JPS63285911A - Permanent magnet and manufacture thereof - Google Patents

Permanent magnet and manufacture thereof

Info

Publication number
JPS63285911A
JPS63285911A JP62120718A JP12071887A JPS63285911A JP S63285911 A JPS63285911 A JP S63285911A JP 62120718 A JP62120718 A JP 62120718A JP 12071887 A JP12071887 A JP 12071887A JP S63285911 A JPS63285911 A JP S63285911A
Authority
JP
Japan
Prior art keywords
permanent magnet
grain size
magnet
rare earth
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62120718A
Other languages
Japanese (ja)
Inventor
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62120718A priority Critical patent/JPS63285911A/en
Publication of JPS63285911A publication Critical patent/JPS63285911A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve performance, and to reduce cost by specifying the crystal mean grain size of a magnet and limiting the concentration of carbon and oxygen contents in the magnet using a rare earth element, iron and boron as basic ingredients. CONSTITUTION:In a permanent magnet employing a rare earth element (where including Y), iron and boron as basic ingredients, crystal mean grain size ranges from 0.1mum to 100mum, carbon and oxygen contents respectively range from 400ppm to 1000ppm, and amorphous phase is not contained. For form such a permanent magnet, the basic ingredients are cooled so that the crystal mean grain size of the basic ingredients ranges from 0.1mum to 100mum, and thermally treated at a temperature of 250 deg.C or higher. Cooling is further accelerated and the crystal mean grain size is brought to 30mum or smaller, and the basic ingredients are thermally treated at a temperature of 250 deg.C or higher, crushed, and kneaded and bonded with a resin. The bonded basic ingredients are casted so that the crystal mean grain size ranges from 0.1mum to 100mum, and hot-worked at a temperature of 500 deg.C or higher, thus changing the basic ingredients into anisotropy. The hot-worked basic ingredients are further turned into anisotropy, and thermally treated at a temperature of 250 deg.C, thus acquiring the permanent magnet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類元素と鉄のボロンを基本成分とする永
久磁石及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a permanent magnet whose basic components are rare earth elements and boron of iron, and a method for manufacturing the same.

(従来の技術〕 永久磁石は、一般家話の各種電気製品から大型コンピュ
ーターの周辺端末機器まで幅広い分野で使用されている
重要な電気、電子材料の一つである。
(Prior Art) Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household electrical appliances to peripheral terminal equipment for large computers.

最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。現在使用さ
れている永久磁石のうち代表的なものはアルニコ、ハー
ドフェライト及び希土類−遷移金属磁石である。特に希
土類−遷移金属系磁石であるR−Co系永久磁石やR−
Fe−B系永久磁石は、高い磁気性能が得られるので従
来から多くの研究開発が成されている。
With the recent demand for smaller and more efficient electrical products,
Permanent magnets are also required to have increasingly higher performance. Typical permanent magnets currently in use are alnico, hard ferrite, and rare earth-transition metal magnets. In particular, R-Co permanent magnets, which are rare earth-transition metal magnets, and R-
Since Fe-B permanent magnets can provide high magnetic performance, much research and development has been carried out on them.

従来、これらR−Fe−B系永久磁石の製造方法に関し
ては、以下の文献に示すような方法がある。
Conventionally, there are methods for manufacturing these R-Fe-B permanent magnets as shown in the following documents.

(1)  粉末冶金法に基づく焼結による方法。(1) Sintering method based on powder metallurgy.

(文献1、文献2) (2) アモルファス合金を製造するのに用いる急冷薄
帯製造装置で、厚さ30μm程度の急冷薄片を作り、そ
の薄片を樹脂結合法で磁石にするメルトスピニング法に
よる急冷薄片を用いた樹脂結合方法。(文献3、文献4
) (3)  上述の(2)の方法で使用した急冷薄片を、
2段階のホットプレス法で機械的配向処理を行う方法。
(Reference 1, Reference 2) (2) A quenched thin strip with a thickness of about 30 μm is made using a quenched ribbon manufacturing device used to produce an amorphous alloy, and the quenched thin section is made into a magnet using a resin bonding method. The quenched using the melt spinning method. Resin bonding method using thin pieces. (Reference 3, Reference 4
) (3) The quenched flakes used in method (2) above,
A method that performs mechanical alignment treatment using a two-step hot press method.

