JPH03249125A - Production of permanent magnet - Google Patents

Production of permanent magnet

Info

Publication number
JPH03249125A
JPH03249125A JP2046365A JP4636590A JPH03249125A JP H03249125 A JPH03249125 A JP H03249125A JP 2046365 A JP2046365 A JP 2046365A JP 4636590 A JP4636590 A JP 4636590A JP H03249125 A JPH03249125 A JP H03249125A
Authority
JP
Japan
Prior art keywords
heat treatment
alloy
permanent magnet
rare earth
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2046365A
Other languages
Japanese (ja)
Inventor
Sei Arai
聖 新井
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Toshiaki Yamagami
利昭 山上
Katsuhiro Itayama
板山 克広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Kobe Steel Ltd
Original Assignee
Seiko Epson Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Kobe Steel Ltd filed Critical Seiko Epson Corp
Priority to JP2046365A priority Critical patent/JPH03249125A/en
Publication of JPH03249125A publication Critical patent/JPH03249125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet having superior magnetic properties by subjecting an alloy having a specific composition consisting of rare earth elements, transition metals, B, and Ag to heat treatment under specific conditions. CONSTITUTION:An alloy having a composition consisting of, by atom, 8-30% rare earth elements including Y, particularly, Pr, Nd, etc., 2-28% B, <=6% Ag, and the balance transition metals, such as Fe, is refined and cast. The resulting cast alloy is heated at >=800 deg.C, e.g. for 24hr and then cooled rapidly through the temp. range down to 200 deg.C at >=1 deg.C/sec cooling rate. By this method, the rare earth-transition metal-B-Ag permanent magnet excellent in magnetic properties, such as residual magnetic flux density, coercive force, and maximum energy product, can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、希土類元素と遷移金属とボロン、および銀を
主成分とする永久磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a permanent magnet whose main components are rare earth elements, transition metals, boron, and silver.

[従来の技術] 永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器まで幅広い分野で使用されている
重要な電気、電子材料のひとつである。
[Prior Art] Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers.

最近の電気製品の小型化、効率化の要求にともない、永
久磁石も益々高性能化が求められている。
With the recent demand for smaller and more efficient electrical products, permanent magnets are also required to have increasingly higher performance.

現在使用されている永久磁石のうち代表的なものはアル
ニコ・ハードフェライト及び希土類−遷移金属系磁石で
ある。特に希土類−遷移金属系磁石であるR−Co系永
久磁石やR−Fe−B系永久磁石は、高い磁気性能が得
られるので従来から多くの研究開発が行なわれている。
Representative permanent magnets currently in use are alnico hard ferrite and rare earth-transition metal magnets. In particular, R-Co permanent magnets and R-Fe-B permanent magnets, which are rare earth-transition metal magnets, have been extensively researched and developed because they provide high magnetic performance.

従来、これらR−Fe−B系永久磁石の製造方法に関し
ては、以下の文献に示すような方法かある。
Conventionally, there are methods for manufacturing these R-Fe-B permanent magnets as shown in the following literature.

(1)粉末冶金に基づく焼結による方法(文献1、文献
2) (2)非晶質合金を製造するのに用いる急冷薄体製造装
置で、厚さ30μm程度の急冷薄片を作り、その薄片を
樹脂結合法で磁石にするメルトスピニング法による急冷
薄片を用いた樹脂結合法。
(1) A sintering method based on powder metallurgy (References 1 and 2) (2) A quenched thin piece with a thickness of about 30 μm is made using a quenched thin body production device used to produce an amorphous alloy. A resin bonding method using quenched flakes made by melt spinning to make magnets using a resin bonding method.

(文献3、文献4) (3)上記(2)の方法で使用した急冷薄片を2段階の
ホットプレスで機械的配向処理を行なう方法、    
 (文献4、文献5) ここで、 文献1;特開昭59−46008号公報文献2; M、
Sagawa、 S、Fujiwara、 N、Tog
awa、 H,Yamamoto and Y、Mat
uura ; J、Appl、  Phys、 Vol
、55(6)15 March 1984 p2083
文献4; R,W、Lee ; Appl、Phys、
Lett、 Vol、46(8)15 April 1
985 p790 文献5;特開昭60−100402号公報次に、上記従
来法の詳細に次いて説明する。
(References 3 and 4) (3) A method of mechanically orienting the rapidly cooled flakes used in the method (2) above using a two-step hot press;
(Document 4, Document 5) Here, Document 1; JP-A-59-46008 Document 2; M,
Sagawa, S., Fujiwara, N., Tog.
awa, H, Yamamoto and Y, Mat
uura; J, Appl, Phys, Vol.
, 55(6)15 March 1984 p2083
Reference 4; R, W, Lee; Appl, Phys;
Lett, Vol, 46(8)15 April 1
985 p790 Document 5; Japanese Patent Application Laid-open No. 100402/1985 Next, the above conventional method will be explained in detail.

