JP2564492B2 - Manufacturing method of rare earth-Fe-B cast permanent magnet - Google Patents

Manufacturing method of rare earth-Fe-B cast permanent magnet

Info

Publication number
JP2564492B2
JP2564492B2 JP62257669A JP25766987A JP2564492B2 JP 2564492 B2 JP2564492 B2 JP 2564492B2 JP 62257669 A JP62257669 A JP 62257669A JP 25766987 A JP25766987 A JP 25766987A JP 2564492 B2 JP2564492 B2 JP 2564492B2
Authority
JP
Japan
Prior art keywords
cast
phase
temperature
permanent magnet
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62257669A
Other languages
Japanese (ja)
Other versions
JPH0199201A (en
Inventor
拓夫 武下
亮治 中山
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP62257669A priority Critical patent/JP2564492B2/en
Publication of JPH0199201A publication Critical patent/JPH0199201A/en
Application granted granted Critical
Publication of JP2564492B2 publication Critical patent/JP2564492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、すぐれた磁気特性を有する、Yを含む希
土類元素(以下、Rで示す)−Fe−B系合金鋳造体の永
久磁石を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention manufactures a permanent magnet of a rare earth element containing Y (hereinafter referred to as R) -Fe-B alloy cast body having excellent magnetic properties. It is about how to do it.

〔従来の技術〕[Conventional technology]

R−Fe−B系永久磁石は、希土類系永久磁石の中でも
特に磁気特性のすぐれた磁石として注目されている。上
記R−Fe−B系永久磁石の組織は、一般的には、強磁性
相であり正方晶構造をとる主相のR2Fe14B金属間化合物
相(以下、R2Fe14B相という)と、R−rich相とB−ric
h相から構成されている。上記R−Fe−B系永久磁石で
は、その磁気特性が上記R−Fe−B系永久磁石の組織形
態に大きく依存しており、R−Fe−B系合金のすぐれた
磁気特性を生かせるような組織形態を有する永久磁石の
開発が行なわれていた。
R-Fe-B system permanent magnets are attracting attention as magnets having excellent magnetic properties among rare earth system permanent magnets. The structure of the R-Fe-B system permanent magnet is generally a main phase R 2 Fe 14 B intermetallic compound phase (hereinafter, referred to as R 2 Fe 14 B phase) that is a ferromagnetic phase and has a tetragonal structure. ), R-rich phase and B-ric
It consists of h phase. In the R-Fe-B system permanent magnet, the magnetic properties thereof are largely dependent on the microstructure of the R-Fe-B system permanent magnet, and the excellent magnetic properties of the R-Fe-B system alloy can be utilized. Development of a permanent magnet having a tissue morphology has been conducted.

現在、上記R−Fe−B系永久磁石としては、以下に示
すものがある。
At present, the following R-Fe-B system permanent magnets are available.

(1)粉末冶金法による焼結体を特徴とする永久磁石
(例えば、特開昭59−460008号公報参照)。
(1) A permanent magnet characterized by a sintered body produced by powder metallurgy (see, for example, JP-A-59-460008).

この焼結体を特徴とする永久磁石(以下、焼結磁石と
呼ぶ)は、まず、R−Fe−B系合金のインゴットあるい
は粗粉末を、種々の方法で粉砕して数μm程度の微粉末
とし、この微粉末を磁場中あるいは無磁場中で成形した
圧粉体とする。次にその圧粉体を真空中または非酸化性
ガス雰囲気中で、室温から昇温して、焼結温度:900〜12
00℃で30〜120分保持の条件で焼結し、さらに必要に応
じて保磁力を増加させるために引き続き適温の熱処理を
行ってから冷却することによって製造されている。上記
焼結磁石の磁気特性は、等方性の場合、BHmax=10MGOe
程度であり、異方性の場合、BHmax=30MGOe以上の値を
示す。
A permanent magnet (hereinafter referred to as a sintered magnet) characterized by this sintered body is prepared by first crushing an ingot or a coarse powder of an R—Fe—B alloy by various methods to obtain a fine powder of about several μm. The fine powder is shaped into a green compact in a magnetic field or no magnetic field. Then, the green compact is heated in a vacuum or in a non-oxidizing gas atmosphere from room temperature to a sintering temperature of 900 to 12
It is manufactured by sintering at a temperature of 00 ° C. for 30 to 120 minutes, further performing heat treatment at an appropriate temperature to increase the coercive force as needed, and then cooling. The magnetic characteristics of the above sintered magnet are BH max = 10MGOe when it is isotropic.
In the case of anisotropy, BH max = 30 MGOe or more.

上記焼結磁石の組織は、第1図に示すように、R−Fe
−B系永久磁石の主相であるR2Fe14B相1と、B−rich
相3、そしてR2Fe14B相1やB−rich相3の粒界部に存
在するR−rich相2からなっている。上記第1図のR2Fe
14B相は、保磁力を増加させるために平均結晶粒径が数
μm〜20μmに制御されている。
As shown in FIG. 1, the structure of the sintered magnet is R-Fe.
-R 2 Fe 14 B phase 1 which is the main phase of B type permanent magnet, and B-rich
Phase 3 and R 2 Fe 14 B phase 1 and R-rich phase 2 existing at the grain boundary of B-rich phase 3. R 2 Fe in Fig. 1 above
The average crystal grain size of the 14B phase is controlled to several μm to 20 μm in order to increase the coercive force.

(2)超急冷法によるリボン状急冷粉末を、高温圧縮、
塑性加工した永久磁石(例えば、特開昭60−100402号参
照) この急冷粉末を圧縮した物質を特徴とする永久磁石
(以下、高温圧縮磁石と呼ぶ)は、まず、溶融状態のR
−Fe−B系合金を急冷凝固させることによってリボン状
の薄片を得、それを温度:700℃以上に加熱して数分間で
高温圧縮、塑性加工を行ってから冷却することによって
製造されている。
(2) Ribbon-quenched powder obtained by the ultra-quenching method is compressed at high temperature,
A plastically processed permanent magnet (see, for example, Japanese Patent Laid-Open No. 60-100402). A permanent magnet (hereinafter referred to as a high temperature compression magnet) characterized by a substance obtained by compressing this quenching powder is prepared by first melting R
-Fe-B type alloy is obtained by rapid solidification to obtain ribbon-shaped flakes, which are heated to a temperature of 700 ° C or higher, subjected to high temperature compression and plastic working for several minutes, and then cooled. .

上記高温圧縮磁石の磁気特性は、等方性の場合、BH
max=13MGOe程度、塑性加工による異方性化によってBH
max=30MGOe程度になる。上記高温圧縮磁石の組織は、
主相が平均結晶粒径:数10nm〜数100nmのR2Fe14B相であ
り、その粒界部にR−rich相や非晶質相が存在するとい
う微細構造であり、主相のR2Fe14B相は単磁区粒径:0.3
μm以下の組織に制御されている。
The magnetic characteristics of the above high temperature compression magnet are BH when it is isotropic.
max = 13 MGOe, BH due to anisotropy due to plastic working
max = about 30 MGOe. The structure of the high temperature compression magnet is
The main phase is an R 2 Fe 14 B phase having an average crystal grain size of several tens nm to several 100 nm, and a fine structure in which an R-rich phase or an amorphous phase is present in the grain boundary part, 2 Fe 14 B phase is single domain grain size: 0.3
The structure is controlled to be less than μm.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

