JPS63285909A - Permanent magnet and manufacture thereof - Google Patents

Permanent magnet and manufacture thereof

Info

Publication number
JPS63285909A
JPS63285909A JP62120706A JP12070687A JPS63285909A JP S63285909 A JPS63285909 A JP S63285909A JP 62120706 A JP62120706 A JP 62120706A JP 12070687 A JP12070687 A JP 12070687A JP S63285909 A JPS63285909 A JP S63285909A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
grain size
rare earth
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62120706A
Other languages
Japanese (ja)
Inventor
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62120706A priority Critical patent/JPS63285909A/en
Publication of JPS63285909A publication Critical patent/JPS63285909A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve performance, and to reduce cost by specifying the crystal mean grain size of a magnet and specifying each concentration of carbon and oxygen contents in the magnet using a rare earth element, iron and boron as basic ingredients. CONSTITUTION:In a permanent magnet employing a rare earth element (where including Y), iron and boron as basic ingredients, the crystal mean grain size of the permanent magnet ranges from 0.04mum to 100mum, carbon and oxygen contents respectively range from 400ppm to 1000ppm, and the rise of an initial magnetization curve is made steep. For shape such a permanent magnet, these basic ingredients are casted so that the crystal mean grain size ranges from 0.04mum to 100mum, and thermally treated at 250 deg.C or higher. The basic ingredients are casted, and hot-worked at a temperature of 500 deg.C or higher, thus changing the basic ingredients into anisotropy. Or the basic ingredients are hot-worked, and thermally treated at 250 deg.C or higher, thus acquiring the permanent magnet. The permanent magnet is also obtained in such a manner that the basic ingredients are cooled so that the crystal mean grain size ranges from 0.04mum to 130mum, thermally treated at a temperature of 250 deg.C or higher, crushed, and kneaded and bonded with a resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、積土−元素と鉄のボロンを基本成分とする永
久磁石及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a permanent magnet whose basic components are earthworks and boron of iron, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器まで幅広い分野で使用されている
重要な電気、電子材料の一つである。
Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers.

最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。現在使用さ
れている永久磁石のうち代表的なものはアルニコ、ハー
ドフェライト及び希土類−遷移金属系磁石である。特に
希土類−遷移金属系磁石であるR−Co系永久磁石やR
−Fe−B系永久磁石は、高い磁気性能が得られるので
従来から多くの研究開発が成されている。
With the recent demand for smaller and more efficient electrical products,
Permanent magnets are also required to have increasingly higher performance. Typical permanent magnets currently in use are alnico, hard ferrite, and rare earth-transition metal magnets. In particular, R-Co permanent magnets, which are rare earth-transition metal magnets, and R
Since -Fe-B permanent magnets provide high magnetic performance, much research and development has been carried out on them.

従来、これらR−Fe−B系永久磁石の製造方法に関し
ては、以下の文献に示すよ゛うな方法がある。
Conventionally, there are methods for manufacturing these R-Fe-B permanent magnets as shown in the following literature.

(1)  粉末冶金法に基づく焼結による方法。(1) Sintering method based on powder metallurgy.

(文献1、文献2) ■ アモルファス合金を製造するのに用いる急冷薄帯製
造装置で、厚さ30μm程度の急冷薄片を作り、その薄
片を!に4鮨詰合法で磁石にするメルトスピニング法に
よる急冷薄片を用いた樹脂結合方法、、(文献3、文献
4) (3)  上述の(2)の方法で使用した急冷薄片を、
2段階のホットプレス法で機械的配向処理を行う方法。
(Reference 1, Reference 2) ■ Create a quenched thin piece with a thickness of about 30 μm using the quenched ribbon manufacturing equipment used to manufacture amorphous alloys, and then make the thin piece! 4.Resin bonding method using quenched flakes by melt spinning method to make magnets using sushi stuffing method (Reference 3, Reference 4) (3) The quenched flakes used in method (2) above are
A method that performs mechanical alignment treatment using a two-step hot press method.

(文献4、文献5) ここで、 文献1:特開昭59−46008号公報;文献2 :M
、Sagawa、S、Fuj imura、  N、T
ogawa、H,Yamamo to、and  Y、
Matsuura;J、Appl、Phys、Vo 1
,55 (6)15Mar。
(Reference 4, Reference 5) Here, Reference 1: JP-A-59-46008; Reference 2: M
, Sagawa, S., Fuji imura, N., T.
ogawa, H, Yamamo to, and Y.
Matsuura; J, Appl, Phys, Vo 1
, 55 (6) 15 Mar.

h  1984.P2O83゜ 文献3:特開59−211549号公報:文献4:R,
W、Lee;Al)pI、  Phys、Lett、V
ol、46 (8)、15APrif   1985.
  p790; 文献5:特開昭80−100402号公報次に上記の従
来方法について説明する。
h 1984. P2O83° Document 3: JP-A-59-211549: Document 4: R,
W, Lee; Al) pI, Phys, Lett, V
ol, 46 (8), 15APrif 1985.
p790; Document 5: Japanese Unexamined Patent Publication No. 80-100402 Next, the above conventional method will be explained.

