JPH0422104A - Method of manufacturing permanent magnet - Google Patents

Method of manufacturing permanent magnet

Info

Publication number
JPH0422104A
JPH0422104A JP2127414A JP12741490A JPH0422104A JP H0422104 A JPH0422104 A JP H0422104A JP 2127414 A JP2127414 A JP 2127414A JP 12741490 A JP12741490 A JP 12741490A JP H0422104 A JPH0422104 A JP H0422104A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
temperature
heat treatment
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2127414A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Sei Arai
聖 新井
Toshiaki Yamagami
利昭 山上
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2127414A priority Critical patent/JPH0422104A/en
Publication of JPH0422104A publication Critical patent/JPH0422104A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a permanent magnet by a method wherein an alloy comprising principal components such as R(a rare-earth element containing Y), Fe, and B is melted and cast, next a cast ingot is heat-processed at a specific temperature, and next it is heat-treated at a predetermined temperature for a predetermined time. CONSTITUTION:In a method of manufacturing a permanent magnet, R (R is at least one kind of rare-earth element containing Y), Fe, and B are used as raw material principal components, an alloy comprising the principal components is melted and cast, next a cast ingot is heat-processed at a temperature of higher than 500 deg.C, and next it is heat-treated in a temperature range of 250 to 1100 deg.C for more than 4 hours. The rare-earth is employed by combining one or more kinds of Y, La, Ce, Pr, and Nd, etc., with each other. Since the highest magnetic performance is obtained by the existence of Pr, practically the Pr, the alloy of Pr-Nd, or the alloy of Ce-Pr-Nd, etc., is employed. A small quantity of heavy rare-earth element, for example, Dy, Tb is effective in improvement of the coercive force.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、機械的配向による磁気異方性を有する永久磁
石の製造方法、特にR(ただしRはYを含む希土類元素
のうち少なくとも1種)+Fe+Bを原料基本成分とす
る永久磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a permanent magnet having magnetic anisotropy due to mechanical orientation, and in particular a method for manufacturing a permanent magnet having magnetic anisotropy due to mechanical orientation. )+Fe+B as the basic raw material components.

[従来の技術] 永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器まで、幅広い分野で使用されてい
る重要な電気・電子材料の一つであり、最近の電気製品
の小型化、高効率化の要求にともない、永久磁石も益々
高性能化が求められている。
[Prior art] Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household electrical products to peripheral terminal equipment for large computers, and are becoming more and more compact in recent years. With the demand for higher efficiency, permanent magnets are also required to have increasingly higher performance.

永久磁石は、外部から電気的エネルギーを供給しないで
磁界を発生するための材料であり、保磁力が大きく、ま
た残留磁束密度も高いものが適している。
A permanent magnet is a material that generates a magnetic field without supplying electrical energy from the outside, and one that has a large coercive force and a high residual magnetic flux density is suitable.

現在使用されている永久磁石のうち代表的なものはアル
ニコ系鋳造磁石、フェライト磁石及び希土類−遷移金属
系磁石であり、特に希土類−遷移金属系磁石であるR−
Co系永久磁石やR−Fe−B系永久磁石は、極めて高
い保磁力とエネルギー積を持つ永久磁石として、従来か
ら多くの研究開発がなされている。
Typical permanent magnets currently in use are alnico cast magnets, ferrite magnets, and rare earth-transition metal magnets, especially rare earth-transition metal magnets.
Co-based permanent magnets and R-Fe-B-based permanent magnets have been extensively researched and developed as permanent magnets with extremely high coercive force and energy product.

従来、これらR−Fe−B系の高性能異方性永久磁石の
製造方法には、次のようなものがある。
Conventionally, there are the following methods for manufacturing these R-Fe-B-based high-performance anisotropic permanent magnets.

(1)まず、特開昭59−46008号公報や M、S
agaWa。
(1) First, JP-A-59-46008, M, S
agaWa.