R−Fe−B系合金が、高い保磁力を示す永久磁石とな
るためには、 (a)主相であるR2Fe14B相の平均結晶粒径が50μm以
下、好ましくは単磁区粒子となり得る0.3μm以下であ
ること、 (b)主相の結晶粒内、結晶粒界部に逆磁区発生時の核
となる不純物や歪がないこと、 (c)主相であるR2Fe14B相の平均結晶粒径が数μmか
ら50μmであれば、R2Fe14B相の結晶粒界部にR−rich
相が存在し、上記R2Fe14B相の結晶粒が上記R−rich相
で囲まれていること、 (d)磁石粉末の個々のR2Fe14B相において、結晶磁気
異方性の磁化容易軸がそろっており、磁気的異方性を有
すること、 であり、特に上記(a)の主相のR2Fe14B相の平均結晶
粒径が、保磁力を大きく左右していると考えられてい
る。
In order for the R-Fe-B based alloy to become a permanent magnet exhibiting a high coercive force, (a) the average crystal grain size of the R 2 Fe 14 B phase, which is the main phase, is 50 μm or less, preferably single domain particles. It should be 0.3 μm or less, (b) there should be no impurities or strain that become nuclei when reverse magnetic domains are generated in the crystal grains of the main phase, and (c) the main phase R 2 Fe 14 B If the average crystal grain size of the phase is several μm to 50 μm, R-rich will be present in the grain boundary part of the R 2 Fe 14 B phase.
Phase is present and the crystal grains of the R 2 Fe 14 B phase are surrounded by the R-rich phase, and (d) the R 2 Fe 14 B phase of the magnet powder has a magnetocrystalline anisotropy. The axes of easy magnetization are aligned and magnetic anisotropy is obtained. Especially, the average crystal grain size of the R 2 Fe 14 B phase of the main phase in (a) above has a large influence on the coercive force. It is believed that.

従来、R−Fe−B系合金を単に溶解して鋳造した、あ
るいはさらに均質化処理を行った鋳造体の組織では、後
に熱処理を施しても主相のR2Fe14B相を数10μm以下に
制御することができないために、その鋳造体は、すぐれ
た磁気特性が得られなかった。このため、上記従来の技
術(1)のごとく焼結磁石にしたり、上記従来の技術
(2)のごとく高温圧縮磁石としたりして、上記R−Fe
−B系合金の組織制御を行っていた。
Conventionally, in the structure of a cast body in which an R-Fe-B based alloy is simply melted and cast, or further homogenized, even if a heat treatment is performed later, the main phase R 2 Fe 14 B phase is several tens of μm or less. Due to the lack of controllability, the cast bodies did not have good magnetic properties. Therefore, a sintered magnet is used as in the conventional technique (1) or a high temperature compression magnet is used as in the conventional technique (2) to obtain the R-Fe.
-The structure of the B-based alloy was controlled.

上記従来の技術(1)の焼結磁石は、主相であるR2Fe
14B相の平均結晶粒径を数μm〜20μmに制御する必要
があるために、上記焼結工程での主相の粒成長を考慮し
て、上記焼結用の微粉末は、通常3〜4μmに粉砕しな
ければならない。しかし、永久磁石用R−Fe−B系合金
は、3〜4μmの微粉末にすると非常に活性となるた
め、焼結体中に酸化物等の不純物が発生して、焼結磁石
の磁気特性がばらつくと言う欠点があった。さらに永久
磁石としては、主相であるR2Fe14B相が単磁区粒子とな
り得る0.3μm以下が好ましいが、上記焼結法では、微
粉砕時の酸化が激しく、製造することができない。ま
た、上記焼結磁石は、厚みが3mm以下の薄型の形状で
は、厚みが薄くなるにつれて磁気特性が大幅に低下する
という欠点もあった。このような欠点を補うために、上
記合金に添加元素を加えたり、焼結工程を改良したり、
焼結磁石に被膜を行う等の処理が行われ、上記焼結磁石
の高い磁気特性を引き出すには、複雑な工程や処理を行
わざるを得なかった。
The sintered magnet of the above-mentioned conventional technique (1) has a main phase of R 2 Fe.
Since it is necessary to control the average crystal grain size of the 14 B phase to be several μm to 20 μm, the fine powder for sintering usually has a particle size of 3 μm or less in consideration of grain growth of the main phase in the sintering process. Must be ground to 4 μm. However, since the R-Fe-B alloy for permanent magnets becomes very active when it is made into a fine powder of 3 to 4 μm, impurities such as oxides are generated in the sintered body, and the magnetic characteristics of the sintered magnet are increased. There was a drawback that it was scattered. Still a permanent magnet, but the R 2 Fe 14 B phase preferably less 0.3μm which can be a single domain particles is a main phase, in the sintering method, oxidation during milling is intense, it can not be produced. In addition, the above-mentioned sintered magnet has a drawback that in a thin shape having a thickness of 3 mm or less, the magnetic characteristics are significantly reduced as the thickness is reduced. In order to compensate for such drawbacks, adding additional elements to the above alloy, improving the sintering process,
Processing such as coating the sintered magnet is performed, and in order to bring out the high magnetic characteristics of the sintered magnet, it is necessary to perform complicated steps and treatments.

上記従来の技術(2)の高温圧縮磁石は、急冷粉末を
高温圧縮、塑性加工して初めて永久磁石となるために、
磁石形状の自由度、歩留りの点から用途は制限されてい
た。また、高温圧縮、塑性加工により、微細構造のうち
主相であるR2Fe14B相は、粒成長を起こして保磁力を低
下させるために、上記高温圧縮工程は、数分間という非
常に短い時間で行う必要があり、高い磁気特性の永久磁
石を得るには、その製造工程が複雑にならざるを得なか
った。
Since the high temperature compression magnet of the above-mentioned conventional technique (2) becomes a permanent magnet only after high temperature compression and plastic working of the quenched powder,
Applications were limited in terms of the degree of freedom in magnet shape and yield. Further, since the R 2 Fe 14 B phase, which is the main phase of the microstructure due to high temperature compression and plastic working, causes grain growth and reduces the coercive force, the above high temperature compression step is very short, which is only a few minutes. It has to be performed in a long time, and in order to obtain a permanent magnet with high magnetic characteristics, the manufacturing process has to be complicated.

すなわち、上記従来の技術(1)および(2)のR−
Fe−B系永久磁石は、いずれも一度R−Fe−B系磁石合
金を粉末にし、それを焼結してR−Fe−B系永久磁石を
製造するものであるために、R−Fe−B系合金粉末の取
扱いが難しく、またその焼結方法にもいろいろと注意を
払わなければならず、製造工程も複雑にならざるを得な
いという問題点があった。
That is, R- of the above-mentioned conventional techniques (1) and (2)
Since all the Fe-B system permanent magnets are powders of the R-Fe-B system magnet alloy once and are sintered to manufacture the R-Fe-B system permanent magnet, the R-Fe- system permanent magnets are used. There is a problem that it is difficult to handle the B-based alloy powder, and various attention must be paid to the sintering method, and the manufacturing process must be complicated.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、すぐれた磁気特性は得られな
いと言われているR−Fe−B系合金の鋳造体にすぐれた
磁気特性を付与することができるならば、簡単にすぐれ
た磁気特性を有するR−Fe−B系永久磁石を製造するこ
とができるという考えのもとに、すぐれた磁気特性を有
するR−Fe−B系鋳造体永久磁石を得べく研究を行った
結果、 RとFeとBを主成分とする希土類−Fe−B系合金の鋳
造体を、 水素の存在しない真空または不活性ガス雰囲気中で温
度:700〜1000℃まで昇温し、 引き続いて水素ガス雰囲気中において、温度:700〜10
00℃に保持して上記鋳造体に水素を吸蔵させ、 さらに引き続いて温度:700〜1000℃で、水素ガス圧
力:1×10-1Torr以下または水素ガス分圧:1×10-1Torr以
下の非酸化性雰囲気で脱水素処理し、 ついで冷却すると、 平均再結晶粒径:0.05〜50μmのR2Fe14B相を主相とす
る再結晶集合組織を有する希土類−Fe−B系鋳造体永久
磁石を得ることができ、この希土類−Fe−B系鋳造体永
久磁石は優れた磁気特性を有するという知見を得たので
ある。
Therefore, the inventors of the present invention can easily provide excellent magnetic properties if it is possible to impart excellent magnetic properties to a cast body of an R—Fe—B alloy, which is said to not obtain excellent magnetic properties. Based on the idea that an R-Fe-B system permanent magnet having characteristics can be manufactured, as a result of research to obtain an R-Fe-B system cast permanent magnet having excellent magnetic characteristics, R And a rare earth-Fe-B alloy cast body containing Fe and B as main components are heated to a temperature of 700 to 1000 ° C in a hydrogen-free vacuum or an inert gas atmosphere, and then in a hydrogen gas atmosphere. At temperature: 700-10
Hold the temperature at 00 ° C to occlude hydrogen in the above-mentioned cast body, and subsequently, at a temperature of 700 to 1000 ° C, hydrogen gas pressure: 1 × 10 -1 Torr or less or hydrogen gas partial pressure: 1 × 10 -1 Torr or less After dehydrogenation in a non-oxidizing atmosphere and then cooling, the rare earth-Fe-B type cast body having a recrystallized texture mainly composed of R 2 Fe 14 B phase with an average recrystallized grain size: 0.05 to 50 μm It has been found that a permanent magnet can be obtained and that the rare earth-Fe-B system cast permanent magnet has excellent magnetic properties.