先ず(1)の焼結法では、溶解、鋳造により合金インゴ
ットを作製し、このインゴットを3μm位粒径にまで粉
砕し、バインダーと混練し、磁場中でプレス成形されて
成形体が出来上がる。
First, in the sintering method (1), an alloy ingot is produced by melting and casting, and this ingot is crushed to a particle size of about 3 μm, kneaded with a binder, and press-formed in a magnetic field to complete a compact.

この成形体は、アルゴンガス中で1100℃前後の温度
で1時間焼結され、その後600℃前後−の温一度で熱
処理する−ことにより保磁力が向上される。
This compact is sintered in argon gas at a temperature of around 1100°C for 1 hour, and then heat treated at a temperature of around 600°C to improve its coercive force.

■のメルトスピニング法による急冷薄片を用いた樹脂結
合方法では、先ず急冷薄帯製造装置の回転数を最適化し
て、直径が400λ以下の多結晶の集合体となっている
ようなR−Fe−B合金の厚さ30μmのリボン状薄片
を作製する。この薄片中の結晶粒の結晶軸は等方的に分
布し磁気的にも等方性であり、適度な粒度に粉砕して樹
脂と混練して、プレス成形すれば等方性の磁石が得られ
る。
In the resin bonding method using quenched thin flakes by the melt spinning method, first, the rotation speed of the quenched ribbon manufacturing equipment is optimized, and R-Fe- A ribbon-shaped thin piece of B alloy with a thickness of 30 μm is produced. The crystal axes of the crystal grains in this flake are isotropically distributed and magnetically isotropic. If the particles are crushed to an appropriate particle size, kneaded with resin, and press-molded, an isotropic magnet can be obtained. It will be done.

(3)の二段階ホッ′ドブレスによる製造方法は、(2
)で用いられたリボン状の急冷薄片が、真空中あるいは
不活性ガス9フ00℃付近で圧力〜1.4ton/cm
”でプレスされる。次に同様の700℃で0.7ton
/cm’で数秒間プレスしてその厚さを初めの1/2に
すると合金は異方性化して、緻密で異方性を有するR−
Fe−B磁石が製造できる。
The two-step hot press manufacturing method (3) is as follows: (2)
) The ribbon-shaped quenched flakes used in
”.Next, press at 700℃ and 0.7ton.
/cm' for a few seconds to reduce its thickness to 1/2 of the original thickness, the alloy becomes anisotropic, forming a dense and anisotropic R-
Fe-B magnets can be manufactured.

又、Liquid  dynamic  compac
tion法(以下LDC法と言う)によってバルク状態
で、保磁力を有する合金も作られている。(文献6) 文献6:T、S、Chin他、J、AppI。
Also, Liquid dynamic compac
An alloy having a coercive force is also produced in a bulk state by the ion method (hereinafter referred to as LDC method). (Reference 6) Reference 6: T, S, Chin et al., J, AppI.

Phys、59 (4)、15Feburary198
B、p1297 〔発明が解決しようとする間厘点〕 叙上の従来技術で一応希土類元素と鉄とボロンを基本成
分とする永久磁石は製造出来るが、これらの製造方法に
は次の如き欠点を育している。
Phys, 59 (4), 15 February 198
B, p1297 [Disadvantages that the invention seeks to solve] Permanent magnets whose basic components are rare earth elements, iron, and boron can be manufactured using the conventional techniques described above, but these manufacturing methods have the following drawbacks. I'm growing up.

(1)の焼結法は、合金を粉末にするのが必須であるが
、R−Fe−B系磁石合金においてその粉末は、酸素に
対して大変活性があるので、焼結法に用いられる粉末は
厳重に管理される必要があり、不活性ガス雰囲気等の高
価な設備が必要となる。
For the sintering method (1), it is essential to turn the alloy into powder, but in the case of R-Fe-B magnet alloys, the powder is highly active against oxygen, so it is used in the sintering method. Powder must be strictly controlled, and expensive equipment such as an inert gas atmosphere is required.

又焼結法におい、ては、バインダーの炭素が磁気性能に
悪影響を与える問題やグリーン体と呼ばれる成形体のハ
ンドリングが難しいといった生産効率を悪くする問題が
あり、R−F e −B系磁石の原料費の安さを十分に
引き出すことが出来る方法とは言い難い。
In addition, in the sintering method, there are problems such as the carbon in the binder having a negative effect on magnetic performance and the difficulty in handling the green body, which reduces production efficiency. It is difficult to say that this is a method that can fully take advantage of low raw material costs.

