JPS63287008A - Resin bonded magnet and manufacture thereof - Google Patents

Resin bonded magnet and manufacture thereof

Info

Publication number
JPS63287008A
JPS63287008A JP62121715A JP12171587A JPS63287008A JP S63287008 A JPS63287008 A JP S63287008A JP 62121715 A JP62121715 A JP 62121715A JP 12171587 A JP12171587 A JP 12171587A JP S63287008 A JPS63287008 A JP S63287008A
Authority
JP
Japan
Prior art keywords
resin
magnet
powder
anisotropic
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62121715A
Other languages
Japanese (ja)
Inventor
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62121715A priority Critical patent/JPS63287008A/en
Publication of JPS63287008A publication Critical patent/JPS63287008A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a high performance resin bonded magnet by sintering magnet alloy powder which contains as basic ingredients a rare earth element, transition metal and B, then working a thin pieces or the like obtained by cooling the powder at a specific cooling velocity as an anisotropic magnet, then pulverizing it and treating the powder with resin. CONSTITUTION:Magnet alloy powder which contains as main ingredients rare earth element (including Y), transition metal and B is kneaded with binder, sintered at a high temperature, and cooled at 10<0>-10<6> deg.C/sec to obtain a thin piece or an ingot. The thin piece or ingot formed in this manner is worked at 500 deg.C or higher as an anisotropic magnet, it is then pulverized, the powder is then resin-bonded to obtain a high performance resin bonded magnet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類元素と遷移金属とボロンを主成分とす
る樹脂結合磁石及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a resin-bonded magnet whose main components are rare earth elements, transition metals, and boron, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器まで幅広い分野で使用されている
重要な電気、電子材料の一つである。
Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers.

最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。現在使用さ
れている永久磁石のうち代表的なものはアルニコ・ハー
ドフェライト及び希土類−遷移金属系磁石である。特に
希土類−遷移金属系磁石であるR−Co系永久磁石やR
−Fe−B系永久磁石は、高い磁気性能が得られるので
従来から多くの研究開発が成されている。
With the recent demand for smaller and more efficient electrical products,
Permanent magnets are also required to have increasingly higher performance. Representative permanent magnets currently in use are alnico hard ferrite and rare earth-transition metal magnets. In particular, R-Co permanent magnets, which are rare earth-transition metal magnets, and R
Since -Fe-B permanent magnets provide high magnetic performance, much research and development has been carried out on them.

従来、 これらR−Fa−B系永久磁石の製造方法に関
しては以下の文献に示すような方法がある。
Conventionally, there are methods for manufacturing these R-Fa-B permanent magnets as shown in the following documents.

(1)  粉末冶金法に基づく焼結による方法。(文献
2、文献3) ■ アモルファス合金を製造するに用いる急冷薄帯製造
装置で、厚さ30μm程度の急冷薄片を作り、その薄片
を樹脂結合法で磁石にするメルトスピニング法による急
冷薄片を用いた樹脂結合方法、(文献4、文献5) (3)  上述の(2)の方法で使用した急冷薄片を、
2段階のホットプレス法で機械的配向処理を行う方法。
(1) A sintering method based on powder metallurgy. (References 2 and 3) ■ The quenched thin strip production equipment used to manufacture amorphous alloys produces quenched thin flakes with a thickness of about 30 μm, and the quenched thin flakes are made into magnets using a resin bonding method using the melt spinning method. (Reference 4, Reference 5) (3) The quenched thin section used in method (2) above was
A method that performs mechanical alignment treatment using a two-step hot press method.

(文献5、文献6) ここで、 文献2:特開昭59−48008号公報:文献3 :M
、Sagawa、S、Fuj imura、N、Tog
awa、  H,Yamamo to、and  Y、
Matsuura;J、APPl、Phys、  Vo
 1.55(6)15Maroh1984、p2083
゜ 文献4:特開昭59−211549号公報;文献5:R
,W、Lee;APPI、  Phys、  Lett
、Vol、48(8)15Aprl11985、P2O
3; 文献6:特開昭80−100402号公報次に上記の従
来方法について説明する。
(Reference 5, Reference 6) Here, Reference 2: JP-A-59-48008: Reference 3: M
, Sagawa, S., Fuji imura, N., Tog.
awa, H, Yamamo to, and Y,
Matsuura; J, APPl, Phys, Vo
1.55(6)15Maroh1984, p2083
゜Document 4: JP-A-59-211549; Document 5: R
, W, Lee; APPI, Phys, Lett
, Vol, 48(8)15Aprl11985, P2O
3; Document 6: Japanese Unexamined Patent Publication No. 80-100402 Next, the above conventional method will be explained.

先ず(1)の焼結法では、溶解、鋳造により合金インゴ
ットを作製し、粉砕して適当な粒度 (数μm)の磁石
粉を得る。磁石粉は成形助剤のバインダーと混練され、
磁場中でプレス成形されて成形体が出来上がる。成形体
はアルゴン中で1100℃前後の温度で1時間焼結され
、その後室温まで急冷される。焼結後、600℃前後の
温度で熱処理することによる保磁力を向上させる。
First, in the sintering method (1), an alloy ingot is produced by melting and casting, and then crushed to obtain magnet powder with an appropriate particle size (several μm). Magnet powder is kneaded with a binder, which is a molding aid,
The molded body is completed by press molding in a magnetic field. The compact is sintered in argon at a temperature around 1100° C. for 1 hour and then rapidly cooled to room temperature. After sintering, the coercive force is improved by heat treatment at a temperature of around 600°C.

(2)のメルトスピニング法による急冷薄片を用いた樹
脂結合方法では、 先ず急冷薄帯製造装置の最適な回転
数でR−Fe−B合金の急冷薄帯を作る。得られた厚さ
30μmのリボン状薄帯は、直径が400Å以下の結晶
の集合体であり、脆くて割れ易く、結晶粒は等方向に分
布しているので、磁気的にも等方性である。との薄帯を
適当な粒度に粉砕して、樹脂と混練してプレス成形する
In the resin bonding method using quenched flakes by the melt spinning method (2), first, a quenched ribbon of R-Fe-B alloy is made at an optimal rotation speed of a quenched ribbon production device. The obtained ribbon-shaped thin strip with a thickness of 30 μm is an aggregate of crystals with a diameter of 400 Å or less, and is brittle and easily broken.Since the crystal grains are distributed in the same direction, it is also magnetically isotropic. be. The thin ribbon is crushed to an appropriate particle size, kneaded with resin, and press-molded.

(3)の製造方法は、■に右けるリボン状急冷薄帯ある
いは薄片を、真空中あるいは不活性雰囲気中で二段階ホ
ットプレス法と呼ばれる方法で緻密で異方性を存するR
−Fe−B磁石を得るものである。
The manufacturing method of (3) is to produce a ribbon-like quenched ribbon or flake in a vacuum or an inert atmosphere by a method called a two-step hot pressing method to obtain a dense and anisotropic R.
-Fe-B magnet is obtained.

このプレス過程では一軸性の圧力が加えられ、磁化容易
軸がプレス□方向と平行に配向して、合金は異方性化す
る。
In this pressing process, uniaxial pressure is applied, the axis of easy magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic.

尚、最初のメルトスピニング法で作られるリボン状薄帯
の結晶粒は、それが最大の保磁力を示す時の粒径よりも
小さめにしておき、後のホットプレス中に結晶粒の粗大
化が生じて最適の粒径になるようにしておく。
In addition, the crystal grains of the ribbon-like thin strip produced by the initial melt spinning method are made smaller than the grain size at which they exhibit the maximum coercive force, to avoid coarsening of the crystal grains during the subsequent hot pressing. Allow the particles to grow to the optimum particle size.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

叙上の従来技術(2)により一応、希土類元素と鉄とボ
ロンを主成分とする樹脂結合磁石は製造できるが、前述
したように等方性である。従って、圧縮形成で8〜9M
GOc、射出成形で4〜5MGO0の性能しか得られな
い、そのためR−Fe−B系磁石の特徴である低コスト
・高性能というメリットを生かしきれない1本発明はこ
の点を解決するものであり、その目的とするところは高
性能かつ低コストな異方性布上頭・遷移金属−ボロン系
樹脂結合磁石及びその製造方法を提供することにある。
Although it is possible to manufacture a resin-bonded magnet whose main components are rare earth elements, iron, and boron using the prior art (2), it is isotropic as described above. Therefore, 8-9M in compression molding
With GOc and injection molding, performance of only 4 to 5 MGO0 can be obtained, and therefore the advantages of low cost and high performance, which are the characteristics of R-Fe-B magnets, cannot be fully utilized.The present invention is intended to solve this problem. The object of the present invention is to provide a high-performance, low-cost anisotropic cloth-top transition metal-boron resin bonded magnet and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の永久磁石は、希土類元素(但しYを含む)と遷
移金属とボロンを基本成分とする磁石合金粉末を用いた
樹脂結合磁石において該磁石が異方性であることを特徴
とする、樹脂結合磁石である。
The permanent magnet of the present invention is a resin-bonded magnet using a magnet alloy powder whose basic components are a rare earth element (including Y), a transition metal, and boron, and the magnet is anisotropic. It is a coupling magnet.

しかしてその製造方法の第1は希土類元素(但しYを含
む)と遷移金属とボロンを基本成分とする磁石合金粉末
を用いた異方性樹脂結合磁石の製−遣方法においてIC
B 〜10”C/secの冷却速度で急冷することによ
り作成した薄片またはインゴットを500℃以上の温度
で加工して異方性磁石とした後に粉砕した粉末を樹脂結
合することを特徴とする樹脂結合磁石の製造方法である
However, the first manufacturing method is a method for manufacturing an anisotropic resin-bonded magnet using magnetic alloy powder whose basic components are rare earth elements (including Y), transition metals, and boron.
B A resin characterized by processing flakes or ingots created by rapid cooling at a cooling rate of ~10"C/sec at a temperature of 500°C or higher to form an anisotropic magnet, and then resin-bonding the pulverized powder. This is a method for manufacturing a coupled magnet.

その製造方法の第2は希土類元素(但しYを含む)と遷
移金属とボロンを主成分とする磁石合金粉末を用いた異
方性樹脂結合磁石の製造方法において、10”C/se
e以上の冷却速度で急冷することにより作成した薄片ま
たは粉末を500℃以上の温度で圧密、さらに加工して
異方性バルク磁石とした後に粉砕した粉末を樹脂結合す
ることを特徴とする樹脂結合磁石の製造方法である。
The second manufacturing method is a method for manufacturing an anisotropic resin-bonded magnet using magnet alloy powder whose main components are rare earth elements (including Y), transition metals, and boron.
Resin bonding, characterized in that flakes or powder created by rapid cooling at a cooling rate of e or higher are consolidated at a temperature of 500°C or higher, further processed to form an anisotropic bulk magnet, and then the pulverized powder is resin-bonded. This is a method for manufacturing magnets.

さらに、その製造方法のti3は希土類元素(但しYを
含む)と遷移金属とボロンを主成分とする磁石合金粉末
を用いた異方性樹脂結合磁石の製造方法においてLDC
法によって作成したインゴットを500℃以上の温度で
熱間加工を施すことにより結晶粒を微細化し、また磁気
的に異方化した後に粉砕した粉末を樹脂結合することを
特徴とする樹脂結合磁石の製造方法である。
Furthermore, ti3 of the manufacturing method is LDC
A resin-bonded magnet characterized in that the ingot produced by the method is subjected to hot working at a temperature of 500°C or higher to make the crystal grains finer, and the pulverized powder is resin-bonded after being magnetically anisotropic. This is the manufacturing method.

〔作用〕[Effect]

前記のように従来の希土類−遷移金属−ボロン系樹脂結
合磁石の製造方法は、異方性磁石が作成できないという
大きな欠点を育していた。
As described above, the conventional method for manufacturing rare earth-transition metal-boron resin bonded magnets has a major drawback in that anisotropic magnets cannot be created.

そこで本発明者等は、この欠点を改良するため磁場配向
可能で保磁力を育する粉末の研究に着手しく 前記の3
種の方法で作成した粉末を用いれば異方性樹脂結合磁石
が作成できることを知見した。
Therefore, in order to improve this drawback, the present inventors began research on powder that can be oriented in a magnetic field and that increases coercive force.
It was discovered that anisotropic resin-bonded magnets can be made using powders made by a certain method.

以下に各製法について説明する。Each manufacturing method will be explained below.

異方性樹脂結合磁石を作成するには、粉末吠聾(数〜数
10μmの粒径)で保磁力を育し、なおかつ磁場配向が
可能でなくてはならない。従来技術(1)の焼結法で作
った磁石を粉砕しても異方性樹脂結合磁石が作成できな
かったのは、でき上がった粉末は異方性化は可能である
が、磁性の根源となるR鵞Few a n化合物の粒径
が大きすぎ、また粉砕による機械的歪のために保磁力を
失ったからである。従来技術(2)で異方性樹脂結合磁
石ができなかったのは、粉末杖聾で保磁力は充分あるも
のの、等方的な粉末であったからである。
In order to create an anisotropic resin-bonded magnet, it is necessary to develop coercive force using powder particles (particle size of several to several tens of micrometers) and to be able to orient in a magnetic field. The reason why it was not possible to create an anisotropic resin-bonded magnet by crushing a magnet made by the sintering method of conventional technology (1) is that although the resulting powder can be made anisotropic, the source of magnetism is This is because the particle size of the R Fewan compound was too large and it lost its coercive force due to mechanical strain caused by crushing. The reason why an anisotropic resin-bonded magnet could not be produced using prior art (2) is that although the powder was deaf and had sufficient coercive force, it was an isotropic powder.

数〜数10μmの大きさで磁場配向可能な粉末にするに
は2つの方法がある。ひとつは、はぼ単結晶の粉末を用
いることである。SmCo、系異方性樹脂結合磁石がこ
のタイプである。焼結後粉砕の場合は、このタイプの粉
末なのであるが、R−Fe−B系粉末は機械的歪に弱く
、なおかつ文献2によると磁性の根源となるR* Fe
z a B相思外にも非磁性相を、保磁力を得るために
必要とするので、粉末状恕でそういった相状態を維持す
るごとも困難である。そのためこの方法はR−Fe−B
系粉末には不適である。
There are two methods for producing powder that has a size of several to several tens of micrometers and can be oriented in a magnetic field. One is to use Habo single crystal powder. SmCo, anisotropic resin-bonded magnets are of this type. In the case of pulverization after sintering, this type of powder is used, but R-Fe-B powder is weak against mechanical strain and, according to literature 2, R*Fe, which is the source of magnetism.
Since the z a B phase requires a non-magnetic phase in order to obtain coercive force, it is difficult to maintain such a phase state in powder form. Therefore, this method uses R-Fe-B
It is unsuitable for powders.

もうひとつの方法は、すでに配向した多数個の小さな粒
子を含んだ粉末を用いることである。従来技術■はこの
小さな粒子が等方的であるものの例である。
Another method is to use a powder containing a large number of small particles that are already oriented. Prior art (2) is an example in which the small particles are isotropic.

我々は上記の方法を、冷却速度制御による結晶粒微細化
と、熱間加工による異方性化、その後の粉砕という方法
で実現させることにした。
We decided to realize the above method by refining the crystal grains by controlling the cooling rate, creating anisotropy by hot working, and then pulverizing.

まず第1の製造方法であるが、この程度の冷却速度で冷
却すると、結晶粒はアモルファス相を含まない範囲で非
常に微細化する0次いで熱間加工により異方性化する。
First, in the first manufacturing method, when the crystal grains are cooled at such a cooling rate, the crystal grains become extremely fine within a range that does not contain an amorphous phase, and become anisotropic through hot working.

この方法の保磁力機構は焼結法によるものと同じでニュ
ークリエージコンモデルと呼ばれ、RW Fez a 
B相をほぼ単磁区にすることによって保磁力を得るもの
である。しかし焼結法で作成した結晶粒(約10μm前
後)よりはるかに小さいので、粒砕によって数〜数10
μmにしても、1個の粉中に多数のR* Fes aB
粒子が含まれているので保磁力が得られるわけである。
The coercive force mechanism of this method is the same as that of the sintering method, and is called the nucleage con model.
Coercive force is obtained by making the B phase almost a single magnetic domain. However, since the grains are much smaller than the crystal grains (about 10 μm) created by the sintering method, they can be crushed by several to several tens of micrometers.
Even in μm, there are many R* Fes aB in one powder.
Because it contains particles, it has a coercive force.

また熱間加工によってすでに異方性化もしているので、
できあがった粉末も異方性化が可能である。この方法に
は実際には薄板速続鋳造法等を用いることができる。
Also, since it has already become anisotropic due to hot working,
The resulting powder can also be made anisotropic. In practice, a continuous thin plate casting method or the like can be used for this method.

!2の方法は、急冷を施してアモルファス相を含む、ピ
ニングタイプの薄片を作り、それを従来技術(3)のよ
うに圧密加工により、異方性化した後に粉砕して異方性
化可能粉末を得るものである。
! Method 2 involves rapid cooling to create a pinning-type flake containing an amorphous phase, which is made anisotropic by consolidation processing as in conventional technology (3), and then pulverized to produce anisotropic powder. This is what you get.

この方法を用いる磁石のみ、ピニングタイプの保磁力機
構を有する磁石となる。
Only magnets using this method have a pinning type coercive force mechanism.

また第3のLDC法を用いる方法は、原理的には第1の
方法と同じである。LDC法は、参考文献(T、S、C
hin他、J、Appl、Phys、、Vo 1.59
(4)、15Feb、1986)に示されているように
、溶湯をスプレー状にして冷却板に吹きつけるので、で
きあがったインゴットは密度的に劣ることが多い。しか
し、本発明ではそれをいったん圧密して異方性化してか
ら粉砕するので、空隙のほとんどない粉末が得られる。
Further, the third method using the LDC method is basically the same as the first method. The LDC method is described in references (T, S, C
hin et al., J. Appl. Phys., Vo 1.59
(4), 15 Feb, 1986), since the molten metal is made into a spray and is blown onto the cooling plate, the resulting ingot is often inferior in density. However, in the present invention, the powder is compacted and made anisotropic, and then pulverized, so that a powder with almost no voids can be obtained.

〔実施例1〕 まず、粉砕吠面で保磁力を存する異方化可能な粉末を作
製するために第1表のような組成の合金を溶解し、以下
の3つの方法で粉末(粒径20〜30μm)を作製した
[Example 1] First, in order to produce anisotropic powder that has a coercive force on the grinding surface, an alloy having the composition shown in Table 1 was melted, and the powder (particle size 20 ~30 μm) was prepared.

■急冷薄帯装置を用いて、約10■℃/secの冷却速
度で求める組成の合金薄片(厚さ約30μm)を作成し
、700℃で圧密後、725℃で厚みが元の172以下
になるようにタイアップセットし、平均粒径20〜30
μmに機械粉砕した。
■Using a quenching ribbon device, create an alloy flake (approximately 30 μm thick) with the desired composition at a cooling rate of approximately 10°C/sec, consolidate it at 700°C, and reduce the thickness to less than the original 172 at 725°C. Set the tie-up so that the average particle size is 20 to 30.
Mechanically ground to μm.

■LDC法を用いて、求める合金をアトアイズし、基板
に吹きつけた後に、750℃で厚みが元の172以下に
なるようにタイアップセットし、平均粒径20〜30μ
mに機械粉砕した。
■Using the LDC method, atoize the desired alloy and spray it onto the substrate, then tie-up and set at 750℃ so that the original thickness is 172 or less, and the average particle size is 20 to 30μ.
It was mechanically ground to m.

■大表面積を有する#4鋳型に鋳造し、そのインゴット
を1000℃で厚みが元の172以下になるようにタイ
アップセットし、一度冷却後、 Ar雰囲気で1000
℃×4時間の7二−ルを施した後に、平均粒径20〜3
0μmに機械粉砕した。
■Cast in a #4 mold with a large surface area, tie-up set the ingot at 1000℃ so that the thickness is less than the original thickness of 172℃, and once cooled, heat the ingot to 1000℃ in an Ar atmosphere.
After 7 hours of 4 hours at °C, the average particle size was 20-3.
It was mechanically ground to 0 μm.

Wi1表 以上のように製成した粉末を、エポキシ樹脂2.0wt
%と混合しく” 15 K Oeの磁場中で成形した後
、150℃で焼成して、性能評価した。
2.0wt of epoxy resin was added to the powder produced as shown in Table Wi1.
% and was molded in a magnetic field of 15 K Oe, then fired at 150°C and performance evaluated.

比較例としては従来技術で最適組成とされているNd、
* Fat t Bs組成を用いて、以下の2種の方法
で樹脂結合磁石を作成した。
As a comparative example, Nd, which is considered to have the optimal composition in the conventional technology,
*Resin-bonded magnets were created using the Fat t Bs composition using the following two methods.

ai焼結法によって作成された(BM)+、−x=35
MGO,の磁石を機械粉砕により、平均粒径20〜30
μmに粉砕し同様な方法で樹脂結合磁石とした。
(BM) +, -x = 35 created by ai sintering method
By mechanically crushing MGO magnets, the average particle size is 20 to 30.
It was ground into micrometers and made into a resin-bonded magnet using the same method.

■急冷薄帯製造装置を用いて約10”C/seCの冷却
速度で薄片(厚さ約30μm)を作り、これを平均粒径
20〜30μmに粉砕し同様な方法で樹脂結合磁石とし
た。
(2) Thin pieces (thickness: about 30 μm) were made using a quenched ribbon production device at a cooling rate of about 10”C/secC, and the thin pieces were crushed to an average particle size of 20 to 30 μm, and resin-bonded magnets were prepared in the same manner.

結果をti2表に示す。The results are shown in table ti2.

第  2  表 第2表で(BH)raax≧15MGOe以上の高性能
な値が得られていることから、本発明によれば異方性の
樹脂ポンド磁石となっていることは当然であるが、これ
をさらに確認するためにNd1゜Fet y Bs組成
の磁石、磁場無印加方向で磁気特性を測定することによ
りこれを確認した。結果を第3表に示す。
Table 2 Since a high performance value of (BH)raax≧15MGOe or more is obtained in Table 2, it is natural that the present invention is an anisotropic resin pound magnet. In order to further confirm this, this was confirmed by measuring the magnetic properties of a magnet with a composition of Nd1°Fet y Bs in a direction in which no magnetic field was applied. The results are shown in Table 3.

第3表 fis表より本発明によれば、異方性の樹脂結合磁石が
得られることがわかる。特に組成を限定すれば、従来の
樹脂ボンド磁石で最高性能の5rsCo、、型と同程度
の性能も得られる。
It can be seen from Table 3 fis that according to the present invention, an anisotropic resin-bonded magnet can be obtained. In particular, if the composition is limited, performance comparable to that of the 5rsCo type, which has the highest performance among conventional resin bonded magnets, can be obtained.

〔発明の効果〕〔Effect of the invention〕

斜上の如く本発明の永久磁石及びその製造方法によれば
、異方性のR−Fe−B系樹脂結合磁石が得られるとい
う効果を有する。
As described above, the permanent magnet and the method for manufacturing the same of the present invention have the effect that an anisotropic R-Fe-B resin bonded magnet can be obtained.

以  上that's all

Claims (4)

【特許請求の範囲】[Claims] (1)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする磁石合金粉末を用いた樹脂結合磁石に
おいて、該磁石が異方性であることを特徴とする樹脂結
合磁石。
(1) A resin-bonded magnet using a magnet alloy powder whose basic components are a rare earth element (including Y), a transition metal, and boron, characterized in that the magnet is anisotropic.
(2)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする磁石合金粉末を用いた異方性樹脂結合
磁石の製造方法において、10^■〜10^■℃/se
cの冷却速度で急冷することにより作成した薄片または
インゴットを500℃以上の温度で加工して異方性磁石
とした後に粉砕した粉末を樹脂結合することを特徴とす
る樹脂結合磁石の製造方法。
(2) In a method for manufacturing an anisotropic resin-bonded magnet using a magnet alloy powder whose basic components are rare earth elements (including Y), transition metals, and boron,
A method for producing a resin-bonded magnet, which comprises processing a flake or ingot prepared by rapid cooling at a cooling rate of c at a temperature of 500° C. or higher to obtain an anisotropic magnet, and then bonding the pulverized powder with a resin.
(3)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする磁石合金粉末を用いた異方性樹脂結合
磁石の製造方法において、10■℃/sec以上の冷却
速度で急冷することにより作成した薄片又は粉末を、5
00℃以上の温度で圧密、さらに加工して異方性バルク
磁石とした後に粉砕した粉末を樹脂結合することを特徴
とする樹脂結合磁石の製造方法。
(3) In a method for manufacturing an anisotropic resin-bonded magnet using magnet alloy powder whose basic components are rare earth elements (including Y), transition metals, and boron, the method involves rapid cooling at a cooling rate of 10°C/sec or more. The flakes or powder prepared by
A method for manufacturing a resin-bonded magnet, which comprises consolidating the powder at a temperature of 00° C. or higher, further processing it into an anisotropic bulk magnet, and then bonding the pulverized powder with a resin.
(4)希土類元素(但しYを含む)と遷移金属とボロン
を基本成分とする磁石合金粉末を用いた異方性樹脂結合
磁石の製造方法において、LDC法によって作成したイ
ンゴットを500℃以上の温度で熱間加工を施すことに
より結晶粒を微細化し、また磁気的に異方性化した後に
粉砕した粉末を樹脂結合することを特徴とする樹脂結合
磁石の製造方法。
(4) In a method for manufacturing an anisotropic resin-bonded magnet using magnetic alloy powder whose basic components are rare earth elements (including Y), transition metals, and boron, an ingot prepared by the LDC method is heated to a temperature of 500°C or higher. A method for producing a resin-bonded magnet, which comprises making the crystal grains fine by subjecting the powder to hot working, and bonding the pulverized powder with a resin after making it magnetically anisotropic.
JP62121715A 1987-05-19 1987-05-19 Resin bonded magnet and manufacture thereof Pending JPS63287008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62121715A JPS63287008A (en) 1987-05-19 1987-05-19 Resin bonded magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121715A JPS63287008A (en) 1987-05-19 1987-05-19 Resin bonded magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63287008A true JPS63287008A (en) 1988-11-24

Family

ID=14818085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121715A Pending JPS63287008A (en) 1987-05-19 1987-05-19 Resin bonded magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63287008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302013A (en) * 1989-05-16 1990-12-14 Shin Etsu Chem Co Ltd Manufacture of anisotropic rare-earth magnet powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302013A (en) * 1989-05-16 1990-12-14 Shin Etsu Chem Co Ltd Manufacture of anisotropic rare-earth magnet powder

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JPS62198103A (en) Rare earth-iron permanent magnet
JPH01171209A (en) Manufacture of permanent magnet
JPS63287008A (en) Resin bonded magnet and manufacture thereof
JPS6320411A (en) Production of material for permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2746111B2 (en) Alloy for permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPH0562815A (en) Permanent magnet and manufacturing method thereof
JPH01175207A (en) Manufacture of permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH01175210A (en) Resin-bonded magnet and its manufacture
JPS63114106A (en) Permanent magnet and manufacture thereof
JPS63287005A (en) Permanent magnet and manufacture thereof
JP2992808B2 (en) permanent magnet
JPS63213323A (en) Rare earth iron permanent magnet
JPH01175211A (en) Manufacture of rare-earth elements-iron-based permanent magnet
JPS63287007A (en) Manufacture of permanent magnet
JPS63285911A (en) Permanent magnet and manufacture thereof
JPH03196601A (en) Permanent magnet and manufacture thereof
JPS63213317A (en) Rare earth iron permanent magnet
JPS63312915A (en) Production of permanent magnet
JPH03249125A (en) Production of permanent magnet