この発明は、かかる知見に基づいてなされたものであ
って、 RとFeとBを主成分とするR−Fe−B系合金の鋳造体
を、 水素の存在しない真空または不活性ガス雰囲気中で温
度:700〜1000℃まで昇温し、 引き続いて水素ガス雰囲気中において、温度:700〜10
00℃に保持して上記鋳造体に水素を吸蔵させ、 さらに引き続いて温度:700〜1000℃で、水素ガス圧
力:1×10-1Torr以下または水素ガス分圧:1×10-1Torr以
下の非酸化性雰囲気で脱水素処理し、 ついで冷却する、R−Fe−B系鋳造体永久磁石の製造
方法に特徴を有するものである。
The present invention has been made on the basis of such findings, in which a cast body of an R-Fe-B based alloy containing R, Fe and B as main components is produced in a hydrogen-free vacuum or an inert gas atmosphere. Temperature: Raise the temperature to 700-1000 ℃, and then in the hydrogen gas atmosphere, temperature: 700-1000
Hold the temperature at 00 ° C to occlude hydrogen in the above-mentioned cast body, and subsequently, at a temperature of 700 to 1000 ° C, hydrogen gas pressure: 1 × 10 -1 Torr or less or hydrogen gas partial pressure: 1 × 10 -1 Torr or less It is characterized by the method for producing an R-Fe-B based cast permanent magnet, which comprises dehydrogenation in a non-oxidizing atmosphere and then cooling.

このR−Fe−B系鋳造体永久磁石の製造方法により形
成される再結晶集合組織を第2図に基づいて説明する。
The recrystallization texture formed by the method for manufacturing the R-Fe-B system cast permanent magnet will be described with reference to FIG.

第2図(a)は、R−Fe−B系磁石合金を鋳造して得
た鋳造体の組織の概略図である。上記第2図(a)にお
いて、1はR2Fe14B相、2はR−rich相である。R−ric
h相2は、主相であるR2Fe14B相1のおもに粒界部に存在
する。上記第2図(a)に示される鋳造体を、上記のR
−Fe−B系鋳造体永久磁石の製造方法で処理すると、第
2図(b)に示されるようにR2Fe14B相1の粒内あるい
は粒界部にR2Fe14B相の再結晶1′が発生し、それらが
成長して第2図(c)に示されるようなR2Fe14B相の再
結晶1′の集合組織となる。
FIG. 2 (a) is a schematic view of the structure of a cast body obtained by casting an R-Fe-B based magnet alloy. In FIG. 2 (a), 1 is the R 2 Fe 14 B phase and 2 is the R-rich phase. R-ric
The h phase 2 exists mainly at the grain boundary part of the R 2 Fe 14 B phase 1 which is the main phase. The cast body shown in FIG.
When treated by the method for producing a —Fe—B system cast permanent magnet, as shown in FIG. 2 (b), the R 2 Fe 14 B phase is regenerated in the grains of the R 2 Fe 14 B phase 1 or at the grain boundary part. Crystals 1'are generated and grow to form a texture of recrystallized 1'of the R 2 Fe 14 B phase as shown in FIG. 2 (c).

上記第2図(b)は、上記第2図(a)に示される鋳
造体を処理し始めて、R2Fe14B相の再結晶1′が発生し
始めた頃の鋳造体の組織の概略図であり、上記第2図
(c)は、上記第2図(a)に示される鋳造体の処理終
了後の鋳造体の組織を示す概略図である。
FIG. 2 (b) is a schematic diagram of the structure of the cast body at the time when the recrystallization 1 ′ of the R 2 Fe 14 B phase started to occur after the treatment of the cast body shown in FIG. 2 (a). FIG. 2C is a schematic diagram showing the structure of the cast body after the treatment of the cast body shown in FIG. 2A is completed.

ここで、第2図(a)で示されるR−Fe−B系合金の
R2Fe14B相1から第2図(b)に示されるようにR2Fe14B
相の再結晶1′を生成させ、それを成長させて第2図
(c)に示されるようなR2Fe14B相の再結晶1′からな
る集合組織となっても、上記第2図(b)および(c)
において形成されたR2Fe14B相の再結晶1′は、第2図
(a)の個々のR2Fe14B相1の領域内で完全にランダム
な結晶方位の結晶配置ではなく、一定の方位を持った組
織となっているのである。
Here, in the R-Fe-B system alloy shown in FIG.
R 2 Fe 14 R 2 Fe 14 B as shown from B-phase 1 in FIG. 2 (b)
Even if the recrystallized phase 1'of the phase is generated and grown to form a texture composed of the recrystallized phase 1'of the R 2 Fe 14 B phase as shown in FIG. (B) and (c)
The recrystallized 1'of the R 2 Fe 14 B phase formed in Fig. 2 does not have a completely random crystal orientation in the region of the individual R 2 Fe 14 B phase 1 in Fig. 2 (a), but a constant crystal orientation. It is an organization with the orientation of.

一方、R−rich相は、第2図(b)に示されるように
R2Fe14B相の再結晶生成初期には明らかではないが、R2F
e14B相の再結晶1′が成長して第2図(c)に示される
再結晶粒の平均結晶粒径:0.05μm以上の集合組織にな
ると、主に上記再結晶粒1′の粒界部に一部析出するこ
とがある。
On the other hand, the R-rich phase is as shown in Fig. 2 (b).
Although it is not clear at the beginning of recrystallization of the R 2 Fe 14 B phase, R 2 F
When the recrystallized 1 ′ of the e 14 B phase grows to have a texture shown in FIG. 2 (c) with an average crystal grain size of 0.05 μm or more, the recrystallized grains 1 ′ are mainly the above-mentioned grains. May be partially precipitated at the interface.

したがって、この発明の方法で製造したR−Fe−B系
鋳造体永久磁石は、再結晶集合組織を有する鋳造体であ
るのに対し、従来の技術(1)および(2)のR−Fe−
B系永久磁石は、再結晶組織を有しない点や、焼結体、
急冷粉末を圧縮した物質という点で全く相違する。
Therefore, the R-Fe-B type cast permanent magnet produced by the method of the present invention is a cast body having a recrystallized texture, while the R-Fe- of the conventional techniques (1) and (2) is used.
B-based permanent magnets have no recrystallized structure,
It is completely different in that it is a substance obtained by compressing a quenched powder.