又 (2)並びに(3)の方法は、従来の永久磁石製造
の概念を変える興味深いものであるが ■ 約10°’C/seeもの冷却速度を必要とし、冷
却速度のバラツキが性能に、大きく影響する。
Although methods (2) and (3) are interesting and change the concept of conventional permanent magnet manufacturing, they require a cooling rate of about 10°C/see, and variations in the cooling rate can greatly affect performance. Affect.

■ 組織中には結晶質相だけでなく、非晶質をも含をし
、その相が磁気特性に大きく依存している。そのため非
晶質相が結晶化する高温での安定性に乏しい。
■ The structure contains not only crystalline phases but also amorphous phases, and the magnetic properties are highly dependent on these phases. Therefore, it has poor stability at high temperatures where the amorphous phase crystallizes.

■ 異方化のための熱間加工も結晶化をさせないため短
時間で行なう必要があり、高度の製造技術を要するため
、製造コストが高価となる。
■ Hot working for anisotropy also needs to be done in a short time to prevent crystallization, and requires advanced manufacturing technology, resulting in high manufacturing costs.

■ 保磁力機構がピニングあり、なおかつ温度特性の悪
さを、カバーするため高保磁力であるので、磁石の着脱
磁が非常に困難である。
■ Since the coercive force mechanism has pinning and has a high coercive force to compensate for poor temperature characteristics, it is extremely difficult to attach and detach the magnet.

といった、生産性に起因する問題が数多く存在する。There are many problems caused by productivity.

LDC法もやはり高価な設備と生産効率の悪さといった
問題点を存している。
The LDC method also has problems such as expensive equipment and poor production efficiency.

本発明は、以上の従来技術の欠点を解決するものであり
、その目的とするところは高性能且つ低コストな希土類
−鉄系永久磁石及びその製造方法を提供することにある
The present invention solves the above-mentioned drawbacks of the prior art, and its purpose is to provide a high-performance, low-cost rare earth-iron permanent magnet and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の永久磁石は、希土類元素(但し、Yを含む)と
鉄とボロンを基本成分とする磁石において、該磁石の結
晶平均粒径が0.04μm以上100μm以下であり、
含有炭素及び酸素が夫々400ppm以下、11000
pp以下であることを特徴とする永久磁石である。
The permanent magnet of the present invention is a magnet whose basic components are a rare earth element (including Y), iron, and boron, and the average crystal grain size of the magnet is 0.04 μm or more and 100 μm or less,
Containing carbon and oxygen are each 400 ppm or less, 11000
It is a permanent magnet characterized by a pp or less.

しかし、その永久磁石の製造方法の第1は、希土類元素
(但しYを含む)と鉄とボロンを基本成分とする磁石の
製造方法において、その結晶平均粒径が0.04μm以
上100μm以下となるように鋳造し、次に250°C
以上の熱処理を施すことを特徴とする永久磁石の製造方
法である。
However, the first method for manufacturing permanent magnets is a method for manufacturing magnets whose basic components are rare earth elements (including Y), iron, and boron, in which the average crystal grain size is 0.04 μm or more and 100 μm or less. Then cast at 250°C.
This is a method for manufacturing a permanent magnet, which is characterized by performing the above heat treatment.

その永久磁石の製造方法の第2は、前記第1の製造方法
における鋳造後、500℃以上の温度で熱間加工するこ
とにより該磁石を異方性化することを特徴とする永久磁
石の製造方法である。
A second method for manufacturing a permanent magnet is characterized in that after casting in the first manufacturing method, the magnet is hot worked at a temperature of 500° C. or higher to make the magnet anisotropic. It's a method.

その永久磁石の製造方法の第3は、前記第2の製造方法
における熱間加工後、250℃以上の熱処理を施すこと
を特徴とする永久磁石の製造方法である。
The third method for manufacturing a permanent magnet is a method for manufacturing a permanent magnet, which is characterized in that, after the hot working in the second manufacturing method, heat treatment is performed at 250° C. or higher.

その永久磁石の製造方法の第4は、前記第1の製造方法
における冷却をさらに速めて30μm以下とし、次に2
50℃以上の温度で熱処理を施した後、粉砕し樹脂と混
練し、結合したことを特徴とする永久磁石の製造方法で
ある。
The fourth method of manufacturing the permanent magnet is to further speed up the cooling in the first manufacturing method to obtain a magnet with a diameter of 30 μm or less, and then
This method of producing a permanent magnet is characterized in that the magnet is heat-treated at a temperature of 50° C. or higher, then pulverized, kneaded with a resin, and bonded.

〔イ乍用〕[For use]

本発明において用いられる希土類元素と鉄とボロンを基
本成分とする、永久磁石の好ましい組成は、希土類元素
8〜30原子%、ボロン2〜28原子%、残部が鉄とい
うものである。
A preferred composition of the permanent magnet used in the present invention, which has rare earth elements, iron, and boron as basic components, is 8 to 30 at. % of rare earth elements, 2 to 28 at. % of boron, and the balance is iron.

希土類元素としては、Y s L a s C8% P
 r 1Nds PmlSmt Eus Gdt Tb
s DY% HotEr、T m s Y b 1L 
uが用いられるが特にN d 1P rが好ましい。又
これらの希土類元素が2!!以上含まれてでもよい。又
、前記の基本成分以外に製造工程上不可避な不純物が含
まれてもよいし、キュリ一温度及び温度特性の改善のた
めにコバルトが、そして保磁力向上のために、A1、C
r、Mos WlNblTalZrs Hft Ti等
含まれてもよい。
Rare earth elements include Y s L a s C8% P
r 1Nds PmlSmt Eus Gdt Tb
s DY% HotEr, T m s Y b 1L
u is used, but N d 1P r is particularly preferred. Also, these rare earth elements are 2! ! The above may be included. In addition to the basic components mentioned above, impurities unavoidable in the manufacturing process may be included, such as cobalt to improve the Curie temperature and temperature characteristics, and A1, C to improve the coercive force.
r, Mos WlNblTalZrs Hft Ti, etc.

R−Fe−B系磁石を保磁力機構の上から分類すると、
前記従来技術における(1)の焼結法は、ニュークリエ
ーションタイプであり、(2)(3)の急冷法はビニ/
ゲタイブである。この2つの区分は、切破化曲線の立ち
上がりを調べることで容易にできる。すなわちニューク
リエージ讐ンタイプでは初磁化曲線の立ち上がりが急峻
であり、ピニングタイプでは初磁化曲線は、磁化が析出
物でピン止めされている間は立ち上がりずらく、ピンニ
ングフォース以上になると急に立ち上がるといった形と
なる。一般にR−Fe−B磁石では、残留磁束密度Br
や保磁力iHcの温度系数が大きいので、これをカバー
するためiHcを大きくしている。
When R-Fe-B magnets are classified based on their coercive force mechanism,
In the prior art, the sintering method (1) is a nu-creation type, and the quenching methods (2) and (3) are a vinyl/vinyl sintering method.
Getaibu. These two divisions can be easily made by examining the rise of the truncation curve. In other words, in the nucleation type, the initial magnetization curve rises steeply, and in the pinning type, the initial magnetization curve is difficult to rise while the magnetization is pinned by precipitates, and rises suddenly when the pinning force is exceeded. becomes. Generally, in R-Fe-B magnets, the residual magnetic flux density Br
Since the temperature coefficient of coercive force iHc is large, iHc is made large to cover this.

ところがiHcを大きくすると、磁石として着脱磁が非
常に困難となる。特に、最近の希土類磁石使用の主流で
°ある回転機等では、多極着磁が必要になることが多く
、この問題の重要性が増している。この点を考慮すると
、ニュークリエージ望ンタイプは、初磁化曲線の立ち上
がりが急なので、十分な着磁場がなくても、ある程度の
着磁ができるが、ピニングタイプではピニングフォース
以内の磁場だとほとんど着磁できないことになる。この
点ではニュークリエーションタイプが有利となる。
However, if iHc is increased, it becomes very difficult to attach and detach the magnet. In particular, in rotating machines, etc., which are the mainstream of recent rare earth magnets, multi-pole magnetization is often required, and this problem is becoming increasingly important. Considering this point, the Nucleage Desired type has a steep initial magnetization curve, so it can be magnetized to some extent even without a sufficient magnetic field, but the pinning type can hardly be magnetized if the magnetic field is within the pinning force. This means that it cannot be magnetized. In this respect, the New Creation type is advantageous.

しかし焼結法では、前述のように粉砕・焼結という工程
を経るため、粉末管理が困難でしかも、酸素炭素濃度が
高くなってしまうという欠点がある。これらの点を解決
するには、保磁力機構はニュークリニーシコンモデルで
なおかつ、粉砕、焼結という工程を経ずとも磁石化でき
ればよい。
However, the sintering method involves the steps of pulverization and sintering as described above, making powder control difficult and having the drawbacks of high oxygen and carbon concentrations. In order to solve these problems, the coercive force mechanism should be a Nuclinisicon model and be able to be magnetized without going through the steps of crushing and sintering.

一般にニュークリエーションモデルでは、主相(希土類
−鉄一ボロン系の場合はR*Fc、aB相、Rは希土類
元素)が単磁区の臨界半径に近づき、容易に逆磁区を発
生させ得ないようにすることが保磁力発生の原因とされ
ている。ところが、Ra’F ’e Ia”B相の臨界
半径はサブミクロンオーダであるにもかかわらず、焼結
磁石の粒径は10μm程度である。これは焼結法の場合
、鋳造インゴットを、いったん粉砕するという工程を経
るので、その段階で表面積が大きく増加し酸素濃度が増
すために、現実には臨界半径に近い粒径を持つ焼結体は
作成不能ということになる。
Generally, in the nucleation model, the main phase (R*Fc, aB phase, R is the rare earth element in the case of rare earth-iron-boron system) approaches the critical radius of a single magnetic domain, so that a reverse magnetic domain cannot easily be generated. This is said to be the cause of coercive force generation. However, although the critical radius of the Ra'F'e Ia''B phase is on the submicron order, the grain size of the sintered magnet is about 10 μm. Since it goes through a process of pulverization, the surface area increases significantly and the oxygen concentration increases at that stage, so in reality, it is impossible to create a sintered body with a particle size close to the critical radius.

逆にいうと、ニュークリエージ9ンモデルの保磁力に従
う磁石であるかぎり、わざわざ鋳造インゴットの粉砕か
ら焼結という工程を経ずとも、鋳造時の冷却速度を通常
より速めれば、充分保磁力を得るのに可能な粒径にR*
 Fes a B相を制御できる。この方法では、つま
りバルク状臼で保磁力を得ることが可能となり、粉末管
理の困難さといった生産性の問題から解放される。さら
に冷却速度を通常より速めるといっても従来の急冷法の
ようにアモルファス相を形成する必要はなく、組織的に
は結晶質のみからなるので、異方化のための熱間加工も
高温で安定的にしかも生産性高く行なうことができる。
Conversely, as long as the magnet complies with the coercive force of the Nucleage 9 model, you can obtain sufficient coercive force by increasing the cooling rate during casting than usual, without having to go through the process of crushing and sintering the casting ingot. R* to the possible particle size
Fes a B phase can be controlled. With this method, it is possible to obtain coercive force with a bulk die, and productivity problems such as difficulty in powder management are freed. Furthermore, even though the cooling rate is faster than usual, there is no need to form an amorphous phase as in the conventional rapid cooling method, and the structure consists only of crystalline materials, so hot working for anisotropy can also be done at high temperatures. It can be performed stably and with high productivity.

従来の焼結法による磁石では出来上がった磁石を粉砕し
て樹脂結合磁石とすることは出来なかった。これは粉砕
による機械歪と結晶粒が大きすぎることに起因している
。ところが本発明を用いて冷却速度の変更により粒径を
制御すれば、樹脂結合磁石用粉末の粒径(数〜数10μ
m)にしても保磁力を育する粉末の作成が可能となり、
ニュークリエージ9ンモデルに従う樹脂結合磁石の作成
が可能となる。
With magnets produced using conventional sintering methods, it was not possible to crush the finished magnets into resin-bonded magnets. This is due to mechanical strain caused by crushing and too large crystal grains. However, if the particle size is controlled by changing the cooling rate using the present invention, the particle size of resin-bonded magnet powder (several to several tens of μm) can be reduced.
Even with m), it is possible to create powder that increases coercive force,
It becomes possible to create a resin bonded magnet according to the Nucleage 9 model.

前述したようにニュークリエージリンモデルに従うR−
Fe−B系の磁石において、バルク状臼で保磁力を得る
ためにはその結晶粒が適切でなければならない。即ち、
冷却時の平均粒径が100μmを越える熱間加工を施し
ても保磁力が、希土類磁石としては充分とはいいがた<
、0.04μm以下では単磁区の臨界半径を下回り、ま
たアモルファス相を含む初磁化曲線もピニングタイプに
なるのでその平均粒径は0.04以上100μm以下で
なければならない。これらの粒径制御は、鋳型材質及び
鋳型の熱容量の調節、あるいはアモルファス相を形成し
ないような低速での冷却ロールの使用等により遂行でき
る。
As mentioned above, R- according to the nucleagin model
In order to obtain coercive force in a bulk mill in a Fe-B based magnet, its crystal grains must be appropriate. That is,
Even after hot working with an average grain size of over 100 μm upon cooling, the coercive force is still not sufficient for a rare earth magnet.
, 0.04 μm or less is less than the critical radius of a single magnetic domain, and the initial magnetization curve including the amorphous phase becomes a pinning type, so the average grain size must be 0.04 or more and 100 μm or less. These particle size controls can be accomplished by adjusting the mold material and heat capacity of the mold, or by using cooling rolls at low speeds that do not form an amorphous phase.

そして冷却後の熱処理は、合金中に初晶として存在する
Fe相を拡散させ、磁気的にソフトな相をなくすのに必
要であり、むろん熱間加工後においても同様の熱処理を
することはその磁気特性を向上させる効果がある。
Heat treatment after cooling is necessary to diffuse the Fe phase that exists as a primary crystal in the alloy and eliminate the magnetically soft phase, and of course it is important to perform the same heat treatment after hot working. It has the effect of improving magnetic properties.

500℃以上の温度で熱間加工することは、その結晶粒
の結晶軸を配向させて異方性化する効果とその結晶粒を
微細化する効果もあり磁気性能を大幅に向上させること
になる。冷却速度をさらに速めることによって粒径の上
限を30μm以内とすることは、粉砕により樹脂結合磁
石を作成する際、保磁力を有する粉末を作成するうえで
効果がある。
Hot working at a temperature of 500°C or higher has the effect of orienting the crystal axes of the crystal grains to make them anisotropic, and also has the effect of making the crystal grains finer, significantly improving magnetic performance. . Setting the upper limit of the particle size to 30 μm or less by further increasing the cooling rate is effective in producing powder having coercive force when producing a resin-bonded magnet by pulverization.

酸素及び炭素′e4度は、前述した様に本発明では焼結
法のように粉砕工程が不要なこと、また成形時に成形助
剤としての育機バイングーも必要ないことから、請求範
囲内の値に容易に収めることができる。
Oxygen and carbon'e4 degrees are within the claimed range because, as mentioned above, the present invention does not require a pulverizing step unlike the sintering method, and also does not require nurturing binder as a molding aid during molding. can be easily accommodated.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

〔実施例〕〔Example〕

(実施例1) 第1表に本実施例で用いた種々の希土類元素と鉄ボロン
を基本成分とする永久磁石合金の組成を示す。
(Example 1) Table 1 shows the composition of the permanent magnet alloy whose basic components are various rare earth elements and iron boron used in this example.

まず所望の組成の合金をAr雰囲気中で低周波溶解炉を
用いて溶解し、各種鋳型に1000°C鋳造し、20分
後鋳造合金を取出した。この時希土類金属としては純度
95%のもの(不純物は主として他の希土類金属)を使
用し、遷移金属とじては99.9%以上の純度のものを
、ボロンに関してはフェロボロ7合金が用いられた。
First, an alloy having a desired composition was melted in an Ar atmosphere using a low frequency melting furnace, and cast into various molds at 1000°C. After 20 minutes, the cast alloy was taken out. At this time, the rare earth metal used was one with a purity of 95% (impurities were mainly other rare earth metals), the transition metal used was one with a purity of 99.9% or more, and the boron used was Ferroboro 7 alloy. .

そしてこれらの鋳造合金は250°C以上の熱処理(1
000°Cで24時間)が施され、切断、研削を行なっ
て永久磁石を得た。
These cast alloys are then heat treated at 250°C or higher (1
000°C for 24 hours), cutting and grinding were performed to obtain a permanent magnet.

第2表に各組成において鉄鋳型を用いて鋳造した場合の
磁気性能と平均粒径を示す。
Table 2 shows the magnetic performance and average grain size of each composition when cast using an iron mold.

また第1図には第1表のNo、3はNo、4の組成を用
いた試料における鋳造時の平均粒径(μm)とそのホッ
トプレス後の保磁力iHcの関係を示す。この時、粒径
の制御は水冷銅鋳型、鉄鋳型、セラミックス鋳型等の各
種の鋳型及び振動を鋳型に与えられることなどにより行
なわれた。この結果から、粒径を制御した鋳造により高
い保磁力を持った永久磁石が得られることがわかる。
Further, FIG. 1 shows the relationship between the average grain size (μm) during casting and the coercive force iHc after hot pressing for samples using compositions No. 3, No. 4, and No. 4 in Table 1. At this time, the grain size was controlled using various molds such as water-cooled copper molds, iron molds, and ceramic molds, and by applying vibration to the molds. This result shows that a permanent magnet with high coercive force can be obtained by casting with controlled particle size.

第1表 第2表 (実施例2) 第3表に示す永久磁石合金の組成を実施例1の同様の方
法で水冷銅鋳型を用いて鋳造した後、1000℃におい
て、ホットプレスして異方性化した。
Table 1 Table 2 (Example 2) The composition of the permanent magnet alloy shown in Table 3 was cast using a water-cooled copper mold in the same manner as in Example 1, and then hot pressed at 1000°C to obtain an anisotropic It became sexualized.

この時の鋳造段階で熱処理した場合の平均粒径と磁気性
能及びホットプレス後の平均粒径と磁気性第を第4表に
示す。
Table 4 shows the average grain size and magnetic performance when heat treated at the casting stage and the average grain size and magnetic performance after hot pressing.

また、No、11とNo、13.No、14の試料に対
してホットプレス後さらに1000℃、24時間の熱処
理を施した時の磁気特性を第5表に示す。
Also, No. 11 and No. 13. Table 5 shows the magnetic properties of samples No. 14 when they were further heat-treated at 1000° C. for 24 hours after hot pressing.

第3表 第4表 第5表 この結果から明らかな様に熱間加工によって粒径が小さ
くなりかつ磁気性能が大幅に向上されることがわかる。
Table 3 Table 4 Table 5 As is clear from the results, it can be seen that hot working reduces the grain size and significantly improves the magnetic performance.

また、熱処理により磁気性能が改善されることもわかる
It is also seen that heat treatment improves magnetic performance.

(実施例3) 実施例2において最も性能の高かったP r s tF
ew惨B1組成を半径30mmの双ロール(銅製のロー
ルにクロムメッキを施したもの)の周速度を10m/s
とし、該組成の溶湯をArガスで注湯し、急冷してリボ
ンを作成した。このときリボン厚は50μmだった。こ
れを700℃で0゜5時間アニール処理を施し、平均粒
径20μmまで粉砕しエポキシ樹脂と2wt%混練し、
15KOeの磁場中で成形後、150℃の温度で樹脂結
合磁石とした。
(Example 3) P r s tF with the highest performance in Example 2
The circumferential speed of twin rolls (chrome-plated copper rolls) with a radius of 30 mm is 10 m/s.
A molten metal having the above composition was poured with Ar gas and rapidly cooled to form a ribbon. At this time, the ribbon thickness was 50 μm. This was annealed at 700°C for 0°5 hours, pulverized to an average particle size of 20 μm, and kneaded with 2 wt% of epoxy resin.
After molding in a magnetic field of 15 KOe, a resin-bonded magnet was prepared at a temperature of 150°C.

比較例としては、従来技術(2)を用いて、Nd。As a comparative example, using conventional technology (2), Nd.

*FettBa組成を半径60mmの単ロールを20 
m / sで回転させ、同様に溶湯を射出し、急冷して
リボンを作成したこのときのリボン厚は25μmだった
。これを前述の方法と同じく粉砕。
*20 single rolls of FettBa composition with a radius of 60 mm
It was rotated at m/s, the molten metal was injected in the same way, and the ribbon was rapidly cooled to create a ribbon.The ribbon thickness at this time was 25 μm. Grind this in the same way as above.

混練により樹脂結合磁石として。各測定磁場での磁気特
性を第6表に示す。ただし40KOeでパルス着磁した
時の飽和値は、本発明品で(BH)ram x =8.
5 (MGOe)、1Hc=12.9K Oe s従来
技術品で(BH)ma x =8.9(MGOc)iH
c =18.7KOeだった。
As a resin bonded magnet by kneading. Table 6 shows the magnetic properties at each measurement magnetic field. However, the saturation value when pulse magnetized at 40KOe is (BH)ram x =8.
5 (MGOe), 1Hc = 12.9K Oe s Conventional technology product (BH) max = 8.9 (MGOc) iH
c = 18.7 KOe.

第6表 本発明を用いると、低磁場でも高特性が得られることが
わかる。このことは前述したように回転機等の応用にと
っては非常に有利である。
Table 6 It can be seen that when the present invention is used, high characteristics can be obtained even in a low magnetic field. As mentioned above, this is very advantageous for applications such as rotating machines.

〔発明の効果〕〔Effect of the invention〕

叙上の如く、本発明の永久磁石及びその製造゛方法によ
れば、粉砕・焼結という工程を経ずとも、バルク状態で
充分な保磁力が得られ、製造工程を単純化でき、低コス
トかつ高性能な永久磁石の製造が可能になる。また粒径
の調整により、初磁化曲線の立ち上がりが急峻な、使い
勝手のよい樹脂結合磁石の製造も可能となる。
As described above, according to the permanent magnet and its manufacturing method of the present invention, sufficient coercive force can be obtained in the bulk state without going through the steps of crushing and sintering, and the manufacturing process can be simplified and costs can be reduced. In addition, it becomes possible to manufacture high-performance permanent magnets. Furthermore, by adjusting the particle size, it is possible to manufacture a resin-bonded magnet that has a steep initial magnetization curve and is easy to use.

【図面の簡単な説明】[Brief explanation of the drawing]

?g1図は、本発明の実施例におけるホットプレス後の
保磁力iHcと鋳造後の平均粒径の関係を示すグラフ。 以  上 第1図
? Figure g1 is a graph showing the relationship between coercive force iHc after hot pressing and average grain size after casting in Examples of the present invention. Above Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする永久磁石において、該永久磁石の結晶平均粒
径が0.04μm以上100μm以下であり、含有炭素
及び酸素が夫々400PPM以下、1000PPM以下
であり、かつ初磁化曲線の立ち上がりが急唆であること
を特徴とする永久磁石。
(1) In a permanent magnet whose basic components are rare earth elements (including Y), iron, and boron, the average crystal grain size of the permanent magnet is 0.04 μm or more and 100 μm or less, and the carbon and oxygen content is 400 PPM or less, respectively. , 1000 PPM or less, and the initial magnetization curve rises rapidly.
(2)希土類元素(但しYを含む)と、鉄とボロンを、
基本成分とする永久磁石の製造方法において、その結晶
平均粒径が0.04μm以上100μm以下となるよう
に冷却し、次に250℃以上の熱処理を施すことを特徴
とする永久磁石の製造方法。
(2) Rare earth elements (including Y), iron and boron,
A method for producing a permanent magnet as a basic component, which comprises cooling the permanent magnet so that its average crystal grain size becomes 0.04 μm or more and 100 μm or less, and then heat-treating it at 250° C. or more.
(3)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする永久磁石の製造方法において、その結晶平均
粒径が0.4μm以上100μm以下となるように鋳造
し、次に500℃以上の温度で熱間加工することにより
該磁石を異方性化することを特徴とする永久磁石の製造
方法。
(3) In a method for manufacturing a permanent magnet whose basic components are rare earth elements (including Y), iron, and boron, the magnet is cast so that the average crystal grain size is 0.4 μm or more and 100 μm or less, and then heated at 500°C. A method for producing a permanent magnet, comprising making the magnet anisotropic by hot working at a temperature above.
(4)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする永久磁石製造方法において、その結晶平均粒
径が0.4μm以上100μm以下となるように鋳造し
、次に500℃以上の温度で熱間加工することにより異
方性化した後、次に250℃以上の熱処理を施すことを
特徴とする永久磁石の製造方法。
(4) In a method for manufacturing permanent magnets whose basic components are rare earth elements (including Y), iron, and boron, they are cast so that the average crystal grain size is 0.4 μm or more and 100 μm or less, and then heated at 500°C or higher. A method for producing a permanent magnet, which comprises making the permanent magnet anisotropic by hot working at a temperature of 250° C. or higher, and then subjecting the permanent magnet to heat treatment at a temperature of 250° C. or higher.
(5)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする磁石の製造方法において、その結晶平均粒径
が0.04μm以上130μm以下となるように冷却し
、次に250℃以上の温度で熱処理を施した後粉砕し樹
脂と混練し結合することを特徴とする永久磁石の製造方
法。
(5) In a method for manufacturing a magnet whose basic components are rare earth elements (including Y), iron, and boron, the magnet is cooled to have an average crystal grain size of 0.04 μm or more and 130 μm or less, and then cooled to 250° C. or more. A method for producing a permanent magnet, which comprises heat-treating the magnet at a temperature of , followed by pulverization, kneading with resin, and bonding.
JP62120706A 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof Pending JPS63285909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62120706A JPS63285909A (en) 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62120706A JPS63285909A (en) 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63285909A true JPS63285909A (en) 1988-11-22

Family

ID=14792974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62120706A Pending JPS63285909A (en) 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63285909A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481301A (en) * 1987-09-24 1989-03-27 Daido Steel Co Ltd Magnetic powder for manufacturing plastic magnet
JP2012204599A (en) * 2011-03-25 2012-10-22 Toshiba Corp Permanent magnet and motor and generator using the same
JP2013138258A (en) * 2013-03-26 2013-07-11 Toshiba Corp Permanent magnet and motor using the same, and generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481301A (en) * 1987-09-24 1989-03-27 Daido Steel Co Ltd Magnetic powder for manufacturing plastic magnet
JP2012204599A (en) * 2011-03-25 2012-10-22 Toshiba Corp Permanent magnet and motor and generator using the same
JP2013138258A (en) * 2013-03-26 2013-07-11 Toshiba Corp Permanent magnet and motor using the same, and generator

Similar Documents

Publication Publication Date Title
JPS63285909A (en) Permanent magnet and manufacture thereof
JPH01171209A (en) Manufacture of permanent magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JP2631514B2 (en) Manufacturing method of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JPS63285911A (en) Permanent magnet and manufacture thereof
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JP2992808B2 (en) permanent magnet
JP2746111B2 (en) Alloy for permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JP2631513B2 (en) Manufacturing method of magnetic alloy
JPH03249125A (en) Production of permanent magnet
JPH01161802A (en) Manufacture of permanent magnet
JPH03196601A (en) Permanent magnet and manufacture thereof
JPS63213322A (en) Rare earth iron permanent magnet
JPH023209A (en) Permanent magnet and its manufacture
JPS63287007A (en) Manufacture of permanent magnet
JPH01175211A (en) Manufacture of rare-earth elements-iron-based permanent magnet
JPS63287008A (en) Resin bonded magnet and manufacture thereof
JPS63287004A (en) Permanent magnet and manufacture thereof
JPS63213318A (en) Rare earth iron permanent magnet
JPH01171218A (en) Manufacture of permanent magnet