)鋳造マクロ組織を微細な柱状晶とすることにより
、熱間加工による一軸異方性化が促進され、磁化容易軸
の配向度がかなり高くなる。
(2) By forming the casting macrostructure into fine columnar crystals, uniaxial anisotropy due to hot working is promoted, and the degree of orientation of the axis of easy magnetization is considerably increased.

(3)(1)及び(2)の結果、管理困難な粉末状態を
経過せずとも高性能の磁石が製造出来るので、熱処理も
厳密な雰囲気管理が必要なくなり、磁石の生産性が高ま
り、設備費も大きく低減出来る。
(3) As a result of (1) and (2), high-performance magnets can be manufactured without going through the powder state, which is difficult to control, so strict atmosphere control is no longer necessary for heat treatment, improving magnet productivity, and improving equipment. Costs can also be significantly reduced.

従来のR−Fe−B系磁石の組成は、文献2に代表され
るようなR+sF e ttB sが最適とされていた
The optimal composition of conventional R-Fe-B magnets is R+sFe ttB s as typified by Document 2.

この組成は主相RtFe+4B化合物を原子百分率にし
た組成R21,tFesx4Bs、sに比してRlBに
冨む側に移行している。このことは保磁力を得るために
は、主相のみでなくRリッチ相、Bリッチ相という非磁
性相が必要であるという点から説明されている。
This composition shifts to the side rich in RlB compared to the composition R21, tFesx4Bs, s, in which the main phase RtFe+4B compound is expressed as an atomic percentage. This is explained from the point that in order to obtain a coercive force, not only the main phase but also non-magnetic phases such as an R-rich phase and a B-rich phase are required.

ところが本発明による適切組成では逆にBが少ない側に
移行したところに保磁力のピーク値が存在する。この組
成域では、焼結法の場合、保磁力が激減するので、これ
まであまり問題にされていなかった。
However, in the case of the appropriate composition according to the present invention, the peak value of the coercive force exists where the B content shifts to the side where there is less B. In this composition range, the coercive force is drastically reduced in the case of the sintering method, so it has not been much of a problem so far.

しかし鋳造法を用いると、化学量論組成より低B側の方
が保磁力が得られやすく、高B側では得難い。
However, when a casting method is used, it is easier to obtain a coercive force on the low B side than the stoichiometric composition, and it is difficult to obtain it on the high B side.

これらの点は以下のように考えられる。先ず焼結法を用
いても鋳造法を用いても、保磁力機構そのものは1uc
leation modelに従っている。これは、両
者の期毎化曲線がSm Co *のように急峻な立上が
りを示すことかられかる。
These points can be considered as follows. First of all, whether a sintering method or a casting method is used, the coercive force mechanism itself is 1uc.
It follows the leation model. This can be seen from the fact that the periodization curves for both of them show a steep rise like Sm Co *.

このタイプの磁石の保磁力は基本的には単磁区モデルに
よっている。即ちこの場合、大きな結晶磁気異方性を有
するR5Fe+J化合物が、大きすぎると粒内に磁壁を
有するようになるため、磁化の反転は磁壁の移動によっ
て容易に起きて、保磁力は小さい。
The coercive force of this type of magnet is basically based on a single domain model. That is, in this case, if the R5Fe+J compound having large magnetocrystalline anisotropy is too large, it will have domain walls within the grains, so the reversal of magnetization will easily occur due to the movement of the domain walls, and the coercive force will be small.

一方、粒子が小さくなって、ある寸法以上になると1粒
子内に磁壁を有さなくなり、磁化の反転は回転のみによ
って進行するため、保磁力は大きくなる。
On the other hand, when the particles become smaller and exceed a certain size, each particle no longer has a domain wall, and the reversal of magnetization proceeds only by rotation, so the coercive force increases.

つまり適切な保磁力を得るためにはRs F e 14
B相が適切な粒径を有することが必要である。この粒径
としては10gm前後が適当であり、焼結タイプの場合
は、焼結前の粉末粒度の調整によって粒径な適合させる
ことが出来る。
In other words, in order to obtain an appropriate coercive force, Rs Fe 14
It is necessary that the B phase has an appropriate particle size. A suitable particle size is around 10 gm, and in the case of a sintered type, the particle size can be adjusted by adjusting the powder particle size before sintering.