(文献4、文献5) ここで、 文献1:特開昭59−46008号公報;文献2 :M
、Sagawa、S、Fuj imura、  N、T
ogawa、  H,Yamamoto、and  Y
、Matsuura;J’、A、ppI、Phys、V
ol、55 (6)15Maroh  1984.p2
083゜ 文献3:特開59−211549号公報;文献4:R,
W、Lee;APPI、  Phys、Lett、Vo
l、46 (8)、15APrif  1985.p7
90; 一文献5:特開昭80−100402号公報次に上記の
従来方法について説明する。
(Reference 4, Reference 5) Here, Reference 1: JP-A-59-46008; Reference 2: M
, Sagawa, S., Fuji imura, N., T.
ogawa, H., Yamamoto, and Y.
, Matsuura; J', A, ppI, Phys, V
ol, 55 (6) 15 Maroh 1984. p2
083° Document 3: JP-A-59-211549; Document 4: R,
W, Lee; APPI, Phys, Lett, Vo
l, 46 (8), 15APrif 1985. p7
90; Document 5: Japanese Unexamined Patent Publication No. 80-100402 Next, the above conventional method will be explained.

先ず(1)の焼結法では、溶解、鋳造により合金インゴ
ットを作製し、このインゴットを3μm位の粒径にまで
粉砕し、バインダーと混練し、磁場中でプレス成形され
て成形体が出来上がる。
First, in the sintering method (1), an alloy ingot is produced by melting and casting, this ingot is crushed to a particle size of about 3 μm, kneaded with a binder, and press-formed in a magnetic field to complete a compact.

この成形体はアルゴンガス中で1100℃前後の温度で
1時間焼結され、その後600℃前後の温度で熱処理す
ることにより、保磁力が向上される。
This compact is sintered in argon gas at a temperature of around 1100°C for 1 hour, and then heat treated at a temperature of around 600°C to improve its coercive force.

(2,)のメルトスピニング法による急冷薄片を用いた
樹脂結合方法では、先ず急冷薄帯製造装置の回転数を最
適化して、直径が1000λ以下の多結晶の集合体とな
っているようなR−Fe−B合金の厚さ30μmのリボ
ン状薄片を作製する。この薄片中の結晶粒の結晶軸は等
方的に分布し磁気的にも等方性であり、適度な粒度に粉
砕して樹脂と混練してプレス成形すれば等方性の磁石が
得られる。
In the resin bonding method using quenched thin flakes by the melt spinning method described in (2,), first, the rotation speed of the quenched ribbon production equipment is optimized, and the R A ribbon-shaped thin piece of -Fe-B alloy with a thickness of 30 μm is produced. The crystal axes of the crystal grains in this flake are isotropically distributed and magnetically isotropic, and an isotropic magnet can be obtained by grinding to an appropriate particle size, kneading with resin, and press-molding. .

(3)の二段階ホットプレスによる製造方法は、■で用
いられたリボン伏の急冷薄片が、真空中あるいは不活性
ガス中700℃付近で圧力〜1.4ton/cmjでプ
レスされる。次に同様の700℃で0.7ton/cm
−で数秒間プレスしてその厚さを初めの172にすると
合金は異方性化して、緻密で異方性を有するR−Fe−
B磁石が製造できる。
In the two-step hot pressing manufacturing method (3), the ribbon-folded quenched flakes used in (2) are pressed at around 700° C. in vacuum or inert gas at a pressure of ~1.4 ton/cmj. Next, 0.7 ton/cm at 700℃
- When pressed for several seconds to the initial thickness of 172 mm, the alloy becomes anisotropic and becomes dense and anisotropic R-Fe-
B magnets can be manufactured.

又、Liquid  dynamic  compac
tion法(以下、LDC法と言う)によってバルク状
態で保磁力ををする合金も作られている。(文献6) 文献13:T、S、Chin他、J、Apl)1゜Ph
ys、59 (4)+  15  Feburary1
98B、  p1297 〔発明が解決しようとする問題点〕 叙上の従来技術で一応希土類元素と鉄とボロンを基本成
分とする永久磁石は製造出来るが、これらの製造方法に
は次の如き欠点を存している。
Also, Liquid dynamic compac
An alloy that exhibits a coercive force in a bulk state is also produced by the ion method (hereinafter referred to as the LDC method). (Reference 6) Reference 13: T, S, Chin et al., J, Apl) 1°Ph
ys, 59 (4) + 15 February1
98B, p1297 [Problems to be solved by the invention] Although it is possible to manufacture permanent magnets whose basic components are rare earth elements, iron, and boron using the conventional techniques described above, these manufacturing methods have the following drawbacks. are doing.