この発明の方法で製造したR−Fe−B系鋳造体永久磁
石が高い保磁力を示す理由は、主相であるR2Fe14B相の
再結晶粒径が50μm以下、好ましくは、単磁区粒子とな
り得る0.3μmに近い0.05〜3μmであり、再結晶粒の
ためにその粒内および粒界部に不純物や歪がないからで
ある。上記R2Fe14B相の平均再結晶粒径が0.05μmより
小さいと着磁が困難となって実用的でなく、50μmより
大きいと低い保磁力しか示さず、すぐれた磁気特性を有
するR−Fe−B系鋳造体永久磁石とは言えない。
The reason why the R-Fe-B based cast permanent magnet produced by the method of the present invention exhibits a high coercive force is that the recrystallized grain size of the main phase R 2 Fe 14 B phase is 50 μm or less, preferably a single magnetic domain. This is because the grain size is 0.05 to 3 μm, which is close to 0.3 μm that can be formed into grains, and there are no impurities or strain in the grains and grain boundaries due to the recrystallized grains. If the average recrystallized grain size of the R 2 Fe 14 B phase is smaller than 0.05 μm, it becomes difficult to magnetize and is not practical, and if it is larger than 50 μm, only a low coercive force is exhibited and R-having excellent magnetic properties is obtained. It cannot be said that it is a Fe-B cast permanent magnet.

なお、この発明の方法で製造するR2Fe14B相を主相と
する再結晶集合組織を有するR−Fe−B系鋳造体永久磁
石のFeの一部をCo,Ni,Cr,Mo,W,Ti,Zr,Hfの1種または2
種以上の少量で置換してもよい。
In addition, a part of Fe of the R—Fe—B type cast permanent magnet having a recrystallized texture having the R 2 Fe 14 B phase as a main phase produced by the method of the present invention is partially replaced with Co, Ni, Cr, Mo, One of W, Ti, Zr, Hf or 2
It may be replaced with a small amount of one or more species.

この発明の鋳造体永久磁石の製造法は上述の如き鋳造
体を真空または不活性ガス中で700〜1000℃まで昇温
し、この温度に保持しながら水素ガス雰囲気としたのち
非水素ガス雰囲気とする特殊な二段階雰囲気で熱処理す
るもので、従来のR−Fe−B系合金の鋳造体に通常の熱
処理を施して鋳造体永久磁石を製造する方法とは全く相
違するし、さらに従来の粉末から製造するR−Fe−B系
永久磁石の製造法に比べて製造工程が非常に簡略であ
る。
The method for producing a cast permanent magnet according to the present invention is performed by heating the cast body as described above to 700 to 1000 ° C. in a vacuum or an inert gas, and maintaining the temperature at a hydrogen gas atmosphere and then a non-hydrogen gas atmosphere. The heat treatment is performed in a special two-stage atmosphere, which is completely different from the conventional method for producing a cast permanent magnet by subjecting a cast body of an R-Fe-B alloy to a normal heat treatment. The manufacturing process is much simpler than the manufacturing method of the R-Fe-B based permanent magnet manufactured from.

この発明の製造法において、水素ガス雰囲気とは、水
素ガスと他の不活性ガスとの混合ガス雰囲気をも含んで
いる。水素ガス圧は、R2Fe14B相に水素を吸蔵させて、
再結晶がおこるのに充分な格子歪を与えるような圧力が
必要であり、少なくとも水素ガス圧力は0.1Torr以上で
なければならない。水素ガスと他の不活性ガスとの混合
ガス雰囲気であれば、少なくとも水素ガス分圧が0.1Tor
r以上でなければならない。
In the manufacturing method of the present invention, the hydrogen gas atmosphere also includes a mixed gas atmosphere of hydrogen gas and another inert gas. The hydrogen gas pressure causes hydrogen to be stored in the R 2 Fe 14 B phase,
A pressure that gives sufficient lattice strain for recrystallization is required, and at least the hydrogen gas pressure must be 0.1 Torr or higher. In a mixed gas atmosphere of hydrogen gas and other inert gas, at least hydrogen gas partial pressure of 0.1 Tor
must be greater than or equal to r.

また、R2Fe14B相に水素を吸蔵させる温度および脱水
素処理を行う温度が700℃より低いと、水素を吸蔵させ
る際に鋳造体に割れが入って脆くなり、脱水素処理の際
に水素が残留し、磁気特性を大幅に減少させる。さら
に、R2Fe14B相に水素を吸蔵させる温度および脱水素処
理を行う温度が1000℃より高いと、再結晶の生成、成長
が非常に速く、再結晶粒を50μm以下に制御することが
困難である。
Further, if the temperature at which hydrogen is absorbed in the R 2 Fe 14 B phase and the temperature at which dehydrogenation treatment is performed are lower than 700 ° C., the cast body becomes cracked and becomes brittle when absorbing hydrogen, and during dehydrogenation treatment. Hydrogen remains, greatly reducing the magnetic properties. Furthermore, if the temperature at which hydrogen is absorbed in the R 2 Fe 14 B phase and the temperature at which dehydrogenation is performed are higher than 1000 ° C., recrystallization is generated and grown very rapidly, and recrystallized grains can be controlled to 50 μm or less. Have difficulty.

700℃より低い温度の水素ガス雰囲気中にR−Fe−B
系磁石合金の鋳造体を置くと、鋳造体に割れが入って脆
くなるから、上記700℃までの昇温途中の雰囲気は、水
素の存在しない真空または不活性ガス雰囲気としなけれ
ばならない。
R-Fe-B in hydrogen gas atmosphere of temperature lower than 700 ℃
When a cast body of a system magnet alloy is placed, the cast body becomes cracked and becomes brittle. Therefore, the atmosphere during the temperature rise up to 700 ° C. should be a vacuum or an inert gas atmosphere in the absence of hydrogen.

脱水素処理を行う際に、水素ガス圧力が1×10-1Torr
より上の圧力で脱水素処理を終えると、鋳造体中に水素
が残留して磁気特性が低下する。
When performing dehydrogenation treatment, hydrogen gas pressure was 1 × 10 -1 Torr
When the dehydrogenation process is completed at a higher pressure, hydrogen remains in the cast body and the magnetic properties deteriorate.

〔実施例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明
するとともに、比較例により、この発明がいかに優れた
効果を奏するものであるかを説明する。
Next, the present invention will be specifically described with reference to Examples, and Comparative Examples will explain how the present invention exhibits excellent effects.

実施例1 希土類類元素としてNdを用い、高周波溶解炉で溶解
し、鋳造して製造したNd−Fe−B系の原子数組成がNd
14.8Fe77.18.1であるNd−Fe−B系合金の鋳造体をAr
ガス雰囲気中で、温度:1100℃、40時間保持の条件で均
質化処理を行って冷却した後に、たて:8mm×横:8mm×高
さ:10mmのブロックに切り出した。
Example 1 Nd was used as a rare earth element, was melted in a high-frequency melting furnace, and was cast to produce a Nd-Fe-B system having an atomic composition of Nd.
14.8 Fe 77.1 B 8.1 Nd-Fe-B based alloy cast body
In a gas atmosphere, the mixture was homogenized under the conditions of a temperature of 1100 ° C. and kept for 40 hours, cooled, and then cut into blocks of vertical: 8 mm × horizontal: 8 mm × height: 10 mm.

この鋳造体ブロックを熱処理炉に入れ、1×10-5Torr
の真空に排気した後、その真空中で室温から温度:810℃
まで昇温し、温度:810℃で30分保持して鋳造体ブロック
の温度を810℃で一様にした後に、水素ガスを1Nl/min
(温度:20℃)の流量で1atmまで熱処理炉に流入させ、
炉内の水素ガス圧力を1atmに維持しながら水素ガスをフ
ローさせて上記鋳造体ブロックに水素を吸蔵させ、その
温度:810℃−水素ガス圧力:1atmの状態を5時間保持し
て上記鋳造体ブロック内に一様に水素を吸蔵させたの
ち、温度:810℃で1時間排気を行い、熱処理炉内の雰囲
気を1×10-5Torrの真空として、上記鋳造体ブロックの
脱水素処理を行った。その後、炉内に1atmになるまでAr
ガスを流入して上記鋳造体ブロックを急冷してNd−Fe−
B系鋳造体永久磁石を得た。
This cast block was placed in a heat treatment furnace and 1 × 10 -5 Torr
After evacuating to a vacuum of room temperature to 810 ℃ in that vacuum
Up to 810 ° C for 30 minutes to make the temperature of the casting block uniform at 810 ° C, and then add hydrogen gas at 1 Nl / min.
(Temperature: 20 ℃) Flow into the heat treatment furnace up to 1 atm,
While maintaining the hydrogen gas pressure in the furnace at 1 atm, hydrogen gas was allowed to flow to occlude hydrogen in the cast block, and the temperature was maintained at 810 ° C.-hydrogen gas pressure: 1 atm for 5 hours, and the cast body was maintained. After hydrogen is evenly occluded in the block, it is evacuated at a temperature of 810 ° C. for 1 hour, and the atmosphere in the heat treatment furnace is set to a vacuum of 1 × 10 −5 Torr to dehydrogenate the cast block. It was Then Ar until 1 atm in the furnace
Nd-Fe-
A B-type cast permanent magnet was obtained.

第3図に、上記実施例1の、この発明のNd−Fe−B系
鋳造体永久磁石の再結晶組織を得るための熱処理パター
ンを示す。
FIG. 3 shows a heat treatment pattern for obtaining the recrystallized structure of the Nd—Fe—B system cast permanent magnet of the present invention in Example 1 above.

得られた上記鋳造体永久磁石を粉砕して、粒度:200me
sh以下の粉末とし、この粉末を用いてX線回折を行った
ところ、主相であるNd2Fe14B相とNd−rich相の回折線が
はっきりと観察された。
The cast permanent magnet obtained above was crushed to a particle size of 200 me.
When X-ray diffraction was performed using this powder as sh or less powder, the diffraction lines of the main phases Nd 2 Fe 14 B phase and Nd-rich phase were clearly observed.

また、上記鋳造体永久磁石を走査電子顕微鏡を用いて
組織観察し、EPMA(電子プローブ微量分析装置)を用い
て組成分析を行った。
The structure of the cast permanent magnet was observed with a scanning electron microscope, and the composition was analyzed with EPMA (electron probe microanalyzer).

第4図(a)に、この実施例により得られた上記鋳造
体永久磁石の走査電子顕微鏡写真、第4図(b)に、こ
の実施例1における均質化処理を行っただけの上記鋳造
体の走査電子顕微鏡写真を示す。
FIG. 4 (a) is a scanning electron micrograph of the cast permanent magnet obtained in this example, and FIG. 4 (b) is the cast only subjected to the homogenization treatment in Example 1. 3 shows a scanning electron micrograph of the above.

EPMA(電子プローブ微量分析装置)による組成分析の
結果、第4図(a)および(b)の走査電子顕微鏡写真
の基地は共にNd2Fe14B相であり、その結晶粒界部にNd−
rich相が存在していた。上記第4図(b)の均質化処理
を行ったままの鋳造体のNd2Fe14B相は、数10〜数1000μ
mのデンドライト状の粗大な結晶粒であった。上記第4
図(a)のこの実施例1により得られた鋳造体永久磁石
は、主相のNd2Fe14B相が約1.5μmの再結晶粒を有して
いることがわかり、EPMA(電子プローブ微量分析装置)
による組成分析の結果でも、再結晶粒はNd2Fe14B相であ
ることが確認された。
As a result of the composition analysis by EPMA (electron probe microanalyzer), the bases of the scanning electron micrographs of FIGS. 4 (a) and 4 (b) are both Nd 2 Fe 14 B phase, and Nd-
There was a rich phase. The Nd 2 Fe 14 B phase of the cast body that has been subjected to the homogenization treatment shown in FIG. 4 (b) is several tens to several thousands μ.
m was a dendrite-like coarse crystal grain. Fourth above
It was found that the cast permanent magnet obtained in this Example 1 in FIG. (A) had the main phase Nd 2 Fe 14 B phase having recrystallized grains of about 1.5 μm. Analysis equipment)
The result of the composition analysis by the method also confirmed that the recrystallized grains were the Nd 2 Fe 14 B phase.

よって、上記第4図(a)から、この発明の鋳造体永
久磁石は、単なる鋳造体組織ではなく、約1.5μmの新
たなNd2Fe14B相の再結晶粒が多数存在している再結晶集
合組織を有していることがわかる。
Therefore, from FIG. 4 (a), the cast body permanent magnet of the present invention is not a mere cast body structure, but has a large number of recrystallized grains of new Nd 2 Fe 14 B phase of about 1.5 μm. It can be seen that it has a crystal texture.

さらに、この再結晶集合組織は、第3図に示される熱
処理を行って得られることもわかる。
Furthermore, it can be seen that this recrystallized texture can be obtained by performing the heat treatment shown in FIG.

上記実施例1により得られた永久磁石の磁気特性の結
果を第1表に示した。
The results of the magnetic characteristics of the permanent magnet obtained in Example 1 are shown in Table 1.

比較例1および2 上記実施例1と同様の、均質化処理を行った、縦:8mm
×横:8mm×高さ:10mmの鋳造体ブロックを熱処理炉に入
れ、1×10-5Torrの真空に排気した後、その真空中で室
温から810℃まで昇温し、温度:810℃で30分保持して鋳
造体ブロックの温度を810℃に一様にした後、Arガスを1
Nl/min(20℃)の流量で1atmまで熱処理炉に流入させ、
炉内を1atmに維持しながらArガスをフローさせ、その温
度:810℃−Arガス圧力:1atmの状態を5時間保持したの
ち、温度:810℃で1時間排気を行い、熱処理炉内の雰囲
気を1×10-5Torrの真空とした。その後、炉内に1atmに
なるまでArガスを流入して上記鋳造体ブロックを急冷し
てNd−Fe−B系鋳造体永久磁石を得た(比較例1)。
Comparative Examples 1 and 2 The same homogenization treatment as in Example 1 above was performed: length: 8 mm
× width: 8mm × height: 10mm cast block put in a heat treatment furnace, after evacuating to a vacuum of 1 × 10 -5 Torr, the temperature is raised from room temperature to 810 ℃ in the vacuum, temperature: 810 ℃ After holding for 30 minutes to make the temperature of the cast block uniform at 810 ℃, Ar gas
Flow into the heat treatment furnace at a flow rate of Nl / min (20 ° C) up to 1 atm,
Ar gas was flowed while maintaining the furnace at 1 atm, and the temperature: 810 ° C-Ar gas pressure: 1 atm was maintained for 5 hours, and then exhausted at temperature: 810 ° C for 1 hour to obtain the atmosphere in the heat treatment furnace. Was set at 1 × 10 −5 Torr vacuum. After that, Ar gas was flown into the furnace to 1 atm to rapidly cool the cast block to obtain a Nd-Fe-B type cast permanent magnet (Comparative Example 1).

また、上記実施例1の熱処理において水素ガスを用い
ずに、1×10-5Torrの真空中で実施例1と同様の熱処理
を行って、Nd−Fe−B系鋳造体永久磁石を得た(比較例
2)。
In the heat treatment of Example 1, the same heat treatment as in Example 1 was performed in a vacuum of 1 × 10 −5 Torr without using hydrogen gas to obtain a Nd—Fe—B based cast permanent magnet. (Comparative example 2).

上記比較例1および2の熱処理パターンを第3−1図
および第3−2図に示す。
The heat treatment patterns of Comparative Examples 1 and 2 are shown in FIGS. 3-1 and 3-2.

上記比較例1および2で得られた鋳造体永久磁石の組
織は、第4図(b)に示された組織と同様の、主相のNd
2Fe14B相がデンドライト状の粗大な結晶粒を有してい
た。
The structures of the cast permanent magnets obtained in Comparative Examples 1 and 2 are similar to those of the structure shown in FIG.
2 Fe 14 B phase had coarse dendrite-like grains.

上記比較例1および2で得られた鋳造体永久磁石の磁
気特性の結果も第1表に示した。
The results of the magnetic properties of the cast permanent magnets obtained in Comparative Examples 1 and 2 are also shown in Table 1.

第1表から、この発明の鋳造体永久磁石は、保磁力が1
2.5KOeと高く、すぐ れた磁気特性を示すことがわかる。
From Table 1, the cast permanent magnet of the present invention has a coercive force of 1
High as 2.5KOe and soon It can be seen that the magnetic properties are shown.

実施例2〜10および比較例3〜5 希土類元素としてNdおよびPrを用い、電子ビーム溶解
炉で溶解、鋳造して製造したNd−Pr−Fe−B系の原子数
組成がNd14.6Pr0.3Fe78.46.7であるNd−Pr−Fe−B系
合金の鋳造体を、たて:8mm×横:8mm×高さ:10mmのブロ
ックに切り出した。この鋳造体ブロックを熱処理炉に入
れ、2×10-5Torrの真空に排気した後、その真空中で室
温から、第2表の水素吸蔵温度まで昇温し、上記第2表
の水素吸蔵温度で30分保持して鋳造体ブロックの温度を
均一にした後、水素ガスを0.6Nl/min(温度:20℃)の流
量で水素ガス圧力:500Torrになるまで熱処理炉に流入さ
せ、炉内を水素ガス圧力:500Torrに維持しながら水素ガ
スを減圧フローさせて上記鋳造体ブロックに水素を吸蔵
させ、上記第2表の水素吸蔵温度−水素ガス圧力:500To
rrの状態を2時間保持して上記鋳造体ブロック内に一様
に水素を吸蔵させた。
Examples 2 to 10 and Comparative Examples 3 to 5 Nd and Pr were used as rare earth elements, and the Nd-Pr-Fe-B system produced by melting and casting in an electron beam melting furnace had an atomic composition of Nd 14.6 Pr 0.3 Fe. A cast body of 78.4 B 6.7 Nd-Pr-Fe-B system alloy was cut into a block having a length of 8 mm, a width of 8 mm, and a height of 10 mm. This cast block was put into a heat treatment furnace, and after being evacuated to a vacuum of 2 × 10 −5 Torr, the temperature was raised from room temperature to the hydrogen storage temperature in Table 2 in the vacuum, and the hydrogen storage temperature in Table 2 was increased. After keeping the temperature of the casting block uniform for 30 minutes, hydrogen gas is flown into the heat treatment furnace at a flow rate of 0.6 Nl / min (temperature: 20 ° C) until the hydrogen gas pressure becomes 500 Torr, and the inside of the furnace is heated. While maintaining the hydrogen gas pressure: 500 Torr, the hydrogen gas was decompressed and allowed to occlude hydrogen in the casting block, and the hydrogen absorption temperature in Table 2 above-hydrogen gas pressure: 500 To.
The state of rr was maintained for 2 hours to uniformly occlude hydrogen in the cast block.

ついで、上記第2表の脱水素温度で1時間排気を行
い、熱処理炉内の雰囲気を1×10-5Torrの真空として、
上記鋳造体ブロックの脱水素処理を行った。その後炉内
に1atmになるまでArガスを流入して上記鋳造体ブロック
を急冷し、Nd−Pr−Fe−B系鋳造体永久磁石を得た。得
られた上記鋳造体永久磁石について組織観察を行い、再
結晶集合組織の有無を調べ、磁気特性を測定して、それ
ぞれの結果を第2表に示した。
Then, evacuation was performed for 1 hour at the dehydrogenation temperature shown in Table 2 above, and the atmosphere in the heat treatment furnace was set to a vacuum of 1 × 10 −5 Torr,
The cast block was dehydrogenated. After that, Ar gas was flown into the furnace to rapidly cool the cast block to obtain an Nd-Pr-Fe-B-based cast permanent magnet. The structure of the obtained cast permanent magnet was observed, the presence or absence of a recrystallization texture was examined, and the magnetic characteristics were measured. The results are shown in Table 2.

上記第2表から、真空中で温度:700〜1000℃に昇温
し、温度:700〜1000℃で水素吸蔵と脱水素処理を行う
と、上記鋳造体ブロックは、再結晶を有することがわか
り、特に温度:800〜900℃の範囲の水素吸蔵と脱水素処
理においては、高い磁気特性を有することがわかる。
It can be seen from Table 2 above that when the temperature is raised to 700 to 1000 ° C. in vacuum and the hydrogen absorption and dehydrogenation treatment is performed at the temperature of 700 to 1000 ° C., the cast block has recrystallization. It can be seen that it has high magnetic properties particularly in hydrogen storage and dehydrogenation treatment in the temperature range of 800 to 900 ° C.

実施例15〜17および比較例11,12 希土類元素としてNdとDyを用い、高周波溶解炉で溶
解、鋳造して製造したNd−Dy−Fe−B系の原子数組成が
Nd14.8Dy0.3Fe78.16.8であるNd−Dy−Fe−B系合金の
鋳造体をArガス雰囲気中で、温度:1080℃−60時間保持
の条件で均質化処理を行って冷却した後に、たて:8mm×
横:8mm×高さ:10mmのブロックに切り出した。この鋳造
体ブロックを熱処理炉に入れ、1×10-5Torrの真空に排
気した後、その真空中で室温から830℃まで昇温し、温
度:830℃で1時間保持して鋳造体ブロックの温度を830
℃で一様にした後に、水素ガスを0.2Nl/min(温度:20
℃)の流量で600Torrまで熱処理炉に流入させ、炉内を
水素ガス圧力:600Torrに維持しながら水素ガスを減圧フ
ローさせて上記鋳造体ブロックに水素を吸蔵させ、温
度:830℃−水素ガス圧力:600Torrの状態を10時間保持し
て上記鋳造体ブロック内に一様に水素を吸蔵させたの
ち、温度:820℃で排気を行い、熱処理炉内の雰囲気をそ
れぞれ、水素ガス圧力:1×10-6Torr(実施例15)、1×
10-3Torr(実施例16)、1×10-1Torr(実施例17)、2
×10-1Torr(比較例11)および1Torr(比較例12)の真
空となるまで上記鋳造体ブロックの脱水素処理を行っ
た。その後、炉内に1atmになるまでArガスを流入して上
記鋳造体ブロックを急冷し、Nd−Dy−Fe−B系鋳造体永
久磁石を得た。
Examples 15 to 17 and Comparative Examples 11 and 12 Nd and Dy were used as rare earth elements, and the Nd-Dy-Fe-B system prepared by melting and casting in a high-frequency melting furnace had an atomic composition of Nd-Dy-Fe-B.
A Nd 14.8 Dy 0.3 Fe 78.1 B 6.8 Nd-Dy-Fe-B alloy cast body was homogenized and cooled in an Ar gas atmosphere at a temperature of 1080 ° C for 60 hours, and then cooled. Vertical: 8 mm ×
Width: 8 mm × height: cut into 10 mm blocks. This cast block was put in a heat treatment furnace, and after it was evacuated to a vacuum of 1 × 10 -5 Torr, the temperature was raised from room temperature to 830 ° C. in that vacuum, and the temperature was maintained at 830 ° C. for 1 hour. Temperature 830
After homogenizing at ℃, add hydrogen gas at 0.2Nl / min (Temperature: 20
℃) flow into the heat treatment furnace up to 600 Torr, hydrogen gas is depressurized while maintaining hydrogen gas pressure in the furnace at 600 Torr to occlude hydrogen in the above cast block, temperature: 830 ℃ -hydrogen gas pressure After holding the state of: 600 Torr for 10 hours to occlude hydrogen evenly in the above cast block, exhaust the gas at a temperature of 820 ° C and set the atmosphere in the heat treatment furnace to hydrogen gas pressure: 1 x 10 -6 Torr (Example 15), 1x
10 −3 Torr (Example 16), 1 × 10 −1 Torr (Example 17), 2
The cast block was dehydrogenated until a vacuum of × 10 -1 Torr (Comparative Example 11) and 1 Torr (Comparative Example 12) was achieved. Then, Ar gas was flown into the furnace until the pressure reached 1 atm and the cast block was rapidly cooled to obtain a Nd-Dy-Fe-B-based cast permanent magnet.