S、Fujimura、N、Togalla、H,Ya
mamoto and Y、Matsu−ura;J、
Appl、Phys、Vol、55(6)、15 Ma
rch 1984.p2083等には、原子百分比で8
〜30%のR(ただしRはYを含む希土類元素の少なく
とも1種)、2〜28%のB及び残部Feからなる磁気
異方性焼結体であることを特徴とする永久磁石が粉末冶
金法に基づく焼結によって製造されることが開示されて
いる。
S., Fujimura, N., Togalla, H., Ya.
mamoto and Y, Matsu-ura; J,
Appl, Phys, Vol. 55(6), 15 Ma.
rch 1984. p2083 etc. has an atomic percentage of 8
A permanent magnet characterized by being a magnetically anisotropic sintered body consisting of ~30% R (where R is at least one rare earth element including Y), 2~28% B, and the balance Fe is a powder metallurgy permanent magnet. It is disclosed that it is manufactured by method-based sintering.

この焼結法では、溶解・鋳造により合金インゴットを作
製し、粉砕して適当な粒度(数μm)の磁性粉を得る。
In this sintering method, an alloy ingot is produced by melting and casting, and then pulverized to obtain magnetic powder with an appropriate particle size (several μm).

磁性粉は成形助剤のバインダーと混練され、磁場中でプ
レス成形されて成形体が出来上がる。成形体はアルゴン
中で1100℃前後の温度1時間焼結され、その後室温
まで急冷される。
The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature of around 1100° C. for 1 hour and then rapidly cooled to room temperature.

焼結後、600 ’C前後の温度で熱処理する事により
永久磁石はさらに保磁力を向上させる。
After sintering, the permanent magnet is heat-treated at a temperature of around 600'C to further improve its coercive force.

また、この焼結磁石の熱処理に関しては特開昭61−2
17540号公報、特開昭82−165305号公報等
に、多段熱処理の効果が開示されている。
Regarding the heat treatment of this sintered magnet, Japanese Patent Application Laid-Open No. 61-2
No. 17540, Japanese Unexamined Patent Publication No. 82-165305, etc. disclose the effects of multistage heat treatment.

(2)特開昭59−211549号公報やR,W、Le
e;  Appl。
(2) JP-A-59-211549, R, W, Le
e; Appl.

Phys、Lett、Vol、46(8)、15  A
pril  1985.p790には、非常に微細な結
晶性の磁性相を持つ、メルトスピニングされた合金リボ
ンの微細片が樹脂によって接着されたR−Fe−B磁石
が開示されている。
Phys, Lett, Vol, 46(8), 15 A
pril 1985. P790 discloses an R-Fe-B magnet in which fine pieces of melt-spun alloy ribbon with a very fine crystalline magnetic phase are bonded together with a resin.

この永久磁石は、アモルファス合金を製造するに用いる
急冷薄帯製造装置で、厚さ30μm程度の急冷薄片を作
り、その薄片を樹脂と混練してプレス成形することによ
り製造される。
This permanent magnet is manufactured by making a quenched thin piece with a thickness of about 30 μm using a quenched ribbon manufacturing apparatus used for manufacturing an amorphous alloy, and then kneading the thin piece with a resin and press-molding it.

(3)特開昭60−100402号公報やR,W、Le
e; Appl。
(3) JP-A-60-100402, R, W, Le
e; Appl.

Phys、Lett、Vol、46(8)、15 Ap
ril  1985.p790には、前記(2)の方法
で使用した急冷薄片を、真空中あるいは不活性言回気中
で2段階ホットプレス法と呼ばれる方法で緻密で異方性
を有するR−Fe−B磁石を得ることが開示されている
Phys, Lett, Vol, 46(8), 15 Ap
ril 1985. For p790, the quenched flakes used in the method (2) above are processed into a dense and anisotropic R-Fe-B magnet by a method called a two-step hot pressing method in a vacuum or an inert atmosphere. It is disclosed that it can be obtained.

(4)特開昭62−276803号公報には、R(ただ
しRはYを含む希土類元素のうち少なくとも1種)8〜
30原子%、B2〜28w子%+Co50原子%以下、
A115原子%以下、及び残部が鉄及びその他の製造上
不可避な不純物からなる合金を溶解・鋳造後、該鋳造イ
ンゴットを500°C以上の温度で熱間加工することに
より結晶粒を微細化しまたその結晶軸を特定の方向に配
向せしめて、該鋳造合金を磁気的に異方性化することを
特徴とする希土類−鉄系永久磁石が開示されている。
(4) Japanese Patent Application Laid-Open No. 62-276803 states that R (where R is at least one rare earth element including Y) 8 to
30 at%, B2~28w% + Co50 at% or less,
After melting and casting an alloy consisting of 115 at. A rare earth-iron permanent magnet is disclosed in which the cast alloy is made magnetically anisotropic by orienting its crystal axis in a specific direction.

