JPH04187722A - Production of permanent magnet - Google Patents

Production of permanent magnet

Info

Publication number
JPH04187722A
JPH04187722A JP2315397A JP31539790A JPH04187722A JP H04187722 A JPH04187722 A JP H04187722A JP 2315397 A JP2315397 A JP 2315397A JP 31539790 A JP31539790 A JP 31539790A JP H04187722 A JPH04187722 A JP H04187722A
Authority
JP
Japan
Prior art keywords
permanent magnet
bending
temperature
rare earth
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2315397A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Koji Akioka
宏治 秋岡
Fumio Takagi
富美男 高城
Sei Arai
聖 新井
Seiji Ihara
清二 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2315397A priority Critical patent/JPH04187722A/en
Publication of JPH04187722A publication Critical patent/JPH04187722A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a high-efficiency permanent magnet of arbitrary shape with superior productivity by subjecting an ingot of an alloy containing rare earth elements, Fe, and B as essential components to hot working and then to bending under the prescribed conditions. CONSTITUTION:An ingot prepared by melting and casting an alloy containing one or more kinds among rare earth elements such as Pr and Nd, and Fe and B as essential components by proper means is subjected to hot working, such as rolling, at 500-1100 deg.C in the air. Subsequently, a prism-shaped permanent magnet is cut off from the resulting rolled ingot and subjected to bending at 600-1050 deg.C and at <=0.5/s rate of strain. Further it is desirable to perform heat treatment at 250-1100 deg.C after bending.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、機械的配向による磁気異方性を有する永久磁
石の製造方法、特にR(ただしRはYを含む希土類元素
のうち少なくとも1種)、Fe。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a permanent magnet having magnetic anisotropy due to mechanical orientation, and in particular a method for manufacturing a permanent magnet having magnetic anisotropy due to mechanical orientation. ), Fe.

Bを原料基本成分とする永久磁石の製造方法に関するも
のである。
This invention relates to a method for producing a permanent magnet using B as a basic raw material component.

[従来の技術] 、永久磁石は、一般家庭の各種電気製品から大型コンピ
ューターの周辺端末機器まで、幅広い分野で使用されて
いる重要な電気・電子材料の一つであり、最近の電気製
品の小型化、高効率化の要求にともない、永久磁石も益
々高性能化が求められている。
[Prior art] Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers. With the demand for increased efficiency and increased efficiency, permanent magnets are also required to have increasingly higher performance.

永久磁石は、外部から電気的エネルギーを供給しないで
磁界を発生するための材料であり、保磁力が大きく、ま
た残留磁束密度も高いものが適している。
A permanent magnet is a material that generates a magnetic field without supplying electrical energy from the outside, and one that has a large coercive force and a high residual magnetic flux density is suitable.

現在使用されている永久磁石のうち代表的なものはアル
ニコ系鋳造磁石、フェライト磁石及び希土類−遷移金属
系磁石であり、特に希土類−遷移金属系磁石であるR−
Co系永久磁石やR−Fe−B系永久磁石は、極めて高
い保磁力とエネルギー積を持つ永久磁石として、従来か
ら多くの研究開発がなされている。
Typical permanent magnets currently in use are alnico cast magnets, ferrite magnets, and rare earth-transition metal magnets, especially rare earth-transition metal magnets.
Co-based permanent magnets and R-Fe-B-based permanent magnets have been extensively researched and developed as permanent magnets with extremely high coercive force and energy product.

従来、これらR−Fe−B系の高性能異方性永久磁石の
製造方法には、次のようなものがある。
Conventionally, there are the following methods for manufacturing these R-Fe-B-based high-performance anisotropic permanent magnets.

(1)まず、特開昭59−46008号公報や 9.S
agawa。
(1) First, Japanese Patent Application Laid-open No. 59-46008 and 9. S
Agawa.

S、Fujimura、N、Togawa、H,Yam
amot、o and Y、Matsu−ura;J、
Appl、Phys、Vol、55(6)、15 Ma
rch 1984.p2083等には、原子百分比で8
〜30%のR(ただしRはYを含む希土類元素の少なく
とも1種)、2〜28%のB及び残部Feかうなる磁気
異方性焼結体であることを特徴とする永久磁石が粉末冶
金法に基づく焼結によって製造されることが開示されて
いる。
S, Fujimura, N, Togawa, H, Yam.
amot, o and Y, Matsu-ura; J,
Appl, Phys, Vol. 55(6), 15 Ma.
rch 1984. p2083 etc. has an atomic percentage of 8
A permanent magnet characterized by being a magnetically anisotropic sintered body consisting of ~30% R (wherein R is at least one rare earth element including Y), 2~28% B, and the balance Fe is a powder metallurgy-based permanent magnet. It is disclosed that it is manufactured by method-based sintering.

この焼結法では、溶解・鋳造により合金インゴットを作
製し、粉砕して適当な粒度(数μm)の磁性粉を得る。
In this sintering method, an alloy ingot is produced by melting and casting, and then pulverized to obtain magnetic powder with an appropriate particle size (several μm).

磁性粉は成形助剤のバインダーと混練され、磁場中でプ
レス成形されて成形体が出来上がる。成形体はアルゴン
中で1100℃前後の温度1時間焼結され、その後室温
まで急冷される。
The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature of around 1100° C. for 1 hour and then rapidly cooled to room temperature.

焼結後、600℃前後の温度で熱処理する事により永久
磁石はさらに保磁力を向上させる。
After sintering, the permanent magnet is heat-treated at a temperature of around 600°C to further improve its coercive force.

また、この焼結磁石の熱処理に関しては特開昭61−2
17540号公報、特開昭62−165305号公報等
に、多段熱処理の効果が開示されている。
Regarding the heat treatment of this sintered magnet, Japanese Patent Application Laid-Open No. 61-2
The effects of multi-stage heat treatment are disclosed in Japanese Patent Laid-Open No. 17540, Japanese Patent Application Laid-open No. 165305/1983, and the like.

(2)特開昭59−211549号公報やR,W、Le
e;  Appl。
(2) JP-A-59-211549, R, W, Le
e; Appl.

Phys、Lett、Vol、46(8)、15 Ap
ril  1985.p790には、非常に微細な結晶
性の磁性相を持つ、メルトスピニングされた合金リボン
の微細片が樹脂によって接着されたR−Fe−BM石が
開示されている。
Phys, Lett, Vol, 46(8), 15 Ap
ril 1985. P790 discloses an R-Fe-BM stone in which fine pieces of melt-spun alloy ribbons with a very fine crystalline magnetic phase are bonded by resin.

この永久磁石は、アモルファス合金を製造するに用いる
急冷薄帯製造装置で、厚さ30μm程度の急冷薄片を作
り、その薄片を樹脂と混練してプレス成形することによ
り製造される。
This permanent magnet is manufactured by making a quenched thin piece with a thickness of about 30 μm using a quenched ribbon manufacturing apparatus used for manufacturing an amorphous alloy, and then kneading the thin piece with a resin and press-molding it.

(3)特開昭60−100402号公報やR,W、Le
e; Appl。
(3) JP-A-60-100402, R, W, Le
e; Appl.

Phys、Lett、Vol、46(8)、15 Ap
ril  1985.p790には、前記(2)の方法
で使用した急冷薄片を、真空中あるいは不活性雰囲気中
で2段階ホットプレス法と呼ばれる方法で緻密で異方性
を有するR−Fe−BE石を得ることが開示されている
Phys, Lett, Vol, 46(8), 15 Ap
ril 1985. For p790, the rapidly cooled flakes used in the method (2) above are obtained by a method called a two-step hot pressing method in a vacuum or an inert atmosphere to obtain a dense and anisotropic R-Fe-BE stone. is disclosed.

(4)特開昭62−276803号公報には、R(ただ
しRはYを含む希土類元素のうち少なくとも1種)8〜
30原子%、B2〜28w子%、Co50原子%以下、
A115原子%以下、及び残部が鉄及びその他の製造上
不可避な不純物からなる合金を溶解・鋳造後、該鋳造イ
ンゴットを500℃以上の温度で熱間加工することによ
り結晶粒を微細化しまたその結晶軸を特定の方向に配向
せしめて、該鋳造合金を磁気的に異方性化することを特
徴とする希土類−鉄系永久磁石が開示されている。また
この磁石は曲げ加工が施されて、その形状が自由になる
ことが特願平1−72733に開示されている。
(4) Japanese Patent Application Laid-open No. 62-276803 states that R (where R is at least one rare earth element including Y) 8 to
30 atom%, B2 to 28w%, Co50 atom% or less,
After melting and casting an alloy consisting of 115 at. A rare earth-iron permanent magnet is disclosed in which the cast alloy is magnetically anisotropic by orienting its axis in a specific direction. Further, it is disclosed in Japanese Patent Application No. 1-72733 that this magnet can be bent to have a free shape.

[発明が解法しようとする課題] 紙上の(1)〜(4)の従来のR−Fe−B系永久磁石
の製造方法は、次のごとき欠点を有している。
[Problems to be Solved by the Invention] The conventional methods for manufacturing R-Fe-B permanent magnets described in (1) to (4) on paper have the following drawbacks.

(1)の永久磁石の製造方法は、合金を粉末にすること
を必須とするものであるが、R−Fe−B系合金はたい
へん酸素に大して活性を有するので、粉末化すると余計
酸化が激しくなり、焼結体中の酸素漬度はどうしても高
くなってしまう。
The manufacturing method for permanent magnets in (1) requires that the alloy be made into powder, but R-Fe-B alloys are highly active towards oxygen, so if they are made into powder, they will oxidize even more violently. Therefore, the degree of oxygen immersion in the sintered body inevitably becomes high.

また粉末を成形するときに、例えばステアリン酸亜鉛の
様な成形助剤を使用しなければならず、これは焼結工程
で前もって取り除かれるのであるが、成形助剤中の散開
は、磁石体の中に炭素の形で残ってしまい、この炭素は
著しくR−Fe−B磁石の磁気性能を低下させ好ましく
ない。
Also, when compacting the powder, a compacting aid, such as zinc stearate, must be used, which is removed beforehand during the sintering process, and the dispersion in the compacting aid is limited to the size of the magnet. This carbon remains in the form of carbon, which is undesirable because it significantly reduces the magnetic performance of the R-Fe-B magnet.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われ、これは大変脆く、ハンドリングが難しい。
The molded body after press molding with the addition of a molding aid is called a green body, which is extremely brittle and difficult to handle.

従って焼結炉にきれいに並べて入れるのには、相当の手
間が掛かることも大きな欠点である。
Therefore, a major drawback is that it takes a considerable amount of effort to arrange them neatly in the sintering furnace.

これらの欠点があるので、−船釣に言ってR−Fe−B
系の焼結磁石の製造には、高価な設備が必要になるばか
りでなく、その製造方法は生産効率が悪く、結局磁石の
製造コストが高くなってしまう。従って、比較的原料費
の安いR−Fe−B系磁石の長所を活かすことが出来な
い。
Because of these drawbacks, -R-Fe-B in terms of boat fishing.
Not only does the production of sintered magnets of this type require expensive equipment, but the production method has poor production efficiency, resulting in an increase in the production cost of the magnets. Therefore, it is not possible to take advantage of the advantages of R-Fe-B magnets, which have relatively low raw material costs.

次に (2)並びに (3)の永久磁石の製造方法は、
真空メルトスピニング装置を使用するが、この装置は、
現在では大変生産性が悪くしかも高価である。
Next, the method for manufacturing permanent magnets in (2) and (3) is as follows:
A vacuum melt spinning device is used, which
Currently, it is very inefficient and expensive.

(2)の永久磁石は、原理的に等方性であるので低エネ
ルギー積であり、ヒステリシスループの角形性も悪く、
温度特性に対しても、使用する面においても不利である
The permanent magnet (2) is isotropic in principle, so it has a low energy product, and the squareness of the hysteresis loop is also poor.
It is disadvantageous both in terms of temperature characteristics and in terms of use.

(3)の永久磁石を製造する方法は、ホットプレスを二
段階に使うというユニークな方法であるが、実際に量産
を考えると非効率であることは否めないであろう。
The method (3) for manufacturing permanent magnets is a unique method of using hot press in two stages, but it cannot be denied that it is inefficient when considering actual mass production.

更にこの方法では、高温例えば800℃以上では結晶粒
の粗大化が著しく、それによって保磁力iHcが極端に
低下し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force iHc, making it impossible to produce a practical permanent magnet.

(4)の永久磁石を製造する方法は、粉末工程を含まず
、ホットプレスも一段階でよいために、最も製造工程が
簡略化されるが、形状の自由度が小さくプレート状以外
の形状を得ることは難しいという問題があった。これは
、特願平1−72733の製造方法によって解決された
が、この方法ではその加工に長大な時間が掛かり生産性
が悪いという欠点があった。
Method (4) for manufacturing permanent magnets does not involve a powder process and only requires one step of hot pressing, which simplifies the manufacturing process the most. The problem was that it was difficult to obtain. This problem was solved by the manufacturing method disclosed in Japanese Patent Application No. 1-72733, but this method had the disadvantage that the processing took a long time and the productivity was poor.

本発明は、以上の従来技術の欠点特に(4)の永久磁石
の形状の自由度の欠点を解決するものであり、その目的
とするところは、任意の形状の高性能かつ低コストな永
久磁石が生産性良く得られる製造方法を提供することに
ある。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, particularly the drawback (4) regarding the degree of freedom in the shape of permanent magnets, and its purpose is to create high-performance, low-cost permanent magnets of any shape. The object of the present invention is to provide a manufacturing method that can be obtained with high productivity.

[課題を解決するための手段] 本発明の永久磁石の製造方法は、R(ただしRはYを含
む希土類元素のうち少なくとも1種)。
[Means for Solving the Problems] The method for manufacturing a permanent magnet of the present invention uses R (where R is at least one rare earth element including Y).

Fe、Bを原料基本成分とし、該基本成分とする合金を
溶解・鋳造し、次いで鋳造インゴットを500〜110
0℃の温度において熱間加工し次に600〜1050℃
の温度において歪速度を0.5/s以下で曲げ加工をほ
どこす事を特徴とする6 また更なる高保磁力化、高性能化のためには、曲げ加工
後250〜1100℃において熱処理する事を特徴とす
る。
Fe and B are used as the basic raw material components, and the alloy containing the basic components is melted and cast, and then the cast ingot is
Hot working at a temperature of 0℃ and then 600~1050℃
It is characterized by bending at a strain rate of 0.5/s or less at a temperature of It is characterized by

以下、本発明における永久磁石の好ましい組成範囲につ
いて説明する。
The preferred composition range of the permanent magnet in the present invention will be explained below.

希土類としては、Y、  La、  Ce、  Pr、
  Nd。
Rare earths include Y, La, Ce, Pr,
Nd.

Sm、  Eu、  Gd、  Tb、  Dy、  
Ho、  Er、  Tm、Yb、Luが候補として挙
げられ、これらのうちの1種あるいは2種以上を組み合
わせて用いる。最も高い磁気性能はPrで得られるので
、実用的には Pr、Pr−Nd合金、Ce−Pr−N
d合金等が用いられる。少回の重希土元素、例えばDy
、’rb等は保磁力の向上に有効である。
Sm, Eu, Gd, Tb, Dy,
Candidates include Ho, Er, Tm, Yb, and Lu, and one or more of these may be used in combination. The highest magnetic performance is obtained with Pr, so Pr, Pr-Nd alloy, Ce-Pr-N
d alloy etc. are used. A small number of heavy rare earth elements, such as Dy
, 'rb, etc. are effective for improving coercive force.

R−Fe−B系磁石の主相はR2Fe+aB  である
。従ってRが8原子%未満では、もはや上記化合物を形
成せず高磁気特性は得られない。一方Rが30原子%を
越えると非磁性のRリッチ相が多くなり磁気特性は著し
く低下する。よってRの範囲は8〜30原子%が適当で
ある。しかし高い残留磁束密度のためには、好ましくは
R8〜25原子%が適当である。
The main phase of the R-Fe-B magnet is R2Fe+aB. Therefore, if R is less than 8 at %, the above-mentioned compound is no longer formed and high magnetic properties cannot be obtained. On the other hand, if R exceeds 30 atomic %, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the appropriate range of R is 8 to 30 atomic %. However, for high residual magnetic flux density, preferably R8 to 25 at % is suitable.

Bは、R2Fe+4B 相を形成するための必須元素で
あり、2原子%未満では菱面体のR−Fe系になるため
に高保磁力は望めない。また28原子%を越えるとBに
富む非磁性相が多くなり、残留磁束密度は著しく低下し
てくる。しかじ高保磁力を得るためには、好ましくはB
88原子以下がよく、それ以上では微細なR2Fe+a
B 相を得ることが困難で、保磁力は小さい。
B is an essential element for forming the R2Fe+4B phase, and if it is less than 2 atomic %, it becomes a rhombohedral R-Fe system, so a high coercive force cannot be expected. Moreover, when it exceeds 28 at %, the amount of B-rich nonmagnetic phase increases, and the residual magnetic flux density decreases significantly. However, in order to obtain a high coercive force, preferably B
It is better to have 88 atoms or less, and if it is more than 88 atoms, fine R2Fe+a
It is difficult to obtain phase B, and the coercive force is small.

Coは本系磁石のキュリー点を坩加させるのに有効な元
素であるが、保磁力を小さくするので5O原子%以下が
よい。
Co is an effective element for increasing the Curie point of the present magnet, but since it reduces the coercive force, it is preferably 50 atomic % or less.

Cu、Ag、Au、Pd、Ga等のRリッチ相とともに
存在し、その相の融点を低下させる元素は、保磁力の増
大効果を有する。しかし、これらの元素は非磁性元素で
あるため、その量を増すと残留磁束密度が減少するので
、6原子%以下が好ましい。
Elements such as Cu, Ag, Au, Pd, and Ga that exist together with the R-rich phase and lower the melting point of the phase have the effect of increasing coercive force. However, since these elements are non-magnetic elements, increasing the amount will reduce the residual magnetic flux density, so it is preferably 6 at % or less.

熱間加工における温度は再結晶温度以上が望ましく、本
発明R−Fe−B系合金においては好ましくは500℃
以上である。
The temperature during hot working is desirably higher than the recrystallization temperature, preferably 500°C in the R-Fe-B alloy of the present invention.
That's all.

そして、曲げ加工に於ける温度は600℃以上が生産性
の高い加ニスピードを実現させるために必要である。こ
れ未満の温度で、高加工速度(高歪速度)の加工を行う
と加工中に割れが発生するためである。そしてその加工
温度が1050℃を越えると結晶粒の重大化による保磁
力の低下をおこす可能性が高いのでこれ以下が好ましい
The temperature during the bending process is required to be 600° C. or higher in order to achieve high productivity and cutting speed. This is because if processing is performed at a high processing speed (high strain rate) at a temperature lower than this, cracks will occur during processing. If the processing temperature exceeds 1050° C., there is a high possibility that the coercive force will decrease due to the increase in the size of crystal grains, so it is preferable that the processing temperature is lower than this temperature.

また、歪速度が0.5/s以上となると600〜105
0℃の温度域でも割れが発生するようになるのでこの速
度以下が好ましい。
In addition, when the strain rate is 0.5/s or more, 600 to 105
Since cracks begin to occur even in a temperature range of 0°C, it is preferable that the speed is below this temperature range.

そして、熱処理温度は初品のFeを拡散するために25
0℃以上が好ましく、R2Fe14B  相が1100
℃以上では急激に粒成長して保磁力を失うのでそれ以下
の温度が好ましい。
The heat treatment temperature was set at 25°C to diffuse the Fe in the initial product.
The temperature is preferably 0°C or higher, and the R2Fe14B phase is 1100°C.
If the temperature is higher than 0.degree. C., grains will grow rapidly and the coercive force will be lost, so a temperature lower than that is preferable.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例コ [実施例1コ まずアルゴン雰囲気中で誘導加熱炉を用いて、P r 
17F e 7a、sB sCu 15なる組成の合金
を溶解し、次いで鋳造した。この時、希土類、鉄及び銅
の原料としては99.9%の純度のものを用い、ボロン
はフェロボロンを用いた。
[Example 1] First, using an induction heating furnace in an argon atmosphere, P r
An alloy having a composition of 17F e 7a, sB sCu 15 was melted and then cast. At this time, rare earth, iron, and copper raw materials with a purity of 99.9% were used, and boron was ferroboron.

次ぎに、この鋳造インゴットを鉄製のカプセルに入れ、
脱気し、密封した。これに950℃で加工度30%の熱
間圧延を空気中で4回行い、最終的に加工度が76%に
なるようにした。
Next, this cast ingot is placed in an iron capsule,
Degassed and sealed. This was hot-rolled in air at 950° C. and a working degree of 30% four times to give a final working degree of 76%.

こうして得られた圧延インゴットから 3X 3X 2
5mmの角柱磁石を切り出し800℃において、クロス
ヘツドスピードを8.3X 10−’mm/s 〜8.
3mm/sまで変化させて、3点曲げ試験をAr雰囲気
中で行った。
From the rolled ingot thus obtained: 3X 3X 2
Cut out a 5 mm prismatic magnet and set the crosshead speed to 8.3 x 10-' mm/s to 8.0 mm at 800°C.
A three-point bending test was conducted in an Ar atmosphere at a speed varying up to 3 mm/s.

ここで使用した曲げ試験の支点間距顛は16mmであり
、最大たわみ回は4mmとした。
The distance between the supports in the bending test used here was 16 mm, and the maximum deflection was 4 mm.

第1表に加工の成否と950℃X4時間及び500℃X
1時間の熱処理後の磁気特性を示す。この時、クロスヘ
ツドスピードをその試料表面の曲率からその表面におけ
る引っ張りの歪速度に換算して示しである。
Table 1 shows the success or failure of processing, 950℃×4 hours and 500℃×
The magnetic properties after heat treatment for 1 hour are shown. At this time, the crosshead speed is converted from the curvature of the sample surface to the tensile strain rate on that surface.

また第2表に同じ形状のサンプルを500〜1100℃
においてクロスヘツドスピードを8.3x 10−’m
m/Sとして、すなわち歪速度を4X 10−2/Sと
して3点曲げ試験をAr雰囲気中で行ったときの加工の
成否と1000℃×3時間及び500℃×1時間の熱処
理後の磁気特性を示す。
Table 2 also shows samples of the same shape at 500 to 1100℃.
crosshead speed at 8.3x 10-'m
m/S, that is, the strain rate was set to 4X 10-2/S, and the success or failure of processing when a three-point bending test was conducted in an Ar atmosphere, and the magnetic properties after heat treatment at 1000°C x 3 hours and 500°C x 1 hour. shows.

第  1  表 ○:加工良好  ×:破壊 第  2  表 O:加工良好  ×:破壊 この結果から800〜1050℃の温度域において磁気
特性を損ねることなく、そして4X 10−1/Sとい
う生産性の高い高加工速度で曲げ加工できることは明か
である。
Table 1 ○: Good machining ×: Destruction Table 2 O: Good machining ×: Destruction From these results, the magnetic properties are not impaired in the temperature range of 800 to 1050°C, and the productivity is high at 4X 10-1/S. It is clear that bending can be performed at high processing speeds.

[実施例2] 第3表に示す組成の合金を実施例1と同様に、溶解・鋳
造した。また用いた原料も同様の純度のものを用いた。
[Example 2] An alloy having the composition shown in Table 3 was melted and cast in the same manner as in Example 1. The raw materials used were also of similar purity.

次に、これらの鋳造インゴットをアルゴン雰囲気中、9
50℃において、加工度75%までポットプレスした。
Next, these cast ingots were heated in an argon atmosphere for 9
Pot pressing was performed at 50° C. to a working degree of 75%.

そして、それぞれ第3表に示すところのT2において歪
速度を8X 10−’/ sとして曲げ加工を行ない、
R=40mmのかわら状磁石とした。
Then, bending was performed at T2 shown in Table 3 at a strain rate of 8X 10-'/s.
A straw magnet with R=40 mm was used.

第3表に示すところの各合金組成のがわら状磁石に対し
て、熱処理(1000’Cx 2時間及び600″Cx
1時間)の後の磁気特性を第4表に示す。
The straw magnets of each alloy composition shown in Table 3 were subjected to heat treatment (1000'Cx 2 hours and 600'Cx
The magnetic properties after 1 hour) are shown in Table 4.

第3表 第  4  表 以上の実施例から、R(ただしRはYを含む希土類元素
のうち少なくとも1種)+  Fe、Bを原料基本成分
とする永久磁石は、 500〜1100℃の熱間加工に
より異方性化され、 600〜1050℃において歪速
度が0.5/s以下の曲げ加工により形状を自由に整え
250〜1100’cの熱処理により高保磁力を示し、
最高の(B[()maxは30MGOeを越えることは
明らかである。
From the examples above in Table 3 and Table 4, it is clear that permanent magnets whose basic raw materials are R (where R is at least one rare earth element including Y) + Fe and B are hot-processed at 500 to 1100°C. It is made anisotropic by bending at a strain rate of 0.5/s or less at 600 to 1050 °C, and exhibits high coercive force by heat treatment at 250 to 1100 °C.
It is clear that the highest (B[()max) exceeds 30 MGOe.

[発明の効果] 以上のごとく本発明の永久磁石の製造方法は、次のごと
き効果を持つ。
[Effects of the Invention] As described above, the method for manufacturing a permanent magnet of the present invention has the following effects.

(1)c軸配向率を高めることができ、残留磁束密度B
rを著しく高めることができ、結晶粒を微細化すること
により保磁力iHcを高めることができ、最大エネルギ
ー積(Bt()maxを格段に向上させることが出来た
(1) The c-axis orientation rate can be increased, and the residual magnetic flux density B
By making the crystal grains finer, the coercive force iHc could be increased, and the maximum energy product (Bt()max) could be significantly improved.

(2)製造プロセスが簡単なのでコストが安い。(2) The cost is low because the manufacturing process is simple.

(3)磁石中の02漂度が低い。(3) 02 drift in the magnet is low.

(4)従来の焼結法と比較して、加工工数及び生産投資
額を著しく低減させることが出来る。
(4) Compared to conventional sintering methods, processing man-hours and production investment can be significantly reduced.

(5)従来のメルトスピニング法による磁石の製造方法
と比較して、高性能でしかも低コストの磁石を作ること
が出来る。
(5) Compared to the conventional method of producing magnets using melt spinning, it is possible to produce magnets with high performance and at low cost.

(6)従来の熱間加工磁石では困難であった形状の磁石
を生産性良く製造できる。
(6) Magnets with shapes that are difficult to manufacture with conventional hot-processed magnets can be manufactured with high productivity.

以上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴木喜三部  他1名大; 犬that's all Applicant: Seiko Epson Corporation Agent: Patent attorney Kizobe Suzuki and 1 other university; dog

Claims (2)

【特許請求の範囲】[Claims] (1)R(ただしRはYを含む希土類元素のうち少なく
とも1種),Fe,Bを原料基本成分とし、該基本成分
とする合金を溶解・鋳造し、次いで鋳造インゴットを5
00〜1100℃の温度において熱間加工し次に600
〜1050℃の温度において歪速度を0.5/s以下と
して曲げ加工をほどこす事を特徴とする永久磁石の製造
方法。
(1) R (where R is at least one rare earth element including Y), Fe, and B are used as the basic raw material components, and the alloy containing the basic components is melted and cast, and then the cast ingot is
Hot worked at a temperature of 00 to 1100℃ and then 600℃
A method for manufacturing a permanent magnet, which comprises bending at a strain rate of 0.5/s or less at a temperature of ~1050°C.
(2)曲げ加工後250〜1100℃において熱処理す
る事を特徴とする請求項1記載の永久磁石の製造方法。
(2) The method for manufacturing a permanent magnet according to claim 1, characterized in that the bending process is followed by heat treatment at 250 to 1100°C.
JP2315397A 1990-11-20 1990-11-20 Production of permanent magnet Pending JPH04187722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2315397A JPH04187722A (en) 1990-11-20 1990-11-20 Production of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2315397A JPH04187722A (en) 1990-11-20 1990-11-20 Production of permanent magnet

Publications (1)

Publication Number Publication Date
JPH04187722A true JPH04187722A (en) 1992-07-06

Family

ID=18064903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2315397A Pending JPH04187722A (en) 1990-11-20 1990-11-20 Production of permanent magnet

Country Status (1)

Country Link
JP (1) JPH04187722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536421A1 (en) * 1991-04-25 1993-04-14 Seiko Epson Corporation Method of producing a rare earth permanent magnet
US8732760B2 (en) 2009-11-11 2014-05-20 Electronics And Telecommunications Research Institute IPTV access control, personalized advertisement, personalized electronic program guide providing method and system using fingerprint scanner equipped set-top box
US8826315B2 (en) 2012-03-05 2014-09-02 Panasonic Corporation Estimation apparatus, estimation method, program, and integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536421A1 (en) * 1991-04-25 1993-04-14 Seiko Epson Corporation Method of producing a rare earth permanent magnet
US5352302A (en) * 1991-04-25 1994-10-04 Seiko Epson Corporation Method of producing a rare-earth permanent magnet
US8732760B2 (en) 2009-11-11 2014-05-20 Electronics And Telecommunications Research Institute IPTV access control, personalized advertisement, personalized electronic program guide providing method and system using fingerprint scanner equipped set-top box
US8826315B2 (en) 2012-03-05 2014-09-02 Panasonic Corporation Estimation apparatus, estimation method, program, and integrated circuit

Similar Documents

Publication Publication Date Title
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
US5536334A (en) Permanent magnet and a manufacturing method thereof
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
JPH04187722A (en) Production of permanent magnet
JPH04143221A (en) Production of permanent magnet
JPH023201A (en) Permanent magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH0422105A (en) Method of manufacturing permanent magnet
JPH0422103A (en) Method of manufacturing permanent magnet
JPH023210A (en) Permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH04134805A (en) Manufacture of permanent magnet
JPH0418708A (en) Manufacture of permanent magnet
JPH04136131A (en) Manufacture of permanent magnet
JPH0418709A (en) Manufacture of permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPH0418707A (en) Manufacture of permanent magnet
JPH04324906A (en) Manufacture of permanent magnet
JPH0766892B2 (en) Permanent magnet manufacturing method
JPH04324904A (en) Manufacture of permanent magnet