(1)の焼結法では、溶解、鋳造により合金インゴット
を作成し、粉砕することで適当な粒度の(数μm)磁石
分を得る。磁石粉は成形助材のバインダーと混練され、
磁場中プレス成形され成形体ができあがる、この成形体
はアルゴン中で1100℃前後の温度で約1時間焼結さ
れ、室温まで急冷される。その後、600°C前後の温
度で熱処理をすることにより保磁力が向上する。
In the sintering method (1), an alloy ingot is created by melting and casting, and is crushed to obtain magnets with an appropriate particle size (several μm). Magnet powder is kneaded with a binder as a molding aid,
A compact is completed by press forming in a magnetic field. This compact is sintered in argon at a temperature of around 1100° C. for about 1 hour, and then rapidly cooled to room temperature. Thereafter, the coercive force is improved by heat treatment at a temperature of around 600°C.

(2)のメルトスピニング法による急冷薄片を用いた樹
脂結合方法では、まず、急冷薄帯製造装置の最適な回転
数でR−T M−B合金の急冷薄帯を作る。得られた厚
さ約30μmの薄帯は直径が1000オングストローム
以下の結晶の集まりであり、脆くて割れ易く、結晶粒は
等方向に分布している。このため、結晶的にも異方性は
得られず等方向になっている。
In the resin bonding method (2) using quenched flakes by the melt spinning method, first, a quenched ribbon of R-T M-B alloy is made at an optimal rotation speed of a quenched ribbon manufacturing apparatus. The obtained ribbon with a thickness of about 30 μm is a collection of crystals with a diameter of 1000 angstroms or less, is brittle and easily breaks, and the crystal grains are distributed in the same direction. For this reason, crystallization does not provide anisotropy and is isotropic.

この薄片を適当な大きさに粉砕し、樹脂と混線、プレス
成形することでボンド磁石かえられる。このとき7 t
/am2程度の圧力で約85体積%の充填が可能である
A bonded magnet can be changed by crushing this flake to an appropriate size, mixing it with resin, and press-molding it. At this time 7t
Filling of about 85% by volume is possible at a pressure of about /am2.

(3)の方法は、 (2)で得られた急冷薄帯あるいは
薄帯の片を、真空中あるいは不活性雰囲気中で約700
°Cで予備加熱したグラファイトあるいは他の耐熱用の
プレス型に入れる。該薄片が所望の温度に到達したとき
1軸の圧力が加えられる。
In method (3), the quenched ribbon or piece of ribbon obtained in (2) is heated in a vacuum or in an inert atmosphere for approximately 700 minutes.
Place in graphite or other heat-resistant press mold preheated at °C. Uniaxial pressure is applied when the flake reaches the desired temperature.

温度圧力は特定しないが、十分な塑性が得られる条件と
して725±25℃、1 、4 t/cm2程度が適し
ている。この段階では磁石の磁化容易軸は僅かにプレス
方向に配向しているとはいえ、全体的には等方向である
。2回目のホットプレスは大面積を有する型で行なわれ
る。一般的には700℃、0 、7 t/cm2で数秒
間プレスする。すると磁石は最初のほぼ1/2になり磁
化容易軸はプレス方向と平行に配向して、磁石は異方性
化する。この方力で異方性を有するR −T M−B系
永久磁石が得られる。
Although the temperature and pressure are not specified, 725±25° C. and about 1.4 t/cm 2 are suitable as conditions for obtaining sufficient plasticity. At this stage, although the axis of easy magnetization of the magnet is slightly oriented in the pressing direction, it is generally equidirectional. The second hot press is performed in a mold with a large area. Generally, it is pressed at 700°C and 0.7 t/cm2 for several seconds. Then, the magnet becomes approximately 1/2 of its original size, the axis of easy magnetization is oriented parallel to the pressing direction, and the magnet becomes anisotropic. An R-TMB permanent magnet having anisotropy can be obtained by this direction force.

尚、最初のメルトスピニング法で作られる急冷薄体の結
晶粒は、それが最大の保磁力を示すときの粒径よりも小
さめにしておき、後のホットプレス中に結晶粒の粗大化
が生じて最適の粒径になるようにしておく。
Note that the crystal grains of the rapidly quenched thin body produced by the initial melt spinning method are made smaller than the grain size at which it exhibits its maximum coercive force, so that coarsening of the crystal grains may occur during subsequent hot pressing. to obtain the optimum particle size.

しかし、この方法では高温、たとえば800°C以上で
は結晶粒の粗大化が著しく、それによって保磁力が極端
に低下し、実用的な永久磁石にはならない。
However, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force, making it impossible to produce a practical permanent magnet.

[発明が解法しようとする課M] 前述の従来技術を用いることにより一応R−TM−B系
永久磁石は製造できるが、これらの製造方法には次のよ
うな欠点を有している。
[Problem M to be Solved by the Invention] Although it is possible to manufacture R-TM-B permanent magnets by using the above-mentioned conventional techniques, these manufacturing methods have the following drawbacks.