(1)の焼結法は、合金を粉末にするのが必須であるが
、R−Fe−B系磁石合金においてその粉末は、酸素に
対して大変活性があるので、焼結法に用いられる粉末は
厳重に管理される必要があり、不活性ガス雰囲気等の高
価な設備が必要となる。
For the sintering method (1), it is essential to turn the alloy into powder, but in the case of R-Fe-B magnet alloys, the powder is highly active against oxygen, so it is used in the sintering method. Powder must be strictly controlled, and expensive equipment such as an inert gas atmosphere is required.

又焼結法においては、バインダーの炭素が磁気性能に悪
影りを与える問題やグリーン体と呼ばれル成形体のハン
ドリングが難しいといった生産効率を悪くする問題があ
り、RF e −B系磁石の原料費の安さを十分に引き
出すことが出来る方法とは言い難い。
In addition, in the sintering method, there are problems such as carbon in the binder having a negative impact on magnetic performance and problems such as poor handling of the molded body called green body, which reduces production efficiency. It is difficult to say that this is a method that can fully take advantage of low raw material costs.

又、(2)並びに(3)の方法は、従来の永久磁石製造
の概念を変える興味深いものであるが約10@℃/ s
 e cといった非常に急速な冷却を必要としその組織
中には結晶質相だけでなく、非晶質相をも含存すること
から、熱安定性を乏しく、異方化のための熱間間加工も
結晶化させないために短時間で行なわねばならないとい
った生産性に起因する問題が大きな欠点となっている。
Furthermore, the methods (2) and (3) are interesting and change the concept of conventional permanent magnet manufacturing, but the production speed is about 10@℃/s.
It requires very rapid cooling such as e c, and its structure contains not only a crystalline phase but also an amorphous phase, so it has poor thermal stability and cannot be hot-processed for anisotropy. A major disadvantage is that the process must be carried out in a short period of time to prevent crystallization, which is a problem caused by productivity.

LDC法もやはり高価な設備と生産効果の悪さといった
問題点を存している。
The LDC method also has problems such as expensive equipment and poor production efficiency.

本発明は、以上の従来技術の欠点を解決するものであり
、その目的とするところは高性能且つ低コストな希土類
−鉄系永久磁石及びその製造方法を提供することにある
The present invention solves the above-mentioned drawbacks of the prior art, and its purpose is to provide a high-performance, low-cost rare earth-iron permanent magnet and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の永久磁石は、希土類元素(但し、Yを含む)と
鉄とボロンを基本成分とする磁石において、該磁石の結
晶平均粒径が0.1μm以上100μm以下であり、含
有炭素及び酸素が夫々400ppm以下、11000p
p以下であることを特徴とする永久磁石である。
The permanent magnet of the present invention is a magnet whose basic components are rare earth elements (including Y), iron, and boron, and has an average crystal grain size of 0.1 μm or more and 100 μm or less, and contains carbon and oxygen. 400ppm or less, 11000p each
It is a permanent magnet characterized by p or less.

しかして、その永久磁石の製造方法の第1は、希土類元
素(但しYを含む)と鉄とボロンを基本成分とする磁石
の製造方法において、その結晶平均粒径が0.1μm以
上100μm以下となるように冷却し、次に250℃以
上の熱処理を施すことを特徴とする永久磁石の製造方法
である。
Therefore, the first method for producing a permanent magnet is a method for producing a magnet whose basic components are rare earth elements (including Y), iron, and boron, in which the average crystal grain size is 0.1 μm or more and 100 μm or less. This is a method for producing a permanent magnet, which is characterized by cooling the magnet so that the permanent magnet is cooled, and then performing a heat treatment at 250° C. or higher.

その永久磁石の製造方法の第2は、前記第1の製造方法
における冷却をさらに速めて30μm以下とし、次に2
50℃以上の温度で熱処理を施した後粉砕し樹脂と混練
し、結合したことを特徴とする永久磁石の製造方法であ
る。
The second method of manufacturing the permanent magnet is to further speed up the cooling in the first manufacturing method to achieve a diameter of 30 μm or less, and then
This method of producing a permanent magnet is characterized in that the magnet is heat treated at a temperature of 50° C. or higher, then pulverized, kneaded with a resin, and bonded.