ところが鋳造法の場合、R□Fe+4B化合物の結晶粒
の大きさは溶湯から凝固する段階で決定されるため、組
成と凝固過程に注意を払う必要がある。
However, in the case of the casting method, the size of the crystal grains of the R□Fe+4B compound is determined at the stage of solidification from molten metal, so it is necessary to pay attention to the composition and solidification process.

凝固に関して最も大きな影響を与えるのは鋳型の材質で
ある0本発明者らが先に出願した特願昭62−1046
22 (文献6)では鉄鋳型、セラミック鋳型の例が示
しである0本願ではこれを銅鋳型に限定した。これは、
銅が熱伝導度にすぐれ、溶湯の冷却効率が高く、均一で
微細な結晶を作り込むのに最適な材料だからである。
The material that has the biggest influence on solidification is the material of the mold.
22 (Reference 6) shows examples of iron molds and ceramic molds, but in the present application, this is limited to copper molds. this is,
This is because copper has excellent thermal conductivity, is highly efficient at cooling molten metal, and is the perfect material for creating uniform, fine crystals.

次に組成だが、Bが8原子%以上含むと、鋳造上がりの
R電F e 14B相の大きさが粗大化とやすく冷却ス
ピードを通常より早くしないと保磁力を得ることは困難
である。
Next, regarding the composition, if B is contained in an amount of 8 at % or more, the size of the RF e 14B phase after casting tends to become coarse, and it is difficult to obtain a coercive force unless the cooling speed is faster than usual.

これに対して、低ボロン領域では、鋳型・鋳込温度等の
工夫で容易に結晶を微細化出来る。この領域は、見方を
変えれば、RwFe+aBに比してFeリッチな相とも
言え、凝固段階では先ず初晶としてFeが出現し、続い
て包晶反応によって。
On the other hand, in the low boron region, crystals can be easily refined by adjusting the mold, casting temperature, etc. From a different perspective, this region can be said to be a Fe-rich phase compared to RwFe+aB, and in the solidification stage, Fe first appears as primary crystals, followed by a peritectic reaction.

R* F e 14B相が現れる。このとき冷却スピー
ドは平衡反応に比して遥かに速いため、初晶Feのまわ
りにR*Fe+J相が取り囲むような形で凝固する。こ
の組成域ではBがより少ない領域であるため、当然のこ
とながら焼結タイプの代表組成R+aF e yyB 
aのようなりリッチな相は量的にほとんど無視出来る。
R*F e 14B phase appears. At this time, since the cooling speed is much faster than the equilibrium reaction, the R*Fe+J phase solidifies around the primary Fe. Since this composition range contains less B, it goes without saying that the typical composition of the sintered type is R+aF e yyB
Rich phases such as a can be almost ignored in quantity.

熱処理は初晶Feを拡散させ、平衡状態に到達させるた
めのもので保磁力は、このFe相の拡散に大きく依存し
ている。
The heat treatment is for diffusing primary Fe to reach an equilibrium state, and the coercive force is largely dependent on the diffusion of this Fe phase.

次に本発明において、マクロ組織に柱状晶を用いる意味
について述べる。
Next, the meaning of using columnar crystals in the macrostructure in the present invention will be described.

前述の如(、柱状晶を用いる効果は2つ有り、その1つ
は鋳造時の面内異方性化、更にもう1つは熱間加工時の
高性能化である。
As mentioned above, there are two effects of using columnar crystals, one of which is to increase in-plane anisotropy during casting, and the other is to improve performance during hot working.

先ず前者から説明すると、水系磁石の磁性の根源となる
″金属間化合物Rz Fe+48 (Rは希土類)は柱
状晶を発達させたときに、その磁化容易軸C軸が柱状晶
に垂直な面内に分布するという性質を有する。即ち、C
軸は柱状晶発達方向にはなく、それに垂直な面内にのみ
分布する面内異方性となるわけである。この磁石は当然
のことながら、等方性である等軸品をマクロ組織として
用いたものより高性能となり、非常に有利となる。しか
し、柱状晶を用いても、保磁力の関係から粒径は微細で
なければならず、低B側がよいことは同様である。
First, to explain the former, when the intermetallic compound Rz Fe+48 (R is a rare earth), which is the source of magnetism in water-based magnets, develops columnar crystals, its easy magnetization axis C-axis lies in a plane perpendicular to the columnar crystals. It has the property of being distributed, that is, C
The axis is not in the direction of columnar crystal growth, and the in-plane anisotropy is distributed only in the plane perpendicular to the axis. Naturally, this magnet has higher performance than one using an isotropic equiaxed product as the macrostructure, and is very advantageous. However, even if columnar crystals are used, the grain size must be fine due to coercive force, and the lower the B side, the better.

