JPH07123083B2 - Cast rare earth-method for manufacturing iron-based permanent magnets - Google Patents

Cast rare earth-method for manufacturing iron-based permanent magnets

Info

Publication number
JPH07123083B2
JPH07123083B2 JP61045873A JP4587386A JPH07123083B2 JP H07123083 B2 JPH07123083 B2 JP H07123083B2 JP 61045873 A JP61045873 A JP 61045873A JP 4587386 A JP4587386 A JP 4587386A JP H07123083 B2 JPH07123083 B2 JP H07123083B2
Authority
JP
Japan
Prior art keywords
magnet
cast
rare earth
composition
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61045873A
Other languages
Japanese (ja)
Other versions
JPS62203303A (en
Inventor
宏治 秋岡
達也 下田
理 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61045873A priority Critical patent/JPH07123083B2/en
Publication of JPS62203303A publication Critical patent/JPS62203303A/en
Publication of JPH07123083B2 publication Critical patent/JPH07123083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鋳造希土類−鉄系永久磁石の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing a cast rare earth-iron permanent magnet.

[発明の概要] 本発明は、鋳造インゴットを粉砕・焼結等を行なわず、
鋳造マクロ組織が柱状晶となるように鋳造後、熱処理を
施すだけで磁気的に硬化させることにより、希土類−鉄
系永久磁石を得んとするものである。
[Summary of the Invention] The present invention does not crush and sinter a cast ingot,
A rare earth-iron-based permanent magnet is obtained by magnetically hardening only by heat treatment after casting so that the casting macrostructure becomes columnar crystals.

[従来の技術] 従来、R−Fe−B系の磁石の製造には次の3通りの方法
が報告されている。
[Prior Art] Conventionally, the following three methods have been reported for producing an R-Fe-B magnet.

(1) 粉末治金法に基づく焼結法(参考文献1)。(1) Sintering method based on powder metallurgy (Reference 1).

(2) アモルファス合金を製造するに用いる急冷薄帯
製造装置で、厚さ30μm程度の急冷薄片を作り、その薄
片を樹脂結合法で磁石にする(参考文献2)。
(2) Using a quenching ribbon manufacturing apparatus used for producing an amorphous alloy, a quenching thin piece having a thickness of about 30 μm is formed, and the thin piece is made into a magnet by a resin bonding method (reference document 2).

(3) (2)の方法で使用した同じ薄片を、2段階の
ホットプレス法で機械的に配向処理を行う方法(参考文
献2)。
(3) A method of mechanically orienting the same thin piece used in the method of (2) by a two-step hot pressing method (reference document 2).

参考文献1 M.Sagawa,S.Fujimura,N.Togawa,H.Yamamot
o and Y.Matsuura;J.Appl.Phya.Vol.55(6),15 March
1984,P2083 参考文献2 R.W.Lee;Appl.Phys.Lett.Vol.46(8),15
April 1985,P790 文献に添って上記の従来技術を説明する。まず(1)の
焼結法では、溶解・鋳造により合金インゴットを作製
し、粉砕されて3μmくらいの粒径を有する磁石粉にさ
れる。磁石粉は成形助剤となるバインダーと混練され、
磁場中でプレス成形されて成形体ができあがる。成形体
はアルゴン中で1100℃前後の温度で1時間焼結され、そ
の後室温まで急冷される。焼結後、600℃前後の温度で
後処理すると保磁力はさらに向上する。
Reference 1 M. Sagawa, S. Fujimura, N. Togawa, H. Yamamot
o and Y. Matsuura; J.Appl.Phya.Vol.55 (6), 15 March
1984, P2083 Reference 2 RWLee; Appl.Phys.Lett.Vol.46 (8), 15
April 1985, P790 The above-mentioned prior art will be described along with the literature. First, in the sintering method (1), an alloy ingot is produced by melting and casting, and is crushed into magnet powder having a particle size of about 3 μm. Magnet powder is kneaded with a binder that serves as a molding aid,
It is press-molded in a magnetic field to form a molded body. The compact is sintered in argon at a temperature around 1100 ° C. for 1 hour and then rapidly cooled to room temperature. The coercive force is further improved by post-processing at a temperature around 600 ° C after sintering.

(2)は、まず急冷薄帯製造装置の最適な回転数でR−
Fe−B合金の急冷薄帯を作る。得られた薄帯は厚さ30μ
mのリボン状をしており、直径が1000Å以下の多結晶が
集合している。薄帯は脆くて割れやすく、結晶粒は等方
的に分布しているので磁気的にも等方性である。この薄
帯を適度な粒度にして、樹脂と混練してプレス成形すれ
ば7ton/cm2程度の圧力で、約85体積%の充填が可能とな
る。
(2) First, R- at the optimum rotation speed of the quenching ribbon manufacturing apparatus.
Create a quenched ribbon of Fe-B alloy. The obtained ribbon has a thickness of 30μ
It is in the shape of a ribbon of m, and is a collection of polycrystals with a diameter of 1000Å or less. The ribbon is brittle and easily cracked, and the crystal grains are isotropically distributed, so that it is magnetically isotropic. If this ribbon is made to have an appropriate grain size and kneaded with a resin and press-molded, it is possible to fill about 85 volume% with a pressure of about 7 ton / cm 2 .

(3)の製造方法は、始めにリボン状の急冷薄帯あるい
は薄帯の片を、真空中あるいは不活性雰囲気中で約700
℃で予備加熱したグラファイトあるいは他の耐熱用のプ
レス型に入れる。該リボンが所望の温度に到達したとき
一軸の圧力が加えられる。温度、時間は特定しないが、
充分な塑性が出る条件としてT=725±25℃、圧力はP
〜1.4ton/cm2程度が適している。この段階では磁石はわ
ずかにプレス方向に配向しているとはいえ全体的には等
方性である。次のホットプレスは、大面積を有する型で
行なわれる。最も一般的には700℃で0.7ton/cm2で数秒
間プレスする。すると試料は最初の厚みの1/2になりプ
レス方向と平行に磁化容易軸が配向してきて、合金は異
方性化する。これらの工程は、二段階ホットプレス法
(two−stage hot−press procedure)と呼ばれている
この方法により緻密で異方性を有するR−Fe−B磁石が
製造できる。なお、最初のメルトスピニング法で作られ
るリボン薄帯の結晶粒は、それが最大の保磁力を示す時
の粒径よりも小さめにしておき、後にホットプレス中に
結晶粒の粗大化が生じて最適の粒径になるようにしてお
く。
In the manufacturing method of (3), first, a ribbon-shaped quenched ribbon or a strip of ribbon is placed at about 700 in a vacuum or in an inert atmosphere.
Place in graphite or other heat-resistant press mold preheated to ℃. Uniaxial pressure is applied when the ribbon reaches the desired temperature. The temperature and time are not specified,
T = 725 ± 25 ° C, pressure is P for sufficient plasticity.
About 1.4 ton / cm 2 is suitable. At this stage the magnets are generally isotropic although they are slightly oriented in the pressing direction. The next hot pressing is performed with a mold having a large area. Most commonly, press at 700 ° C and 0.7 ton / cm 2 for a few seconds. Then, the sample becomes 1/2 of the initial thickness, the easy axis of magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic. These steps can produce a dense and anisotropic R-Fe-B magnet by this method called a two-stage hot-press procedure. In addition, the crystal grains of the ribbon ribbon made by the first melt spinning method should be smaller than the grain size when it shows the maximum coercive force, and later the crystal grains become coarse during hot pressing. Make sure the particle size is optimal.

[発明が解決しようとする問題点] 上述した従来技術で、R−Fe−B系の磁石は一応作製で
きるのであるが、これらの技術を利用した製造方法は次
のような欠点を有している。(1)の焼結法は、合金を
粉末にするのが必須であるが、R−Fe−B系合金はたい
へん酸素に対して活性であるので、粉末化すると余計酸
化が激しくなり、焼結体中の酸素濃度はどうしても高く
なってしまう。また粉末を成形するときに、例えばステ
アリン酸亜鉛のような成形助剤を使用しなければなら
ず、これは焼結工程で前もって取り除かれるのである
が、数割は磁石体の中に炭素の形で残ってしまう。この
炭素は著しくR−Fe−Bの磁気性能を低下させる。成形
助剤を加えてプレス成形した後の成形体はグリーン体と
言われる。これはたいへん脆く、ハンドリングが難し
い。従って焼結炉にきれいに並べて入れるのには、相当
の手間がかかることも大きな欠点である。これらの欠点
があるので一般的に言ってR−Fe−B系の焼結磁石の製
造には、高価な設備が必要になるばかりでなく、生産効
率が悪く、磁石の製造費が高くなってしまう。従って、
R−Fe−B系磁石の原料費の安さを充分に引き出せる製
造法とは言い難い。
[Problems to be Solved by the Invention] Although the R-Fe-B magnets can be produced for some time by the above-mentioned conventional techniques, the production methods utilizing these techniques have the following drawbacks. There is. In the sintering method of (1), it is essential to make the alloy into a powder, but since the R-Fe-B alloy is very active with respect to oxygen, if powdered, excessive oxidation will occur, resulting in sintering. The oxygen concentration in the body is inevitably high. Also, when molding the powder, a molding aid, such as zinc stearate, must be used, which is removed beforehand during the sintering process, but a few tenths of the form of carbon in the magnet body. Will remain. This carbon significantly deteriorates the magnetic performance of R-Fe-B. The green body is the green body after press molding by adding a molding aid. It is very fragile and difficult to handle. Therefore, it is a great disadvantage that it takes a lot of time and effort to put them neatly in the sintering furnace. Due to these drawbacks, generally speaking, the production of R-Fe-B system sintered magnets requires not only expensive equipment, but also poor production efficiency and high magnet production costs. I will end up. Therefore,
It is hard to say that this is a manufacturing method that can bring out the low cost of raw materials for R-Fe-B magnets.

(2)と(3)の製造法は、真空メルトスピニング装置
を使う。この装置は現在では、たいへん生産性が悪く、
しかも高価である。(2)では原理的に等方性であるの
で低エネルギー積であり、ヒステリシスループの角形性
もよくないので温度特性に対しても、使用する面におい
ても不利である。(3)の方法は、ホットプレスを2段
階に使うというユニークな方法であるが、実際に量産を
考えるとたいへん非効率になることは否めないであろ
う。さらに(1)と(3)磁石の欠点として、機械的強
度の低いことが挙げられる。これらの磁石は本来、粉末
またはリボンの状態にあったものを、高温で焼結あるい
は圧縮接合した磁石である。そのため、取り扱う上でチ
ッピングが起こり易く、ハンドリングが非常に困難とな
る。
The manufacturing methods (2) and (3) use a vacuum melt spinning device. This device is currently very unproductive,
Moreover, it is expensive. In (2), since it is isotropic in principle, it is a low energy product, and since the squareness of the hysteresis loop is not good, it is disadvantageous in terms of temperature characteristics and use. The method (3) is a unique method in which hot pressing is used in two steps, but it cannot be denied that it will be very inefficient when actually considering mass production. Further, as a drawback of the magnets (1) and (3), the mechanical strength is low. These magnets are magnets that were originally in the form of powder or ribbon, and were sintered or compression bonded at high temperature. Therefore, chipping is likely to occur in handling and handling becomes very difficult.

本発明によるR−Fe−B系磁石の製造方法はこれらの欠
点を解決するものであり、その目的とするところは、低
コストでしかも高性能な磁石を提供するところにある。
The method for producing an R-Fe-B magnet according to the present invention solves these drawbacks, and an object thereof is to provide a high-performance magnet at low cost.

[問題点を解決するための手段] 本発明は、鋳造希土類−鉄系永久磁石の製造方法に関す
るものであり、具体的にはRが8〜25原子%、Bが2か
ら8原子%、残部が鉄及びその他の製造上不可避な不純
物から成る合金を溶解し、その鋳造マクロ組織が柱状晶
となるように鋳造した後、該鋳造インゴットを500℃以
上の温度で熱処理することにより、磁気的に硬化させる
ことを特徴とする。
[Means for Solving Problems] The present invention relates to a method for producing a cast rare earth-iron-based permanent magnet, specifically, 8 to 25 atomic% of R, 2 to 8 atomic% of B, and the balance. Melts an alloy consisting of iron and other impurities inevitable in production, casts the cast macrostructure into columnar crystals, and then heat-treats the cast ingot at a temperature of 500 ° C. or more to magnetically It is characterized by being cured.

前記のように現存の希土類−鉄系永久磁石の製造方法で
ある焼結法・急冷法は、それぞれ粉砕による粉末管理の
困難さ、生産性の悪さ、機械的強度の低さといった大き
な欠点を有している。本発明者らは、これらの欠点を改
良するため、バルクの状態で保磁力を得ることができる
ような合金の研究に着手し、前記のような組成において
バルク状態での保磁力の獲得が可能であり、このとき鋳
造組織が柱状晶となるようにすると、保磁力が得やす
く、かつ柱状晶の異方性を利用することにより異方性磁
石となるので、等軸晶を用いるよりも、より高性能な永
久磁石が得られることを発明した。この方法では、鋳造
インゴットを粉砕する必要がないので、焼結法ほどの厳
密な雰囲気管理を行なう必要はなく、設備費が大きく低
減される。さらに、鋳造状態のまま磁化することによ
り、粉末状態を経ることがなくなった結果、結晶粒相互
の結合が非常に強くなり、機械的強度が大幅に向上す
る。同系統の研究には、三保広晃他(日本金属学会、昭
和60年度秋期講演会、講演番号(544))があるが、同
研究は本発明と組成域を異にするのみならず、マクロ組
織による性能変化については一切、言及しておらず性能
的にも本発明に大きく劣っている。また磁気的に硬化せ
しめた後、求める形状を得るための二次加工も、本系の
場合は従来のサマリウムコバルト系希土類磁石に比して
曲げ強さ・圧縮強さ等が大きいので非常にやりやすい。
As described above, the sintering method and the quenching method, which are existing manufacturing methods for rare earth-iron-based permanent magnets, have major drawbacks such as difficulty in powder management by pulverization, poor productivity, and low mechanical strength. is doing. In order to improve these drawbacks, the present inventors have started research on an alloy capable of obtaining a coercive force in the bulk state, and it is possible to obtain the coercive force in the bulk state in the above composition. When the cast structure is columnar crystal at this time, coercive force is easily obtained, and since it becomes an anisotropic magnet by utilizing the anisotropy of the columnar crystal, rather than using an equiaxed crystal, The inventors have invented that a higher performance permanent magnet can be obtained. In this method, since it is not necessary to crush the cast ingot, there is no need to perform the strict atmosphere control as in the sintering method, and the equipment cost is greatly reduced. Further, by magnetizing the alloy in the as-cast state, it does not go through the powder state, and as a result, the mutual coupling of the crystal grains becomes very strong and the mechanical strength is greatly improved. There is Hiroaki Miho et al. (The Japan Institute of Metals, Autumn Talk, 1985, Lecture No. (544)) in the same system, but this study is not only different from the present invention in the composition range, but also in the macro organization. No mention is made of any change in performance due to the above, and the performance is greatly inferior to the present invention. Also, after magnetically hardening, the secondary processing to obtain the desired shape is very easy in this system because its bending strength and compressive strength are greater than those of conventional samarium-cobalt rare earth magnets. .

従来のR−Fe−B系磁石の組成は、参考文献1に代表さ
れるように、R15Fe77B8が最適組成とされていた。この
組成はR−Fe−B系磁石の主相R2Fe14B化合物を原子百
分率で表わした組成R11.7Fe82.45.9に比してR・B
両元素に富む側に移行している。これは保磁力を得るた
めには、主相のみでなくRrich系・Brich相と呼ばれる非
磁性相が必要であるという点から説明されている。とこ
ろが本発明による組成では、これとは逆にBが少ない側
に移行したところにピーク値が存在する。これは、本合
金の特徴として、第一にB量を低減すると結晶粒が微細
化すること、第二に良好な柱状晶を形成させるための溶
湯を急冷したことにより、結晶粒が微細化すること、に
より核生成タイプの保磁力機構を有する本発明による磁
石に特有の組成域となったものと考えられる。
As for the composition of the conventional R-Fe-B system magnet, as typified by Reference 1, R 15 Fe 77 B 8 was considered to be the optimum composition. This composition has a composition of R · B in comparison with the composition R 11.7 Fe 82.4 B 5.9 in which the main phase R 2 Fe 14 B compound of the R—Fe—B system magnet is expressed in atomic percentage.
It has shifted to the side rich in both elements. This is explained from the point that not only the main phase but also a non-magnetic phase called Rrich system / Brich phase is necessary to obtain the coercive force. On the contrary, in the composition according to the present invention, on the contrary, a peak value is present when the composition shifts to the side with less B. This is a feature of this alloy. Firstly, the crystal grains become finer when the amount of B is reduced, and secondly, the crystal grains become finer because the molten metal for forming good columnar crystals is rapidly cooled. Therefore, it is considered that the composition range is peculiar to the magnet according to the present invention having the nucleation type coercive force mechanism.

永久磁石材料に柱状晶を用いることはアルニコ磁石を初
め、希土類磁石系のサマリウム−コバルト磁石でも行な
われており、本発明者のひとりはすでに1981年、樹脂結
合型サマリウムコバルト磁石への応用として発表してい
る。(T.Shimoda他、Proceedings of the fifth intern
ational Workshop on Rare Earth−Cobalt Permanent M
agrets.1981.P595) 本発明においても鋳造状態で柱状晶を得ることは高性能
磁石化の重要点となっている。すなわち熱処理によって
保磁力を得る過程が拡散によるものであり、サマリウム
コバルトと同様、柱状晶による方が保磁力が得やすい。
さらに本系磁石は、柱状晶に垂直な面に磁化容易軸が配
向する性質があるので、柱状晶を利用すれば面内異方性
磁石を作成することができる。
The use of columnar crystals as a permanent magnet material has been carried out not only in Alnico magnets but also in rare earth magnet-based samarium-cobalt magnets. is doing. (T.Shimoda et al., Proceedings of the fifth intern
ational Workshop on Rare Earth-Cobalt Permanent M
agrets.1981.P595) Also in the present invention, obtaining columnar crystals in the cast state is an important point for high performance magnetization. That is, the process of obtaining coercive force by heat treatment is due to diffusion, and like samarium-cobalt, columnar crystals are more likely to obtain coercive force.
Further, the present magnet has a property that the easy axis of magnetization is oriented in a plane perpendicular to the columnar crystals, so that an in-plane anisotropic magnet can be produced by using the columnar crystals.

以下、本発明による永久磁石の組成限定理由を説明す
る。希土類としては、Y、La、Ce、Pr、Nd、Sm、Eu、G
d、Tb、Dy、Ho、Er、Tm、Yb、Luが候補として挙げら
れ、これらのうちの1種あるいは1種以上を組み合わせ
て用いられる。最も高い磁気特性はPrで得られる。従っ
て実用的にはPr、Pr−Nd合金・Ce−Pr−Nd合金等が用い
られる。また少量の添加元素、例えば重希土元素のDy、
Tb等やAl、Mo、Si等は保磁力の向上に有効である。R−
Fe−B系磁石の主相はR2Fe14Bである。従ってRが8原
子%未満では、もはや上記化合物を形成せず、α−鉄と
同一構造の立方晶組織となるため高磁気特性は得られな
い。一方Rが25原子%を越えると非磁性のRrich相が多
くなり磁気特性は著しく低下する。よってRの範囲は、
8〜25原子%が適当である。
The reasons for limiting the composition of the permanent magnet according to the present invention will be described below. As rare earths, Y, La, Ce, Pr, Nd, Sm, Eu, G
The candidates are d, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and one or more of these can be used in combination. The highest magnetic properties are obtained with Pr. Therefore, Pr, Pr-Nd alloy, Ce-Pr-Nd alloy, etc. are practically used. In addition, a small amount of additional elements, such as heavy rare earth element Dy,
Tb, Al, Mo, Si, etc. are effective in improving the coercive force. R-
Main phase of Fe-B based magnet is R 2 Fe 14 B. Therefore, if R is less than 8 atomic%, the above compound is no longer formed and a cubic crystal structure having the same structure as α-iron is obtained, so that high magnetic properties cannot be obtained. On the other hand, if R exceeds 25 atomic%, the non-magnetic Rrich phase increases and the magnetic properties deteriorate remarkably. Therefore, the range of R is
8-25 atom% is suitable.

Bは、R2Fe14B相を形成するための必須元素であり、2
原子%未満では菱面体のR−Fe系になるため高保磁力は
望めない。しかし従来の焼結法による磁石のように8原
子%以上も添加すると、逆に鋳造状態での保磁力は得ら
れなくなってしまう。従ってBの量は2〜8原子%が範
囲として適している。
B is an essential element for forming the R 2 Fe 14 B phase, and 2
If it is less than atomic%, a high coercive force cannot be expected because it becomes a rhombohedral R-Fe system. However, when 8 atom% or more is added like a magnet produced by the conventional sintering method, on the contrary, the coercive force in the cast state cannot be obtained. Therefore, the amount of B is preferably in the range of 2 to 8 atomic%.

[実施例1] 本発明による製造工程図を第1図に示す。まず所望の組
成の合金を誘導炉で溶解し、鉄鋳型に鋳造し、柱状晶を
形成せしめる。次に面内異方性磁石とするために柱状晶
に垂直な面が測定方向となるように2次加工して、サン
プルを作成する。さらに熱処理を施し磁気的に硬化させ
る。本実施例では代表組成としてPr14Fe82B4組成を取り
あげ、熱処理温度・時間・マクロ組織による、保磁力iH
cの変化をとらえた。第2図に示すように、800〜1000℃
まで温度・時間が増加するに従ってiHcも増加してい
る。このことはiHcの機構が特定相の析出ではなく、拡
散支配的であることを示す。さらに比較例としてかかげ
た、等軸晶のサンプルは1000℃で熱処理を施しているの
にかかわらず、保磁力は非常に小さい。本系磁石の主相
はR2Fe14Bは溶湯から鉄相を初晶とする包晶反応 Fe+L→R2Fe14B で生じ、初晶サイズは冷却速度に大きく依存する。その
ため冷却速度の遅い等軸晶は初晶が大きく粗大化し、主
相中への拡散に時間を要するものと思われる。
Example 1 A manufacturing process diagram according to the present invention is shown in FIG. First, an alloy having a desired composition is melted in an induction furnace and cast in an iron mold to form columnar crystals. Next, in order to obtain an in-plane anisotropic magnet, secondary processing was performed so that the plane perpendicular to the columnar crystal was the measurement direction, and a sample was prepared. Further heat treatment is applied to magnetically harden. In this example, the Pr 14 Fe 82 B 4 composition is taken as a representative composition, and the coercive force iH depends on the heat treatment temperature, time and macrostructure.
I caught the change of c. As shown in Fig. 2, 800-1000 ℃
IHc also increases with increasing temperature and time. This indicates that the mechanism of iHc is diffusion-dominated rather than specific phase precipitation. Further, the caustic, equiaxed crystal sample as a comparative example has a very small coercive force even though it is heat-treated at 1000 ° C. The main phase of this magnet is R 2 Fe 14 B, which is a peritectic reaction Fe + L → R 2 Fe 14 B in which the iron phase is the primary crystal from the molten metal, and the primary crystal size largely depends on the cooling rate. Therefore, it is considered that equiaxed crystals with a slow cooling rate have large primary crystals and become coarse, and it takes time to diffuse into the main phase.

[実施例2] 第1表のような組成を溶解し、第1図に示す方法で磁石
を作製した。ただしアニール処理はすべて1000℃×24時
間で行った。
[Example 2] A composition as shown in Table 1 was dissolved and a magnet was produced by the method shown in Fig. 1. However, all annealing treatments were performed at 1000 ° C. for 24 hours.

得られた結果を第2表に示す。 The results obtained are shown in Table 2.

[実施例3] 次に実施例2のサンプルNo.2と6と7の合金を用いて、
参考文献1に基づいて焼結磁石を作製しJIS R1601に基
づき、長さ36mm、幅4mm、厚さ3mmのサンプルを切り出
し、曲げ強さを本発明品と比較した。結果を第3表に示
す。No.2は本発明による代表組成,No.7は参考文献1に
よる焼結法の最適組成の近傍の組成、さらにNo.6は中間
組成である。第3表より、組成にかかわらず、本発明に
よる方が機械的強度の優れることがわかる。
[Example 3] Next, using the alloys of sample Nos. 2 and 6 and 7 of Example 2,
A sintered magnet was produced based on Reference Document 1, and a sample having a length of 36 mm, a width of 4 mm and a thickness of 3 mm was cut out based on JIS R1601 and the bending strength was compared with that of the product of the present invention. The results are shown in Table 3. No. 2 is a representative composition according to the present invention, No. 7 is a composition near the optimum composition of the sintering method according to Reference 1, and No. 6 is an intermediate composition. It can be seen from Table 3 that the mechanical strength of the present invention is superior regardless of the composition.

[発明の効果] 以上、本発明によれば、従来の焼結法では保磁力の得に
くかった組成域で、バルク状態のまま保磁力を得ること
が可能となり、機械的強度に優れ、製造工程も単純化さ
れた鋳造希土類−鉄系磁石を得ることができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a coercive force in a bulk state in a composition range where it is difficult to obtain a coercive force by a conventional sintering method, which is excellent in mechanical strength, It is possible to obtain a simplified cast rare earth-iron magnet.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のR−Fe−B系磁石の製造工程図。 第2図は、Pr14Fe82B4合金の熱処理による保磁力変化
図。
FIG. 1 is a manufacturing process drawing of the R—Fe—B system magnet of the present invention. Figure 2 shows the change in coercive force of Pr 14 Fe 82 B 4 alloy by heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子百分率においてR8〜25%(但しRはY
を含む希土類元素の少なくとも1種)、B2〜8%、及び
残部が鉄及びその他の製造上不可避な不純物からなる合
金を溶解し、その鋳造マクロ組織が柱状晶となるように
鋳造した後、該鋳造インゴットを500℃以上の温度で熱
処理することにより、磁気的に硬化させて合金塊よりな
る鋳造磁石を得ることを特徴とする鋳造希土類−鉄系永
久磁石の製造方法。
1. Atomic percentage of R8-25% (where R is Y
At least one kind of rare earth element containing B), B2 to 8%, and the balance of iron and other alloys unavoidable in production are melted and cast so that the casting macrostructure becomes columnar crystals. A method for producing a cast rare earth-iron-based permanent magnet, characterized in that a cast ingot is heat-treated at a temperature of 500 ° C. or higher to magnetically harden to obtain a cast magnet made of an alloy lump.
JP61045873A 1986-03-03 1986-03-03 Cast rare earth-method for manufacturing iron-based permanent magnets Expired - Lifetime JPH07123083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045873A JPH07123083B2 (en) 1986-03-03 1986-03-03 Cast rare earth-method for manufacturing iron-based permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045873A JPH07123083B2 (en) 1986-03-03 1986-03-03 Cast rare earth-method for manufacturing iron-based permanent magnets

Publications (2)

Publication Number Publication Date
JPS62203303A JPS62203303A (en) 1987-09-08
JPH07123083B2 true JPH07123083B2 (en) 1995-12-25

Family

ID=12731325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045873A Expired - Lifetime JPH07123083B2 (en) 1986-03-03 1986-03-03 Cast rare earth-method for manufacturing iron-based permanent magnets

Country Status (1)

Country Link
JP (1) JPH07123083B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
JPS6317504A (en) * 1986-07-10 1988-01-25 Namiki Precision Jewel Co Ltd Permanent magnet and its manufacture
JP2564492B2 (en) * 1987-10-13 1996-12-18 三菱マテリアル株式会社 Manufacturing method of rare earth-Fe-B cast permanent magnet
JP3932143B2 (en) * 1992-02-21 2007-06-20 Tdk株式会社 Magnet manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177101A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Production of permanent magnet material

Also Published As

Publication number Publication date
JPS62203303A (en) 1987-09-08

Similar Documents

Publication Publication Date Title
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
EP0288637B1 (en) Permanent magnet and method of making the same
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2579787B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2611221B2 (en) Manufacturing method of permanent magnet
KR930002559B1 (en) Permanent magnet and making method thereof
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JPH01175207A (en) Manufacture of permanent magnet
JPH0684628A (en) Radial anisotropic rare earth-iron based permanent magnet
JPS63286515A (en) Manufacture of permanent magnet
JPH0766892B2 (en) Permanent magnet manufacturing method
JPS63286514A (en) Manufacture of permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPH07166304A (en) Alloy for permanent magnet
JPH01161802A (en) Manufacture of permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH04134806A (en) Manufacture of permanent magnet
JPS63286516A (en) Manufacture of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term