得られた上記鋳造体永久磁石を組織観察したところ、
上記実施例15〜17および比較例11,12で得られた鋳造体
永久磁石のすべてにおいて再結晶組織を有しており、ま
た、それらの磁気特性を測定してその結果を第3表に示
した。
When the structure of the obtained cast permanent magnet was observed,
All of the cast permanent magnets obtained in Examples 15 to 17 and Comparative Examples 11 and 12 had a recrystallized structure, and their magnetic properties were measured, and the results are shown in Table 3. It was

上記第3表から、この発明の方法で製造した鋳造体永
久磁石は、脱水素処理を行う際に、水素ガス圧力が1×
10-1Torr以下の圧力で脱水素処理を終えるとすぐれた磁
気特性を示すことがわかる。
From Table 3 above, the cast permanent magnet manufactured by the method of the present invention has a hydrogen gas pressure of 1 × when subjected to dehydrogenation treatment.
It can be seen that excellent magnetic properties are exhibited when the dehydrogenation treatment is completed at a pressure of 10 -1 Torr or less.

実施例18〜19および比較例13,14 上記実施例15〜17および比較例11,12において、均質
化処理を行ったNd−Dy−Fe−B系合金鋳造体のたて:8mm
×横:8mm×高さ:10mmに切り出した鋳造体ブロックを熱
処理炉に入れ、1×10-5Torrの真空に排気した後、1atm
までArガスを流入させ、Arガスをフローさせながら室温
から830℃まで昇温し、830℃で1時間保持して鋳造体ブ
ロックの温度を830℃で一様にした後に、Arガスフロー
を止めて水素ガスを0.2Nl/min(温度:20℃)の流量で熱
処理炉に流入させ、炉内を水素ガス置換し、炉内を1atm
に維持しながら水素ガスをフローさせて上記鋳造体ブロ
ックに水素を吸蔵させ、温度:830℃−水素ガス圧力:1at
mの状態を10時間保持して上記鋳造体ブロック内に一様
に水素を吸蔵させたのち、水素ガスフローを止めて再び
Arガスを流入させ、炉内をArガス置換し、30分保持して
炉内を1atmのArガス雰囲気とした。この時水素ガスは上
記Arガス雰囲気中にまだ残留していた。その後、温度:8
20℃で熱処理炉のArガスと残留水素ガスからなる雰囲気
をそれぞれ水素ガス分圧が、5×10-4Torr(実施例1
8)、8×10-2Torr(実施例19)、2×10-1Torr(比較
例13)および1Torr(比較例14)となるまで排気を行
い、上記鋳造体ブロックの脱水素処理を行った。水素ガ
ス分圧測定は、ガスクロマトグラム分析で行い、キャリ
アガスはArを用いて水素ガスの体積比から換算した。そ
の後、炉内に1atmになるまでArガスを流入して鋳造体ブ
ロックを急冷してNd−Dy−Fe−B系鋳造体永久磁石を得
た。
Examples 18 to 19 and Comparative Examples 13 and 14 In the above Examples 15 to 17 and Comparative Examples 11 and 12, the Nd-Dy-Fe-B-based alloy castings which have been subjected to the homogenization treatment have a vertical length of 8 mm.
× width: 8 mm × height: 10 mm, cast block cut into a heat treatment furnace and evacuated to a vacuum of 1 × 10 -5 Torr, then 1 atm
Ar gas is flowed in, the temperature is raised from room temperature to 830 ° C while Ar gas is flowing, the temperature of the cast block is kept uniform at 830 ° C for 1 hour, and then the Ar gas flow is stopped. Hydrogen gas at a flow rate of 0.2 Nl / min (temperature: 20 ° C) into the heat treatment furnace to replace the hydrogen gas in the furnace with 1 atm in the furnace.
While maintaining at, hydrogen gas is caused to flow into the above-mentioned cast body block to occlude hydrogen, and temperature: 830 ° C-hydrogen gas pressure: 1 at
After holding the m state for 10 hours to evenly store hydrogen in the casting block, stop the hydrogen gas flow and restart the hydrogen gas flow.
Ar gas was flown in, the inside of the furnace was replaced with Ar gas, and the furnace was maintained for 30 minutes to create an atmosphere of Ar gas of 1 atm. At this time, hydrogen gas still remained in the Ar gas atmosphere. Then the temperature: 8
At a temperature of 20 ° C., the atmosphere consisting of Ar gas and residual hydrogen gas in the heat treatment furnace was adjusted to a hydrogen gas partial pressure of 5 × 10 −4 Torr (Example 1
8), 8 × 10 -2 Torr (Example 19), 2 × 10 -1 Torr (Comparative Example 13) and 1 Torr (Comparative Example 14) were evacuated, and the cast block was dehydrogenated. It was The hydrogen gas partial pressure was measured by gas chromatogram analysis, and the carrier gas was converted from the volume ratio of hydrogen gas using Ar. After that, Ar gas was flown into the furnace until it reached 1 atm and the cast block was rapidly cooled to obtain a Nd-Dy-Fe-B-based cast permanent magnet.

このようにして得られた上記鋳造体永久磁石も全て再
結晶組織を有しており、それらの鋳造体永久磁石の磁気
特性を測定してその結果を第4表に示した。
All of the cast permanent magnets thus obtained also had a recrystallized structure, and the magnetic properties of these cast permanent magnets were measured, and the results are shown in Table 4.

上記第4表から、この発明の方法で得られた上記鋳造
体永久磁石は、脱水素処理を行う際に、水素ガス分圧が
1×10-1Torr以下の圧力で脱水素処理を終えるとすぐれ
た磁気特性を示すことがわかる。
It can be seen from Table 4 above that when the cast permanent magnet obtained by the method of the present invention is subjected to the dehydrogenation treatment, the dehydrogenation treatment is completed at a hydrogen gas partial pressure of 1 × 10 −1 Torr or less. It can be seen that it exhibits excellent magnetic properties.

〔発明の効果〕〔The invention's effect〕

上述のように、この発明の方法で製造したR−Fe−B
系鋳造体永久磁石は、R2Fe14B相を主相とする再結晶集
合組織を有するために、すぐれた磁気特性を示し、さら
に再結晶粒径を制御することによって上記鋳造体永久磁
石の磁気特性、耐酸化性、耐熱性等をも向上することも
でき、薄型磁石としてもその磁気特性を維持することも
できる。
As described above, R-Fe-B produced by the method of the present invention
The cast permanent magnet has excellent magnetic properties because it has a recrystallized texture with the R 2 Fe 14 B phase as the main phase, and by controlling the recrystallized grain size, the cast permanent magnet Magnetic properties, oxidation resistance, heat resistance, etc. can also be improved, and the magnetic properties can be maintained even as a thin magnet.

また、この発明の方法で製造したR−Fe−B系鋳造体
永久磁石は、R−Fe−B系合金粉末を焼結することな
く、鋳造体ブロックを水素吸蔵および脱水素処理するも
のであるから、従来の粉末を焼結して製造するR−Fe−
B系永久磁石の製造法に比べて製造工程が非常に簡単で
あり、生産性および経済性についてもすぐれた効果をも
たらすものである。
Further, the R-Fe-B type cast body permanent magnet manufactured by the method of the present invention is one in which the cast body block is subjected to hydrogen storage and dehydrogenation treatment without sintering the R-Fe-B type alloy powder. R-Fe- produced by sintering conventional powder from
The manufacturing process is much simpler than that of the B-based permanent magnet, and the productivity and economy are excellent.

【図面の簡単な説明】[Brief description of drawings]

第1図は、従来の焼結磁石の組織の説明図、 第2図(a)は、R−Fe−B系合金の鋳造体の組織の説
明図、 第2図(b)は、第2図(a)に示された組織を有する
鋳造体を処理してR2Fe14B相の再結晶を生成させた組織
を示す説明図、 第2図(c)は、第2図(b)の再結晶生成組織を成長
させて得られた再結晶集合組織の説明図、 第3図は、実施例1の熱処理パターン、 第3−1図は、比較例1の熱処理パターン、 第3−2図は、比較例2の熱処理パターン、 第4図(a)は、実施例1により得られた鋳造体永久磁
石の走査電子顕微鏡による金属組織写真、 第4図(b)は、実施例1の均質化処理した鋳造体の走
査電子顕微鏡による金属組織写真を示す。 1……R2Fe14B相、2……R−rich相、 3……B−rich相、1′……再結晶したR2Fe14B相。
FIG. 1 is an explanatory view of the structure of a conventional sintered magnet, FIG. 2 (a) is an explanatory view of the structure of a cast body of an R—Fe—B alloy, and FIG. 2 (b) is a second view. FIG. 2 (c) is an explanatory view showing a structure in which a cast body having the structure shown in FIG. (A) is treated to generate recrystallization of the R 2 Fe 14 B phase, and FIG. 2 (c) is shown in FIG. 2 (b). Of the recrystallized texture obtained by growing the recrystallized texture of Fig. 3, Fig. 3 is the heat treatment pattern of Example 1, Fig. 3-1 is the heat treatment pattern of Comparative Example 1, and Fig. 3-2. The figure shows the heat treatment pattern of Comparative Example 2, FIG. 4 (a) is a metallographic photograph of the cast permanent magnet obtained in Example 1 by a scanning electron microscope, and FIG. 4 (b) is the image of Example 1. The metallographic photograph by the scanning electron microscope of the homogenized casting is shown. 1 ...... R 2 Fe 14 B phase, 2 ... R-rich phase, 3 .... B-rich phase, 1 '... recrystallized R 2 Fe 14 B phase.

フロントページの続き (72)発明者 小川 保 埼玉県大宮市北袋町1―297 三菱金属 株式会社中央研究所内 (56)参考文献 特開 昭61−238915(JP,A) 特開 昭62−23902(JP,A) 特開 昭62−198103(JP,A)Front Page Continuation (72) Inventor Tamotsu Ogawa 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture, Central Research Laboratory, Mitsubishi Metals Co., Ltd. (56) Reference JP-A-61-238915 (JP, A) JP-A-62-23902 ( JP, A) JP 62-198103 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R(但し、RはYを含む希土類元素を示
す)とFeとBを主成分とするR−Fe−B系合金の鋳造体
を、 水素の存在しない真空または不活性ガス雰囲気中で温
度:700〜1000℃まで昇温し、 引き続いて水素ガス雰囲気中において、温度:700〜1000
℃に保持して上記鋳造体に水素を吸蔵させ、 さらに引き続いて温度:700〜1000℃で、水素ガス圧力:1
×10-1Torr以下または水素ガス分圧:1×10-1Torr以下の
非酸化性雰囲気で脱水素処理し、 ついで、冷却する、 ことを特徴とする希土類−Fe−B系鋳造体永久磁石の製
造法。
1. A cast body of R (Fe is a rare earth element containing Y) and an R—Fe—B based alloy containing Fe and B as main components, and a vacuum or inert gas atmosphere free of hydrogen. Temperature: 700 ~ 1000 ℃ in the following, and subsequently in a hydrogen gas atmosphere, temperature: 700 ~ 1000
Hold the temperature at ℃ to occlude hydrogen in the above casting, and then continue at a temperature of 700 to 1000 ℃, hydrogen gas pressure: 1
A rare earth-Fe-B based cast permanent magnet, characterized by being dehydrogenated in a non-oxidizing atmosphere of not more than × 10 -1 Torr or a hydrogen gas partial pressure of not more than 1 × 10 -1 Torr, and then cooled. Manufacturing method.
【請求項2】RとFeとBを主成分とするR−Fe−B系合
金の鋳造体を、 水素の存在しない真空または不活性ガス雰囲気中で温
度:700〜1000℃まで昇温し保持することを特徴とする特
許請求の範囲第1項記載の希土類−Fe−B系永久磁石の
製造方法。
2. A cast body of an R—Fe—B alloy containing R, Fe and B as main components is heated to 700 to 1000 ° C. in a vacuum or an inert gas atmosphere in the absence of hydrogen and held. The method for producing a rare earth-Fe-B system permanent magnet according to claim 1, wherein
JP62257669A 1987-10-13 1987-10-13 Manufacturing method of rare earth-Fe-B cast permanent magnet Expired - Lifetime JP2564492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257669A JP2564492B2 (en) 1987-10-13 1987-10-13 Manufacturing method of rare earth-Fe-B cast permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257669A JP2564492B2 (en) 1987-10-13 1987-10-13 Manufacturing method of rare earth-Fe-B cast permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7248797A Division JP2746223B2 (en) 1995-09-01 1995-09-01 Rare earth-Fe-B cast permanent magnet

Publications (2)

Publication Number Publication Date
JPH0199201A JPH0199201A (en) 1989-04-18
JP2564492B2 true JP2564492B2 (en) 1996-12-18

Family

ID=17309459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257669A Expired - Lifetime JP2564492B2 (en) 1987-10-13 1987-10-13 Manufacturing method of rare earth-Fe-B cast permanent magnet

Country Status (1)

Country Link
JP (1) JP2564492B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69009335T2 (en) * 1989-07-31 1994-11-03 Mitsubishi Materials Corp Rare earth powder for permanent magnet, manufacturing process and bonded magnet.
US5143560A (en) * 1990-04-20 1992-09-01 Hitachi Metals, Inc., Ltd. Method for forming Fe-B-R-T alloy powder by hydrogen decrepitation of die-upset billets
FR2665295B1 (en) * 1990-07-25 1994-09-16 Aimants Ugimag Sa METHOD OF OBTAINING IN DIVIDED FORM A MAGNETIC MATERIAL OF THE RARE EARTH TYPE - TRANSITION METALS - BORON FOR MAGNETS RESISTANT TO CORROSION.
US5127970A (en) * 1991-05-21 1992-07-07 Crucible Materials Corporation Method for producing rare earth magnet particles of improved coercivity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655835B2 (en) * 1985-04-16 1997-09-24 日立金属株式会社 Permanent magnet alloy and manufacturing method thereof
JPH0617481B2 (en) * 1985-07-23 1994-03-09 住友特殊金属株式会社 Alloy powder for rare earth magnets and method for producing the same
JPH07123083B2 (en) * 1986-03-03 1995-12-25 セイコーエプソン株式会社 Cast rare earth-method for manufacturing iron-based permanent magnets

Also Published As

Publication number Publication date
JPH0199201A (en) 1989-04-18

Similar Documents

Publication Publication Date Title
US4981532A (en) Rare earth-iron-boron magnet powder and process of producing same
JPH0617546B2 (en) Permanent magnet fabrication from crystalline rare earth-transition metal-boron alloy with very low coercive force
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2564492B2 (en) Manufacturing method of rare earth-Fe-B cast permanent magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JPH08181009A (en) Permanent magnet and its manufacturing method
JP2746223B2 (en) Rare earth-Fe-B cast permanent magnet
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2623731B2 (en) Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JPH11158588A (en) Raw alloy for manufacture of rare earth magnetic powder, and its production
JPH10172850A (en) Production of anisotropic permanent magnet
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JP3567720B2 (en) Raw material alloy for producing rare earth magnet powder and method for producing the same
JP3562138B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JP2715378B2 (en) Method for producing Nd-Fe-B based sintered magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JP3562597B2 (en) Raw material alloy for producing rare earth magnet powder
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy