JP2746223B2 - Rare earth-Fe-B cast permanent magnet - Google Patents

Rare earth-Fe-B cast permanent magnet

Info

Publication number
JP2746223B2
JP2746223B2 JP7248797A JP24879795A JP2746223B2 JP 2746223 B2 JP2746223 B2 JP 2746223B2 JP 7248797 A JP7248797 A JP 7248797A JP 24879795 A JP24879795 A JP 24879795A JP 2746223 B2 JP2746223 B2 JP 2746223B2
Authority
JP
Japan
Prior art keywords
phase
permanent magnet
cast
temperature
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7248797A
Other languages
Japanese (ja)
Other versions
JPH08107007A (en
Inventor
拓夫 武下
亮治 中山
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7248797A priority Critical patent/JP2746223B2/en
Publication of JPH08107007A publication Critical patent/JPH08107007A/en
Application granted granted Critical
Publication of JP2746223B2 publication Critical patent/JP2746223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、すぐれた磁気特
性を有する、Yを含む希土類元素(以下、Rで示す)−
Fe−B系合金鋳造体の永久磁石に関するものである。 【0002】 【従来の技術】R−Fe−B系永久磁石は、希土類系永
久磁石の中でも特に磁気特性のすぐれた磁石として注目
されている。上記R−Fe−B系永久磁石の組織は、一
般的には、強磁性相であり正方晶構造をとる主相のR2
Fe14B金属間化合物相(以下、R2 Fe14B相とい
う)と、R−rich相とB−rich相から構成されている。
上記R−Fe−B系永久磁石では、その磁気特性が上記
R−Fe−B系永久磁石の組織形態に大きく依存してお
り、R−Fe−B系合金のすぐれた磁気特性を生かせる
ような組織形態を有する永久磁石の開発が行なわれてい
た。 【0003】現在、上記R−Fe−B系永久磁石として
は、以下に示すものがある。 【0004】(1) 粉末冶金法による焼結体を特徴と
する永久磁石(例えば、特開昭59−460008号公
報参照)。 【0005】この焼結体を特徴とする永久磁石(以下、
焼結磁石と呼ぶ)は、まず、R−Fe−B系合金のイン
ゴットあるいは粗粉末を、種々の方法で粉砕して数μm
程度の微粉末とし、この微粉末を磁場中あるいは無磁場
中で成形した圧粉体とする。次にその圧粉体を真空中ま
たは非酸化性ガス雰囲気中で、室温から昇温して、焼結
温度:900〜1200℃で30〜120分保持の条件
で焼結し、さらに必要に応じて保磁力を増加させるため
に引き続き適温の熱処理を行ってから冷却することによ
って製造されている。上記焼結磁石の磁気特性は、等方
性の場合、BHmax =10MGOe程度であり、異方性
の場合、BHmax =30MGOe以上の値を示す。 【0006】上記焼結磁石の組織は、図7に示すよう
に、R−Fe−B系永久磁石の主相であるR2 Fe14
相1と、B−rich相3、そしてR2 Fe14B相1やB−
rich相3の粒界部に存在するR−rich相2からなってい
る。上記図7のR2 Fe14B相は、保磁力を増加させる
ために平均結晶粒径が数μm〜20μmに制御されてい
る。 【0007】(2) 超急冷法によるリボン状急冷粉末
を、高温圧縮、塑性加工した永久磁石(例えば、特開昭
60−100402号参照) この急冷粉末を圧縮した物質を特徴とする永久磁石(以
下、高温圧縮磁石と呼ぶ)は、まず、溶融状態のR−F
e−B系合金を急冷凝固させることによってリボン状の
薄片を得、それを温度:700℃以上に加熱して数分間
で高温圧縮、塑性加工を行ってから冷却することによっ
て製造されている。 【0008】上記高温圧縮磁石の磁気特性は、等方性の
場合、BHmax =13MGOe程度、塑性加工による異
方性化によってBHmax =30MGOe程度になる。上
記高温圧縮磁石の組織は、主相が平均結晶粒径:数10
nm〜数100nmのR2 Fe14B相であり、その粒界部に
R−rich相や非晶質相が存在するという微細構造であ
り、主相のR2 Fe14B相は単磁区粒径:0.3μm以
下の組織に制御されている。 【0009】 【発明が解決しようとする課題】R−Fe−B系合金
が、高い保磁力を示す永久磁石となるためには、(a)
主相であるR2 Fe14B相の平均結晶粒径が50μm
以下、好ましくは単磁区粒子となり得る0.3μm以下
であること、(b) 主相の結晶粒内、結晶粒界部に逆
磁区発生時の核となる不純物や歪がないこと、(c)
主相であるR2 Fe14B相の平均結晶粒径が数μmから
50μmであれば、R2 Fe14B相の結晶粒界部にR−
rich相が存在し、上記R2 Fe14B相の結晶粒が上記R
−rich相で囲まれていること、(d) 磁石粉末の個々
のR2 Fe14B相において、結晶磁気異方性の磁化容易
軸がそろっており、磁気的異方性を有すること、であ
り、特に上記(a)の主相のR2 Fe14B相の平均結晶
粒径が、保磁力を大きく左右していると考えられてい
る。 【0010】従来、R−Fe−B系合金を単に溶解して
鋳造した、あるいはさらに均質化処理を行った鋳造体の
組織では、後に熱処理を施しても主相のR2 Fe14B相
を数10μm以下に制御することができないために、そ
の鋳造体は、すぐれた磁気特性が得られなかった。この
ため、上記従来の技術(1)のごとく焼結磁石にした
り、上記従来の技術(2)のごとく高温圧縮磁石とした
りして、上記R−Fe−B系合金の組織制御を行ってい
た。 【0011】上記従来の技術(1)の焼結磁石は、主相
であるR2 Fe14B相の平均結晶粒径を数μm〜20μ
mに制御する必要があるために、上記焼結工程での主相
の粒成長を考慮して、上記焼結用の微粉末は、通常3〜
4μmに粉砕しなければならない。しかし、永久磁石用
R−Fe−B系合金は、3〜4μmの微粉末にすると非
常に活性となるため、焼結体中に酸化物等の不純物が発
生して、焼結磁石の磁気特性がばらつくと言う欠点があ
った。さらに永久磁石としては、主相であるR 2 Fe14
B相が単磁区粒子となり得る0.3μm以下が好ましい
が、上記焼結法では、微粉砕時の酸化が激しく、製造す
ることができない。また、上記焼結磁石は、厚みが3mm
以下の薄型の形状では、厚みが薄くなるにつれて磁気特
性が大幅に低下するという欠点もあった。このような欠
点を補うために、上記合金に添加元素を加えたり、焼結
工程を改良したり、焼結磁石に被膜を行う等の処置が行
われ、上記焼結磁石の高い磁気特性を引き出すには、複
雑な工程や処理を行わざるを得なかった。 【0012】上記従来の技術(2)の高温圧縮磁石は、
急冷粉末を高温圧縮、塑性加工して初めて永久磁石とな
るために、磁石形状の自由度、歩留りの点から用途は制
御されていた。また、高温圧縮、塑性加工により、微細
構造のうち主相であるR2 Fe14B相は、粒成長を起こ
して保磁力を低下させるために、上記高温圧縮工程は、
数分間という非常に短い時間で行う必要があり、高い磁
気特性の永久磁石を得るには、その製造工程が複雑にな
らざるを得なかった。 【0013】すなわち、上記従来の技術(1)および