[発明が解決しようとする課題] 斜上の(1)〜(4)の従来のR−Fe−B系永久磁石
の製造方法は、次のごとき欠点を有している。
[Problems to be Solved by the Invention] The conventional methods for manufacturing R-Fe-B permanent magnets (1) to (4) above have the following drawbacks.

(1)の永久磁石の製造方法は、合金を粉末にすること
を必須とするものであるが、R−Fe−B系合金はたい
へん酸素に・対して活性を有するので、粉末化すると余
計酸化が激しくなり、焼結体中の酸素濃度はどうしても
高くなってしまう。
The manufacturing method for permanent magnets in (1) requires that the alloy be made into powder, but since R-Fe-B alloys are highly active against oxygen, making them into powder will cause unnecessary oxidation. becomes intense, and the oxygen concentration in the sintered body inevitably becomes high.

また粉末を成形するときに、例えばステアリン酸亜鉛の
様な成形助剤を使用しなければならず、これは焼結工程
で前もって取り除かれるのであるが、成形助剤中の散開
は、磁石体の中に炭素の形で残ってしまい、この炭素は
著しくR−Fe−B磁石の磁気性能を低下させ好ましく
ない。
Also, when compacting the powder, a compacting aid, such as zinc stearate, must be used, which is removed beforehand during the sintering process, and the dispersion in the compacting aid is limited to the size of the magnet. This carbon remains in the form of carbon, which is undesirable because it significantly reduces the magnetic performance of the R-Fe-B magnet.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われ、これは大変脆く、ハンドリングが難しい。
The molded body after press molding with the addition of a molding aid is called a green body, which is extremely brittle and difficult to handle.

従って焼結炉にきれいに並べて入れるのには、相当の手
間が掛かることも大きな欠点である。
Therefore, a major drawback is that it takes a considerable amount of effort to arrange them neatly in the sintering furnace.

これらの欠点があるので、一般的に言ってRFe−B系
の焼結磁石の製造には、高価な設備が必要になるばかり
でなく、その製造方法は生産効率が悪く、結局磁石の製
造コストが高くなってしまう。従って、比較的原料費の
安いR−Fe−B系磁石の長所を活かすことが出来ない
Because of these drawbacks, generally speaking, manufacturing RFe-B sintered magnets not only requires expensive equipment, but also the manufacturing method has poor production efficiency, which ultimately increases the manufacturing cost of the magnet. becomes high. Therefore, it is not possible to take advantage of the advantages of R-Fe-B magnets, which have relatively low raw material costs.

次に(2)並びに(3)の永久磁石の製造方法は、真空
メルトスピニング装置を使用するが、この装置は、現在
では大変生産性が悪くしかも高価である。
Next, the permanent magnet manufacturing methods (2) and (3) use a vacuum melt spinning device, but this device currently has very low productivity and is expensive.

(2)の永久磁石は、原理的に等方性であるので低エネ
ルギー積であり、ヒステリシスループの角形性も悪く、
温度特性に対しても、使用する面においても不利である
The permanent magnet (2) is isotropic in principle, so it has a low energy product, and the squareness of the hysteresis loop is also poor.
It is disadvantageous both in terms of temperature characteristics and in terms of use.

(3)の永久磁石を製造する方法は、ホットプレスを二
段階に使うというユニークな方法であるが、実際に量産
を考えると非効率であることは否めないであろう。
The method (3) for manufacturing permanent magnets is a unique method of using hot press in two stages, but it cannot be denied that it is inefficient when considering actual mass production.

更にこの方法では、高温例えば800°C以上では結晶
粒の粗大化が著しく、それによって保磁力iHcが極端
に低下し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force iHc, making it impossible to produce a practical permanent magnet.