次に後者であるが、これは熱間加工の異方性化効果をよ
り高めるものである。異方性磁石の配向度を、 kl−A = Bx/ J (Bx”+ By” + 
Bz”l X 100 (%)(Bx、By、Bzは夫
々x、y、z方向の残留磁束密度)で定義すると等方性
は約60%、面内異方性は70%となる。熱間加工によ
る異方性化効果(配向度上昇効果)は加工材の配向度に
拘らず、存在するが、元材の配向度が高いほど最終加工
材の配向度も高くなる。よって柱状晶を用いることによ
り元材の配向度を高めておくことは、最終的に高性能な
異方性磁石を得る上で効果があ机 以下、本発明による永久磁石の好ましい組成範囲につい
て説明する。
Next is the latter, which further enhances the anisotropy effect of hot working. The degree of orientation of the anisotropic magnet is expressed as kl-A = Bx/J (Bx"+ By" +
When defined as Bz"l x 100 (%) (Bx, By, and Bz are the residual magnetic flux densities in the x, y, and z directions, respectively), the isotropy is approximately 60% and the in-plane anisotropy is 70%.Thermal The anisotropy effect (orientation increase effect) due to preliminary processing exists regardless of the degree of orientation of the processed material, but the higher the degree of orientation of the source material, the higher the degree of orientation of the final processed material. Increasing the degree of orientation of the base material by using the above is effective in ultimately obtaining a high-performance anisotropic magnet.The preferred composition range of the permanent magnet according to the present invention will be described below.

希土類としては、Y、La、Ce、Pr、Nd、Sm、
Eu、Gd、Tb、Dy、Ha、Er、Tm、Yb、L
uが候補として挙げられ、これらのうちの1種あるいは
2種以上を組合わせて用いられる。最も高い磁気性能は
Prで得られる。
Rare earths include Y, La, Ce, Pr, Nd, Sm,
Eu, Gd, Tb, Dy, Ha, Er, Tm, Yb, L
u is listed as a candidate, and one or more of these may be used in combination. The highest magnetic performance is obtained with Pr.

従って実用的にはPr、Pr−Nd合金、Ce−Pr−
Nd合金等が用いられる。また少量の添加元素、例えば
重希土元素のDy、Tb等やA1、Mo、Si等は保磁
力の向上に有効である。
Therefore, Pr, Pr-Nd alloy, Ce-Pr-
Nd alloy or the like is used. Further, small amounts of additive elements, such as heavy rare earth elements such as Dy and Tb, Al, Mo, and Si, are effective in improving the coercive force.

R−Re−B系磁石の主相はR1Fe+4Bである。従
ってRが8原子%未満では、もはや上記化合物を形成せ
ずα−鉄と同一構造の立方晶組織となるため高磁気特性
は得られない。
The main phase of the R-Re-B magnet is R1Fe+4B. Therefore, if R is less than 8 at %, the above compound is no longer formed and a cubic crystal structure having the same structure as α-iron is formed, so that high magnetic properties cannot be obtained.

一方Rが30原子%を越えると非磁性のRリッチ相が多
くなり磁気特性は著しく低下する。
On the other hand, if R exceeds 30 atomic %, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly.

よってRの範囲8〜30原子%が適当である。Therefore, a suitable range for R is 8 to 30 atomic %.

しかし鋳造磁石とするため、好ましくはR8〜258〜
25原子である。
However, since it is a cast magnet, it is preferably R8~258~
It has 25 atoms.

Bは、RxFexB相を形成するための必須元素であり
、2原子%未満では菱面体のR−Fe系になるため高保
磁力は望めない、また28原子%を越えるとBに富む非
磁性相が多くなり、残留磁束密度は著しく低下してくる
。しかし鋳造磁石としては好ましくはB88原子以下が
よく、それ以上で微細なRxFe+4B相を得ることが
困難で、保磁力は小さくなる。
B is an essential element for forming the RxFexB phase, and if it is less than 2 atom%, it will become a rhombohedral R-Fe system, so high coercive force cannot be expected, and if it exceeds 28 atom%, a B-rich nonmagnetic phase will form. As the residual magnetic flux density increases, the residual magnetic flux density decreases significantly. However, for a cast magnet, B88 atoms or less are preferable; if it is larger than that, it is difficult to obtain a fine RxFe+4B phase, and the coercive force becomes small.

Ceは水系磁石のキュリー点を増加させるのに有効な元
素であり、基本的にFeのサイトを置換しR2C014
Bを形成するのだが、この化合物は結晶異方性磁界が小
さく、その量が増すにつれて磁石全体としての保磁力は
小さくなる。そのため永久磁石として考^られるI K
Oe以上の保磁力を与えるには50原子%以内がよい。
Ce is an effective element for increasing the Curie point of water-based magnets, and basically replaces Fe sites to create R2C014.
B is formed, but this compound has a small crystal anisotropy magnetic field, and as the amount increases, the coercive force of the magnet as a whole becomes smaller. Therefore, IK can be considered as a permanent magnet.
In order to provide a coercive force of Oe or more, the content is preferably within 50 atomic %.

AIは、保磁力の増大効果を有する。(文献7: Zh
ang Maocai他、Proceedingsof
the 8th International Wor
kshop on Rare−Farth Magne
ts、1985、 p5411 この文献7は焼結磁石に対する効果を示したものである
が、この効果は鋳造磁石でも同様に存在する。しかしA
Iは非磁性元素であるため、その添加量を増すと残留磁
束密度が低下し、15原子%を越えるとハードフェライ
ト以下の残留磁束密度になってしまうので希土類磁石と
しての目的を果たし得ない。よってAIの添加量は15
原子%以下がよい。
AI has the effect of increasing coercive force. (Reference 7: Zh
ang Maocai et al., Proceedingsof
the 8th International Wor
kshop on Rare-Farth Magne
ts, 1985, p5411 This document 7 shows the effect on sintered magnets, but this effect also exists on cast magnets. However, A
Since I is a non-magnetic element, increasing the amount added lowers the residual magnetic flux density, and if it exceeds 15 atomic %, the residual magnetic flux density becomes lower than hard ferrite, so that it cannot fulfill its purpose as a rare earth magnet. Therefore, the amount of AI added is 15
It is preferably less than atomic %.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実 施 例] 本発明による製造法の工程図を第1図に示す。[Example] A process diagram of the manufacturing method according to the present invention is shown in FIG.

先ず第1図の工程図に従って、第1表に示すような組成
の合金を誘導炉で溶解し銅鋳型に鋳造し、柱状晶を形成
せしめる。
First, according to the process diagram of FIG. 1, an alloy having the composition shown in Table 1 is melted in an induction furnace and cast into a copper mold to form columnar crystals.

次にインゴットを磁気的に硬化させるため、1000℃
×24時間+500℃×2時間のアニル処理を施した6 鋳造タイプの場合は、この段階で切断・研削を施せば、
柱状晶の異方性を利用した面内異方性磁石となる。
Next, in order to harden the ingot magnetically, it was heated to 1000°C.
x 24 hours + 500℃ x 2 hours annealing treatment 6 In the case of a cast type, if cutting and grinding are performed at this stage,
This is an in-plane anisotropic magnet that utilizes the anisotropy of columnar crystals.

異方性タイプの場合は、アニール処理前に先ず熱間加工
を施し次いでアニールする。
In the case of an anisotropic type, hot working is first performed before annealing treatment, and then annealing is performed.

本実施例では、熱間加工法としてはホットプレスを用い
た。
In this example, hot pressing was used as the hot working method.

加工温度は1000℃で行なった。The processing temperature was 1000°C.

次にこの中で最も性能の高かったPr+4Fes2B4
と文献2の焼結法の最適組成であるNd、9FettB
sについて、銅鋳型を利用して微細柱状晶を形成せしめ
たものと、鉄鋳型を用いて通常の柱状晶を形成せしめた
ものを比較した。その結果を第3表に示す、また熱間加
工後の粒径を組成・鋳型側に測定したものを第4表に示
す。
Next, Pr+4Fes2B4 had the highest performance among them.
and Nd, 9FettB, which is the optimal composition of the sintering method in Reference 2.
Regarding s, a comparison was made between one in which fine columnar crystals were formed using a copper mold and one in which ordinary columnar crystals were formed using an iron mold. The results are shown in Table 3, and Table 4 shows the grain size after hot working measured on the composition and mold side.

第1表 第3表 第4表 粒微細化効果に関連していることがわかる。Table 1 Table 3 Table 4 It can be seen that this is related to the grain refinement effect.

本発明を利用して柱状晶を形成せしめた方が、鋳造のま
までも、熱間加工を施しても、保磁力iHe、最大エネ
ルギー積(BH)=、、、配向度等のすべての磁気特性
が優れていることが判る。
By forming columnar crystals using the present invention, all magnetic properties such as coercive force iHe, maximum energy product (BH) =, orientation degree etc. is found to be superior.

【発明の効果〕【Effect of the invention〕

斜上の如く本発明の永久磁石及びその製造方法によれば
、鋳造インゴットを粉砕することなく熱処理するだけで
、高性能な磁石を得ることが出来、生産性を高めること
が出来るという効果を奏するものである。
According to the permanent magnet and the manufacturing method thereof of the present invention as shown in the above, a high-performance magnet can be obtained by simply heat-treating a cast ingot without pulverizing it, and productivity can be improved. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のR−Fe−B系磁石の製造工程図。 以 上 FIG. 1 is a manufacturing process diagram of the R-Fe-B magnet of the present invention. Below Up

Claims (4)

【特許請求の範囲】[Claims] (1)希土類元素(但しYを含む)と遷移金属とボロン
を主成分とする磁石において、銅鋳型を用いて鋳造した
該磁石のマクロ組織が柱状晶であり、異方性化したこと
を特徴とする永久磁石。
(1) In a magnet whose main components are rare earth elements (including Y), transition metals, and boron, the macrostructure of the magnet cast using a copper mold is columnar and anisotropic. Permanent magnet.
(2)希土類元素(但しYを含む)と遷移金属とボロン
を主成分とする磁石製造方法において、銅鋳型を用いて
鋳造して、該磁石のマクロ組織を柱状晶とし、次いで2
50℃以上の温度で熱処理し磁気的に硬化せしめたこと
を特徴とする永久磁石の製造方法。
(2) In a method for manufacturing a magnet whose main components are rare earth elements (including Y), transition metals, and boron, the magnet is cast using a copper mold to have a columnar crystal structure, and then 2
A method for producing a permanent magnet, characterized in that it is magnetically hardened by heat treatment at a temperature of 50° C. or higher.
(3)希土類元素(但しYを含む)と遷移金属とボロン
を主成分とする磁石の製造方法において、銅鋳型を用い
て鋳造後、500℃以上の温度で熱間加工することによ
り、結晶粒の結晶軸を特定の方向に配向せしめて該磁石
を磁気的に異方性化することを特徴とする永久磁石の製
造方法。
(3) In a method for manufacturing magnets whose main components are rare earth elements (including Y), transition metals, and boron, crystal grains are 1. A method for producing a permanent magnet, which comprises orienting the crystal axis of a permanent magnet in a specific direction to make the magnet magnetically anisotropic.
(4)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする磁石の製造方法において、銅鋳型を用いて鋳
造後、500℃以上の温度で熱間加工し、次に250℃
以上の温度で熱処理することにより磁気的に硬化したこ
とを特徴とする永久磁石の製造方法。
(4) In a method for manufacturing a magnet whose basic components are rare earth elements (including Y), iron, and boron, after casting using a copper mold, hot working at a temperature of 500°C or higher, then 250°C
A method for producing a permanent magnet, characterized in that it is magnetically hardened by heat treatment at a temperature above.
JP1337605A 1989-12-26 1989-12-26 Permanent magnet and manufacture thereof Pending JPH03196601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337605A JPH03196601A (en) 1989-12-26 1989-12-26 Permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337605A JPH03196601A (en) 1989-12-26 1989-12-26 Permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03196601A true JPH03196601A (en) 1991-08-28

Family

ID=18310221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337605A Pending JPH03196601A (en) 1989-12-26 1989-12-26 Permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03196601A (en)

Similar Documents

Publication Publication Date Title
EP0288637B1 (en) Permanent magnet and method of making the same
JPH01171209A (en) Manufacture of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2746111B2 (en) Alloy for permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JPH03196601A (en) Permanent magnet and manufacture thereof
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPS63286515A (en) Manufacture of permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPS63287006A (en) Permanent magnet and manufacture thereof
JPH01161802A (en) Manufacture of permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPS63287005A (en) Permanent magnet and manufacture thereof
JPS63285910A (en) Permanent magnet and manufacture thereof
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH03249125A (en) Production of permanent magnet
JPS63287007A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPS63286511A (en) Manufacture of permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPS63286516A (en) Manufacture of permanent magnet
JPS63286514A (en) Manufacture of permanent magnet