(2)のR−Fe−B系永久磁石は、いずれも一度R−
Fe−B系磁石合金を粉末にし、それを焼結してR−F
e−B系永久磁石を製造するものであるために、R−F
e−B系合金粉末の取扱いが難しく、またその焼結方法
にもいろいろと注意を払わなければならず、製造工程も
複雑にならざるを得ないという問題点があった。 【0014】 【課題を解決するための手段】そこで、本発明者等は、
すぐれた磁気特性は得られないと言われているR−Fe
−B系合金の鋳造体にすぐれた磁気特性を付与すること
ができるならば、簡単にすぐれた磁気特性を有するR−
Fe−B系永久磁石を製造することができるという考え
のもとに、すぐれた磁気特性を有するR−Fe−B系鋳
造体永久磁石を得べく研究を行った結果、R−Fe−B
系合金の鋳造体の組織を、R2 Fe14B相の再結晶集合
組織(この組織については後で詳述する)とすることに
よりすぐれた磁気特性を有するR−Fe−B系鋳造体永
久磁石を得ることができるという知見を得たのである。 【0015】この発明は、かかる知見にもとづいてなさ
れたものであって、R−Fe−B系合金の鋳造体からな
る永久磁石において、 平均再結晶粒径:0.05〜50μmの正方晶構造をと
るR2 Fe14B金属間化合物相の再結晶が集合した再結
晶集合組織を有するR−Fe−B系鋳造体永久磁石に特
徴を有するものである。 【0016】 【発明の実施の形態】この発明のR−Fe−B系鋳造体
永久磁石の組織を図1〜図3にもとづいて説明する。 【0017】図3は、R−Fe−B系磁石合金を鋳造し
て得た鋳造体の組織の概略図である。上記図3におい
て、1はR2 Fe14B相、2はR−rich相である。R−
rich相2は、主相であるR2 Fe14B相1のおもに粒界
部に存在する。上記図3に示される鋳造体を、適切な条
件のもとで処理すると、図2に示されるようにR2 Fe
14B相1の粒内あるいは粒界部にR2 Fe14B相の再結
晶1′が発生し、それらが成長して図1に示されるよう
なR2 Fe14B相の再結晶1′が集合した組織(以下、
この再結晶1′が集合した組織を再結晶集合組織とい
う)となる。 【0018】なお、上記鋳造体を適切な条件のもとで処
理する具体的な方法は後述する。 【0019】上記図2は、上記図3に示される鋳造体を
処理し始めて、R2 Fe14B相の再結晶1′が発生し始
めた頃の鋳造体の組織の概略図であり、上記図1は、上
記図3に示される鋳造体の処理終了後の鋳造体の組織を
示す概略図である。 【0020】ここで、図3で示されるR−Fe−B系合
金のR2 Fe14B相1から図2に示されるようにR2
14B相の再結晶1′を生成させ、それを成長させて図
1に示されるようなR2 Fe14B相の再結晶1′からな
る集合組織(すなわち、再結晶集合組織)となっても、
上記図1および図2において形成されたR2 Fe14B相
の再結晶1′は、図3の個々のR2 Fe14B相1の領域
内で完全にランダムな結晶方位の結晶配置ではなく、一
定の方位を持つ組織となっているのである。 【0021】一方、鋳造体組織のR−rich相2は、図2
に示されるように、R2 Fe14B相の再結晶生成初期に
も残存し、さらにR2 Fe14B相の再結晶1′が成長し
て図1に示される平均再結晶粒径:0.05μm以上の
再結晶1′が集合した再結晶集合組織となっても残存
し、再結晶集合組織を包囲した状態で残存する。また再
結晶集合組織の再結晶1′の粒界部にR−rich相2が一
部析出することもある。 【0022】この発明は、図1に示されるR2 Fe14
相の再結晶1′が集合した再結晶集合組織を有するR−
Fe−B系合金の鋳造体からなるR−Fe−B系鋳造体
永久磁石に特徴を有するものである。 【0023】したがって、この発明のR−Fe−B系鋳
造体永久磁石は、再結晶集合組織を有する鋳造体である
のに対し、従来の技術(1)および(2)のR−Fe−
B系永久磁石は、再結晶集合組織を有しない点や、焼結
体、急冷粉末を圧縮した物質という点で全く相違する。 【0024】この発明のR−Fe−B系永久磁石が高い
保磁力を示す理由は、主相であるR2 Fe14B相の再結
晶粒径が50μm以下、好ましくは、単磁区粒子となり
得る0.3μmに近い0.05〜3μmであり、再結晶
粒のためにその粒内および粒界部に不純物や歪がなく、
再結晶集合組織と再結晶集合組織の境界部にはR−rich
相が存在しているからである。上記R2 Fe14B相の平
均再結晶粒径が0.05μmより小さいと着磁が困難と
なって実用的でなく、50μmより大きいと低い保磁力
しか示さず、すぐれた磁気特性を有するR−Fe−B系
永久磁石とは言えない。 【0025】なお、この発明のR2 Fe14B相の再結晶
が集合した再結晶集合組織を有するR−Fe−B系鋳造
体永久磁石のFeの一部をCo,Ni,Cr,Mo,
W,Ti,Zr,Hfの1種または2種以上の少量で置
換してもよい。 【0026】上記再結晶集合組織は、R−Fe−B系合
金の鋳造体を、水素の存在しない真空または不活性ガス
雰囲気中で700〜1000℃まで昇温し、または昇温
保持し、引き続いて水素ガス雰囲気において、温度:7
00〜1000℃で保持して上記鋳造体に水素を吸蔵さ
せた後に、温度:700〜1000℃で水素ガス圧力:
1×10-1Torr以下または水素ガス分圧:1×10-1To
rr以下の非酸化性雰囲気として脱水素処理を行ってから
冷却する熱処理を行うことにより得ることができる。 【0027】したがって、R−Fe−B系合金の鋳造体
永久磁石を製造する方法は、従来のR−Fe−B系鋳造
体永久磁石の製造法とは全く相違するし、さらに従来の
粉末から製造するR−Fe−B系永久磁石の製造法に比
べて製造工程が非常に簡略である。 【0028】この発明のR−Fe−B系鋳造体永久磁石
を製造する方法において、水素ガス雰囲気とは、水素ガ
スと他の不活性ガスとの混合ガス雰囲気をも含んでい
る。水素ガス圧は、R2 Fe14B相に水素を吸蔵させ
て、再結晶がおこるのに充分な格子歪を与えるような圧
力が必要であり、少なくとも水素ガス圧力は0.1Torr
以上でなければならない。水素ガスと他の不活性ガスと
の混合ガス雰囲気であれば、少なくとも水素ガス分圧が
0.1Torr以上でなければならない。 【0029】また、R2 Fe14B相に水素を吸蔵させる
温度および脱水素処理を行う温度が700℃より低い
と、水素を吸蔵させる際に鋳造体に割れが入って脆くな
り、脱水素処理の際に水素が残留し、磁気特性を大幅に
減少させる。さらに、R2 Fe14B相に水素を吸蔵させ
る温度および脱水素処理を行う温度が1000℃より高
いと、再結晶の生成、成長が非常に速く、再結晶粒を5
0μm以下に制御することが困難である。 【0030】700℃より低い温度の水素ガス雰囲気中
にR−Fe−B系磁石合金の鋳造体を置くと、鋳造体に
割れが入って脆くなるから、上記700℃までの昇温途
中の雰囲気は、水素の存在しない真空または不活性ガス
雰囲気としなければならない。 【0031】脱水素処理を行う際に、水素ガス圧力が1
×10-1Torrより上の圧力で脱水素処理を終えると、鋳
造体中に水素が残留して磁気特性が低下する。 【0032】 【実施例】つぎに、この発明の実施例にもとづいて具体
的に説明するとともに、比較例により、この発明がいか
に優れた効果を奏するものであるかを説明する。 【0033】実施例1 希土類元素としてNdを用い、高周波溶解炉で溶解し、
鋳造して製造したNd−Fe−B系の原子数組成がNd
14.8Fe77.18.1 であるNd−Fe−B系合金の鋳造
体をArガス雰囲気中で、温度:1100℃、40時間
保持の条件で均質化処理を行って冷却した後に、たて:
8mm×横:8mm×高さ:10mmのブロックに切り出し
た。 【0034】この鋳造体ブロックを熱処理炉に入れ、1
×10-5Torrの真空に排気した後、その真空中で室温か
ら温度:810℃まで昇温し、温度:810℃で30分
保持して鋳造体ブロックの温度を810℃で一様にした
後に、水素ガスを1Nl/min (温度:20℃)の流量
で1atm まで熱処理炉に流入させ、炉内の水素ガス圧力