(4)の永久磁石を製造する方法は、粉末工程を含まず
、ホットプレスも一段階でよいために、最も製造工程が
簡略化され、Jllココスト低減が図れる製造法である
が、磁気特性が焼結法に比べ低いという問題があった。
The method of manufacturing permanent magnets in (4) does not involve a powder process and requires only one step of hot pressing, so it is the manufacturing method that simplifies the manufacturing process the most and can reduce costs, but the magnetic properties There was a problem that it was lower than the sintering method.

本発明は、以上の従来技術の欠点特に(4)の永久磁石
の性能面での欠点を解決するものであり、その目的とす
るところは、高性能かつ低コストの永久磁石の製造方法
を提供することにある。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, particularly the drawback (4) in terms of performance of permanent magnets, and its purpose is to provide a high-performance, low-cost manufacturing method for permanent magnets. It's about doing.

[課題を解決するための手段] 本発明の永久磁石の製造方法は、R(ただしRはYを含
む希土類元素のうち少なくとも1種)。
[Means for Solving the Problems] The method for manufacturing a permanent magnet of the present invention uses R (where R is at least one rare earth element including Y).

Fe、Bを原料基本成分とし、該基本成分とする合金を
溶解・鋳造し、次いで鋳造インゴットを5o o ’c
以上の温度において熱間加工し次に250〜1100°
Cの温度において4時間以上熱処理する事を特徴とする
Fe and B are used as the basic raw material components, and the alloy containing the basic components is melted and cast, and then the cast ingot is
Hot worked at a temperature above 250~1100°
It is characterized by heat treatment at a temperature of C for 4 hours or more.

以下、本発明における永久磁石の好ましい組成範囲につ
いて説明する。
The preferred composition range of the permanent magnet in the present invention will be explained below.

希土類としては、Y、  La、  Ce、  Pr、
  Nd。
Rare earths include Y, La, Ce, Pr,
Nd.

Sm、  Eu、  Gd、  Tb、  Dy、  
Ho、  Er、  Tm、Yb、Luが候補として挙
げられ、これらのうちの1種あるいは2種以上を組み合
わせて用いる。最も高い磁気性能はPrで得られるので
、実用的には Pr、Pr−Nd合金、Ce−Pr−N
d合金等が用いられる。少量の重希土元素、例えばpy
、’rb等は保磁力の向上に有効である。
Sm, Eu, Gd, Tb, Dy,
Candidates include Ho, Er, Tm, Yb, and Lu, and one or more of these may be used in combination. The highest magnetic performance is obtained with Pr, so Pr, Pr-Nd alloy, Ce-Pr-N
d alloy etc. are used. Small amounts of heavy rare earth elements, e.g. py
, 'rb, etc. are effective for improving coercive force.

R−Fe−B系磁石の主相はR2Fe+aB である。The main phase of the R-Fe-B magnet is R2Fe+aB.

従ってRが8原子%未満では、もはや上記化合物を形成
せず高磁気特性は得られない。一方Rが30原子%を越
えると非磁性のRリッチ相が多くなり磁気特性は著しく
低下する。よってRの範囲は8〜30原子%が適当であ
る。しかし高い残留磁束密度のためには、好ましくはR
8〜25原子%が適当である。
Therefore, if R is less than 8 at %, the above-mentioned compound is no longer formed and high magnetic properties cannot be obtained. On the other hand, if R exceeds 30 atomic %, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the appropriate range of R is 8 to 30 atomic %. However, for high residual magnetic flux density, preferably R
8 to 25 atom % is suitable.

Bは、R2Fe+aB 相を形成するための必須元素で
あり、2w子%未満では菱面体のR−Fe系になるため
に高保磁力は望めない。また28ji子%を越えるとB
に富む非磁性相が多くなり、残留磁束密度は著しく低下
してくる。しかじ高保磁力を得るためには、好ましくは
B88原子以下がよく、それ以上では微細なR2Fe1
4B相を得ることが困難で、保磁力は小さい。
B is an essential element for forming the R2Fe+aB phase, and if it is less than 2w%, it becomes a rhombohedral R-Fe system, so a high coercive force cannot be expected. Also, if it exceeds 28 children%, it is B.
The amount of non-magnetic phase rich in ions increases, and the residual magnetic flux density decreases significantly. However, in order to obtain a high coercive force, B88 atoms or less are preferable, and if it is more than that, fine R2Fe1
It is difficult to obtain the 4B phase, and the coercive force is small.