(1)の焼結法は、合金を粉末にすることが必須である
が、R−T M−B系永久磁石は酸素に対して非常に活
性であり、そのため、粉末にするという工程を経ると表
面積が増え、酸化が激しくなり焼結体中の酸素温度はど
うしても高くなってしまう。また、粉末を成形するとき
に、たとえばステアリン酸亜鉛のような成形助材を使用
しなければならない、これは焼結工程で前もって取り除
かれるのではあるが、散開は磁石の中に炭素の形で残っ
てしまう、この炭素はR−T M−B系永久磁石の磁気
性能を低下させてしまい好ましくない。
In the sintering method (1), it is essential to turn the alloy into powder, but R-T M-B permanent magnets are very active against oxygen, so it is necessary to go through the process of turning the alloy into powder. The surface area increases, oxidation becomes more intense, and the oxygen temperature in the sintered body inevitably rises. Also, when compacting the powder, a compacting aid, such as zinc stearate, must be used; although this is removed beforehand during the sintering process, the dispersion remains in the form of carbon in the magnet. This remaining carbon is undesirable because it deteriorates the magnetic performance of the R-T M-B permanent magnet.

成形助材を加えてプレス成形した後の成形体はグリーン
体と言われる。これはたいへん脆く、ハンドリングが難
しい。従って、焼結炉にきれいに並べて入れるのは相当
の手間がかかることも大きな欠点である。
The molded body after press molding with the addition of a molding aid is called a green body. This is very fragile and difficult to handle. Therefore, another major drawback is that it takes a considerable amount of effort to arrange them neatly in a sintering furnace.

また、異方性の磁石を得るためには磁場中でプレス成形
しなければならず、磁場電源、コイルなどの大きな装置
が必要となる。
Furthermore, in order to obtain an anisotropic magnet, press molding must be performed in a magnetic field, which requires large equipment such as a magnetic field power source and a coil.

以上の欠点があるので、一般的に言ってR−TM−B系
の焼結磁石の製造には高価な設備が必要になるばかりで
はなく、生産効率も悪くなり、磁石の製造コストが高く
なってしまう、従って、比較的原料の安いR−TM−B
系磁石の長所を活かすことができるとは言い難い。
Because of the above drawbacks, generally speaking, manufacturing R-TM-B sintered magnets not only requires expensive equipment, but also reduces production efficiency and increases magnet manufacturing costs. Therefore, R-TM-B, which uses relatively cheap raw materials,
It is difficult to say that the advantages of magnets can be fully utilized.

次に、 (2)並びに(3)の方法であるが、これらの
方法は真空メルトスピニング装置を使用するが、この装
置は現在ではたいへん生産性が悪くしかも高価である。
Next, methods (2) and (3) use a vacuum melt spinning device, which currently has very low productivity and is expensive.

(2)の方法は原理的に等方性であるので、低いエネル
ギー積であり、ヒステリシスループの角形性も良くない
ので温度特性に対しても、使用する面においても不利で
ある。
Since the method (2) is isotropic in principle, the energy product is low, and the squareness of the hysteresis loop is not good, so it is disadvantageous in terms of temperature characteristics and usage.

(3)の方法では異方性の磁石が得られるが、ホットプ
レスを2段階に使うので、実際に量産を考えると大変に
非効率になることは否めないであろう。
Although method (3) yields an anisotropic magnet, since hot pressing is used in two stages, it cannot be denied that it will be extremely inefficient when considering mass production.

また、この方法では高温、たとえば800℃以上では結
晶粒の粗大化が著しく、それによって保磁力が極端に低
下し、実用的な永久磁石にはならない。
Further, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force, making it impossible to produce a practical permanent magnet.

本発明は以上の従来技術の欠点を解決するものであり、
その目的とするところは、希土類、遷移金属、ボロンお
よび銀を基本成分とし、溶解鋳造工程を基本として、さ
らに熱処理後急冷を施すことにより高性能かつ低コスト
なR−TM−B−Ag系永久磁石の製造方法を提供する
ところにある。
The present invention solves the above-mentioned drawbacks of the prior art,
The aim is to create a permanent R-TM-B-Ag system with high performance and low cost by using rare earths, transition metals, boron, and silver as basic components, and using a melting and casting process as the basis, followed by rapid cooling after heat treatment. The purpose of the present invention is to provide a method for manufacturing a magnet.