を1atm に維持しながら水素ガスをフローさせて上記鋳
造体ブロックに水素を吸蔵させ、その温度:810℃−
水素ガス圧力:1atm の状態を5時間保持して上記鋳造
体ブロック内に一様に水素を吸蔵させたのち、温度:8
10℃で1時間排気を行い、熱処理炉内の雰囲気を1×
10-5Torrの真空として、上記鋳造体ブロックの脱水素
処理を行った。その後、炉内に1atm になるまでArガ
スを流入して上記鋳造体ブロックを急冷してNd−Fe
−B系鋳造体永久磁石を得た。 【0035】図4に、上記実施例1の、この発明のNd
−Fe−B系鋳造体永久磁石の再結晶組織を得るための
熱処理パターンを示す。 【0036】得られた上記鋳造体永久磁石を粉砕して、
粒度:200mesh以下の粉末とし、この粉末を用いてX
線回折行ったところ、主相であるNd2 Fe14B相とN
d−rich相の回折線がはっきりと観察された。 【0037】また、上記鋳造体永久磁石を走査電子顕微
鏡を用いて組織観察し、EPMA(電子プローブ微量分
析装置)を用いて組成分析を行った。 【0038】図8に、この実施例により得られた上記鋳
造体永久磁石の走査電子顕微鏡写真、図9に、この実施
例1における均質化処理を行っただけの上記鋳造体の走
査電子顕微鏡写真を示す。 【0039】EPMA(電子プローブ微量分析装置)に
よる組成分析の結果、図8および図9の走査電子顕微鏡
写真の基地は共にNd2 Fe14B相であり、その結晶粒
界部にNd−rich相が存在していた。上記図9の均質化
処理を行ったままの鋳造体のNd2 Fe14B相は、数1
0〜数1000μmのデンドライト状の粗大な結晶粒で
あった。上記図8のこの実施例1により得られた鋳造体
永久磁石は、主相のNd2 Fe14B相が約1.5μmの
再結晶粒を有していることがわかり、EPMA(電子プ
ローブ微量分析装置)による組成分析の結果でも、再結
晶粒はNd2 Fe14B相であることが確認された。 【0040】よって、上記図8から、実施例1により得
らえた鋳造体永久磁石は、単なる鋳造体組織ではなく、
約1.5μmの新たなNd2 Fe14B相の再結晶粒が多
数存在している再結晶集合組織を有していることがわか
った。 【0041】そして、この再結晶組織は、図4に示され
るパターンの熱処理を行って得られることもわかる。 【0042】上記実施例1により得られた鋳造体永久磁
石の磁気特性の測定結果を表1に示した。 【0043】比較例1および2 上記実施例1と同様の、均質化処理を行った、縦:8mm
×横:8mm×高さ:10mmの鋳造体ブロックを熱処理炉
に入れ、1×10-5Torrの真空に排気した後、その真空
中で室温から810℃まで昇温し、温度:810℃で3
0分保持して鋳造体ブロックの温度を810℃に一様に
した後、Arガスを1Nl/min (20℃)の流量で1
atm まで熱処理炉に流入させ、炉内を1atm に維持しな
がらArガスをフローさせ、その温度:810℃−Ar
ガス圧力:1atm の状態を5時間保持したのち、温度:
810℃で1時間排気を行い、熱処理炉内の雰囲気を1
×10-5Torrの真空とした。その後、炉内に1atm にな
るまでArガスを流入して上記鋳造体ブロックを急冷し
てNd−Fe−B系鋳造体永久磁石を得た(比較例
1)。 【0044】また、上記実施例1の熱処理において水素
ガスを用いずに、1×10-5Torrの真空中で実施例1と
同様の熱処理を行って、Nd−Fe−B系鋳造体永久磁
石を得た(比較例2)。 【0045】上記比較例1および2の熱処理パターンを
図5および図6に示す。 【0046】上記比較例1および2で得られた鋳造体永
久磁石の組織は、図9に示された組織と同様の、主相の
Nd2 Fe14B相がデンドライト状の粗大な結晶粒を有
していた。 【0047】上記比較例1および2で得られた鋳造体永
久磁石の磁気特性の測定結果も表1に示した。 【0048】表1から、この発明の鋳造体永久磁石は、
保磁力が12.5KOeと高く、すぐれた磁気特性を示
すことがわかる。 【0049】 【表1】 【0050】実施例2〜10および比較例3〜5 希土類元素としてNdおよびPrを用い、電子ビーム溶
解炉で溶解、鋳造して製造したNd−Pr−Fe−B系
の原子数組成がNd14.6Pr0.3 Fe78.46. 7 である
Nd−Pr−Fe−B系合金の鋳造体を、たて:8mm×
横:8mm×高さ:10mmのブロックに切り出した。この
鋳造体ブロックを熱処理炉に入れ、2×10-5Torrの真
空に排気した後、その真空中で室温から、表2の水素吸
蔵温度まで昇温し、上記表2の水素吸蔵温度で30分間
保持して鋳造体ブロックの温度を均一にした後、水素ガ
スを0.6Nl/min (温度:20℃)の流量で水素ガ
ス圧力:500Torrになるまで熱処理炉に流入させ、炉
内を水素ガス圧力:500Torrに維持しながら水素ガス
を減圧フローさせて上記鋳造体ブロックに水素を吸蔵さ
せ、表2の水素吸蔵温度−水素ガス圧力:500Torrの
状態を2時間保持して上記鋳造体ブロック内に一様に水
素を吸蔵させた。 【0051】ついで、表2の脱水素温度で1時間排気を
行い、熱処理炉内の雰囲気を1×10-5Torrの真空とし
て、上記鋳造体ブロックの脱水素処理を行った。その後
炉内に1atm になるまでArガスを流入して上記鋳造体
ブロックを急冷し、Nd−Pr−Fe−B系鋳造体永久
磁石を得た。得られた上記鋳造体永久磁石について組織
観察を行い、再結晶集合組織の有無を調べ、磁気特性を
測定して、それぞれの結果を表2に示した。 【0052】 【表2】【0053】表2から、温度:700〜1000℃で水
素吸蔵と脱水素処理を行うと、上記鋳造体ブロックは、
再結晶を有することがわかり、特に温度:800〜90
0℃の範囲の水素吸蔵と脱水素処理においては、高い磁
気特性を有することがわかる。 【0054】実施例15〜17および比較例11,12 希土類元素としてNdとDyを用い、高周波溶解炉で溶
解、鋳造して製造したNd−Dy−Fe−B系の原子数
組成がNd14.8Dy0.3 Fe78.16.8 であるNd−D
y−Fe−B系合金の鋳造体をArガス雰囲気中で、温
度:1080℃−60時間保持の条件で均質化処理を行
って冷却した後に、たて:8mm×横:8mm×高さ:10
mmのブロックに切り出した。この鋳造体ブロックを熱処
理炉に入れ、1×10-5Torrの真空に排気した後、その
真空中で室温から830℃まで昇温し、温度:830℃
で1時間保持して鋳造体ブロックの温度を830℃で一
様にした後に、水素ガスを0.2Nl/min (温度:2
0℃)の流量で600Torrまで熱処理炉に流入させ、炉
内を水素ガス圧力:600Torrに維持しながら水素ガス
を減圧フローさせて上記鋳造体ブロックに水素を吸蔵さ
せ、温度:830℃−水素ガス圧力:600Torrの状態
を10時間保持して上記鋳造体ブロック内に一様に水素
を吸蔵させたのち、温度:820℃で排気を行い、熱処
理炉の雰囲気をそれぞれ、水素ガス圧力:1×10-6To
rr(実施例15)、1×10-3Torr(実施例16)、1
×10-1Torr(実施例17)、2×10-1Torr(比較例
11)および1Torr(比較例12)の真空となるまで上
記鋳造体ブロックの脱水素処理を行った。その後、炉内
に1atm になるまでArガスを流入して上記鋳造体ブロ
ックを急冷し、Nd−Dy−Fe−B系鋳造体永久磁石
を得た。 【0055】得られた上記鋳造体永久磁石を組織観察し
たところ、上記実施例15〜17および比較例11,1
2で得られた鋳造体永久磁石のすべてにおいて再結晶集
合組織を有しており、また、それらの磁気特性を測定し
てその結果を表3に示した。 【0056】表3から、この発明の上記鋳造体永久磁石
は、脱水素処理を行う際に、水素ガス圧力が1×10-1
Torr以下の圧力で脱水素処理を終えるとすぐれた磁気特
性を示すことがわかる。 【0057】 【表3】 【0058】実施例18〜19および比較例13,14 上記実施例15〜17および比較例11,12におい
て、均質化処理を行ったNd−Dy−Fe−B系合金鋳