熱間加工における温度は再結晶温度以上が望ましく、本
発明R−Fe−B系合金においては好ましくは500℃
以上である。
The temperature during hot working is desirably higher than the recrystallization temperature, preferably 500°C in the R-Fe-B alloy of the present invention.
That's all.

そして、熱処理温度は初晶のFeを拡散するために25
0℃以上が好ましく、R2FezB 相が]100°C
以上では急激に粒成長して保磁力を失うのでそれ以下の
温度が好ましい。
The heat treatment temperature was set at 25°C to diffuse the primary Fe.
The temperature is preferably 0°C or higher, and the R2FezB phase is] 100°C
If the temperature is higher than that, the grains will grow rapidly and the coercive force will be lost, so a temperature lower than that is preferable.

そしてその熱処理時間は、初晶のFeの拡散及び粒界相
の清浄化により大きな保磁力を得るために4時間以上が
必要であり、100時間時間表で伸ばしても長すぎるこ
とによる劣化は無視できる。
The heat treatment time is required to be at least 4 hours in order to obtain a large coercive force through the diffusion of primary Fe and the cleaning of the grain boundary phase, and even if it is extended to 100 hours, the deterioration due to being too long is ignored. can.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] [実施例1] アルゴン雰囲気中で誘導加熱炉を用いて、Pt+sNd
2Fe7gB5.sCu+、sなる組成の合金を溶解し
、次いで鋳造した。この時、希土類、鉄及び銅の原料と
しては99.9%の純度のものを用い、ボロンはフェロ
ボロンを用いた。
[Example] [Example 1] Using an induction heating furnace in an argon atmosphere, Pt+sNd
2Fe7gB5. An alloy having the composition sCu+, s was melted and then cast. At this time, rare earth, iron, and copper raw materials with a purity of 99.9% were used, and boron was ferroboron.

次ぎに、この鋳造インゴットから円柱状サンプルを切り
出しその周囲に鉄製リングをはめ込んで、アルゴン雰囲
気中、 950℃において、加工度80%までホットプ
レスした。この時のプレス圧力は0.2〜0.9ton
/am2であり、歪速度は10− ’ 〜10− ’ 
/seeであった。
Next, a cylindrical sample was cut out from this cast ingot, an iron ring was fitted around it, and the sample was hot pressed at 950°C in an argon atmosphere to a working degree of 80%. The press pressure at this time is 0.2 to 0.9 tons
/am2, and the strain rate is 10-' to 10-'
/see.

この熱間加工時においては、合金の押される方向に平行
になるように結晶の磁化容易軸が配向して磁気異方性が
形成された。
During this hot working, the axis of easy magnetization of the crystal was oriented parallel to the direction in which the alloy was pressed, creating magnetic anisotropy.

この後、1000°Cにおいて 3時間の熱処理を施し
、次ぎに500℃において1時間の熱処理を施された後
、切断、研磨されて磁気特性が測定された。
Thereafter, it was heat treated at 1000°C for 3 hours, then at 500°C for 1 hour, cut and polished, and its magnetic properties were measured.

この磁石の磁気特性を、比較例として熱処理が無い場合
における値と共に第1表に示す。
The magnetic properties of this magnet are shown in Table 1 along with the values in the case without heat treatment as a comparative example.

なお、磁気特性はすべて40kOeでパルス着磁後B−
Hトレーサーを用いて測定した。
All magnetic properties are B- after pulse magnetization at 40 kOe.
It was measured using an H tracer.

第1表に示すごとく、本発明磁石は、熱処理が無い場合
に比して、保磁力と最大エネルギー積が向上しているこ
とは明かである。
As shown in Table 1, it is clear that the magnet of the present invention has improved coercive force and maximum energy product compared to the case without heat treatment.

第  1  表 [実施例2] Pr+sTb+、5FeseCo+aBa、sCu+、
+なる組成の合金(サン7°ル2a)とPr+@Ndy
Fevs、5BsCu+、eGaa、sなる組成の合金
(サン7′ル2b)とCe+ 、aNdx、5DyzF
ers、sBs、3Cu1.aAls、tなる組成の合
金(プンブル2c)を実施例1と同様に、溶解・鋳造し
鋳造インゴットを得た。
Table 1 [Example 2] Pr+sTb+, 5FeseCo+aBa, sCu+,
Alloy with a composition of + (sample 7° 2a) and Pr+@Ndy
Alloy with composition Fevs, 5BsCu+, eGaa, s (sample 7'le 2b) and Ce+, aNdx, 5DyzF
ers, sBs, 3Cu1. An alloy having the composition aAls, t (Pumbul 2c) was melted and cast in the same manner as in Example 1 to obtain a cast ingot.

次ぎに、これらの鋳造インゴットを鉄製のカプセルに入
れ、密封した。これに9756Cで加工度15%の熱間
圧延を空気中で4回、つぎに加工度20%の熱間圧延を
空気中で3回行い、最終的に加工度が73%になるよう
にした。
These cast ingots were then placed in iron capsules and sealed. This was hot-rolled at 9756C with a working degree of 15% in the air four times, and then hot-rolled with a working degree of 20% in the air three times to reach a final working degree of 73%. .

この後、これらの圧延インゴットに対して次のような条
件で熱処理を施した。
Thereafter, these rolled ingots were heat treated under the following conditions.

条件1:950°Cで1時間の熱処理後、熱処理炉から
取り出し空冷。
Condition 1: After heat treatment at 950°C for 1 hour, it was taken out from the heat treatment furnace and cooled in air.

条件2: 950’Cで2時間の熱処理後、熱処理炉か
ら取り出し空冷。
Condition 2: After heat treatment at 950'C for 2 hours, it was taken out from the heat treatment furnace and cooled in air.

条件3: 950℃で2時間の熱処理後、熱処理炉から
取り出し空冷し、次に550°Cで2時間の熱処理後、
熱処理炉から取り出し空冷。
Condition 3: After heat treatment at 950°C for 2 hours, take out from the heat treatment furnace and air cool, then heat treat at 550°C for 2 hours,
Remove from heat treatment furnace and cool in air.

条件4: 950’Cで4時間の熱処理後、熱処理炉か
ら取り出し空冷。
Condition 4: After heat treatment at 950'C for 4 hours, it was taken out from the heat treatment furnace and cooled in air.

条件5: 950℃で2時間の熱処理後、300°Cま
で2時間で直線的に温度が下がるように制御冷却して熱
処理炉から取り出し空冷。
Condition 5: After heat treatment at 950°C for 2 hours, controlled cooling was performed so that the temperature decreased linearly to 300°C over 2 hours, and the product was taken out of the heat treatment furnace and cooled in air.

条件6: 950°Cで4時間の熱処理後、熱処理炉か
ら取り出し空冷し、次に550°Cで4時間の熱処理後
、熱処理炉から取り出し空冷。
Condition 6: After heat treatment at 950°C for 4 hours, it was taken out from the heat treatment furnace and cooled in air, and then after heat treated at 550°C for 4 hours, it was taken out from the heat treatment furnace and cooled in air.

この6種類の熱処理後の各サンプルの保磁力の値を第2
表に示す。
The coercive force value of each sample after these six types of heat treatment was
Shown in the table.

第2表 熱処理が保磁力の向上に有効であることがわかる。Table 2 It can be seen that heat treatment is effective in improving coercive force.

以上の実施例から、R(ただしRはYを含む希土類元素
のうち少なくとも1種)、Fe、Bを原料基本成分とす
る永久磁石は、 500°C以上の熱間加工により異方
性化され、 250〜1100℃における4時間以上の
熱処理により高保磁力を示し、最高の(BH)maxは
30MGOeを越えることは明らかである。
From the above examples, it can be seen that a permanent magnet whose basic raw materials are R (where R is at least one rare earth element including Y), Fe, and B can be made anisotropic by hot working at 500°C or higher. , It is clear that a heat treatment at 250 to 1100°C for 4 hours or more shows a high coercive force, and the highest (BH)max exceeds 30 MGOe.

[発明の効果コ 以上のごとく本発明の永久磁石の製造方法は、(1)c
軸配向率を高めることができ、残留磁束密度Brを著し
く高めることができ、結晶粒を微細化することにより保
磁力iHcを高めることができ、最大エネルギー積(B
[()maxを格段に向上させることが出来た。
[Effects of the Invention As described above, the method for manufacturing a permanent magnet of the present invention includes (1) c.
The axial orientation rate can be increased, the residual magnetic flux density Br can be significantly increased, the coercive force iHc can be increased by making the crystal grains finer, and the maximum energy product (B
[()max could be significantly improved.

(2)製造プロセスが簡単なのでコストが安い。(2) The cost is low because the manufacturing process is simple.

(3)従来の焼結法と比較して、加工工数及び生産投資
額を著しく低減させることが出来る。
(3) Compared to conventional sintering methods, processing man-hours and production investment can be significantly reduced.

(4)従来のメルトスピニング法による磁石の製造方法
と比較して、高性能でしかも低コストの磁石を作ること
が出来る。
(4) Compared to the conventional method of producing magnets using melt spinning, it is possible to produce magnets with high performance and at low cost.

(5)従来の熱間加工磁石と比較して、磁気特性を向上
させることが出来る。
(5) Magnetic properties can be improved compared to conventional hot-processed magnets.

以上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)R(ただしRはYを含む希土類元素のうち少なく
とも1種)、Fe、Bを原料基本成分とし、該基本成分
とする合金を溶解・鋳造し、次いで鋳造インゴットを5
00℃以上の温度において熱間加工し次に250〜11
00℃の温度において4時間以上熱処理する事を特徴と
する永久磁石の製造方法。
(1) R (where R is at least one rare earth element including Y), Fe, and B are used as the basic raw material components, and the alloy containing the basic components is melted and cast, and then the cast ingot is
Hot worked at a temperature of 00℃ or higher and then 250~11
A method for producing a permanent magnet, characterized by heat treatment at a temperature of 00°C for 4 hours or more.
JP2127414A 1990-05-17 1990-05-17 Method of manufacturing permanent magnet Pending JPH0422104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127414A JPH0422104A (en) 1990-05-17 1990-05-17 Method of manufacturing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127414A JPH0422104A (en) 1990-05-17 1990-05-17 Method of manufacturing permanent magnet

Publications (1)

Publication Number Publication Date
JPH0422104A true JPH0422104A (en) 1992-01-27

Family

ID=14959377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127414A Pending JPH0422104A (en) 1990-05-17 1990-05-17 Method of manufacturing permanent magnet

Country Status (1)

Country Link
JP (1) JPH0422104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586351U (en) * 1992-04-23 1993-11-22 技術研究組合医療福祉機器研究所 Excretion device insertion tool
CN106128671A (en) * 2016-06-16 2016-11-16 宁波雄海稀土速凝技术有限公司 High-performance Ne-Fe-B permanent-magnet material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586351U (en) * 1992-04-23 1993-11-22 技術研究組合医療福祉機器研究所 Excretion device insertion tool
CN106128671A (en) * 2016-06-16 2016-11-16 宁波雄海稀土速凝技术有限公司 High-performance Ne-Fe-B permanent-magnet material and preparation method thereof
CN106128671B (en) * 2016-06-16 2018-06-22 宁波雄海稀土速凝技术有限公司 High-performance Ne-Fe-B permanent-magnet material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS62198103A (en) Rare earth-iron permanent magnet
IE891581A1 (en) Permanent magnet and a manufacturing method thereof
JPH04143221A (en) Production of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH04187722A (en) Production of permanent magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH0422103A (en) Method of manufacturing permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2992808B2 (en) permanent magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH04324916A (en) Manufacture of rare earth/iron permanent magnet
JPH04324907A (en) Manufacture of permanent magnet
JPH0418707A (en) Manufacture of permanent magnet
JPH04324906A (en) Manufacture of permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH04324904A (en) Manufacture of permanent magnet
JPH04136131A (en) Manufacture of permanent magnet
JPH0418709A (en) Manufacture of permanent magnet
JPH0418708A (en) Manufacture of permanent magnet
JPH04134805A (en) Manufacture of permanent magnet
JPH023203A (en) Permanent magnet and its manufacture