[課題を解決するための手段] 本発明の永久磁石の製造方法の第一は、希土類元素(但
しイツトリウムを含む)と遷移金属とボロン、および銀
を基本成分とした永久磁石の製造法において、少なくと
も、前記基本成分からなる合金を溶解・鋳造する工程、
鋳造後800°C以上の温度において熱処理後急冷する
工程とからなることを特徴とする永久磁石の製造工程で
あり、その第2は希土類元素(但しイツトリウムを含む
)と遷移金属、ボロン、および銀を基本成分とする永久
磁石の製造法において、少なくとも、前記基本成分から
なる合金を溶解・鋳造する工程、鋳造後例えば以上の温
度で熱処理後急冷する工程、次いで300℃以上の温度
で熱処理後急冷する工程とから成ることを特徴とする永
久磁石の製造方法である。
[Means for Solving the Problems] The first method of manufacturing a permanent magnet of the present invention is a method of manufacturing a permanent magnet whose basic components are a rare earth element (including yttrium), a transition metal, boron, and silver. At least a step of melting and casting an alloy consisting of the basic components;
This is a manufacturing process for permanent magnets characterized by a step of heat treatment at a temperature of 800°C or higher after casting and then rapid cooling. A method for manufacturing a permanent magnet having basic components includes at least a step of melting and casting an alloy consisting of the basic components, a step of heat treatment after casting at a temperature of 300° C. or higher, and then quenching, followed by a step of heat treatment at a temperature of 300° C. or higher and then quenching. A method for manufacturing a permanent magnet, characterized by comprising the steps of:

[作用] 前記のように従来のR−T M−B系永久磁石の製造方
法である焼結法、急冷法はそれぞれ粉砕による粉末管理
の困難さ、生産性の悪さといった大きな欠点を有してい
る。
[Function] As mentioned above, the sintering method and the quenching method, which are conventional methods for manufacturing R-T M-B permanent magnets, each have major drawbacks such as difficulty in powder control through pulverization and poor productivity. There is.

本発明者らはこれらの欠点を改良するために、バルク状
態での磁気硬化の研究に着目し、前記希土類元素と遷移
金属、及びボロンを基本成分とする磁石の組成域で、鋳
造後熱処理を施すだけで十分高い保磁力を有することを
知見した。以下この方法について説明する。
In order to improve these drawbacks, the present inventors focused on research on magnetic hardening in the bulk state, and conducted post-casting heat treatment in the composition range of magnets whose basic components are rare earth elements, transition metals, and boron. It was discovered that the coercive force can be sufficiently high just by applying it. This method will be explained below.

本発明の製造方法を用いた磁石も、従来技術における(
1)の焼結法を用いた磁石と同様に、その初磁化曲線は
SmCo5のように急峻な立ち上がりを示す、このこと
から、保磁力機構そのものはnucleationタイ
プであることがわかる。このタイプの磁石の保磁力#!
横は基本的には単磁区モデルによって説明付けられ、磁
石の保磁力はその結晶粒径に大きく依存する。すなわち
、R−TM−B系永久磁石の主相である、大きな結晶磁
気異方性を有するR 2 T M + a B化合物相
の結晶粒が大きすぎると、その結晶粒内に磁壁を有する
ようになり、磁化の反転は磁壁の移動により容易に起き
て保磁力は小さくなる。一方、結晶粒がある臨界半径以
下になると結晶粒は磁壁を持たない単磁区粒子になり、
磁化の反転は回転のみによって進行することになる。こ
の磁化の反転は磁壁の移動に比べ大きなエネルギーを必
要とするので、大きな保磁力が得られることになる。す
なわち、十分大きな保磁力を得るためには主相であるR
 2 T M + a B化合物相の結晶粒を適切な大
きさにすることが必要である。
The magnet using the manufacturing method of the present invention is also different from the conventional technology (
Like the magnet using the sintering method in 1), its initial magnetization curve shows a steep rise like SmCo5, which indicates that the coercive force mechanism itself is of the nucleation type. Coercive force of this type of magnet #!
The transverse direction is basically explained by the single domain model, and the coercive force of a magnet is largely dependent on its grain size. In other words, if the crystal grains of the R 2 T M + a B compound phase, which is the main phase of the R-TM-B permanent magnet and has large magnetocrystalline anisotropy, are too large, the crystal grains may have domain walls. The magnetization reversal occurs easily due to the movement of the domain wall, and the coercive force becomes smaller. On the other hand, when the grain size is below a certain critical radius, the grain becomes a single-domain grain without a domain wall.
Reversal of magnetization proceeds only by rotation. This reversal of magnetization requires greater energy than movement of domain walls, so a large coercive force can be obtained. In other words, in order to obtain a sufficiently large coercive force, the main phase R
It is necessary to set the crystal grains of the 2 T M + a B compound phase to an appropriate size.

この臨界半径はサブミクロンオーダーであるにもかかわ
らず、焼結法における粒径は10μm程度である。これ
は、焼結法の場合鋳造インゴットを一旦粉砕するとし1
う工程を経るので、臨界半径に近い粉末を得ようとする
と表面積が著しく増大し、焼結体に残留する酸素濃度が
増加してしまうために、臨界半径に近い粒径を持つ焼結
体は作成不能と言うことになる。逆に、nucleat
ionタイプの磁石であるならば、わざわざ鋳造インゴ
ットの粉砕という工程を経ずとも、冷却速度の調整によ
り、粗大な柱状晶あるいは等軸晶の成長を抑制し、R2
T M + a B化合物相の結晶粒を微細化できるな
らば、十分高い保磁力を得られることになる。
Although this critical radius is on the order of submicrons, the grain size in the sintering method is about 10 μm. In the case of the sintering method, the cast ingot is once crushed.
If you try to obtain powder with a particle size close to the critical radius, the surface area will increase significantly and the oxygen concentration remaining in the sintered body will increase. This means that it cannot be created. On the contrary, nucleat
If it is an ion type magnet, the growth of coarse columnar or equiaxed crystals can be suppressed by adjusting the cooling rate without going through the process of pulverizing the cast ingot, and the R2
If the crystal grains of the T M + a B compound phase can be made finer, a sufficiently high coercive force can be obtained.

本発明では、従来のR−TM−B合金に銀を加えた組成
を基本成分とし、鋳造後の熱処理を最適化することによ
って以下の事実を知見した。
In the present invention, the following facts were discovered by using a composition in which silver was added to the conventional R-TM-B alloy as a basic component and optimizing the heat treatment after casting.

AgはR−Ag二元系に於てR−Fe二元系よりも低い
共晶温度を持つ、Ag添加の実際の効果を説明する。A
gm加により、インゴットを熱間加工を経ずに単に熱処
理するだけの鋳造磁石としても、また熱間加工を施した
後の異方性磁石としても、エネルギー積、保磁力が増加
している。Agの効果は、他の保磁力を増すのに効果の
ある元素、たとえばDyなどとは大きく異なる。すなわ
ち、DVはR2−XD yXFe+aBとして本系磁石
の主相の希土類元素を置換することにより、主相の異方
性磁場を増加させ、その結果として保磁力の増加をみる
わけである。ところが、Agの場合は主相中のFeを置
換するというより、主として粒界の希土類リッチ相に希
土類とともに存在している。
Ag has a lower eutectic temperature in the R-Ag binary system than in the R-Fe binary system, which explains the actual effect of Ag addition. A
By gm addition, the energy product and coercive force are increased both as a cast magnet in which the ingot is simply heat treated without hot working, and as an anisotropic magnet after hot working. The effect of Ag is significantly different from other elements that are effective in increasing coercive force, such as Dy. That is, DV increases the anisotropic magnetic field of the main phase by replacing the rare earth element in the main phase of the main magnet as R2-XD yXFe+aB, and as a result, the coercive force increases. However, in the case of Ag, rather than replacing Fe in the main phase, it mainly exists together with rare earths in the rare earth-rich phase at grain boundaries.

よく知られているように、R−Fe−B系磁石の保磁力
は主相のR2Fe+4B相のみでは殆ど得られず、粒界
相である希土類リッチ相の共存により、初めて得られる
。Agはその粒界相に影響を与える元素と考えられてい
る。
As is well known, the coercive force of an R-Fe-B magnet is hardly obtained only by the R2Fe+4B phase as the main phase, but is only obtained by the coexistence of a rare earth rich phase which is a grain boundary phase. Ag is considered to be an element that affects the grain boundary phase.

このように銀を添加した合金では鋳造インゴットを高温
で熱処理した後急冷することにより、良好な磁気性能が
得られた。
In alloys containing silver in this way, good magnetic performance was obtained by heat-treating the cast ingots at high temperatures and then rapidly cooling them.

以上の点により前述のような粉砕、焼結といった工程を
経る必要がなくなり、粉末管理の困難さといった生産性
の問題から解放される。
Due to the above points, there is no need to go through the processes such as pulverization and sintering as described above, and productivity problems such as difficulty in powder management are eliminated.

以下、本発明による永久磁石の好ましい組成範囲につい
て説明する。
The preferred composition range of the permanent magnet according to the present invention will be explained below.

希土類金属としては、Y、  La、  Ce、Pr、
Nd、  Sm、  Eu、  Gd、  Tb、  
Dy、  Ho、Er、Tm、Yb、Luが候補として
挙げられ、これらの内1種類、あるいは2種類以上を組
み合わせて用いられる。最も高い磁気性能は、Pr、N
dで得られる。従って実用的にはPr、  Nd、  
Pr−Nd合金、Ce−Pr−Nd合金などが用いられ
る。また少量の添加元素、たとえば重希土類元素Dy、
’rb等は保磁力の向上に有効である。
Rare earth metals include Y, La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb, and Lu are listed as candidates, and one type or a combination of two or more of these can be used. The highest magnetic performance is Pr, N
Obtained by d. Therefore, practically Pr, Nd,
Pr-Nd alloy, Ce-Pr-Nd alloy, etc. are used. Also, a small amount of additive elements, such as heavy rare earth element Dy,
'rb etc. are effective in improving coercive force.

R−Fe−B系磁石の主相はR2Fe+4Bである。The main phase of the R-Fe-B magnet is R2Fe+4B.

したがってRが8原子%未満では、もはや上記化合物を
形成せずα−鉄と同一の立方晶構造となるため高磁気性
能は得られない、一方Rが3C4子%を越えると非磁性
のRリッチ相が多くなり磁気特性は著しく低下する。よ
ってRの範囲は8〜30原子%が適当である。
Therefore, if R is less than 8 at%, high magnetic performance cannot be obtained because the above compound is no longer formed and it has the same cubic structure as α-iron.On the other hand, if R exceeds 3C4 atom%, it is non-magnetic and R-rich. As the number of phases increases, the magnetic properties deteriorate significantly. Therefore, the appropriate range of R is 8 to 30 atomic %.

Bは、R2Fe+4B相を形成するための必須元素であ
り、2原子%未満では菱面体のR−Fe系になるため、
高保磁力は望めない。また28原子%を越えるとBに富
む非磁性相が多くなり、残留磁束密度は著しく低下して
来る。しかじ高保磁力を得るため、好ましくはBj!子
%以下がよく、それ以上では特殊な冷却を施さない限り
、微細なR2Fe+4B相を得ることができず、保磁力
が小さい。
B is an essential element for forming the R2Fe+4B phase, and if it is less than 2 atomic %, it becomes a rhombohedral R-Fe system.
High coercive force cannot be expected. Moreover, when it exceeds 28 at %, the amount of B-rich nonmagnetic phase increases, and the residual magnetic flux density decreases significantly. In order to obtain a high coercive force, preferably Bj! If the coercive force is less than %, it is not possible to obtain a fine R2Fe+4B phase unless special cooling is performed, and the coercive force is small.

Agは前述したように柱状組織の微細化、熱間加工性の
向上により、エネルギー積、保磁力を増加させる元素で
ある。しかし、非磁性元素であるため、その添加量を極
端に増すと残留磁束密度が低下するので6原子%以下が
よい。
As mentioned above, Ag is an element that increases the energy product and coercive force by making the columnar structure finer and improving hot workability. However, since it is a non-magnetic element, if the amount added is extremely increased, the residual magnetic flux density will decrease, so it is preferably 6 at % or less.

[実施例] (実施例1) 本発明による製造法の工程図を第1図に示す。[Example] (Example 1) A process diagram of the manufacturing method according to the present invention is shown in FIG.

本発明において使用した合金の組成は、Pr17原子%
、Fe76.5W子%、B5原子%、Ag1.5原子%
である。この合金を高周波誘導溶解炉で溶解し、鋳型に
て鰐塊を鋳造した。この時、希土類、鉄及び銀の原料と
しては99.9%の純度のものを用い、ボロンはフェロ
ボロンを用いた。
The composition of the alloy used in the present invention is Pr17 atomic%
, Fe76.5W%, B5 atomic%, Ag1.5 atomic%
It is. This alloy was melted in a high frequency induction melting furnace, and a crocodile lump was cast in a mold. At this time, rare earth, iron, and silver raw materials with a purity of 99.9% were used, and boron was ferroboron.

この鋳造インゴットから試料片を切り出し、アルゴン雰
囲気中において1000℃24時間のアニール処理を施
し、その後3種類の冷却方法で冷却した。冷却方法は、
水冷、炉端冷却、炉内冷却とした。冷却速度はそれぞれ
、水冷では1000℃から室温までを5X10’℃/S
、炉端冷却では1000℃から200℃までを1℃/S
、炉内冷却では1000℃から200℃までを10刊’
C/Sで行なった。このようにして得られた磁気性能の
結果を第1表に示す。これによると冷却速度のもっとも
遅い炉内冷却材では残留磁化、保磁力、最大エネルギー
積いずれについても他の2つに比べ性能は低下している
。しかし、水冷及び炉端冷却では、それほど性能に違い
はみられず良好な磁気性能が得られている。
Sample pieces were cut from this cast ingot, annealed at 1000°C for 24 hours in an argon atmosphere, and then cooled using three different cooling methods. The cooling method is
Water cooling, hearth cooling, and in-furnace cooling were used. The cooling rate is 5X10'℃/S from 1000℃ to room temperature for water cooling.
, 1℃/S from 1000℃ to 200℃ for hearth cooling
, 10 publications covering in-furnace cooling from 1000℃ to 200℃.
It was done with C/S. The results of the magnetic performance thus obtained are shown in Table 1. According to this, the performance of the reactor coolant, which has the slowest cooling rate, is lower than the other two in terms of residual magnetization, coercive force, and maximum energy product. However, with water cooling and hearth cooling, there was not much difference in performance and good magnetic performance was obtained.

第1表 このことから、インゴットを熱処理後急冷する事により
、高い磁気性能が得られることが判明した。
Table 1 From the above, it was found that high magnetic performance could be obtained by rapidly cooling the ingot after heat treatment.

(実施例2) 実施例1に示した合金と同一組成の合金を高周波誘導炉
により溶解鋳造後、インゴットから試料片を切り出し、
アルゴン雰囲気中に於て、600℃、700℃、800
℃、900℃の各温度に於て24時間の熱処理を施した
。その後、炉端冷却により各熱処理温度から200 ”
Cまでの温度範囲を1℃/S程度の冷却速度で急冷した
。この様な工程によって得られた磁気性能を第2表に示
す。
(Example 2) After melting and casting an alloy having the same composition as the alloy shown in Example 1 in a high-frequency induction furnace, a sample piece was cut out from the ingot.
600℃, 700℃, 800℃ in argon atmosphere
Heat treatment was performed at each temperature of 900°C and 900°C for 24 hours. After that, 200" from each heat treatment temperature by hearth cooling.
The temperature range up to C was rapidly cooled at a cooling rate of about 1° C./S. The magnetic performance obtained through such a process is shown in Table 2.

第2表 このことから−段目の熱処理として800’C以上の温
度で熱処理後急冷する事により優れた磁気性能が得られ
ることがわかった。
Table 2 From the above, it was found that excellent magnetic performance could be obtained by rapidly cooling after heat treatment at a temperature of 800'C or higher as the -stage heat treatment.

(実施例3) 実施例1に示した合金と同一組成の合金を溶解鋳造後、
インゴットから試料片を切り出し、アルゴン雰囲気中で
1000℃で24時間熱処理し、炉端冷却により急冷し
た後、2段目の熱処理として500℃、600℃、70
0℃、800℃の各温度で2時間の熱処理を行ない、そ
の後炉端冷却により各熱処理温度から200℃までの温
度範囲を1℃/S程度の冷却速度において急冷した。こ
の様な工程により得られた磁気性能の結果を第2図に示
す0図から明らかなように2段目の熱処理を800℃で
行なった場合は残留磁化、保磁力、最大エネルギー積い
ずれも良好な値が得られた。
(Example 3) After melting and casting an alloy having the same composition as the alloy shown in Example 1,
A sample piece was cut from the ingot, heat treated at 1000°C for 24 hours in an argon atmosphere, rapidly cooled by hearth cooling, and then subjected to second heat treatment at 500°C, 600°C, 70°C
Heat treatment was performed at each temperature of 0°C and 800°C for 2 hours, and then the temperature range from each heat treatment temperature to 200°C was rapidly cooled by hearth cooling at a cooling rate of about 1°C/S. As is clear from the magnetic performance results obtained through this process in Figure 2, when the second heat treatment was performed at 800°C, residual magnetization, coercive force, and maximum energy product were all good. A value was obtained.

これに対し、2段目の熱処理温度が低い場合はいずれの
磁気性能も低下している。このことから2段目の熱処理
を800℃以上で行ない、その後急冷する処理によって
良好な磁気性能が得られることが解った。
On the other hand, when the second stage heat treatment temperature is low, both magnetic performances are reduced. From this, it was found that good magnetic performance could be obtained by performing the second heat treatment at 800° C. or higher, followed by rapid cooling.

(実施例4) 前例と同一組成の合金について鋳造インゴットから試料
片を切り出し、アルゴン雰囲気中で1000℃24時間
の熱処理後炉端冷却し、その後2段目熱処理としてアル
ゴン雰囲気中で800°Cの熱処理を施した。その後の
冷却方法を、水冷、炉端冷却、炉内冷却の3種類とし、
得られる磁気性能と冷却速度の関係を検討した。第3表
にその結果を示す。
(Example 4) A sample piece was cut from a cast ingot for an alloy with the same composition as the previous example, heat-treated at 1000°C for 24 hours in an argon atmosphere, cooled at the hearth, and then heat-treated at 800°C in an argon atmosphere as a second stage heat treatment. was applied. There are three types of cooling methods: water cooling, hearth cooling, and furnace cooling.
The relationship between the obtained magnetic performance and cooling rate was investigated. Table 3 shows the results.

第3表 この結果炉冷した試料では磁気性能は低下したが、水冷
、炉端冷却した試料では良好な磁気性能が得られた。こ
のことから2段熱処理後においても、熱処理後の冷却は
1℃/S以上の急冷としたほうが、良好な磁気性能が得
られることが解った。
Table 3 As a result, the magnetic performance of the furnace-cooled samples decreased, but good magnetic performance was obtained for the water-cooled and hearth-cooled samples. From this, it was found that even after the two-stage heat treatment, better magnetic performance could be obtained if the cooling after the heat treatment was performed at a rapid cooling rate of 1° C./S or more.

(実施例5) 第4表に示す各組成の合金を銹導炉で鋳造インゴットを
製造した。この様にして得られたインゴットについて一
段目の熱処理として1000 ”Cに於て24時間の熱
処理を施して急冷した後、二段目の熱処理として800
°Cで2時間の熱処理を加えた後、炉端に於て急冷した
。この様な試料について磁気特性を測定した。結果を第
5表に示す。
(Example 5) Ingots were produced by casting alloys having the respective compositions shown in Table 4 in a forging furnace. The ingot thus obtained was subjected to a first heat treatment at 1000"C for 24 hours and then rapidly cooled, followed by a second heat treatment at 800"C.
After heat treatment at °C for 2 hours, it was rapidly cooled at the hearth. The magnetic properties of such samples were measured. The results are shown in Table 5.

第5表より、銀を添加した試料においては磁気性能、特
に保磁力に優れた特性が得られた。
From Table 5, the samples to which silver was added had excellent magnetic performance, particularly excellent coercive force.

第4表 第5表 [発明の効果] 以上述べたように本発明によれば、銀を添加した合金に
適当な熱処理を施すことにより、従来の鋳造法の欠点で
あった磁気特性の改善がなされ、焼結による磁石と同等
、もしくはそれ以上の性能を得ることができる。そのた
め、製造工程の短縮、異方性樹脂結合磁石が可能といっ
た、鋳造法の長所がさらに助長される。
Table 4 Table 5 [Effects of the Invention] As described above, according to the present invention, by applying appropriate heat treatment to the silver-added alloy, the magnetic properties, which were the drawbacks of conventional casting methods, can be improved. It is possible to achieve performance equivalent to or better than sintered magnets. Therefore, the advantages of the casting method, such as shortening of the manufacturing process and the possibility of producing an anisotropic resin-bonded magnet, are further promoted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による製造法を示す工程図。 第2図は、本発明による熱処理温度と磁気性能を示す図
。 以  上
FIG. 1 is a process diagram showing the manufacturing method according to the present invention. FIG. 2 is a diagram showing heat treatment temperature and magnetic performance according to the present invention. that's all

Claims (1)

【特許請求の範囲】[Claims] 1.希土類元素(ただしYを含む)と遷移金属とボロン
、および銀を基本成分とする永久磁石の製造方法におい
て、少なくとも、前記基本成分からなる合金を溶解およ
び鋳造する工程、鋳造後の熱処理工程において最終熱処
理工程を800℃以上の高温で行った後、200℃まで
の温度範囲を1℃/s以上の冷却速度にて急冷する工程
とから成ることを特徴とする永久磁石の製造方法。
1. In a method for manufacturing a permanent magnet whose basic components are a rare earth element (including Y), a transition metal, boron, and silver, at least the process of melting and casting an alloy consisting of the basic components and the heat treatment process after casting are performed. A method for manufacturing a permanent magnet, comprising the steps of performing a heat treatment step at a high temperature of 800° C. or higher, and then rapidly cooling the temperature range up to 200° C. at a cooling rate of 1° C./s or higher.
JP2046365A 1990-02-27 1990-02-27 Production of permanent magnet Pending JPH03249125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2046365A JPH03249125A (en) 1990-02-27 1990-02-27 Production of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2046365A JPH03249125A (en) 1990-02-27 1990-02-27 Production of permanent magnet

Publications (1)

Publication Number Publication Date
JPH03249125A true JPH03249125A (en) 1991-11-07

Family

ID=12745129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2046365A Pending JPH03249125A (en) 1990-02-27 1990-02-27 Production of permanent magnet

Country Status (1)

Country Link
JP (1) JPH03249125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934175A (en) * 2014-03-20 2015-09-23 江西理工大学 High coercivity low dysprosium (terbium) NdFeB magnet based on crystal boundary modification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934175A (en) * 2014-03-20 2015-09-23 江西理工大学 High coercivity low dysprosium (terbium) NdFeB magnet based on crystal boundary modification
CN104934175B (en) * 2014-03-20 2019-08-16 江西理工大学 It is a kind of based on the crystal boundary modified low dysprosium of high-coercive force/terbium neodymium iron boron magnetic body

Similar Documents

Publication Publication Date Title
JPH01171209A (en) Manufacture of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2579787B2 (en) Manufacturing method of permanent magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JPH03249125A (en) Production of permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH04143221A (en) Production of permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JP2746111B2 (en) Alloy for permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPH01161802A (en) Manufacture of permanent magnet
JP2992808B2 (en) permanent magnet
JPH03196601A (en) Permanent magnet and manufacture thereof
JPS63287005A (en) Permanent magnet and manufacture thereof
JPS63285910A (en) Permanent magnet and manufacture thereof
JPS63287006A (en) Permanent magnet and manufacture thereof
JPH04134806A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPH0422104A (en) Method of manufacturing permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH01171218A (en) Manufacture of permanent magnet
JPS63286514A (en) Manufacture of permanent magnet
JPS63287007A (en) Manufacture of permanent magnet