造体のたて:8mm×横:8mm×高さ:10mmに切り出し
た鋳造体ブロックを熱処理炉に入れ、1×10-5Torrの
真空に排気した後、1atm までArガスを流入させ、A
rガスをフローさせながら室温から830℃まで昇温
し、830℃で1時間保持して鋳造体ブロックの温度を
830℃で一様にした後に、Arガスフローを止めて水
素ガスを0.2Nl/min (温度:20℃)の流量で熱
処理炉に流入させ、炉内を水素ガス置換し、炉内を1at
m に維持しながら水素ガスをフローさせて上記鋳造体ブ
ロックに水素を吸蔵させ、温度:830℃−水素ガス圧
力:1atm の状態を10時間保持して上記鋳造体ブロッ
ク内に一様に水素を吸蔵させたのち、水素ガスフローを
止めて再びArガスを流入させ、炉内をArガス置換
し、30分保持して炉内を1atm のArガス雰囲気とし
た。この時水素ガスは上記Arガス雰囲気中にまだ残留
していた。その後、温度:820℃で熱処理炉のArガ
スと残留水素ガスからなる雰囲気をそれぞれ水素ガス分
圧が、5×10-4Torr(実施例18)、8×10-2Torr
(実施例19)、2×10-1Torr(比較例13)および
1Torr(比較例14)となるまで排気を行い、上記鋳造
体ブロックの脱水素処理を行った。水素ガス分圧測定
は、ガスクロマトグラム分析で行い、キャリアガスはA
rを用いて水素ガスの体積比から換算した。その後、炉
内に1atm になるまでArガスを流入して鋳造体ブロッ
クを急冷してNd−Dy−Fe−B系鋳造体永久磁石を
得た。 【0059】このようにして得られた上記鋳造体永久磁
石も全て再結晶集合組織を有しており、それらの鋳造体
永久磁石の磁気特性を測定してその結果を表4に示し
た。 【0060】 【表4】 【0061】表4から、この発明の上記鋳造体永久磁石
は、脱水素処理を行う際に、水素ガス分圧が1×10-1
Torr以下の圧力で脱水素処理を終えるとすぐれた磁気特
性を示すことがわかる。 【0062】 【発明の効果】上述のように、この発明のR−Fe−B
系鋳造体永久磁石は、R2 Fe14B相の再結晶が集合し
た再結晶集合組織を有するために、すぐれた磁気特性を
示し、さらに再結晶粒径を制御することによって上記鋳
造体永久磁石の磁気特性、耐酸化性、耐熱性等をも向上
することもでき、薄型磁石としてもその磁気特性を維持
することもできる。 【0063】また、この発明のR−Fe−B系鋳造体永
久磁石は、R−Fe−B系合金粉末を焼結することな
く、鋳造体ブロックを水素吸蔵および脱水素処理するも
のであるから、従来の粉末を焼結して製造するR−Fe
−B系永久磁石の製造法に比べて製造工程が非常に簡単
であり、生産性および経済性についてもすぐれた効果を
もたらすものである。
DETAILED DESCRIPTION OF THE INVENTION [0001] [0001] The present invention relates to an excellent magnetic characteristic.
Rare earth element containing Y (hereinafter referred to as R)
The present invention relates to a permanent magnet of an Fe-B alloy casting. [0002] 2. Description of the Related Art R-Fe-B permanent magnets are rare earth permanent magnets.
Attention as magnet with excellent magnetic properties
Have been. The structure of the R-Fe-B-based permanent magnet is as follows.
In general, the main phase R, which is a ferromagnetic phase and has a tetragonal structure,Two
Fe14B intermetallic compound phase (hereinafter referred to as RTwoFe14B phase
) And an R-rich phase and a B-rich phase.
In the R-Fe-B-based permanent magnet, the magnetic characteristics are as described above.
It depends greatly on the microstructure of the R-Fe-B permanent magnet.
Utilizes the excellent magnetic properties of R-Fe-B alloys
Development of permanent magnets with such an organizational form
Was. At present, as the R-Fe-B permanent magnet,
Are as follows. (1) Characterized by a sintered body produced by powder metallurgy
Permanent magnet (for example, Japanese Patent Laid-Open No. 59-460008)
Report). [0005] A permanent magnet (hereinafter, referred to as "the sintered body")
First, the sintered magnet) is formed of an R-Fe-B alloy.
Gott or coarse powder is pulverized by various methods and
Fine powder of about
It is a green compact molded inside. Next, the compact is placed in a vacuum.
Or sintering by raising the temperature from room temperature in a non-oxidizing gas atmosphere.
Temperature: Conditions for holding at 900 to 1200 ° C for 30 to 120 minutes
In order to increase the coercive force if necessary
After that, heat treatment at an appropriate temperature and then cooling
It is manufactured. The magnetic properties of the above sintered magnets are isotropic
If sex, BHmax= About 10 MGOe, anisotropic
In the case of BHmax= 30 MGOe or more. The structure of the above sintered magnet is shown in FIG.
In addition, the main phase of the R-Fe-B permanent magnet RTwoFe14B
Phase 1, B-rich phase 3, and RTwoFe14B phase 1 or B-
Consists of R-rich phase 2 present at grain boundaries of rich phase 3
You. R in FIG.TwoFe14Phase B increases coercivity
Therefore, the average grain size is controlled to several μm to 20 μm.
You. (2) Ribbon-like quenched powder by ultra-quenching method
Is subjected to a high-temperature compression-plastically processed permanent magnet (for example,
No. 60-100402) Permanent magnets (hereinafter referred to as "characters") made of a material obtained by compressing this quenched powder
Below, it is called a high-temperature compression magnet).
By rapidly solidifying the EB alloy, a ribbon-shaped
Obtain a flake and heat it to a temperature above 700 ° C for several minutes
High temperature compression, plastic working and then cooling.
Manufactured. [0008] The magnetic properties of the high-temperature compression magnet are isotropic.
In case, BHmax= About 13MGOe, difference due to plastic working
BH by anisotropymax= About 30 MGOe. Up
In the structure of the high-temperature compression magnet, the main phase has an average crystal grain size: several tens
nm to several hundred nm RTwoFe14B phase, at the grain boundary
Fine structure with R-rich phase and amorphous phase
The main phase RTwoFe14B phase is single domain particle size: 0.3μm or less
It is controlled by the organization below. [0009] SUMMARY OF THE INVENTION R-Fe-B based alloy
However, in order to become a permanent magnet having a high coercive force, (a)
  R which is the main phaseTwoFe14The average crystal grain size of phase B is 50 μm
Or less, preferably 0.3 μm or less that can be single domain particles
(B) in the crystal grains of the main phase,
No nucleation impurities or strains when generating magnetic domains, (c)
R which is the main phaseTwoFe14The average crystal grain size of phase B is from several μm
If 50 μm, RTwoFe14R-
rich phase exists and the above RTwoFe14The phase B crystal grains are
(D) individual magnetic powder
RTwoFe14Easy magnetization of crystal magnetic anisotropy in B phase
Have a uniform axis and have magnetic anisotropy.
In particular, R of the main phase of the above (a)TwoFe14Average crystal of phase B
It is thought that the particle size greatly affects the coercive force.
You. Conventionally, R-Fe-B alloys are simply melted
Of the cast body that has been cast or that has been further homogenized
In the structure, the main phase RTwoFe14Phase B
Cannot be controlled to several tens of μm or less.
Did not have excellent magnetic properties. this
Therefore, a sintered magnet was used as in the above-mentioned conventional technology (1).
And a high-temperature compression magnet as in the prior art (2).
Thus, the structure of the R-Fe-B alloy is controlled.
Was. [0011] The sintered magnet of the prior art (1) has a main phase.
R that isTwoFe14The average crystal grain size of the B phase is several μm to 20 μm.
m, the main phase in the sintering process
In consideration of the grain growth of sintering, the fine powder for sintering is usually 3 to
Must be ground to 4 μm. But for permanent magnets
When the R-Fe-B alloy is made into a fine powder of 3 to 4 μm,
Since it is always active, impurities such as oxides are generated in the sintered body.
And the magnetic properties of the sintered magnet vary.
Was. Further, as a permanent magnet, the main phase R TwoFe14
0.3 μm or less, at which the B phase can be single domain particles, is preferred.
However, in the above sintering method, the oxidation during the fine pulverization is severe,
Can not be. The sintered magnet has a thickness of 3 mm.
In the following thin shapes, as the thickness decreases, the magnetic characteristics
There is also a drawback that the properties are greatly reduced. Such a lack
To supplement the points, add additional elements to the above alloy or sinter
Measures such as improving the process and coating the sintered magnet were taken.
In order to bring out the high magnetic properties of the above sintered magnets,
Rough steps and processing had to be performed. The high-temperature compression magnet of the prior art (2) is as follows:
High-temperature compression and plastic working of quenched powder make it a permanent magnet.
Therefore, applications are limited in terms of the degree of freedom of magnet shape and yield.
Was being controlled. Also, by high-temperature compression and plastic working,
R which is the main phase of the structureTwoFe14Phase B causes grain growth
In order to reduce the coercive force, the high-temperature compression step
It must be done in a very short time of a few minutes,
In order to obtain permanent magnets with mechanical characteristics, the manufacturing process is complicated.
I had to do it. That is, the above-mentioned conventional techniques (1) and
The R-Fe-B permanent magnet of (2) is once R-Fe-B permanent magnet.
Powdering Fe-B based magnetic alloy, sintering it to RF
Since the EB-based permanent magnet is manufactured, RF
Handling of EB alloy powder is difficult and its sintering method
Must also pay attention to the various
There was a problem that it had to be complicated. [0014] Means for Solving the Problems Accordingly, the present inventors have
R-Fe which is said to be unable to obtain excellent magnetic properties
-To impart excellent magnetic properties to a cast of a B-based alloy
Can be easily obtained by using R-
The idea that Fe-B based permanent magnets can be manufactured
R-Fe-B based casting with excellent magnetic properties
As a result of conducting research to obtain a structured permanent magnet, R-Fe-B
The structure of the cast body of the base alloy is RTwoFe14Recrystallization assembly of B phase
Organization (this organization will be described in detail later)
R-Fe-B based cast body with better magnetic properties
He obtained the knowledge that he could obtain a permanent magnet. The present invention has been made based on such findings.
From an R-Fe-B alloy casting.
Permanent magnet Average recrystallized grain size: a tetragonal structure of 0.05 to 50 μm
RTwoFe14Aggregation of recrystallization of intermetallic phase B
R-Fe-B cast permanent magnet with crystal texture
It has a sign. [0016] BEST MODE FOR CARRYING OUT THE INVENTION An R-Fe-B cast of the present invention
The structure of the permanent magnet will be described with reference to FIGS. FIG. 3 shows an R—Fe—B magnet alloy cast.
It is the schematic of the structure | tissue of the casting obtained. In Figure 3 above
And 1 is RTwoFe14B phase and 2 are R-rich phases. R-
rich phase 2 is the main phase RTwoFe14Grain boundary mainly in B phase 1
Exists in the department. The cast body shown in FIG.
Processing under the condition, as shown in FIG.TwoFe
14R in the grain of B phase 1 or in the grain boundaryTwoFe14Phase B reunion
Crystals 1 'are generated and they grow as shown in FIG.
Na rTwoFe14Structure in which B-phase recrystallized 1 ′ is aggregated (hereinafter, referred to as
The structure in which the recrystallized crystals 1 'are assembled is called a recrystallized texture.
U). The above cast body is processed under appropriate conditions.
The specific method of processing will be described later. FIG. 2 shows the cast body shown in FIG.
Starting to process, RTwoFe14B-phase recrystallization 1 'begins to occur
FIG. 1 is a schematic view of the structure of the cast body at the time of the casting, and FIG.
The structure of the cast body after the processing of the cast body shown in FIG.
FIG. Here, the R—Fe—B system shown in FIG.
Gold RTwoFe14From B phase 1 to R as shown in FIG.TwoF
e14Generate B phase recrystallized 1 'and grow it
R as shown in 1TwoFe14From recrystallization 1 'of phase B
Texture (ie, recrystallized texture)
The R formed in FIG. 1 and FIG.TwoFe14Phase B
1 ′ is the individual R in FIG.TwoFe14B phase 1 area
It is not a crystal arrangement with a completely random crystal orientation within
The organization has a certain direction. On the other hand, the R-rich phase 2 in the structure of the cast body is shown in FIG.
As shown inTwoFe14In the early stage of B phase recrystallization formation
Also remain, and RTwoFe14B phase recrystallization 1 'grows
The average recrystallized grain size shown in FIG.
Remains even if recrystallized texture with recrystallized 1 '
And remains in a state surrounding the recrystallized texture. Again
One R-rich phase 2 exists at the grain boundary of recrystallization 1 'of the crystal texture.
Partial precipitation may occur. According to the present invention, the R shown in FIG.TwoFe14B
R- having a recrystallization texture in which phase recrystallization 1 'is assembled
R-Fe-B casting comprising a casting of Fe-B alloy
It is characterized by a permanent magnet. Therefore, the R-Fe-B based casting of the present invention
Structured permanent magnets are castings with a recrystallized texture
On the other hand, the conventional techniques (1) and (2)
B-based permanent magnets have no recrystallized texture,
It is completely different in that it is a substance obtained by compressing the body and quenched powder. High R-Fe-B permanent magnet of the present invention
The reason for showing the coercive force is that the main phase RTwoFe14Phase B reunion
The crystal grain size is 50 μm or less, preferably single domain particles.
0.05-3 μm which is close to 0.3 μm to obtain
There are no impurities or strains in the grains and in the grain boundaries due to the grains,
The boundary between recrystallized texture and recrystallized texture is R-rich
This is because a phase exists. R aboveTwoFe14B phase flat
If the average recrystallized grain size is smaller than 0.05 μm, it is difficult to magnetize.
Impractical, low coercivity above 50 μm
R-Fe-B system with excellent magnetic properties
Not a permanent magnet. The R of the present inventionTwoFe14Recrystallization of phase B
R-Fe-B based casting with recrystallized texture in which
Co, Ni, Cr, Mo,
One or more of W, Ti, Zr, Hf
It may be replaced. The recrystallized texture described above is an R-Fe-B alloy.
The gold casting is vacuum- or inert-gas free of hydrogen
Temperature rise to 700-1000 ° C in atmosphere
And subsequently in a hydrogen gas atmosphere, at a temperature of 7
The temperature is maintained at 00 to 1000 ° C. and hydrogen is absorbed in the casting.
After that, the temperature: 700-1000 ° C. and the hydrogen gas pressure:
1 × 10-1Torr or less or hydrogen gas partial pressure: 1 × 10-1To
After performing dehydrogenation treatment in a non-oxidizing atmosphere of rr or less
It can be obtained by performing a heat treatment for cooling. Therefore, a cast of an R—Fe—B alloy
The method of manufacturing a permanent magnet is based on the conventional R-Fe-B casting.
It is completely different from the manufacturing method of permanent magnets,
Compared to the method for manufacturing R-Fe-B permanent magnets manufactured from powder
All the manufacturing steps are very simple. The R-Fe-B cast permanent magnet of the present invention
In the method for producing
Mixed gas atmosphere of gas and other inert gas
You. The hydrogen gas pressure is RTwoFe14Absorb hydrogen in phase B
Pressure that gives sufficient lattice strain for recrystallization to occur.
Pressure is required, and at least hydrogen gas pressure is 0.1 Torr
Must be at least. With hydrogen gas and other inert gases
At least the partial pressure of hydrogen gas is
Must be at least 0.1 Torr. Further, RTwoFe14Absorb hydrogen in phase B
Temperature and temperature for dehydrogenation are lower than 700 ° C
When the hydrogen is occluded, the cast body cracks and becomes brittle.
Hydrogen remains during the dehydrogenation treatment, greatly improving magnetic properties.
Decrease. Further, RTwoFe14Absorb hydrogen in phase B
Temperature is higher than 1000 ° C
In this case, the generation and growth of recrystallization is very fast,
It is difficult to control the thickness to 0 μm or less. In a hydrogen gas atmosphere at a temperature lower than 700 ° C.
When a cast of R-Fe-B magnet alloy is placed in
Since it breaks and becomes brittle, the temperature rises to 700 ° C above
The atmosphere is a vacuum or inert gas without hydrogen
Atmosphere must be. When performing the dehydrogenation treatment, the hydrogen gas pressure becomes 1
× 10-1When dehydrogenation is completed at a pressure above Torr,
Hydrogen remains in the structure and the magnetic properties deteriorate. [0032] Next, a concrete example based on the embodiment of the present invention will be described.
In addition to the description,
A description will be given as to whether or not an excellent effect is obtained. Embodiment 1 Using Nd as a rare earth element, melting in a high frequency melting furnace,
The atomic composition of the Nd-Fe-B system produced by casting is Nd
14.8Fe77.1B8.1Of Nd-Fe-B based alloy
Body in Ar gas atmosphere, temperature: 1100 ° C, 40 hours
After cooling by performing homogenization treatment under the conditions of holding,
8mm x side: 8mm x height: 10mm cut out into blocks
Was. The cast block is placed in a heat treatment furnace and
× 10-FiveAfter evacuating to a vacuum of Torr,
Temperature: to 810 ° C, and temperature: 810 ° C for 30 minutes
Hold to make the temperature of the cast block uniform at 810 ° C
Later, a flow rate of hydrogen gas of 1 Nl / min (temperature: 20 ° C.)
To the heat treatment furnace up to 1 atm and pressurize the hydrogen gas inside the furnace.
The hydrogen gas was flowed while maintaining the
Hydrogen is absorbed in the building block, and its temperature is 810 ° C.
Hydrogen gas pressure: 1 atm is maintained for 5 hours and the above casting is performed.
After hydrogen is uniformly absorbed in the body block, the temperature is 8
Evacuate at 10 ° C for 1 hour and set the atmosphere in the heat treatment furnace to 1 ×
10-FiveDehydrogenation of the above cast block as Torr vacuum
Processing was performed. After that, Ar gas is kept in the furnace until it becomes 1 atm.
And the cast block is quenched and Nd-Fe
A -B cast permanent magnet was obtained. FIG. 4 shows the Nd according to the first embodiment of the present invention.
For obtaining a recrystallized structure of a Fe-B cast permanent magnet
3 shows a heat treatment pattern. The obtained cast permanent magnet is pulverized,
Particle size: powder of 200 mesh or less.
When the line diffraction was performed, the main phase, NdTwoFe14B phase and N
A diffraction line of the d-rich phase was clearly observed. Further, the above-mentioned cast permanent magnet is scanned with a scanning electron microscope.
Observation of the tissue using a mirror, EPMA (Electron probe
The composition was analyzed using an analyzer. FIG. 8 shows the casting obtained by this embodiment.
FIG. 9 shows a scanning electron micrograph of the permanent magnet.
Run of the above cast body which has just been subjected to the homogenization treatment in Example 1.
An electron micrograph is shown. EPMA (Electron Probe Micro Analyzer)
As a result of the composition analysis, the scanning electron microscope shown in FIGS.
Both bases in the photo are NdTwoFe14B phase and its crystal grains
An Nd-rich phase was present at the boundary. Homogenization of Figure 9 above
Nd of cast body as processedTwoFe14Phase B is given by
With dendrite-like coarse crystal grains of 0 to several thousand μm
there were. The cast body obtained according to the first embodiment shown in FIG.
The permanent magnet is the main phase NdTwoFe14B phase is about 1.5 μm
It can be seen that it has recrystallized grains,
Composition analysis by the lobe microanalyzer)
The crystal grains are NdTwoFe14It was confirmed to be phase B. Therefore, from FIG.
The obtained cast permanent magnet is not just a cast structure,
New Nd of about 1.5 μmTwoFe14Many recrystallized grains of phase B
It is clear that it has a number of recrystallized textures
Was. The recrystallized structure is shown in FIG.
It can also be seen that it can be obtained by performing a heat treatment of the following pattern. The permanent magnet of the cast obtained in Example 1 above
Table 1 shows the measurement results of the magnetic properties of the stone. Comparative Examples 1 and 2 Homogenization treatment was performed in the same manner as in Example 1 above, length: 8 mm
× Horizontal: 8mm × Height: 10mm Cast block for heat treatment furnace
Put in 1 × 10-FiveAfter evacuating to Torr vacuum, the vacuum
Temperature from room temperature to 810 ° C.
Hold for 0 minutes to make the temperature of the cast block uniform at 810 ° C
After that, Ar gas was supplied at a flow rate of 1 Nl / min (20 ° C.) for 1 hour.
atm to the heat treatment furnace and keep the inside of the furnace at 1 atm.
Then, Ar gas is allowed to flow, and the temperature is 810 ° C.-Ar
After maintaining the state of the gas pressure: 1 atm for 5 hours, the temperature:
Evacuation was performed at 810 ° C. for 1 hour.
× 10-FiveTorr vacuum was applied. After that, 1 atm
Until the casting block is cooled by flowing Ar gas until
To obtain an Nd-Fe-B cast permanent magnet (Comparative Example).
1). In the heat treatment of the first embodiment, hydrogen
1 × 10 without gas-FiveExample 1 in vacuum of Torr
By performing the same heat treatment, Nd-Fe-B cast permanent magnet
A stone was obtained (Comparative Example 2). The heat treatment patterns of Comparative Examples 1 and 2 were
This is shown in FIGS. The cast body obtained in Comparative Examples 1 and 2
The structure of the negative magnet is similar to the structure shown in FIG.
NdTwoFe14B phase has dendrite-like coarse crystal grains
Was. The cast bodies obtained in Comparative Examples 1 and 2 above
Table 1 also shows the measurement results of the magnetic properties of the permanent magnet. As shown in Table 1, the cast permanent magnet of the present invention
High coercive force of 12.5 KOe, showing excellent magnetic properties
You can see that [0049] [Table 1] Examples 2 to 10 and Comparative Examples 3 to 5 Electron beam melting using Nd and Pr as rare earth elements
Nd-Pr-Fe-B system produced by melting and casting in a furnace
Has the atomic composition of Nd14.6Pr0.3Fe78.4B6. 7Is
A cast of an Nd-Pr-Fe-B-based alloy was vertically set to 8 mm x
It was cut out into a block of width: 8 mm × height: 10 mm. this
Put the cast block into the heat treatment furnace and 2 × 10-FiveTrue of Torr
After evacuation, the hydrogen absorption shown in Table 2 was performed from room temperature in the vacuum.
Temperature to the storage temperature and at the hydrogen storage temperature in Table 2 above for 30 minutes
After holding and equalizing the temperature of the casting block,
Gas at a flow rate of 0.6 Nl / min (temperature: 20 ° C).
Pressure into the heat treatment furnace until it reaches 500 Torr.
Hydrogen gas pressure while maintaining the inside at 500 Torr
To reduce the flow of hydrogen into the casting block.
The hydrogen storage temperature in Table 2-hydrogen gas pressure: 500 Torr
The state is maintained for 2 hours, and water is uniformly distributed in the casting block.
Ozone was absorbed. Then, exhaust was performed for one hour at the dehydrogenation temperature shown in Table 2.
And the atmosphere in the heat treatment furnace was changed to 1 × 10-FiveTorr vacuum
Then, the above-mentioned cast block was subjected to a dehydrogenation treatment. afterwards
Ar gas was introduced into the furnace until it reached 1 atm,
The block is quenched and the Nd-Pr-Fe-B-based casting is permanent
I got a magnet. The structure of the obtained cast permanent magnet
Observe and check for the presence of recrystallized texture,
The results were measured and the results are shown in Table 2. [0052] [Table 2]From Table 2, it can be seen that the temperature: 700-1000 ° C. and water
When the element storage and dehydrogenation treatment are performed, the casting block
It was found to have recrystallization, especially at a temperature of 800 to 90.
In the hydrogen storage and dehydrogenation treatment in the range of 0 ° C, high magnetic
It can be seen that they have air characteristics. Examples 15 to 17 and Comparative Examples 11 and 12 Using Nd and Dy as rare earth elements,
The number of atoms of Nd-Dy-Fe-B system produced by solution and casting
Composition is Nd14.8Dy0.3Fe78.1B6.8Nd-D
A cast body of a y-Fe-B-based alloy was heated in an Ar gas atmosphere.
Degree: Perform homogenization treatment at 1080 ° C for 60 hours.
After cooling, length: 8mm x width: 8mm x height: 10
Cut into mm blocks. The cast block is heat treated.
Put in a furnace, 1 × 10-FiveAfter evacuating to Torr vacuum,
The temperature is raised from room temperature to 830 ° C. in a vacuum, and the temperature is 830 ° C.
At 830 ° C for 1 hour.
After that, hydrogen gas was supplied at 0.2 Nl / min (temperature: 2
0 ° C) at a flow rate of 600 Torr into the heat treatment furnace.
Hydrogen gas while maintaining the inside at a hydrogen gas pressure: 600 Torr
To reduce the flow of hydrogen into the casting block.
Temperature: 830 ° C-hydrogen gas pressure: 600 Torr
For 10 hours to uniformly distribute hydrogen in the cast block.
And then evacuated at a temperature of 820 ° C.
The atmosphere of the furnace was set to a hydrogen gas pressure of 1 × 10-6To
rr (Example 15), 1 × 10-3Torr (Example 16), 1
× 10-1Torr (Example 17), 2 × 10-1Torr (Comparative example
11) and up to a vacuum of 1 Torr (Comparative Example 12)
The casting block was dehydrogenated. Then in the furnace
Ar gas is introduced until the pressure reaches 1 atm
Quenched, and Nd-Dy-Fe-B cast permanent magnet
I got The structure of the obtained cast permanent magnet was observed.
As a result, the above Examples 15 to 17 and Comparative Examples 11, 1
Recrystallization of all of the cast permanent magnets obtained in 2
Have joint tissues and measure their magnetic properties
The results are shown in Table 3. Table 3 shows that the cast permanent magnet of the present invention
Means that the hydrogen gas pressure is 1 × 10-1
Excellent magnetic characteristics when dehydrogenation is completed at a pressure of Torr or less
It can be seen that it shows the property. [0057] [Table 3] Examples 18 to 19 and Comparative Examples 13 and 14 Examples 15 to 17 and Comparative Examples 11 and 12
Nd-Dy-Fe-B based alloy casting
Cut out the structure vertically: 8mm x width: 8mm x height: 10mm
Put the cast block into the heat treatment furnace-FiveTorr
After evacuating to vacuum, Ar gas was allowed to flow in to 1 atm,
Temperature rise from room temperature to 830 ° C while flowing r gas
And hold at 830 ° C for 1 hour to reduce the temperature of the cast block.
After uniforming at 830 ° C., the Ar gas flow was stopped and water
Source gas is heated at a flow rate of 0.2 Nl / min (temperature: 20 ° C)
After flowing into the processing furnace, the inside of the furnace is replaced with hydrogen gas.
m, while flowing hydrogen gas.
The lock absorbs hydrogen, temperature: 830 ° C-hydrogen gas pressure
Force: Maintain the state of 1 atm for 10 hours.
After the hydrogen has been uniformly absorbed in the
Stop and let Ar gas flow again, and replace the inside of the furnace with Ar gas
Then, the furnace was kept for 30 minutes and the inside of the furnace was changed to an Ar gas atmosphere of 1 atm.