その永久磁石の製造方法の第3は、前記第1の製造方法
における鋳造後、500℃以上の温度で熱間加工するこ
とにより該磁石を異方性化することを特徴とする永久磁
石の製造方法である。
A third method for manufacturing a permanent magnet is to make the magnet anisotropic by hot working at a temperature of 500° C. or higher after casting in the first manufacturing method. It's a method.

更にその永久磁石の製造方法の第4は、前記第2の製造
方法における熱間加工後、250℃以上の熱処理を施す
ことを特徴とする永久磁石の製造方法である。
Furthermore, a fourth method for manufacturing a permanent magnet is a method for manufacturing a permanent magnet, which is characterized in that, after the hot working in the second manufacturing method, heat treatment is performed at 250° C. or higher.

〔作用〕[Effect]

本発明において用いられる、希土類元素と鉄とボロンを
基本成分とする永久磁石の好ましい組成は、希土類元素
8〜30原子%、ボロン2〜28原子%、残部が鉄とい
うものである。
A preferred composition of the permanent magnet used in the present invention, which has rare earth elements, iron, and boron as basic components, is 8 to 30 at. % of rare earth elements, 2 to 28 at. % of boron, and the balance is iron.

希土類元素としては、YlLalCe、PrtNdlP
m、Sm1Eu1Gds Tbs DVN HON E
 rN Tm1Ybt Luが用いられるが特にNd、
Prが好ましい。又これらの希土類元素が2種以上含ま
れててもよい。又、前記の基本成分以外に製造工程上不
可避な不純物が含まれてもよいし、キュリ一温度及び温
度特性の改善のためにコバルトが、そして保磁力向上の
ために、A1、CrsMos凱Nbt Tas Zrs
 Hfs Ti等含まれてもよい。
Rare earth elements include YlLalCe, PrtNdlP
m, Sm1Eu1Gds Tbs DVN HON E
rN Tm1Ybt Lu is used, but especially Nd,
Pr is preferred. Moreover, two or more types of these rare earth elements may be included. In addition to the basic components mentioned above, impurities unavoidable in the manufacturing process may be included, such as cobalt to improve the Curie temperature and temperature characteristics, and A1, CrsMosKai, Nbt Tas to improve the coercive force. Zrs
Hfs Ti, etc. may also be included.

R−Fe−B系磁石を保磁力機構の上から分類すると、
前記従来技術における(1)の焼結法は、ニュークリエ
ージ9ンタイプであり、(2)(3)の急冷法はピニン
グタ、イブである。相的に述べれば、焼結法は結晶質相
のみからなり、急冷法はピニングサイトとなるアモルフ
ァス相を含んでいる。結晶粒の粒径から述べると焼結法
では10μm前後であり、急冷法では0,1μm未清で
ある。一般にニュークリエーションモデルでは、主相(
希土類−鉄−ボロー系の場合はR* Fe+ 、B相、
Rは希土類元素)が単磁区の臨界半径に近づき、容易に
逆磁区を発生させ得ないようにすることが保磁力発生の
原因とされている。ところがR;Fe;aB相の臨界半
径はサブミクロンオーダであるにもかかわらず、焼結磁
石の粒径は10μm程度である。これは焼結法の場合、
鋳造インゴットをいったん粉砕するという工程を経るの
で、その段階で表面積が大きく増加し酸素濃度が増すた
めに現実には臨界半径に近い粒径を持つ焼結体は作成不
能ということになる。
When R-Fe-B magnets are classified based on their coercive force mechanism,
In the prior art, the sintering method (1) is the nucleage type, and the quenching methods (2) and (3) are the pinning method. Stated in phase terms, the sintering method consists of only a crystalline phase, and the quenching method includes an amorphous phase that becomes a pinning site. In terms of grain size, it is around 10 μm in the sintering method, and 0.1 μm in the quenching method. Generally, in the nucreation model, the main phase (
In the case of rare earth-iron-borrow system, R* Fe+, B phase,
It is said that the cause of coercive force generation is that R is a rare earth element) approaches the critical radius of a single magnetic domain and does not easily generate a reverse magnetic domain. However, although the critical radius of the R;Fe;aB phase is on the order of submicrons, the grain size of the sintered magnet is about 10 μm. In the case of the sintering method, this
Since the cast ingot is first pulverized, the surface area increases significantly and the oxygen concentration increases at that stage, making it impossible to create a sintered body with a particle size close to the critical radius.

逆にいうと、ニュークリエージ葺ンモデルの保磁力に従
う磁石であるかぎり、わざわざ鋳造インゴットの粉砕か
ら焼結という工程を経ずとも、鋳造時の冷却速度を通常
より速めれば、充分保磁力を得るのに可能な粒径にR*
FeI′aB相を制御できる。この方法では、つまりバ
ルク吠態で保磁力を得ることが可能となり、粉末管理の
困難さといった生産性の問題から解放される。さらに冷
却速度を通常より速めるといっても従来の急冷法のよう
にアモルファス相を形成する必要はなく、組織的には結
晶質のみからなるので、異方化のための熱間加工も高温
で安定的にしかも生産性高(行なうことができる。
In other words, as long as the magnet complies with the coercive force of the Nucleage Shuki model, you can obtain sufficient coercive force by increasing the cooling rate during casting than usual, without having to go through the process of crushing and sintering the casting ingot. R* to the possible particle size
The FeI'aB phase can be controlled. This method makes it possible to obtain coercive force in the bulk state, and is free from productivity problems such as difficulty in powder management. Furthermore, even though the cooling rate is faster than usual, there is no need to form an amorphous phase as in the conventional rapid cooling method, and the structure consists only of crystalline materials, so hot working for anisotropy can also be done at high temperatures. It can be done stably and with high productivity.

従来の焼結法による磁石では出来上がった磁石を粉砕し
て樹脂結合磁石とすることは出来なかった。これは粉砕
による機械歪と結晶粒が大きすぎることに起因している
。ところが本発明を用いて冷却速度の変更により粒径を
制御すれば、樹脂結合磁石用粉末の粒径(数〜数10μ
m)にしても保磁力を存する粉末の作成が可能となり、
ニュークリエーションモデルに従う樹脂結合磁石の作成
が可能となる。
With magnets produced using conventional sintering methods, it was not possible to crush the finished magnets into resin-bonded magnets. This is due to mechanical strain caused by crushing and too large crystal grains. However, if the particle size is controlled by changing the cooling rate using the present invention, the particle size of resin-bonded magnet powder (several to several tens of μm) can be reduced.
m), it is possible to create a powder that has coercive force,
It becomes possible to create resin-bonded magnets that follow the nu-creation model.

前述したようにニュークリエーションモデルに従うR−
Fe−B系の磁石において、バルク伏態で保磁力を得る
ためにはその結晶粒が適切でなければならない。即ち、
冷却時の平均粒径が100μmを越える熱間加工を施し
ても保磁力が、希土類磁石としては充分とはいいがた<
、0.1μm以下では単磁区の臨界半径を下回るのでそ
の平均粒径は0.1μm以上100μm以下でなければ
ならない。これらの粒径制御は、鋳型材質及び鋳型の熱
容量の調節、あるいはアモルファス相を形成しないよう
な低速での冷却ロールの使用等により遂行できる。
As mentioned above, R- follows the nu-creation model.
In order to obtain coercive force in a Fe-B based magnet in a bulk underground state, its crystal grains must be appropriate. That is,
Even after hot working with an average grain size of over 100 μm upon cooling, the coercive force is still not sufficient for a rare earth magnet.
, 0.1 μm or less is below the critical radius of a single magnetic domain, so the average grain size must be 0.1 μm or more and 100 μm or less. These particle size controls can be accomplished by adjusting the mold material and heat capacity of the mold, or by using cooling rolls at low speeds that do not form an amorphous phase.

そして、冷却後の熱処理は、鋳造合金中に初晶として存
在するFe相を拡散させ、磁気的にソフトな相をな(す
のに必要であり、むろん熱間加工後においても同様の熱
処理をすることはその磁気特性を向上させる効果がある
The heat treatment after cooling is necessary to diffuse the Fe phase that exists as primary crystals in the cast alloy to form a magnetically soft phase, and of course, the same heat treatment is also required after hot working. This has the effect of improving its magnetic properties.

500℃以上の温度で熱間加工することは、その結晶粒
の結晶軸を配向させて異方性化する効果とその結晶粒を
微細化する効果もあり磁気性能を大幅に向上させること
になる。冷却速度をさらに速めることによって粒径の上
限を30μm以内とすることは、粉砕により樹脂結合磁
石を作成する際、保磁力ををする粉末を作成するうえで
効果がある。
Hot working at a temperature of 500°C or higher has the effect of orienting the crystal axes of the crystal grains to make them anisotropic, and also has the effect of making the crystal grains finer, significantly improving magnetic performance. . Setting the upper limit of the particle size to 30 μm or less by further increasing the cooling rate is effective in producing powder that has a coercive force when producing a resin bonded magnet by pulverization.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

〔実施例〕〔Example〕

(実施例1) 第1表本実施例で用いた種々の希土類元素と鉄ボロンを
基本成0分とする永久磁石合金の組成を示す。
(Example 1) Table 1 shows the composition of a permanent magnet alloy whose basic components are various rare earth elements and iron boron used in this example.

まず所望の組成の合金をAr雰囲気中で低周波溶解炉を
用いて溶解し、各種鋳型に100.0 ℃鋳造し、20
分後節造合金を取出した。この時希土類金属としては純
度95%のもの(不純物は主として他の希土頴金属)を
使用し、遷移金属としては99.9%以上の純度のもの
を、ボロンに関してはフェロボロン合金が用いられた。
First, an alloy with a desired composition is melted in an Ar atmosphere using a low-frequency melting furnace, and cast into various molds at 100.0°C.
After that, the jointed alloy was taken out. At this time, the rare earth metal used was one with a purity of 95% (impurities were mainly other rare earth metals), the transition metal used was one with a purity of 99.9% or more, and the boron used was a ferroboron alloy. .

そしてこれらの鋳造合金は250℃以上の熱処理(10
00℃で24時間)が施され、切断、研削を行なって永
久磁石を得た。
These cast alloys are then heat treated at 250°C or higher (10
00° C. for 24 hours), cutting and grinding were performed to obtain a permanent magnet.

第2表に各組成において鉄鋳型を用いて鋳造した場合の
磁気性能と平均粒径を示す。
Table 2 shows the magnetic performance and average grain size of each composition when cast using an iron mold.

また第1図には第1表のNo、3はNo、4の組成を用
いた試料における鋳型後の平均粒径(μm)とそのホッ
トプレス後の保磁力iHcの関係を示す。この時、粒径
の制御は水冷銅鋳型、鉄鋳型、セラミックス鋳型等の各
種の鋳型及び振動を鋳型に与えられることなどにより行
なわれた。この結果から、粒径を制御した鋳造により高
い保磁力を持った永久磁石が得られることがわかる。
Further, FIG. 1 shows the relationship between the average grain size (μm) after molding and the coercive force iHc after hot pressing for samples using compositions No. 3, No. 4, and No. 4 in Table 1. At this time, the grain size was controlled using various molds such as water-cooled copper molds, iron molds, and ceramic molds, and by applying vibration to the molds. This result shows that a permanent magnet with high coercive force can be obtained by casting with controlled particle size.

第  1  表 第  2  表 (実施例2) 第3表に示す永久磁石合金の組成を、実施例1の同様の
方法で水冷銅鋳型を用いて鋳造した後、1000℃にお
いてホットプレスして異方性化した。
Table 1 Table 2 (Example 2) The composition of the permanent magnet alloy shown in Table 3 was cast using a water-cooled copper mold in the same manner as in Example 1, and then hot pressed at 1000°C to anisotropically It became sexualized.

この時の鋳造段階で熱処理した場合の平均粒径と磁気性
能及びホットプレス後の平均粒径と磁気性能を第4表に
示す。
Table 4 shows the average grain size and magnetic performance when heat treated at the casting stage and the average grain size and magnetic performance after hot pressing.

また、No、11とNo、13.No、14の試料に対
してホットプ゛−レス後さらに1000℃、24時間の
熱処理を施した時の磁気特性を第5表に示す。
Also, No. 11 and No. 13. Table 5 shows the magnetic properties of samples No. 14 when they were heat-treated at 1000° C. for 24 hours after hot pressing.

第3表 第  4  表 第  5  表 この結果から明らかな様に熱間加工によって粒径が小さ
くなりかつ磁気性能が大幅に向上されることがわかる。
Table 3 Table 4 Table 5 As is clear from the results, it can be seen that hot working reduces the grain size and significantly improves the magnetic performance.

また、熱処理により磁気性能が改善されることもわかる
It is also seen that heat treatment improves magnetic performance.

(実施例3) 実施例2において最も性能の高かったPr+tFe7*
Ba組成を従来の焼結法と本発明を用いて双ロールによ
って10m/sのロール回転速度で冷却したリボンとで
作成した。焼結法では、鋳造インゴットを5μmまで、
スタンプミル、ボールミルを用いて機械的に粉砕し、1
5KOeで磁場成形後、1000℃の温度で1.5時間
焼結した。この段階では(BM)max=25.4MG
Oes  1Hc=10.4KOeだった。これをもう
一度粉砕して平均粒径20μmとした後に、エポキシ樹
脂2wt%を加え、再び15KOeで磁場成形後、15
0℃の温度でキュア処理を行なった樹脂結合磁石とした
(Example 3) Pr+tFe7* which had the highest performance in Example 2
Ba compositions were prepared using conventional sintering methods and ribbons cooled by twin rolls at a roll rotation speed of 10 m/s using the present invention. In the sintering method, the cast ingot is
Mechanically pulverize using a stamp mill or ball mill, 1
After magnetic field forming at 5KOe, sintering was performed at a temperature of 1000° C. for 1.5 hours. At this stage (BM)max=25.4MG
Oes 1Hc=10.4KOe. After crushing this again to make the average particle size 20 μm, 2 wt% of epoxy resin was added, and after magnetic field molding at 15 KOe again, 15
A resin-bonded magnet was cured at a temperature of 0°C.

本発明を用いた急冷法では、半径30mmの双ロール(
銅製のロールにクロムメッキを施したもの)を10m/
sで回転させ、該組成の溶湯をArガスで射出し、急冷
してリボン作成した。このときリボン厚は約50μmだ
った。これを700℃で1.5時間アニール処理を施し
、焼結法のときと同様平均粒径20μmまでに粉砕し同
じくエポキシ樹脂で結合し樹脂結合磁石を作成した。
In the rapid cooling method using the present invention, twin rolls with a radius of 30 mm (
10m/chrome-plated copper roll)
The molten metal having the composition was injected with Ar gas and rapidly cooled to form a ribbon. At this time, the ribbon thickness was about 50 μm. This was annealed at 700° C. for 1.5 hours, pulverized to an average particle size of 20 μm in the same manner as in the sintering method, and bonded with the same epoxy resin to produce a resin-bonded magnet.

結果を第6表に示す。The results are shown in Table 6.

第6表 焼結後粉砕では、保磁力が激減しているが1本発明を用
いると、従来の急冷法(ロール速度20m/s以上)は
ど速くなくとも樹脂結合磁石の製造が可能であることが
わ−かる。できあがった、磁石の切目化曲線は当然のこ
とながら、急峻に立ち上がるニュークリエーションタイ
プのものであった。
Table 6: After sintering and pulverization, the coercive force is drastically reduced.1 However, by using the present invention, it is possible to produce resin-bonded magnets even if the conventional quenching method (roll speed of 20 m/s or more) is not as fast. I understand. The resulting magnet's cut curve was of the New Creation type, with a steep rise.

〔発明の効果〕〔Effect of the invention〕

叙上の如く、本発明の永久磁石及びその製造方法によれ
ば、粉砕・焼結という工程を経ずとも、バルク状聾で充
4分な保磁力が得られ、製造工程を著しく単純化でき、
低コストかつ高性能な永久磁石の製造が可能になる。ま
た粒径の調整により、結晶質相のみからなる、樹脂結合
磁石の製造も可能になる。
As described above, according to the permanent magnet of the present invention and its manufacturing method, a sufficient coercive force can be obtained from a bulk magnet without going through the steps of crushing and sintering, and the manufacturing process can be significantly simplified. ,
It becomes possible to manufacture low-cost, high-performance permanent magnets. Furthermore, by adjusting the particle size, it is also possible to manufacture resin-bonded magnets consisting only of crystalline phases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例におけるホットプレス後の保
磁力iHcと鋳造後の平均粒径の関係を示すグラフ。 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 最 上  務 他1名:/ニー、−!
FIG. 1 is a graph showing the relationship between the coercive force iHc after hot pressing and the average grain size after casting in Examples of the present invention. Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Tsutomu Mogami and 1 other person: /nee, -!

Claims (5)

【特許請求の範囲】[Claims] (1)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする永久磁石において、結晶平均粒径が0.1μ
m以上100μm以下であり、また含有炭素及び酸素が
夫々400ppm以下、1000ppm以下であり、か
つ非晶質相を含まないことを特徴とする永久磁石。
(1) In a permanent magnet whose basic components are rare earth elements (including Y), iron, and boron, the average crystal grain size is 0.1μ.
m or more and 100 μm or less, carbon and oxygen content are 400 ppm or less and 1000 ppm or less, respectively, and does not contain an amorphous phase.
(2)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする永久磁石の製造方法において、その結晶平均
粒径が0.1μm以上100μm以下となるように冷却
し、次に250℃以上の温度で熱処理を施すことを特徴
とする永久磁石の製造方法。
(2) In a method for manufacturing a permanent magnet whose basic components are rare earth elements (including Y), iron, and boron, the magnet is cooled to a temperature of 250°C so that the average crystal grain size becomes 0.1 μm or more and 100 μm or less. A method for producing a permanent magnet, characterized by performing heat treatment at a temperature above.
(3)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする磁石の製造方法において、その結晶平均粒径
が0.1μm以上30μm以下となるように冷却し、次
に250℃以上の温度で熱処理を施した後、粉砕し樹脂
と混練し、結合したことを特徴とする永久磁石の製造方
法。
(3) In a method for manufacturing a magnet whose basic components are rare earth elements (including Y), iron, and boron, the magnet is cooled to have an average crystal grain size of 0.1 μm or more and 30 μm or less, and then cooled to 250°C or more. A method for producing a permanent magnet, characterized in that the permanent magnet is subjected to heat treatment at a temperature of , and then pulverized, kneaded with resin, and bonded.
(4)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする永久磁石の製造方法において、その結晶平均
粒径が0.1μm以上100μm以下となるように鋳造
し、次に500℃以上の温度で熱間加工することにより
異方性化することを特徴とする永久磁石の製造方法。
(4) In a method for manufacturing a permanent magnet whose basic components are rare earth elements (including Y), iron, and boron, the magnet is cast so that the average crystal grain size is 0.1 μm or more and 100 μm or less, and then heated at 500°C. A method for producing a permanent magnet, characterized in that it is made anisotropic by hot working at a temperature above.
(5)希土類元素(但しYを含む)と鉄とボロンを基本
成分とする永久磁石の製造方法において、その結晶平均
粒径が0.1μm以上100μm以下となるように鋳造
し、次に500℃以上の温度で熱間加工することにより
異方性化した後、次に250℃以上の熱処理を施すこと
を特徴とする永久磁石の製造方法。
(5) In a method for manufacturing a permanent magnet whose basic components are rare earth elements (including Y), iron, and boron, the magnet is cast so that the average crystal grain size is 0.1 μm or more and 100 μm or less, and then heated at 500°C. A method for producing a permanent magnet, which comprises making it anisotropic by hot working at a temperature above, and then heat treating at a temperature above 250°C.
JP62120718A 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof Pending JPS63285911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62120718A JPS63285911A (en) 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62120718A JPS63285911A (en) 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63285911A true JPS63285911A (en) 1988-11-22

Family

ID=14793279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62120718A Pending JPS63285911A (en) 1987-05-18 1987-05-18 Permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63285911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481301A (en) * 1987-09-24 1989-03-27 Daido Steel Co Ltd Magnetic powder for manufacturing plastic magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481301A (en) * 1987-09-24 1989-03-27 Daido Steel Co Ltd Magnetic powder for manufacturing plastic magnet

Similar Documents

Publication Publication Date Title
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JP2725004B2 (en) Manufacturing method of permanent magnet
JP2631514B2 (en) Manufacturing method of permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPS63285911A (en) Permanent magnet and manufacture thereof
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPS63286515A (en) Manufacture of permanent magnet
JP2992808B2 (en) permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH07135120A (en) Manufacture of rare earth-iron based permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPS63213317A (en) Rare earth iron permanent magnet
JPH01161802A (en) Manufacture of permanent magnet
JPS63213322A (en) Rare earth iron permanent magnet
JPS63213318A (en) Rare earth iron permanent magnet
JPH01175211A (en) Manufacture of rare-earth elements-iron-based permanent magnet
JPH03249125A (en) Production of permanent magnet
JPH01175208A (en) Manufacture of permanent magnet
JPS63286516A (en) Manufacture of permanent magnet
JPS63286514A (en) Manufacture of permanent magnet
JPH023207A (en) Permanent magnet