Was. At this time, the hydrogen gas still remains in the Ar gas atmosphere.
Was. Then, at a temperature of 820 ° C., the Ar gas
Atmosphere consisting of hydrogen gas and residual hydrogen gas
Pressure is 5 × 10-FourTorr (Example 18), 8 × 10-2Torr
(Example 19) 2 × 10-1Torr (Comparative Example 13) and
Evacuation was performed until the pressure reached 1 Torr (Comparative Example 14).
The body block was dehydrogenated. Hydrogen gas partial pressure measurement
Is performed by gas chromatogram analysis, and the carrier gas is A
It was converted from the volume ratio of hydrogen gas using r. Then the furnace
Ar gas flows into the casting block until it reaches 1 atm.
Quenched to produce a Nd-Dy-Fe-B cast permanent magnet
Obtained. [0059] The permanent magnet of the cast body thus obtained.
All of the stones also have a recrystallized texture,
The magnetic properties of the permanent magnet were measured and the results are shown in Table 4.
Was. [0060] [Table 4] From Table 4, it can be seen that the above cast permanent magnet of the present invention was used.
Means that the hydrogen gas partial pressure is 1 × 10-1
Excellent magnetic characteristics when dehydrogenation is completed at a pressure of Torr or less
It can be seen that it shows the property. [0062] As described above, the R-Fe-B of the present invention
Series cast permanent magnet is RTwoFe14The recrystallization of phase B gathers
Excellent magnetic properties due to the excellent recrystallized texture
By controlling the recrystallized grain size.
Improves magnetic properties, oxidation resistance, heat resistance, etc. of the structured permanent magnet
And maintain its magnetic properties even as a thin magnet
You can also. Further, the R—Fe—B cast body of the present invention
His magnets do not require sintering of R-Fe-B alloy powder.
In addition, the casting block is subject to hydrogen storage and dehydrogenation.
Therefore, R-Fe produced by sintering a conventional powder
-The manufacturing process is very simple compared to the method of manufacturing B-based permanent magnets
And have a significant effect on productivity and economics.
To bring.

【図面の簡単な説明】 【図1】図2の再結晶を成長させて得られた再結晶集合
組織の説明図である。 【図2】図3に示された組織を有する鋳造体を処理して
2 Fe14B相の再結晶を生成させた組織を示す説明図
である。 【図3】R−Fe−B系合金の鋳造体の組織の説明図で
ある。 【図4】実施例1の熱処理パターンである。 【図5】比較例1の熱処理パターンである。 【図6】比較例2の熱処理パターンである。 【図7】従来の焼結磁石の組織の説明図である。 【図8】実施例1により得られた鋳造体永久磁石の走査
電子顕微鏡による金属組織写真である。 【図9】実施例1の均質化処理した鋳造体の走査電子顕
微鏡による金属組織写真である。 【符号の説明】 1 R2 Fe14B相 2 R−rich相 3 B−rich相 1′ R2 Fe14B相の再結晶
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a recrystallization texture obtained by growing the recrystallization of FIG. FIG. 2 is an explanatory view showing a structure in which a cast having the structure shown in FIG. 3 is processed to generate recrystallization of an R 2 Fe 14 B phase. FIG. 3 is an explanatory view of the structure of a cast of an R—Fe—B alloy. FIG. 4 is a heat treatment pattern of Example 1. FIG. 5 is a heat treatment pattern of Comparative Example 1. FIG. 6 is a heat treatment pattern of Comparative Example 2. FIG. 7 is an explanatory view of the structure of a conventional sintered magnet. 8 is a photograph of a metallographic structure of a cast permanent magnet obtained in Example 1 taken by a scanning electron microscope. FIG. FIG. 9 is a metallographic structure photograph of the homogenized cast body of Example 1 by a scanning electron microscope. [Explanation of Signs] 1 R 2 Fe 14 B phase 2 R-rich phase 3 B-rich phase 1 ′ Recrystallization of R 2 Fe 14 B phase

Claims (1)

(57)【特許請求の範囲】 1.Yを含む希土類元素(以下、Rで示す)とFeとB
を主成分とするR−Fe−B系合金の鋳造体からなる永
久磁石において、 平均再結晶粒径:0.05〜50μmの正方晶構造をと
るR2 Fe14B金属間化合物相の再結晶が集合した再結
晶集合組織を有することを特徴とする希土類−Fe−B
系鋳造体永久磁石。 2.上記再結晶集合組織は、R−rich相に包囲されてい
ることを特徴とする請求項1記載の希土類−Fe−B系
鋳造体永久磁石。
(57) [Claims] Rare earth elements including Y (hereinafter, denoted by R), Fe and B
The permanent magnet made from casting of an R-Fe-B based alloy mainly, the average recrystallized grain size: take tetragonal structure 0.05~50μm R 2 Fe 14 recrystallization B intermetallic compound phase Rare earth element -Fe-B characterized by having a recrystallized texture in which
Series cast permanent magnet. 2. The rare-earth-Fe-B-based cast permanent magnet according to claim 1, wherein the recrystallized texture is surrounded by an R-rich phase.
JP7248797A 1995-09-01 1995-09-01 Rare earth-Fe-B cast permanent magnet Expired - Fee Related JP2746223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7248797A JP2746223B2 (en) 1995-09-01 1995-09-01 Rare earth-Fe-B cast permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7248797A JP2746223B2 (en) 1995-09-01 1995-09-01 Rare earth-Fe-B cast permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62257669A Division JP2564492B2 (en) 1987-10-13 1987-10-13 Manufacturing method of rare earth-Fe-B cast permanent magnet

Publications (2)

Publication Number Publication Date
JPH08107007A JPH08107007A (en) 1996-04-23
JP2746223B2 true JP2746223B2 (en) 1998-05-06

Family

ID=17183546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7248797A Expired - Fee Related JP2746223B2 (en) 1995-09-01 1995-09-01 Rare earth-Fe-B cast permanent magnet

Country Status (1)

Country Link
JP (1) JP2746223B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043114B1 (en) * 2006-11-30 2019-01-02 Hitachi Metals, Ltd. R-fe-b microcrystalline high-density magnet and process for production thereof
CN104752048B (en) * 2013-12-30 2017-10-31 北京中科三环高技术股份有限公司 A kind of preparation method of sintered Nd-Fe-B permanent magnet

Also Published As

Publication number Publication date
JPH08107007A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
JP6229783B2 (en) Method for producing microcrystalline alloy intermediate product and microcrystalline alloy intermediate product
KR20020033504A (en) Manufacturing method of an anisotropic magnet powder, precursory anisotropic magnet powder and bonded magnet
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JPH0617546B2 (en) Permanent magnet fabrication from crystalline rare earth-transition metal-boron alloy with very low coercive force
JP6471669B2 (en) Manufacturing method of RTB-based magnet
JP3724513B2 (en) Method for manufacturing permanent magnet
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP5906876B2 (en) Manufacturing method of RTB-based permanent magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2018174314A (en) R-T-B based sintered magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2746223B2 (en) Rare earth-Fe-B cast permanent magnet
JP2564492B2 (en) Manufacturing method of rare earth-Fe-B cast permanent magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JPH0682575B2 (en) Rare earth-Fe-B alloy magnet powder
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH11158588A (en) Raw alloy for manufacture of rare earth magnetic powder, and its production
JP2623731B2 (en) Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JP2000235909A (en) Rare earth/iron/boron magnet and manufacture thereof
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3567720B2 (en) Raw material alloy for producing rare earth magnet powder and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees