JP6691666B2 - Method for manufacturing RTB magnet - Google Patents

Method for manufacturing RTB magnet Download PDF

Info

Publication number
JP6691666B2
JP6691666B2 JP2016197943A JP2016197943A JP6691666B2 JP 6691666 B2 JP6691666 B2 JP 6691666B2 JP 2016197943 A JP2016197943 A JP 2016197943A JP 2016197943 A JP2016197943 A JP 2016197943A JP 6691666 B2 JP6691666 B2 JP 6691666B2
Authority
JP
Japan
Prior art keywords
mass
alloy
less
bulk body
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016197943A
Other languages
Japanese (ja)
Other versions
JP2018060930A (en
Inventor
宣介 野澤
宣介 野澤
西内 武司
武司 西内
恭孝 重本
恭孝 重本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016197943A priority Critical patent/JP6691666B2/en
Publication of JP2018060930A publication Critical patent/JP2018060930A/en
Application granted granted Critical
Publication of JP6691666B2 publication Critical patent/JP6691666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、R−T−B系磁石の製造方法に関する。   The present invention relates to a method for manufacturing an RTB magnet.

R−T−B系磁石(Rは希土類元素のうちの少なくとも一種である。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。   R-T-B magnets (R is at least one of rare earth elements. T is at least one of transition metal elements and always contains Fe. B is boron) are the highest in the permanent magnets. Known as a high-performance magnet, it is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R−T−B系磁石は主としてR14B化合物からなる主相とこの主相の粒界部分に位置する粒界相(以下、単に「粒界」という場合がある)とから構成されている。R14B化合物は高い磁化を持つ強磁性相でありR−T−B系磁石の特性の根幹をなしている。 R-T-B magnet is configured from mainly a grain boundary phase located in the grain boundary of the main phase and the main phase consisting of R 2 T 14 B compound (hereinafter, simply referred to as "grain boundary") and ing. The R 2 T 14 B compound is a ferromagnetic phase having a high magnetization, and forms the basis of the characteristics of the RTB magnet.

R−T−B系磁石は、高温で保磁力HcJ(以下、単に「保磁力」又は「HcJ」という場合がある)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR−T−B系磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 The RTB magnet has a problem that irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter sometimes simply referred to as “coercive force” or “H cJ ”) decreases at high temperatures. Therefore, in the R-T-B magnet which is used in particular for an electric vehicle motor, having a high H cJ even at high temperatures, that is, required to have a higher H cJ at room temperature.

R−T−B系磁石において、R14B化合物中のRに含まれる軽希土類元素(主としてNd及び/又はPr)の一部を重希土類元素(主としてDy及び/又はTb)で置換すると、HcJが向上することが知られている。重希土類元素の置換量の増加に伴いHcJは向上する。 In the R-T-B magnet, replacement of part of the light rare earth element (mainly Nd and / or Pr) to be included in R of R 2 T 14 B compound in the heavy rare earth elements (principally Dy and / or Tb) , H cJ are known to improve. H cJ improves with an increase in the substitution amount of the heavy rare earth element.

しかし、R14B化合物中の軽希土類元素を重希土類元素で置換するとR−T−B系磁石のHcJが向上する一方、残留磁束密度Br(以下、単に「Br」という場合がある)が低下する。また、重希土類元素、特にDyなどは資源存在量が少ないうえ産出地が限定されているなどの理由から供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、ユーザーから重希土類元素をできるだけ使用することなくHcJを向上させることが求められている。 However, while improving H cJ of R 2 T 14 B when the light rare earth element in the compound is replaced with the heavy rare-earth element R-T-B magnet is remanence B r (hereinafter, simply referred to as "B r" There is a drop). In addition, heavy rare earth elements, especially Dy, have problems such as unstable supply and large price fluctuations due to the small amount of resources and limited production area. Therefore, in recent years, users have been demanding to improve H cJ without using heavy rare earth elements as much as possible.

特許文献1には、Dyの含有量を低減しつつ保磁力を高めたR−T−B系希土類焼結磁石が開示されている。この焼結磁石の組成は、一般に用いられてきたR−T−B系合金に比べてB量が相対的に少ない特定の範囲に限定され、かつ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有している。その結果、粒界にR17相が生成され、このR17相から粒界に形成される遷移金属リッチ相(R13M)の体積比率が増加することにより、HcJが向上する。 Patent Document 1 discloses an R-T-B rare earth sintered magnet in which the coercive force is increased while reducing the content of Dy. The composition of this sintered magnet is limited to a specific range in which the amount of B is relatively small as compared with the generally used RTB-based alloy, and is selected from Al, Ga and Cu. It contains at least one metal element M. As a result, the R 2 T 17 phase is generated at the grain boundary, and the volume ratio of the transition metal rich phase (R 6 T 13 M) formed at the grain boundary from the R 2 T 17 phase is increased, whereby H cJ Is improved.

特許文献2には、希土類磁石の組成の焼結体に異方性を与えるための熱間加工を加えて得られる成型体を、希土類元素を含む低融点合金融液に接触させる工程を含む希土類磁石の製造方法が記載されている。特許文献1には具体的な実施例として、成型体に低融点合金融液としてNdCu合金、NdGa合金、NdFe合金を用いて、580℃、1時間で浸漬し、接触させて熱処理することが開示されている。   Patent Document 2 discloses a rare earth element including a step of bringing a molded body obtained by applying hot working for imparting anisotropy to a sintered body having a composition of a rare earth magnet, to a low melting point financial liquid containing a rare earth element. A method of manufacturing a magnet is described. Patent Document 1 discloses, as a specific example, using a NdCu alloy, an NdGa alloy, or an NdFe alloy as a low melting point financial liquid in a molded body, immersing the molded body at 580 ° C. for 1 hour, and contacting it for heat treatment. Has been done.

国際公開第2013/008756号International Publication No. 2013/008756 国際公開第2012/036294号International Publication No. 2012/036294

特許文献1及び特許文献2に記載されている方法は、重希土類元素の含有量を低減しつつR−T−B系磁石を高保磁力化できる点で注目に値する。しかし、近年、電気自動車用モータ等の用途において更に高いHcJを有するR−T−B系磁石が求められている。 The methods described in Patent Document 1 and Patent Document 2 are noteworthy in that they can increase the coercive force of the R-T-B magnet while reducing the content of the heavy rare earth element. However, in recent years, there has been a demand for an RTB -based magnet having an even higher H cJ in applications such as electric vehicle motors.

本開示の実施形態は、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR−T−B系磁石(本開示のR3−T2−B−Cu−M2系磁石に相当)の製造方法を提供する。 Embodiments of the present disclosure, while reducing the content of heavy rare earth elements, in the R-T-B-based R3-T2-B-Cu- M2 magnet magnet (the disclosure having high B r and a high H cJ Equivalent) manufacturing method.

本開示の限定的ではない例示的なR3−T2−B−Cu−M2系磁石の製造方法は、
以下の要件(1)〜(7)を満たすR1−T1−B−Cu−M1系合金バルク体を準備する工程と、
(1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1−T1−B−Cu−M1系合金バルク体全体の27mass%以上35mass%以下である。
(2)T1はFe又はFeとX1であり、X1はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(3)[T1]/[B]のmol比が13.0以上14.0以下である。
(4)CuはR1−T1−B−Cu−M1系合金バルク体全体の0.1mass%以上1.5mass%以下である。
(5)M1はGa及びAgの少なくとも一方であり、R1−T1−B−Cu−M1系合金バルク体全体の0mass%以上1mass%以下である。
(6)不可避的不純物を含んでも良い。
(7)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
以下の要件(8)〜(12)を満たすR2−Ga−Fe−A系合金を準備する工程と、
(8)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2−Ga−Fe−A系合金全体の35mass%以上91mass%以下である。
(9)GaはR2−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。
(10)FeはR2−Ga−Fe−A系合金全体の4mass%以上40mass%以下である。
(11)AはAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、Agから選択される一種以上であり、R2−Ga−Fe−A系合金全体の0mass%以上1mass%以下である。
(12)不可避的不純物を含んでも良い。
前記R1−T1−B−Cu−M1系合金バルク体の表面の少なくとも一部に、前記R2−Ga−Fe−A系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上950℃以下の温度で第一の熱処理を実施する工程と、
前記第一の熱処理が実施されたR1−T1−B−Cu−M1系合金バルク体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、
を含む、以下の要件(13)〜(19)を満たすR3−T2−B−Cu−M2系磁石の製造方法。
(13)R3は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R3−T2−B−Cu−M2系磁石全体の27mass%以上35mass%以下である。
(14)T2はFe又はFeとX2であり、X2はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(15)[T2]/[B]のmol比が14.0超である。
(16)CuはR3−T2−B−Cu−M2系磁石全体の0.1mass%以上1.5mass%以下である。
(17)M2はGa及びAgでありGaを必ず含み、R3−T2−B−Cu−M2系磁石全体の0.1mass%以上3mass%以下である。
(18)不可避的不純物を含んでいても良い。
(19)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
A non-limiting exemplary method of making the R3-T2-B-Cu-M2 based magnet of the present disclosure is:
A step of preparing an R1-T1-B-Cu-M1-based alloy bulk body that satisfies the following requirements (1) to (7),
(1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-Cu-M1 alloy bulk body.
(2) T1 is Fe or Fe and X1, and X1 is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(3) The molar ratio of [T1] / [B] is 13.0 or more and 14.0 or less.
(4) Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-B-Cu-M1-based alloy bulk body.
(5) M1 is at least one of Ga and Ag, and is 0 mass% or more and 1 mass% or less of the entire R1-T1-B-Cu-M1-based alloy bulk body.
(6) Inevitable impurities may be included.
(7) The main phase R 2 T 14 B phase has an average crystal grain size of 1 μm or less and has magnetic anisotropy.
A step of preparing an R2-Ga-Fe-A based alloy satisfying the following requirements (8) to (12),
(8) R2 is at least one of rare earth elements and always contains at least one of Nd and Pr, and is 35 mass% or more and 91 mass% or less of the entire R2-Ga-Fe-A based alloy.
(9) Ga is 2.5 mass% or more and 40 mass% or less of the entire R2-Ga-Fe-A alloy.
(10) Fe is 4 mass% or more and 40 mass% or less of the entire R2-Ga-Fe-A alloy.
(11) A is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, Mo, Ag, and R2-Ga-Fe-A alloy. It is 0 mass% or more and 1 mass% or less of the whole.
(12) Inevitable impurities may be included.
At least a part of the surface of the R1-T1-B-Cu-M1-based alloy bulk body is brought into contact with at least a part of the R2-Ga-Fe-A-based alloy, and the temperature is 700 ° C. in a vacuum or an inert gas atmosphere. A step of performing the first heat treatment at a temperature of 950 ° C. or lower,
The R1-T1-B-Cu-M1-based alloy bulk body on which the first heat treatment has been performed is subjected to a second heat treatment at a temperature of 450 ° C. or more and 600 ° C. or less in a vacuum or an inert gas atmosphere. Process,
And a method for manufacturing an R3-T2-B-Cu-M2 system magnet that satisfies the following requirements (13) to (19).
(13) R3 is at least one of rare earth elements and always contains at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire R3-T2-B-Cu-M2 magnet.
(14) T2 is Fe or Fe and X2, and X2 is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(15) The molar ratio of [T2] / [B] is more than 14.0.
(16) Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R3-T2-B-Cu-M2 magnet.
(17) M2 is Ga and Ag and always contains Ga, and is 0.1 mass% or more and 3 mass% or less of the entire R3-T2-B-Cu-M2 magnet.
(18) It may contain unavoidable impurities.
(19) The main phase R 2 T 14 B phase has an average crystal grain size of 1 μm or less and has magnetic anisotropy.

ある実施形態において、前記R2−Ga−Fe−A系合金は重希土類元素を含有していない。   In one embodiment, the R2-Ga-Fe-A based alloy does not contain a heavy rare earth element.

ある実施形態において、前記R2−Ga−Fe−A系合金中のR2の50mass%以上がPrである。   In one embodiment, 50 mass% or more of R2 in the R2-Ga-Fe-A alloy is Pr.

ある実施形態において、前記R1−T1−B−Cu−M1系合金バルク体の重希土類元素は1mass%以下である。   In one embodiment, the heavy rare earth element of the R1-T1-B-Cu-M1-based alloy bulk body is 1 mass% or less.

ある実施形態において、前記R1−T1−B−Cu−M1系合金バルク体を準備する工程は、R14B相を主体とする平均粒子径1μm以上10μm以下の粉末を磁界中成形した後、HDDR処理し、その後、加熱圧縮したものである。 In one embodiment, in the step of preparing the R1-T1-B-Cu-M1 alloy bulk body, after the powder having an average particle diameter of 1 μm or more and 10 μm or less and mainly composed of R 2 T 14 B phase is molded in a magnetic field. , HDDR processing, and then heat compression.

ある実施形態において、前記R1−T1−B−Cu−M1系合金バルク体を準備する工程は、R14B相を主体とする平均粒子径20μm以上の合金をHDDR処理した後、得られた粉末を磁界中成形し、その後、加熱圧縮したものである。 In an embodiment, the step of preparing the R1-T1-B-Cu-M1-based alloy bulk body is obtained after HDDR treatment of an alloy mainly composed of R 2 T 14 B phase and having an average particle size of 20 μm or more. The powder was molded in a magnetic field and then heated and compressed.

ある実施形態において、前記R1−T1−B−Cu−M1系合金バルク体を準備する工程は、超急冷法によって作製された合金を熱間加工したものである。   In one embodiment, the step of preparing the R1-T1-B-Cu-M1-based alloy bulk body is hot working of an alloy produced by a superquenching method.

本開示の実施形態によると、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR−T−B系磁石(本開示のR3−T2−B−Cu−M2系磁石に相当)の製造方法を提供することができる。 According to embodiments of the present disclosure, while reducing the content of heavy rare-earth element, R-T-B based magnet (R3-T2-B-Cu -M2 based magnet of the present disclosure having a high B r and a high H cJ Corresponding to) can be provided.

本開示によるR3−T2−B−Cu−M2系磁石の製造方法における工程の例を示すフローチャートである。6 is a flowchart showing an example of steps in a method for manufacturing an R3-T2-B-Cu-M2-based magnet according to the present disclosure. R3−T2−B−Cu−M2系磁石の主相と粒界相を示す模式図である。It is a schematic diagram which shows the main phase and grain boundary phase of a R3-T2-B-Cu-M2 type | system | group magnet. 図2Aの破線矩形領域内を更に拡大した模式図である。It is the schematic diagram which further expanded the inside of the broken-line rectangular area of FIG. 2A. 熱処理工程におけるR1−T1−B−Cu−M1系合金バルク体とR2−Ga−Fe−A系合金との配置形態を模式的に示す説明図である。It is explanatory drawing which shows typically the arrangement | positioning form of R1-T1-B-Cu-M1 type alloy bulk body and R2-Ga-Fe-A type alloy in a heat treatment process. 加熱圧縮により緻密化したり、熱間加工を行うための装置の構成例を示す図である。It is a figure which shows the structural example of the apparatus for densifying by heat compression and performing hot working.

本開示によるR3−T2−B−Cu−M2系磁石の製造方法は、図1に示す様に、R1−T1−B−Cu−M1系合金バルク体を準備する工程S10と、R2−Ga−Fe−A系合金を準備する工程S20とを含む。R1−T1−B−Cu−M1系合金バルク体を準備する工程S10と、R2−Ga−Fe−A系合金を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR1−T1−B−Cu−M1系合金バルク体及びR2−Ga−Fe−A系合金を用いてもよい。   As shown in FIG. 1, the method for manufacturing an R3-T2-B-Cu-M2-based magnet according to the present disclosure includes a step S10 of preparing an R1-T1-B-Cu-M1-based alloy bulk body and an R2-Ga-. And a step S20 of preparing an Fe-A based alloy. The order of the step S10 of preparing the R1-T1-B-Cu-M1-based alloy bulk body and the step S20 of preparing the R2-Ga-Fe-A-based alloy is arbitrary, and they are manufactured at different places. An R1-T1-B-Cu-M1-based alloy bulk body and an R2-Ga-Fe-A-based alloy may be used.

本開示において、第二の熱処理前及び第ニの熱処理中のR3−T2−B−Cu−M2系磁石をR1−T1−B−Cu−M1系合金バルク体と称し、第二の熱処理後のR3−T2−B−Cu−M2系磁石を単にR3−T2−B−Cu−M2系磁石と称する。   In the present disclosure, the R3-T2-B-Cu-M2 series magnet before the second heat treatment and during the second heat treatment is referred to as an R1-T1-B-Cu-M1 series alloy bulk body, and after the second heat treatment. The R3-T2-B-Cu-M2 series magnet is simply referred to as an R3-T2-B-Cu-M2 series magnet.

R1−T1−B−Cu−M1系合金バルク体は、以下の要件(1)〜(7)を満たす。
(1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1−T1−B−Cu−M1系合金バルク体全体の27mass%以上35mass%以下である。
(2)T1はFe又はFeとX1であり、X1はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(3)[T1]/[B]のmol比が13.0以上14.0以下である。
(4)CuはR1−T1−B−Cu−M1系合金バルク体全体の0.1mass%以上1.5mass%以下である。
(5)M1はGa及びAgの少なくとも一方であり、R1−T1−B−Cu−M1系合金バルク体全体の0mass%以上1mass%以下である。
(6)不可避的不純物を含んでも良い。
なお、本開示においては、M1が0mass%の場合であってもR1−T1−B−Cu−M1系合金バルク体と称することとする。
(7)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
前記(3)[T1]/[B]のmol比が14.0以下であるということは、Bの含有量がR14B化合物の化学量論組成比よりも多い(又は同じ)、すなわち、主相(R14B化合物)形成に使われるT1量に対して相対的にB量が多い(又は同じ)ことを意味している。尚、[T1]は質量%で示すT1で規定された各元素(例えばFe)の含有量をその元素(例えばFe)の原子量で除したものであり、[B]は質量%で示すBの含有量をBの原子量で除したものである。
The R1-T1-B-Cu-M1-based alloy bulk body satisfies the following requirements (1) to (7).
(1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-Cu-M1 alloy bulk body.
(2) T1 is Fe or Fe and X1, and X1 is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(3) The molar ratio of [T1] / [B] is 13.0 or more and 14.0 or less.
(4) Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-B-Cu-M1-based alloy bulk body.
(5) M1 is at least one of Ga and Ag, and is 0 mass% or more and 1 mass% or less of the entire R1-T1-B-Cu-M1-based alloy bulk body.
(6) Inevitable impurities may be included.
In addition, in this indication, even if M1 is 0 mass%, it will be called an R1-T1-B-Cu-M1-based alloy bulk body.
(7) The main phase R 2 T 14 B phase has an average crystal grain size of 1 μm or less and has magnetic anisotropy.
(3) The molar ratio [T1] / [B] is 14.0 or less means that the content of B is higher (or the same) than the stoichiometric composition ratio of the R 2 T 14 B compound. That is, it means that the amount of B is relatively large (or the same) with respect to the amount of T1 used for forming the main phase (R 2 T 14 B compound). In addition, [T1] is the content of each element (for example, Fe) defined by T1 in mass% divided by the atomic weight of the element (for example, Fe), and [B] is the content of B in mass%. The content is divided by the atomic weight of B.

R2−Ga−Fe−A系合金は、以下の要件(8)〜(12)を満たす。
(8)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2−Ga−Fe−A系合金全体の35mass%以上91mass%以下である。
(9)GaはR2−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。
(10)FeはR2−Ga−Fe−A系合金全体の4mass%以上40mass%以下である。
(11)AはAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、Agから選択される一種以上であり、R2−Ga−Fe−A系合金全体の0mass%以上1mass%以下である。
(12)不可避的不純物を含んでも良い。
なお、本開示においては、Aが0mass%の場合であってもR2−Ga−Fe−A系合金と称することとする。
The R2-Ga-Fe-A alloy satisfies the following requirements (8) to (12).
(8) R2 is at least one of rare earth elements and always contains at least one of Nd and Pr, and is 35 mass% or more and 91 mass% or less of the entire R2-Ga-Fe-A based alloy.
(9) Ga is 2.5 mass% or more and 40 mass% or less of the entire R2-Ga-Fe-A alloy.
(10) Fe is 4 mass% or more and 40 mass% or less of the entire R2-Ga-Fe-A alloy.
(11) A is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, Mo, Ag, and R2-Ga-Fe-A alloy. It is 0 mass% or more and 1 mass% or less of the whole.
(12) Inevitable impurities may be included.
In the present disclosure, even if A is 0 mass%, it is referred to as an R2-Ga-Fe-A alloy.

R3−T2−B−Cu−M2系磁石(第二の熱処理後のR3−T2−B−Cu−M2系磁石)は、以下の要件(13)〜(19)を満たす。
(13)R3は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R3−T2−B−Cu−M2系磁石全体の27mass%以上35mass%以下である。
(14)T2はFe又はFeとX2であり、X2はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(15)[T2]/[B]のmol比が14.0超である。
(16)CuはR3−T2−B−Cu−M2系磁石全体の0.1mass%以上1.5mass%以下である。
(17)M2はGa及びAgでありGaを必ず含み、R3−T2−B−Cu−M2系磁石全体の0.1mass%以上3mass%以下である。
(18)不可避的不純物を含んでいても良い。
(19)主相であるR14B相の平均結晶粒径が1μm以下であり磁気的異方性を有する。
前記(14)[T2]/[B]のmol比が14.0超であるということは、Bの含有量がR14B化合物の化学量論組成比よりも少ない、すなわち、主相(R14B化合物)形成に使われるT2量に対して相対的にB量が少ないことを意味している。尚、[T2]は質量%で示すT2で規定された各元素(例えばFe)の含有量をその元素(例えばFe)の原子量で除したものであり、[B]は質量%で示すBの含有量をBの原子量で除したものである。
The R3-T2-B-Cu-M2 system magnet (R3-T2-B-Cu-M2 system magnet after the second heat treatment) satisfies the following requirements (13) to (19).
(13) R3 is at least one of rare earth elements and always contains at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire R3-T2-B-Cu-M2 magnet.
(14) T2 is Fe or Fe and X2, and X2 is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(15) The molar ratio of [T2] / [B] is more than 14.0.
(16) Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R3-T2-B-Cu-M2 magnet.
(17) M2 is Ga and Ag and always contains Ga, and is 0.1 mass% or more and 3 mass% or less of the entire R3-T2-B-Cu-M2 magnet.
(18) It may contain unavoidable impurities.
(19) The R 2 T 14 B phase, which is the main phase, has an average crystal grain size of 1 μm or less and has magnetic anisotropy.
The molar ratio of [14] [T2] / [B] is more than 14.0 means that the content of B is less than the stoichiometric composition ratio of the R 2 T 14 B compound, that is, the main phase. (R 2 T 14 B compound) means that the amount of B is relatively small with respect to the amount of T2 used for formation. Note that [T2] is the content of each element (for example Fe) defined by T2 expressed in mass% divided by the atomic weight of the element (for example Fe), and [B] is the content of B expressed in mass%. The content is divided by the atomic weight of B.

本開示によるR3−T2−B−Cu−M2系磁石の製造方法は、主相(R14B化合物)形成に使われるT量に対して化学量論比で相対的にB量が多い(又は同じ、すなわち、[T1]/[B]のmol比が14.0以下である)R1−T1−B−Cu−M1系合金バルク体の表面の少なくとも一部にR2−Ga−Fe−A系合金を接触させ、図1に示す様に、真空又は不活性ガス雰囲気中、700℃以上950℃以下の温度で第一の熱処理を実施する工程S30と、この第一の熱処理が実施されたR1−T1−B−Cu−M1系合金バルク体に対して真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程S40を行うことで、主相形成に使われるT量に対して相対的にB量が少ないR3−T2−B−Cu−M2系磁石を作製する。第一の熱処理を実施する工程S30と、第二の熱処理を実施する工程S40との間に他の工程、例えば冷却工程や合金バルク体表面に残存しているR2−Ga−Fe−A系合金を除去する工程などが実行され得る。 Method for producing R3-T2-B-Cu- M2 -based magnet according to the present disclosure, there are many relatively B amount in a stoichiometric ratio with respect to T amount used for forming the main phase (R 2 T 14 B compound) (Or the same, that is, the molar ratio of [T1] / [B] is 14.0 or less) R2-T1-B-Cu-M1-based alloy bulk R2-Ga-Fe-on at least a part of the surface. As shown in FIG. 1, a step S30 in which an A-based alloy is brought into contact and a first heat treatment is performed at a temperature of 700 ° C. or higher and 950 ° C. or lower in a vacuum or an inert gas atmosphere, and the first heat treatment is performed. By performing the step S40 of performing the second heat treatment on the R1-T1-B-Cu-M1-based alloy bulk body at a temperature of 450 ° C. or more and 600 ° C. or less in the vacuum or inert gas atmosphere, the main phase is obtained. R3-T with a relatively small amount of B relative to the amount of T used for formation A 2-B-Cu-M2 system magnet is produced. Another step between the step S30 of performing the first heat treatment and the step S40 of performing the second heat treatment, for example, a cooling step or an R2-Ga-Fe-A based alloy remaining on the surface of the alloy bulk body. And the like may be performed.

まず、R3−T2−B−Cu−M2系磁石の基本構造を説明する。
R3−T2−B−Cu−M2系磁石は、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。
図2Aは、R3−T2−B−Cu−M2系磁石の主相と粒界相を示す模式図であり、図2Bは図2Aの破線矩形領域内を更に拡大した模式図である。図2Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図2A及び図2Bに示されるように、R3−T2−B−Cu−M2系磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図2Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つ以上のR14B化合物粒子が隣接する粒界三重点14bとを含む。
主相12であるRB化合物は高い飽和磁化と異方性磁界を持つ強磁性化合物である。したがって、R3−T2−B−Cu−M2系磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。R14B化合物を形成するためのB量又はR量が化学量論比を下回ると、一般的には、粒界相14にFe相又はR17相等の磁性体が生成し、HcJが急激に低下する。
First, the basic structure of the R3-T2-B-Cu-M2 system magnet will be described.
R3-T2-B-Cu- M2 based magnet is mainly composed of a main phase consisting of R 2 T 14 B compound, and the grain boundary phase located in the grain boundary of the main phase.
FIG. 2A is a schematic diagram showing a main phase and a grain boundary phase of the R3-T2-B-Cu-M2 system magnet, and FIG. 2B is a schematic diagram further enlarging the inside of a broken-line rectangular region of FIG. 2A. In FIG. 2A, as an example, an arrow having a length of 5 μm is shown as a reference length indicating a size for reference. As shown in FIGS. 2A and 2B, R3-T2-B- Cu-M2 -based magnet, a grain boundary mainly a main phase 12 made of R 2 T 14 B compound, located grain boundary of the main phase 12 Phase 14 and. Further, as shown in FIG. 2B, the grain boundary phase 14 includes a two-grain grain boundary phase 14a in which two R 2 T 14 B compound particles (grains) are adjacent to each other and three or more R 2 T 14 B compound grains. Include the grain boundary triple points 14b adjacent to each other.
The R 2 T 4 B compound that is the main phase 12 is a ferromagnetic compound having high saturation magnetization and an anisotropic magnetic field. Therefore, in the R3-T2-B-Cu- M2 based magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R content, the T content, and the B content in the raw material alloy are set to the stoichiometric ratio of the R 2 T 14 B compound (R content: T content: B content = 2: 14: 1). When the amount of B or the amount of R for forming the R 2 T 14 B compound is less than the stoichiometric ratio, a magnetic substance such as Fe phase or R 2 T 17 phase is generally generated in the grain boundary phase 14, H cJ drops sharply.

特許文献1に記載されている方法では、B量をR14B化合物の化学量論比よりも少なくし、且つ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有することで、R17相から粒界に遷移金属リッチ相(R13M)を生成させてHcJを向上させている。しかし、本発明者らは検討の結果、R−T−Ga相(R13M)は原料合金段階では生成し難くその後の熱処理時に生成され易いことがわかった。そして、特許文献1に記載されている方法の様に原料合金段階から低B組成(B量がR14B化合物の化学量論比よりも少ない組成)にすると、原料合金段階において粒界にR17相等が多く残存し、それにより最終的に得られる焼結磁石のHcJを低下させていることがわかった。そのため、高いHcJを得るためには、原料合金段階では高B組成(B量がR14B化合物の化学量論比よりも多い(又は同じ)組成)にしてR17相等の生成を抑制させる必要がある。本発明者らは更に検討の結果、高B且つ特定の組成を有するR1−T1−B−Cu−M1系合金バルク体の表面の少なくとも一部に、R2−Ga−Fe−A系合金を接触させて特定の熱処理を実施することにより、R2−Ga−Fe−A系合金中のFeをR1−T1−B−Cu−M1系合金バルク体内部に導入し、熱処理後のR3−T2−B−Cu−M2系磁石を低B組成にする(FeをR1−T1−B−Cu−M1系合金バルク体内部に導入することで相対的にB量をR14B化合物の化学量論比よりも少なくする)ことができることを見い出した。通常Feを含む合金(例えばDyFeやTbFe)を熱処理等により磁石表面から導入させても1mass%以下程度の少量しか磁石内部に導入されないため、[T]/[B]のmol比が14.0以下の磁石を14.0超にすることは困難である。本開示におけるR3−T2−B−Cu−M2系磁石の製造方法は、特定組成のR1−T1−B−Cu−M1系合金バルク体の表面に特定組成のR2、Ga、Feを全て含む合金を接触させることで、最終的に得られるR3−T2−B−Cu−M2系磁石における[T2]/[B]のmol比が14.0超となるために必要な量のFeを磁石表面から内部に導入させることを可能とする。これにより、特許文献1に記載されている方法の様な最初(原料合金段階)から低B組成の場合と比べて、原料合金段階におけるR217相等の生成を抑制することができるため、より高いHcJを得ることができると考えられる。更に、最初(原料合金段階)から低B組成且つGa等を含有する組成(例えば特許文献1に記載されている組成)の場合、R−T−Ga相は磁石内部にほぼ均一に生成される。これに対し、本開示によるR3−T2−B−Cu−M2系磁石の製造方法は、磁石表面よりR、Ga、Feを導入させることで、最も耐熱性の要求される磁石表面付近で最も効率的にHcJを向上させることができ、その結果、Brの低下を抑えることができる。また、特許文献2は、実施例における磁石組成が不明であり、拡散合金及び熱処理条件も本開示とは異なる。 In the method described in Patent Document 1, the amount of B is made smaller than the stoichiometric ratio of the R 2 T 14 B compound, and at least one metal element M selected from Al, Ga and Cu is added. By containing it, a transition metal rich phase (R 6 T 13 M) is generated at the grain boundary from the R 2 T 17 phase to improve H cJ . However, the present inventors have studies a result, R-T-Ga phase (R 6 T 13 M) is a material alloy stage was found that likely to be generated at the time of generation hardly subsequent heat treatment. When a low B composition (composition in which the amount of B is smaller than the stoichiometric ratio of the R 2 T 14 B compound) is changed from the raw material alloy stage as in the method described in Patent Document 1, the grain boundaries are increased in the raw alloy stage. It was found that a large amount of R 2 T 17 phase and the like remained in the alloy , thereby lowering the H cJ of the finally obtained sintered magnet. Therefore, in order to obtain a high H cJ , a high B composition (a composition in which the amount of B is greater than (or the same as) the stoichiometric ratio of the R 2 T 14 B compound) is used in the raw material alloy stage, and the R 2 T 17 phase or the like is obtained. It is necessary to suppress the generation. As a result of further studies, the inventors of the present invention contacted at least a part of the surface of the R1-T1-B-Cu-M1 alloy bulk body having a high B and a specific composition with the R2-Ga-Fe-A alloy. Then, the Fe in the R2-Ga-Fe-A based alloy is introduced into the R1-T1-B-Cu-M1 based alloy bulk body by performing the specific heat treatment, and R3-T2-B after the heat treatment is performed. the -cu-M2-based magnet to a low B composition (stoichiometry of R1-T1-B-Cu- M1 system relatively B amount by introducing inside alloy bulk bodies Fe R 2 T 14 B compound I found that it can be less than the ratio). Usually, even if an alloy containing Fe (for example, DyFe or TbFe) is introduced from the magnet surface by heat treatment or the like, only a small amount of about 1 mass% or less is introduced into the magnet, so that the molar ratio [T] / [B] is 14.0. It is difficult to make the following magnets over 14.0. The manufacturing method of the R3-T2-B-Cu-M2-based magnet according to the present disclosure is an alloy containing all R2, Ga, and Fe of a specific composition on the surface of an R1-T1-B-Cu-M1-based alloy bulk body of a specific composition. By contacting the surface of the magnet with an amount of Fe necessary for the molar ratio of [T2] / [B] in the finally obtained R3-T2-B-Cu-M2 system magnet to exceed 14.0. It is possible to introduce from inside. This makes it possible to suppress the generation of the R 2 T 17 phase and the like in the raw material alloy stage as compared with the case of the low B composition from the beginning (raw alloy stage) as in the method described in Patent Document 1, It is considered that a higher H cJ can be obtained. Further, in the case of a composition having a low B composition and containing Ga and the like from the beginning (raw material alloy stage) (for example, the composition described in Patent Document 1), the RT-Ga phase is almost uniformly generated inside the magnet. .. On the other hand, in the method for manufacturing the R3-T2-B-Cu-M2 system magnet according to the present disclosure, by introducing R, Ga, and Fe from the magnet surface, the most efficiency is achieved near the magnet surface where the highest heat resistance is required. H cJ can be improved, and as a result, a decrease in B r can be suppressed. Further, in Patent Document 2, the magnet composition in the examples is unknown, and the diffusion alloy and heat treatment conditions are also different from the present disclosure.

(R1−T1−B−Cu−M1系合金バルク体を準備する工程)
まず、R1−T1−B−Cu−M1系合金バルク体(以下、単に「バルク体」という場合がある)を準備する工程におけるバルク体の組成を説明する。
R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含む。更に、R1−T1−B−Cu−M1系合金バルク体のHcJを向上させるために一般的に用いられるDy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。但し、本開示は前記重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量はR1−T1−B−Cu−M1系合金バルク体の1mass%以下(R1−T1−B−Cu−M1系合金バルク体中の重希土類元素が1mass%以下)であることが好ましく、0.5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことがさらに好ましい。
(Process of preparing R1-T1-B-Cu-M1-based alloy bulk body)
First, the composition of the bulk body in the step of preparing the R1-T1-B-Cu-M1-based alloy bulk body (hereinafter, may be simply referred to as “bulk body”) will be described.
R1 is at least one kind of rare earth element and always contains at least one of Nd and Pr. Furthermore, a small amount of heavy rare earth elements such as Dy, Tb, Gd, and Ho, which are generally used for improving HcJ of the R1-T1-B-Cu-M1-based alloy bulk body, may be contained. However, according to the present disclosure, sufficiently high H cJ can be obtained without using a large amount of the heavy rare earth element. Therefore, the content of the heavy rare earth element is 1 mass% or less of the R1-T1-B-Cu-M1 alloy bulk body (the heavy rare earth element in the R1-T1-B-Cu-M1 alloy bulk body is 1 mass% or less. ) Is preferable, 0.5 mass% or less is more preferable, and no content (substantially 0 mass%) is further preferable.

R1はR1−T1−B−Cu−M1系合金バルク体全体の27mass%以上35mass%以下である。R1が27mass%未満では加熱圧縮や熱間加工の過程で液相が十分に生成せず、R1−T1−B−Cu−M1系合金バルク体を十分に緻密化することが困難になる。一方、R1が35mass%を超えても本開示の効果を得ることはできるが、R1−T1−B−Cu−M1系合金バルク体の製造工程中における合金粉末が非常に活性になり、合金粉末の著しい酸化や発火などを生じたり、加熱圧縮や熱間加工の際に液相の染み出しが起こってバルク体を安定に作製することが困難になることがあるため、35mass%以下が好ましい。R1は28mass%以上33mass%以下であることがより好ましく、28.5mass%以上32mass%以下であることがさらに好ましい。   R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-Cu-M1-based alloy bulk body. When R1 is less than 27 mass%, a liquid phase is not sufficiently generated in the process of heat compression and hot working, and it becomes difficult to sufficiently densify the R1-T1-B-Cu-M1 alloy bulk body. On the other hand, even if R1 exceeds 35 mass%, the effect of the present disclosure can be obtained, but the alloy powder in the manufacturing process of the R1-T1-B-Cu-M1-based alloy bulk body becomes very active, and the alloy powder In some cases, it may be difficult to stably produce a bulk body by causing remarkable oxidation or ignition of the above, or exuding of a liquid phase during heat compression or hot working, so that it is preferably 35 mass% or less. R1 is more preferably 28% by mass or more and 33% by mass or less, and further preferably 28.5% by mass or more and 32% by mass or less.

T1はFe又はFeとX1であり、X1はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、から選択される一種以上である。すなわち、T1はFeのみであってもよいし、FeとX1からなってもよい。T1がFeとX1からなる場合、T1全体に対するFe量は80mass%以上であることが好ましい。T1はR1、B、Cu、M1及び不可避的不純物以外の残部を占めることが好ましい。   T1 is Fe or Fe and X1, and X1 is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb and Mo. That is, T1 may be Fe only or Fe and X1. When T1 is composed of Fe and X1, the amount of Fe with respect to the entire T1 is preferably 80 mass% or more. It is preferable that T1 occupy the balance other than R1, B, Cu, M1 and unavoidable impurities.

前記T1とBとは、[T1]/[B]のmol比が13.0以上14.0以下となるように設定する。[T1]/[B]のmol比が13.0未満であると、最終的に得られるR3−T2−B−Cu−M2系磁石の[T2]/[B]のmol比を14.0超にすることができず、高いHcJを得ることができない恐れがある。一方、[T1]/[B]のmol比が14.0を超えると、原料段階におけるR17相等の生成を抑制することができず、高いHcJを得ることができない。[T1]/[B]のmol比が14.0以下という条件は、主相(R14B化合物)形成に使われるT量に対して相対的にB量が多い(又は同じ)ことを示している。また、BはR1−T1−B−Cu−M1系合金バルク体全体の0.9mass%以上1.1mass%未満が好ましい。 The T1 and B are set so that the molar ratio of [T1] / [B] is 13.0 or more and 14.0 or less. When the molar ratio of [T1] / [B] is less than 13.0, the finally obtained R3-T2-B-Cu-M2 system magnet has a molar ratio of [T2] / [B] of 14.0. There is a possibility that it cannot be made super, and that high H cJ cannot be obtained. On the other hand, when the molar ratio of [T1] / [B] exceeds 14.0, generation of R 2 T 17 phase and the like in the raw material stage cannot be suppressed, and high H cJ cannot be obtained. The condition that the molar ratio of [T1] / [B] is 14.0 or less is that the B amount is relatively large (or the same) with respect to the T amount used for forming the main phase (R 2 T 14 B compound). Is shown. Further, B is preferably 0.9 mass% or more and less than 1.1 mass% of the entire R1-T1-B-Cu-M1 alloy bulk body.

CuはR1−T1−B−Cu−M1系合金バルク体全体の0.1mass%以上1.5mass%以下である。Cuが0.1mass%未満であると、後述する第一の熱処理で拡散が十分に進行せず、最終的に得られるR3−T2−B−Cu−M2系磁石の[T2]/[B]のmol比を14.0超にすることができず、高いHcJを得ることができない恐れがある。一方、Cuが1.5mass%を超えるとBが低下する恐れがある。 Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-B-Cu-M1-based alloy bulk body. When Cu is less than 0.1 mass%, diffusion does not proceed sufficiently in the first heat treatment described below, and [T2] / [B] of the finally obtained R3-T2-B-Cu-M2 system magnet. It is not possible to obtain a high H cJ , because the molar ratio of H cJ cannot exceed 14.0. On the other hand, there is a possibility that Cu is lowered B r exceeds 1.5 mass%.

M1はGa及びAgの少なくとも一方であり、M1は0mass%以上1mass%以下である。M1を含有しなくても本開示の効果を奏することができるが、特にGaを少量(0.2mass%程度)含有させた方がより高いHcJを得ることができるため好ましい。 M1 is at least one of Ga and Ag, and M1 is 0 mass% or more and 1 mass% or less. Although the effects of the present disclosure can be achieved without containing M1, it is particularly preferable to contain a small amount of Ga (about 0.2 mass%) because a higher H cJ can be obtained.

さらに、R1−T1−B−Cu−M1系合金バルク体は、Ndメタル、Prメタル、ジジム合金(Nd−Pr)、電解鉄、フェロボロンなどの合金中及び製造工程中に通常含有される不可避的不純物及び少量の上記以外の元素を含んでいても良い。例えば、La、Ce、Sm、Ca、Mg、O(酸素)、N(炭素)、C(窒素)、Hf、Ta、Wなどをそれぞれ含有してもよい。   Furthermore, the R1-T1-B-Cu-M1-based alloy bulk body is an unavoidable material that is usually contained in alloys such as Nd metal, Pr metal, didymium alloy (Nd-Pr), electrolytic iron, and ferroboron, and during the manufacturing process. It may contain impurities and a small amount of elements other than the above. For example, La, Ce, Sm, Ca, Mg, O (oxygen), N (carbon), C (nitrogen), Hf, Ta, W, etc. may be contained.

次にR1−T1−B−Cu−M1系合金バルク体を準備する工程について説明する。本実施形態で用いられる、主相であるR14B相の結晶粒径が1μm以下でかつ磁気的な異方性を有するR1−T1−B−Cu−M1系合金バルク体を準備する工程としては公知の方法が採用できる。以下にバルク体を作製するための具体例をいくつか示す。 Next, the step of preparing the R1-T1-B-Cu-M1 based alloy bulk body will be described. An R1-T1-B-Cu-M1-based alloy bulk body having a crystal grain size of the main phase R 2 T 14 B phase of 1 μm or less and having magnetic anisotropy used in the present embodiment is prepared. A known method can be adopted as the step. Some specific examples for producing a bulk body are shown below.

[微粉砕粉配向成形体のHDDR処理で得られた多孔質材料の加圧圧縮]
この方法は、粒径D50(粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径))が10μm程度の粉末を磁界中配向して作製した成形体にHDDR処理を行うことで、部分的に焼結されて多孔質となり、さらに加熱圧縮により緻密化することで得られる、平均結晶粒径
1μm以下で磁気的異方性を有するバルク体を作製する方法である。以下に作製工程の一例を示す。
[Pressurization and compression of porous material obtained by HDDR treatment of finely pulverized powder oriented compact]
In this method, a powder having a particle size D 50 (the particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method based on an air flow dispersion method) of about 10 μm is oriented in a magnetic field and formed. A bulk body having an average crystal grain size of 1 μm or less and magnetic anisotropy is obtained by subjecting the body to HDDR treatment to partially sinter to make it porous and further densify by heating and compression. Is the way to do it. An example of the manufacturing process is shown below.

<原料粉末>
まず、R14B相を主体とする原料合金を作製する。原料合金の作製方法としては、例えば、ブックモールド法、遠心鋳造法、ストリップキャスト法、アトマイズ法、拡散還元法など、R−T−B系磁石の作製に用いられる公知の方法を適用することができるが、α‐Fe相の生成を抑制するという観点からは、ストリップキャスト法を採用することが好ましい。得られた原料合金は、さらに、原料合金における組織均質化などを目的として、粉砕前の原料合金に対して熱処理を施してもよい。このような熱処理は、真空または不活性雰囲気において、典型的には1000℃以上の温度で実行され得る。
<Raw material powder>
First, a raw material alloy mainly composed of the R 2 T 14 B phase is manufactured. As a method for producing the raw material alloy, for example, a known method used for producing an R-T-B magnet, such as a book mold method, a centrifugal casting method, a strip casting method, an atomizing method, or a diffusion reduction method, may be applied. However, the strip casting method is preferably adopted from the viewpoint of suppressing the formation of the α-Fe phase. The obtained raw material alloy may be subjected to a heat treatment on the raw material alloy before pulverization for the purpose of homogenizing the structure of the raw material alloy. Such heat treatment may be carried out in a vacuum or an inert atmosphere, typically at a temperature of 1000 ° C. or higher.

次に、原料合金(出発合金)を公知の方法で粉砕することにより原料粉末を作製する。本実施形態では、まず、ジョークラッシャーなどの機械的粉砕法や水素粉砕法などを用いて出発合金を粗粉砕し、大きさ50μm〜1000μm程度の粗粉砕粉を作製する。この粗粉砕粉末に対してジェットミルなどによる微粉砕を行い、粒径D50が1μm以上20μm以下、好ましくは、粒径D50が3μm以上10μm以下の原料粉末を作製する。粒径D50が1μm以下となると生産性の悪化や、酸化などの問題が顕在化してしまう。一方、粒径D50が20μm以上を超えると、その後のHDDR処理による緻密化が十分進行せず、HDDR処理工程以降のハンドリングが困難になる場合がある。 Next, a raw material powder is produced by pulverizing the raw material alloy (starting alloy) by a known method. In the present embodiment, first, the starting alloy is roughly pulverized by using a mechanical pulverization method such as a jaw crusher or a hydrogen pulverization method to produce coarsely pulverized powder having a size of about 50 μm to 1000 μm. To fine grinding with a jet mill to this coarsely pulverized powder, the particle size D 50 of 1μm or 20μm or less, preferably has a particle size D 50 is prepared 10μm or less of the raw material powder than 3 [mu] m. When the particle diameter D 50 is 1 μm or less, productivity is deteriorated, and problems such as oxidation become apparent. On the other hand, if the particle size D 50 exceeds 20 μm, the densification due to the subsequent HDDR treatment may not proceed sufficiently, and handling after the HDDR treatment step may become difficult.

<配向成形体>
次に、上記の原料粉末を用いて圧粉体(成形体)を成形する。圧粉体を成形する工程は、0.5T〜20Tの磁界中(静磁界、パルス磁界など)で、10MPa〜200MPaの圧力を印加して行うことが望ましい。成形は、公知の粉末プレス装置によって行うことができる。粉末プレス装置から取り出したときの圧粉体密度(成形体密度)は、3.5Mg/m3〜5.2Mg/m3程度である。
<Oriented compact>
Next, a green compact (molded body) is molded using the above raw material powder. The step of molding the green compact is preferably performed by applying a pressure of 10 MPa to 200 MPa in a magnetic field of 0.5 T to 20 T (static magnetic field, pulse magnetic field, etc.). The molding can be performed by a known powder pressing device. The green compact density (molded body density) when taken out from the powder pressing device is about 3.5 Mg / m 3 to 5.2 Mg / m 3 .

なお、最終的に得られるR3−T2−B−Cu−M2系磁石の磁気特性の向上などを目的として、出発合金の粉砕工程の前に、別の合金を混合したものを微粉砕し、微粉砕後に圧粉体を成形してもよい。あるいは、出発合金を微粉砕した後に、別の金属、合金および/または化合物の粉末を混合し、それらの圧粉体を作製してもよい。さらには、金属、合金および/または化合物を分散または溶解させた液を圧粉体に含浸させ、その後、溶媒を蒸発させてもよい。これらの方法を適用する場合の合金粉末の組成は、混合粉全体として前述の範囲内に入ることが望ましい。   For the purpose of improving the magnetic properties of the finally obtained R3-T2-B-Cu-M2 system magnet, a mixture of another alloy was finely pulverized before the pulverization step of the starting alloy. You may shape | mold a green compact after crushing. Alternatively, the starting alloy may be comminuted and then powders of another metal, alloy and / or compound may be mixed to make a green compact thereof. Furthermore, the powder compact may be impregnated with a liquid in which a metal, an alloy and / or a compound is dispersed or dissolved, and then the solvent may be evaporated. When applying these methods, the composition of the alloy powder is preferably within the above range as a whole of the mixed powder.

<HDDR処理>
次に、上記成形工程によって得られた圧粉体(成形体)に対し、HDDR処理を施す。
<HDDR processing>
Next, the HDDR treatment is applied to the green compact (molded body) obtained by the above molding process.

HDDR処理の条件は、添加元素の種類・量などによって適宜選定され、従来のHDDR処理における処理条件を参考にして決定することができる。   The conditions of the HDDR process are appropriately selected according to the type and amount of the additive element, and can be determined with reference to the process conditions in the conventional HDDR process.

HD反応のための昇温工程は、水素分圧10kPa以上500kPa以下の水素ガス雰囲気または水素ガスと不活性ガス(ArやHeなど)の混合雰囲気、不活性ガス雰囲気、真空中のいずれかで行う。CoやGaを含まない原料粉末の圧粉体を処理する場合は、高い主相配向度を得るために、昇温工程を不活性ガス雰囲気または真空中で行うことが望ましい。   The temperature raising step for the HD reaction is performed in a hydrogen gas atmosphere having a hydrogen partial pressure of 10 kPa or more and 500 kPa or less, or a mixed atmosphere of a hydrogen gas and an inert gas (Ar, He, etc.), an inert gas atmosphere, or a vacuum. .. When processing a green compact of a raw material powder containing no Co or Ga, it is desirable to perform the temperature raising step in an inert gas atmosphere or vacuum in order to obtain a high degree of main phase orientation.

HD処理は、前記雰囲気中で、650℃以上1000℃未満で行う。HD処理時の水素分圧は20kPa以上200kPa以下がより好ましい。処理温度は700℃以上950℃以下であることがより好ましく、750℃以上920℃以下であることがさらに好ましい。HD処理に要する時間は、5分以上10時間以下であり、典型的には10分以上5時間以下の範囲に設定される。   The HD treatment is performed in the atmosphere at 650 ° C. or higher and lower than 1000 ° C. The hydrogen partial pressure during HD treatment is more preferably 20 kPa or more and 200 kPa or less. The treatment temperature is more preferably 700 ° C. or higher and 950 ° C. or lower, further preferably 750 ° C. or higher and 920 ° C. or lower. The time required for HD processing is 5 minutes or more and 10 hours or less, and is typically set in the range of 10 minutes or more and 5 hours or less.

なお、バルク体中のTについて、Co量が合金全体の組成に対し、3mol%以下の場合は、昇温および/またはHD処理時の水素分圧を5kPa以上100kPa以下、より好ましくは、10kPa以上50kPa以下とすることで、HDDR処理における異方性の低下を抑制できる。   When T content in the bulk body is 3 mol% or less with respect to the composition of the entire alloy, the hydrogen partial pressure during heating and / or HD treatment is 5 kPa or more and 100 kPa or less, more preferably 10 kPa or more. By setting it to 50 kPa or less, it is possible to suppress a decrease in anisotropy in the HDDR process.

HD処理のあと、DR処理を行う。HD処理とDR処理は同一の装置内で連続的に行うことも、別々の装置を用いて不連続的に行うこともできる。   After the HD processing, the DR processing is performed. The HD process and the DR process can be continuously performed in the same device or can be performed discontinuously by using different devices.

DR処理は、真空または不活性ガス雰囲気下において650℃以上1000℃未満で行う。処理時間は、通常、5分以上10時間以下であり、典型的には10分以上、2時間以下の範囲に設定される。なお、雰囲気を段階的に制御する(例えば水素分圧を段階的に下げたり、減圧圧力を段階的に下げたりする)ことができることは言うまでもない。   The DR process is performed at 650 ° C. or higher and lower than 1000 ° C. in a vacuum or an inert gas atmosphere. The treatment time is usually 5 minutes or more and 10 hours or less, and is typically set in the range of 10 minutes or more and 2 hours or less. Needless to say, the atmosphere can be controlled stepwise (for example, the hydrogen partial pressure can be lowered stepwise or the depressurization pressure can be stepwise lowered).

上述したHD反応前の昇温工程を含むHDDR工程の全般を通じて焼結反応が起こる。このため、圧粉体は細孔を有する多孔質材料となる。   The sintering reaction occurs throughout the HDDR process including the temperature raising process before the HD reaction. Therefore, the green compact is a porous material having pores.

<多孔質材料の加熱圧縮処理>
上記の方法によって得られた多孔質材料にホットプレス法などの加熱圧縮処理を適用することによって、緻密化を行い、密度7.3g/m3以上、典型的には7.5g/m3以上のバルク体を作製する。多孔質材料に対する加熱圧縮は、公知の加熱圧縮技術を用いて行うことができる。例えば、ホットプレス、SPS、(spark plasma sintering)、HIP(hot isostatic press)、熱間圧延などの加熱圧縮処理を行うことが可能である。なかでも、所望の形状を得やすいホットプレスやSPSが好適に用いられ得る。本実施形態では以下の手順でホットプレスを行う。
<Heat compression treatment of porous material>
The porous material obtained by the above method is densified by applying a heat compression treatment such as a hot pressing method to obtain a density of 7.3 g / m 3 or more, typically 7.5 g / m 3 or more. A bulk body of is prepared. The heat compression of the porous material can be performed using a known heat compression technique. For example, it is possible to perform hot compression treatment such as hot pressing, SPS, (spark plasma sintering), HIP (hot isostatic press), and hot rolling. Among them, hot press and SPS that can easily obtain a desired shape can be preferably used. In this embodiment, hot pressing is performed according to the following procedure.

実施形態の一例を示す。本実施形態では、図4に示す構成を有するホットプレス装置を用いる。この装置は、中央に開口部を有する金型(ダイ)27と、多孔質材料を加圧するための上パンチ28aおよび下パンチ28bと、これらのパンチ28a、28bを昇降する駆動部(上ラム、下ラム)30a、30bとを備えている。   An example of embodiment is shown. In this embodiment, a hot press machine having the configuration shown in FIG. 4 is used. This apparatus includes a die (die) 27 having an opening at the center, an upper punch 28a and a lower punch 28b for pressurizing a porous material, and a driving unit (upper ram, upper ram, Lower ram) 30a, 30b.

上述した方法によって作製した多孔質材料(図4では参照符号「10」を付している)を、図4に示す金型27に装填する。このとき、磁界方向(配向方向)とプレス方向とが一致するように装填を行うことが好ましい。金型27およびパンチ28a、28bは、使用する雰囲気ガス中で加熱温度および印加圧力に耐えうる材料から形成される。このような材料としては、カーボンや超硬合金(タングステンカーバイド−コバルト系など)が好ましい。なお、多孔質材料10の外形寸法を金型27の開口部寸法よりも小さく設定しておくことにより、異方性を高められる。次に、多孔質材料10を装填した金型27をホットプレス装置にセットする。ホットプレス装置は、不活性ガス雰囲気または10−1Torr以上の真空に制御することが可能なチャンバ26を備えていることが好ましい。チャンバ26内は、例えば抵抗加熱によるカーボンヒーターなどの加熱装置と、試料を加圧して圧縮するためのシリンダーとが備え付けられている。加熱装置としては、カーボンヒータの代わりにダイ27やサンプル(多孔質材料)10を高周波加熱したり、放電プラズマ焼結法(SPS)のように通電加熱する機構を有していても構わない。 The porous material (denoted by reference numeral "10" in FIG. 4) produced by the above-described method is loaded into the mold 27 shown in FIG. At this time, it is preferable to perform the loading so that the magnetic field direction (orientation direction) and the pressing direction coincide with each other. The die 27 and the punches 28a and 28b are made of a material that can withstand the heating temperature and applied pressure in the atmosphere gas used. As such a material, carbon or cemented carbide (tungsten carbide-cobalt type or the like) is preferable. The anisotropy can be increased by setting the outer dimension of the porous material 10 smaller than the opening dimension of the mold 27. Next, the mold 27 loaded with the porous material 10 is set in the hot press device. The hot press machine preferably includes a chamber 26 capable of controlling an inert gas atmosphere or a vacuum of 10 −1 Torr or more. The chamber 26 is provided with a heating device such as a carbon heater by resistance heating, and a cylinder for pressurizing and compressing the sample. The heating device may have a mechanism for high-frequency heating the die 27 and the sample (porous material) 10 in place of the carbon heater, or for electrically heating like the discharge plasma sintering method (SPS).

チャンバ26内を真空または不活性ガス雰囲気で満たした後、加熱装置により金型27を加熱し、金型27に装填された多孔質材料10の温度を600℃〜950℃に高める。このとき、10〜1000MPaの圧力Pで多孔質材料10を加圧する。多孔質材料10に対する加圧は、金型27の温度が設定レベルに到達してから開始することが好ましい。加圧しながら600〜950℃の温度で10分以上保持した後、冷却する。加熱圧縮によりフルデンス化された磁石が大気と接触して酸化しない程度の低い温度(100℃以下程度)まで冷却が進んだ後、本実施形態の磁石をチャンバ26から取り出す。こうして、上記の多孔質材料から本実施形態のR1−T1−B−Cu−M1系合金バルク体を得ることができる。   After filling the chamber 26 with a vacuum or an inert gas atmosphere, the die 27 is heated by a heating device to raise the temperature of the porous material 10 loaded in the die 27 to 600 ° C to 950 ° C. At this time, the porous material 10 is pressurized with a pressure P of 10 to 1000 MPa. The pressurization on the porous material 10 is preferably started after the temperature of the mold 27 reaches a set level. After pressurizing, the temperature is kept at 600 to 950 ° C. for 10 minutes or more and then cooled. After cooling to a low temperature (about 100 ° C. or less) at which the magnet, which is made into full-density by heating and compression, does not oxidize due to contact with the atmosphere, the magnet of this embodiment is taken out of the chamber 26. In this way, the R1-T1-B-Cu-M1-based alloy bulk body of the present embodiment can be obtained from the above porous material.

こうして得られたバルク体の密度は真密度の95%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織は、配向方向に平行となる断面の結晶粒の円相当径の平均が1μm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在する。   The density of the bulk body thus obtained reaches 95% or more of the true density. Further, according to the present embodiment, in the final crystal phase texture, the average equivalent circle diameter of the crystal grains in the cross section parallel to the orientation direction is 1 μm or less, and the longest grain size b of each crystal grain is Crystal grains having a ratio b / a of the shortest grain size a of less than 2 are present in an amount of 50% by volume or more of all the crystal grains.

[HDDR処理で得られた粉末の加圧圧縮]
この方法は、HDDR(水素化−不均化−脱水素−再結合)によって作製された異方性を有する原料粉末を磁界中で配向した後、ホットプレス法などの加圧圧縮処理を用いて緻密化し、バルク体を得る手法である。以下に作製工程の一例を示す。
[Pressurization and compression of powder obtained by HDDR treatment]
In this method, a raw material powder having anisotropy produced by HDDR (hydrogenation-disproportionation-dehydrogenation-recombination) is oriented in a magnetic field, and then pressure compression treatment such as hot pressing is used. This is a method of densifying and obtaining a bulk body. An example of the manufacturing process is shown below.

<出発合金>
出発合金は、ブックモールド法、遠心鋳造法、ストリップキャスト法、アトマイズ法、拡散還元法などの公知の合金作製方法によって得られる。これらの方法によって作製された出発合金に対しては、マクロ偏析の解消、結晶粒の粗大化、α−Fe相の減少などを目的として、均質化熱処理を行なっても良い。均質化熱処理としては、例えば窒素以外の不活性ガス雰囲気中で1000〜1200℃、1〜48時間の処理を行う。なお、このような均質化処理により、R14B相の平均結晶粒径は約100μm以上に粗大化する。平均結晶粒径の粗大化は、HDDR処理磁粉が大きな磁気的異方性を有するためには好ましい。
<Starting alloy>
The starting alloy can be obtained by a known alloy production method such as a book molding method, a centrifugal casting method, a strip casting method, an atomizing method and a diffusion reduction method. The starting alloys produced by these methods may be subjected to homogenizing heat treatment for the purpose of eliminating macrosegregation, coarsening of crystal grains, and reduction of α-Fe phase. As the homogenizing heat treatment, for example, a treatment is performed at 1000 to 1200 ° C. for 1 to 48 hours in an inert gas atmosphere other than nitrogen. The homogenizing treatment coarsens the average crystal grain size of the R 2 T 14 B phase to about 100 μm or more. The coarsening of the average crystal grain size is preferable because the HDDR-treated magnetic powder has a large magnetic anisotropy.

<粉砕>
次に、出発合金を公知の方法で粉砕することにより、粗粉砕粉を作製する。粉砕は、例えばジョークラッシャーなどの機械的粉砕法や、水素粉砕法を用いて行うことができる。
<Crush>
Next, the starting alloy is pulverized by a known method to prepare coarsely pulverized powder. The pulverization can be performed using a mechanical pulverization method such as a jaw crusher or a hydrogen pulverization method.

水素粉砕法による場合は、上記の出発合金を水素雰囲気で保持することにより合金に水素を吸蔵させ、合金を脆化させればよい。出発合金は水素を吸蔵すると、自然崩壊を起こし、亀裂が生じる。このような水素粉砕は、合金インゴットを圧力容器中に入れた後、純度99.9%以上のHガスを50〜1000kPaまで導入し、次いでその状態を5分〜10時間保持することによって行うことができる。こうして、粒径1000μm以下の粗粉砕粉を得る。水素粉砕後に行う機械粉砕は、例えば、フェザーミル、ボールミル、またはパワーミルなどの粉砕機を用いて行うことができる。 In the case of the hydrogen pulverization method, the alloy may be embrittled by holding the starting alloy in a hydrogen atmosphere so that the alloy absorbs hydrogen. When the starting alloy occludes hydrogen, it spontaneously collapses and cracks occur. Such hydrogen pulverization is performed by putting an alloy ingot in a pressure vessel, introducing H 2 gas having a purity of 99.9% or more to 50 to 1000 kPa, and then maintaining the state for 5 minutes to 10 hours. be able to. In this way, coarsely pulverized powder having a particle size of 1000 μm or less is obtained. Mechanical pulverization performed after hydrogen pulverization can be performed using a pulverizer such as a feather mill, a ball mill, or a power mill.

こうして得た粗粉砕粉は、略単一の結晶方位を有する粒子から構成されており、各粒子の中では磁化容易軸が一方向にそろっている。この結果、HDDR処理によって得られる合金粉末が異方性を示すことが可能になる。本実施形態で使用する粗粉砕粉は、結晶方位が同一方向に揃ったNdFe14B型化合物相が20μm以上のサイズを有している。このことは、最終的に高い磁気特性、特に高い飽和磁束密度Bを得る上で重要である。 The coarsely pulverized powder thus obtained is composed of particles having a substantially single crystal orientation, and the easy magnetization axes are aligned in one direction in each particle. As a result, the alloy powder obtained by the HDDR process can exhibit anisotropy. In the coarsely pulverized powder used in the present embodiment, the Nd 2 Fe 14 B type compound phase having crystal orientations aligned in the same direction has a size of 20 μm or more. This is important for finally obtaining high magnetic properties, especially high saturation magnetic flux density B r .

本実施形態における粗粉砕粉の平均粒径は、20μm未満になると、HDDR処理によって粉末を構成する粒子間の拡散凝集が過度に生じるため、HDDR処理後の解砕が困難となり、結果として高い磁気異方性を有する磁粉を得ることが困難となる。一方、平均粒径が300μmを超えると、結晶方位が同一方向に揃ったNdFe14B型化合物相のみから構成され、かつ、α−Fe相のない合金組織を得ることが困難となり、結果として、高い飽和磁束密度Bおよび保磁力HcJを両立する磁粉を得ることが困難となる。これらの理由により、粗粉砕粉の平均粒径は、20〜300μmであることが好ましく、30〜150μmであることが更に好ましい。 If the average particle size of the coarsely pulverized powder in this embodiment is less than 20 μm, the HDDR treatment causes excessive diffusion and agglomeration between particles constituting the powder, which makes it difficult to disintegrate after the HDDR treatment, resulting in high magnetic properties. It becomes difficult to obtain magnetic powder having anisotropy. On the other hand, when the average grain size exceeds 300 μm, it becomes difficult to obtain an alloy structure that is composed only of the Nd 2 Fe 14 B type compound phase in which the crystal orientations are aligned in the same direction and that does not have an α-Fe phase. As a result, it becomes difficult to obtain magnetic powder having both a high saturation magnetic flux density B r and a high coercive force H cJ . For these reasons, the average particle size of the coarsely pulverized powder is preferably 20 to 300 μm, more preferably 30 to 150 μm.

<HDDR処理>
次に、上記粉砕工程によって得られた粗粉砕粉に対し、HDDR処理を施す。なお、粗粉砕はHDDR処理と同じ容器内で、HD処理の前に水素を吸蔵させるなどの方法で行うこともできる。
<HDDR processing>
Next, the coarsely pulverized powder obtained by the pulverization process is subjected to HDDR treatment. The coarse pulverization can also be performed in the same container as the HDDR treatment by a method of absorbing hydrogen before the HD treatment.

HDDR処理の条件は、先述した多孔質バルク体へのHDDR処理と同様の方法を採用することができる。   As the conditions for the HDDR treatment, the same method as the HDDR treatment for the porous bulk body described above can be adopted.

<解砕、粉砕>
脱水素化・再結合処理(HDDR処理)が終了した後、室温まで冷却された合金粉末は、弱い凝集体を形成している場合がある。このような場合、公知の方法で解砕を行えばよい。また、最終的な目的に応じて、さらに粉砕による粒度調整を行なってもよい。粉砕方法は、公知の粉砕技術を使用することができるが、粉砕時の合金粉末の酸化を抑制するために、Arなどの不活性ガス雰囲気で粉砕を行うことが好ましい。
<Crushing and crushing>
After the dehydrogenation / recombination treatment (HDDR treatment) is completed, the alloy powder cooled to room temperature may form a weak aggregate. In such a case, crushing may be performed by a known method. Further, the particle size may be further adjusted by crushing depending on the final purpose. As the pulverization method, a known pulverization technique can be used, but it is preferable to perform pulverization in an atmosphere of an inert gas such as Ar in order to suppress oxidation of the alloy powder during pulverization.

<HDDR磁粉の磁界中成形>
得られた合金粉末(HDDR粉末)を用いて圧粉体(コンパクト)を作製する。バルク体を製造するためには、磁界中でHDDR粉末をプレス成形した圧粉体を用いる。例えば、0.5T〜20T(0.4MA/m〜1.6MA/m)の磁界中(静磁界、パルス磁界など)で10MPa〜1000MPaの圧力を印加してプレス成形する。成形は、公知の粉末プレス装置によって行うことができる。粉末プレス装置から取り出したときの圧粉体密度(成形体密度)は、例えば4.5M/m〜6.5Mg/m(真密度を7.6Mg/mとするとその59%〜86%)程度である。このとき、圧粉体の外形寸法を、次の加熱圧縮工程で用いる装置の金型の開口部の寸法よりも数%以上小さくしておくと、加熱圧縮時に熱間塑性変形が起こることにより異方性のより高いバルク磁石を得ることができる。
<Molding of HDDR magnetic powder in magnetic field>
A green compact (compact) is produced using the obtained alloy powder (HDDR powder). In order to manufacture a bulk body, a green compact which is press-molded from HDDR powder in a magnetic field is used. For example, press molding is performed by applying a pressure of 10 MPa to 1000 MPa in a magnetic field (static magnetic field, pulse magnetic field, etc.) of 0.5 T to 20 T (0.4 MA / m to 1.6 MA / m). The molding can be performed by a known powder pressing device. The green compact density (molded body density) when taken out from the powder pressing apparatus is, for example, 4.5 M / m 3 to 6.5 Mg / m 3 (59% to 86% of that when the true density is 7.6 Mg / m 3 ). %). At this time, if the outer dimension of the green compact is made smaller than the dimension of the opening of the mold of the apparatus used in the next heat compression step by several percent or more, hot plastic deformation occurs during heat compression, which causes a difference. A bulk magnet having higher directionality can be obtained.

<圧粉体への加熱圧縮処理>
得られた成形体にホットプレス法などの加熱圧縮処理を適用することによって、緻密化を行い、密度7.3g/m以上、典型的には7.5g/m以上のバルク体を作製する。圧粉体に対する加熱圧縮は、先述した多孔質バルク体へのホットプレスと同様の方法を採用することができる。これにより、本実施形態のR1−T1−B−Cu−M1系合金バルク体を得ることができる。
<Heating and compression treatment of green compact>
The obtained molded body is densified by applying a heat compression treatment such as a hot pressing method to prepare a bulk body having a density of 7.3 g / m 3 or more, typically 7.5 g / m 3 or more. To do. The heating and compression of the green compact can employ the same method as the hot pressing of the porous bulk body described above. Thereby, the R1-T1-B-Cu-M1-based alloy bulk body of the present embodiment can be obtained.

こうして得られたバルク体の密度は真密度の95%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織は、配向方向に平行となる断面の結晶粒の円相当径の平均が1μm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在する。   The density of the bulk body thus obtained reaches 95% or more of the true density. Further, according to the present embodiment, in the final crystal phase texture, the average equivalent circle diameter of the crystal grains in the cross section parallel to the orientation direction is 1 μm or less, and the longest grain size b of each crystal grain is Crystal grains having a ratio b / a of the shortest grain size a of less than 2 are present in an amount of 50% by volume or more of all the crystal grains.

[超急冷合金の熱間加工]
この方法は液体超急冷法などで作製された、主相の磁化容易方向がランダムなナノ結晶で構成される等方性合金に熱間加工を施すことにより、磁気的異方性を有するバルク体を作製する方法である。熱間加工の方法としては、超急冷合金をそのまま熱間圧延するなどの方法も活用できるが、超急冷合金を粉砕し、ホットプレスなどの加熱圧縮処理で一旦緻密化した後、さらに、高温で応力を付与して変形させる手法を採用すると、磁気的異方性を有するバルク体が容易に作製できるため、好適である。以下具体的な作製手順の一例を示す。
[Hot working of ultra-quenched alloys]
This method is a bulk body having magnetic anisotropy obtained by hot working an isotropic alloy composed of nanocrystals whose main phase has a random easy magnetization direction, which is produced by a liquid quenching method or the like. Is a method of manufacturing. As a hot working method, it is possible to use a method such as hot rolling the ultra-quenched alloy as it is, but after crushing the ultra-quenched alloy and once densifying by heat compression treatment such as hot pressing, it is further heated at high temperature. It is preferable to employ a method of applying a stress to deform the bulk body because the bulk body having magnetic anisotropy can be easily manufactured. An example of a specific manufacturing procedure is shown below.

<超急冷合金の作製>
まず、液体超急冷法で磁気的に等方性である合金を作製する。液体超急冷法としては、単ロール超急冷法、双ロール超急冷法、ガスアトマイズ法など、公知の方法を用いることができるが、これらの中で高速回転する銅製などの急冷ロール上に溶解した合金を供給して急冷する、単ロール急冷法が特に好適に用いられる。急冷ロールの典型的なロール周速度は、10m/秒以上50m/秒以下である。得られた合金中の典型的な平均結晶粒径は0.1μm以下で、主相の結晶方位はランダムである。作製条件によっては合金の一部または全部が非晶質の場合もあるが、その場合は合金に熱処理を施す場合もある。なお、市販の超急冷合金を購入して用いてもよいことは言うまでもない。
<Preparation of ultra-quenched alloy>
First, an alloy that is magnetically isotropic is manufactured by the liquid quenching method. As the liquid super-quenching method, known methods such as a single-roll super-quenching method, a twin-roll super-quenching method, and a gas atomizing method can be used. Among them, an alloy melted on a quenching roll made of copper or the like rotating at high speed. The single roll quenching method of supplying and quenching is particularly preferably used. A typical roll peripheral speed of the quenching roll is 10 m / sec or more and 50 m / sec or less. The typical average crystal grain size in the obtained alloy is 0.1 μm or less, and the crystal orientation of the main phase is random. Some or all of the alloy may be amorphous depending on the manufacturing conditions, and in that case, the alloy may be subjected to heat treatment. It goes without saying that a commercially available ultra-quenched alloy may be purchased and used.

<超急冷合金の緻密化>
得られた薄帯をパワーミルやピンミルなどの公知の方法で粉砕し、フレーク状の合金粉末を得た後、ホットプレス法などの加熱圧縮処理を適用することによって、緻密化を行い、密度7.3Mg/m以上、典型的には7.5Mg/m以上のバルク体を作製する。加熱圧縮は、公知の加熱圧縮技術を用いて行うことができる。例えば、ホットプレス、SPS、(spark plasma sintering)、HIP(hot isostatic press)、熱間圧延などの加熱圧縮処理を行うことが可能である。なかでも、所望の形状を得やすいホットプレスやSPSが好適に用いられる。なお、加熱圧縮処理の前に、10MPa〜2000MPaの圧力を印加してプレス成形する冷間成形により、合金粉末の圧粉体を作製し、それを加熱圧縮することもできる。
<Dense densification of ultra-quenched alloy>
The obtained thin strip is pulverized by a known method such as a power mill or a pin mill to obtain a flake-shaped alloy powder, and then a heat compression treatment such as a hot pressing method is applied to densify the thin powder to obtain a density of 7. 3 mg / m 3 or more, typically produce a 7.5 mg / m 3 or more bulk. The heat compression can be performed using a known heat compression technique. For example, hot compression, SPS, (spark plasma sintering), HIP (hot isostatic press), hot compression such as hot rolling can be performed. Among them, hot press and SPS that can easily obtain a desired shape are preferably used. It is also possible to prepare a powder compact of an alloy powder by cold molding in which a pressure of 10 MPa to 2000 MPa is applied and press molding before the heat compression treatment, and heat compress it.

加熱圧縮条件は、成分組成などに応じて適宜設定されるが、処理温度は、600℃以上950℃以下が好ましく、700℃以上900℃以下がより好ましい。また加熱圧縮時の圧力は10MPa以上1000MPa以下が好ましい。また、加熱圧縮における保持時間は、1分以上1時間以内が好ましいが、密度が十分向上する時間内であればできるだけ短時間であることが生産性の観点から好ましい。加熱圧縮時の雰囲気は、真空又は不活性雰囲気が好ましい。   The heating and compression conditions are appropriately set depending on the component composition and the like, but the treatment temperature is preferably 600 ° C. or higher and 950 ° C. or lower, and more preferably 700 ° C. or higher and 900 ° C. or lower. The pressure during heating and compression is preferably 10 MPa or more and 1000 MPa or less. Further, the holding time in heating and compression is preferably 1 minute or more and 1 hour or less, but from the viewpoint of productivity, it is preferable that the holding time is as short as possible within a time period in which the density is sufficiently improved. The atmosphere during heating and compression is preferably vacuum or an inert atmosphere.

<熱間加工>
緻密化された加熱圧縮成形体を熱間加工して塑性変形させる。熱間加工方法は、目的に応じて公知の方法を採用することができるが、熱間押出し加工(後方押出し加工及び前方押出し加工を含む)や熱間据え込み加工が好適に用いられ、生産性の観点から、熱間押出し加工が特に好適である。
<Hot working>
The densified heat compression molded body is hot worked to be plastically deformed. As the hot working method, a known method can be adopted depending on the purpose, but hot extrusion processing (including rear extrusion processing and front extrusion processing) and hot upsetting processing are preferably used, and productivity is improved. From the viewpoint of, hot extrusion is particularly suitable.

熱間加工条件は、成分組成などに応じて適宜設定されるが、加工温度は、700℃以上950℃以下が好ましく、750℃以上900℃以下がより好ましい。一般的に歪速度が配向度に影響を与えることが知られていることから、歪速度が所望の範囲になるように、加工圧力を設定することが好ましい。加工時の雰囲気は、真空または不活性雰囲気が好ましい。   The hot working condition is appropriately set according to the component composition and the like, but the working temperature is preferably 700 ° C. or higher and 950 ° C. or lower, and more preferably 750 ° C. or higher and 900 ° C. or lower. Since it is generally known that the strain rate affects the degree of orientation, it is preferable to set the processing pressure so that the strain rate falls within a desired range. The atmosphere during processing is preferably a vacuum or an inert atmosphere.

こうして得られたバルク体の密度は真密度の95%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織は、配向方向に平行となる断面の結晶粒の円相当径の平均が1μm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2以上である結晶粒が全結晶粒の50体積%以上存在する。   The density of the bulk body thus obtained reaches 95% or more of the true density. Further, according to the present embodiment, in the final crystal phase texture, the average equivalent circle diameter of the crystal grains in the cross section parallel to the orientation direction is 1 μm or less, and the longest grain size b of each crystal grain is The crystal grains having the ratio b / a of the shortest grain size a of 2 or more are present in 50 volume% or more of all the crystal grains.

[サブミクロンサイズに粉砕した合金の焼結]
上記に示した方法の他に、HDDR法で作製した微細結晶の合金に水素粉砕法と微粉砕を用いて作製した、サブミクロンサイズの合金粉末を磁界中成形、焼結を行うことにより、主相であるR14B相の結晶粒径が1μm未満で磁気的異方性を有するバルク体を作製する方法を適用することもできる。HDDRや水素粉砕法、焼結などの条件は公知のものを適用すればよい。
[Sintering of alloys crushed to submicron size]
In addition to the above-mentioned method, a submicron-sized alloy powder produced by using a hydrogen pulverizing method and a fine pulverizing method for a fine crystal alloy produced by the HDDR method is molded and sintered in a magnetic field to It is also possible to apply the method of producing a bulk body having a crystal grain size of the R 2 T 14 B phase, which is a phase, of less than 1 μm and having magnetic anisotropy. Known conditions may be applied to conditions such as HDDR, hydrogen pulverization method, and sintering.

(R2−Ga−Fe−A系合金を準備する工程)
まず、R2−Ga−Fe−A系合金を準備する工程におけるR2−Ga−Fe−A系合金の組成を説明する。以下に説明する特定の範囲でR、Ga、Feを全て含有することにより、後述する第一の熱処理を実施する工程においてR2−Ga−Fe−A系合金中のFeをR1−T1−B−Cu−M1系合金バルク体内部に導入することができる。
R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含む。R2の50%以上がPrであることが好ましい。より高いHcJを得ることができるからである。ここで「R2の50%以上がPrである」とは、例えばR2−Ga−Fe−A系合金中におけるR2が50mass%である場合、25mass%以上がPrであることを言う。さらに好ましくは、R2はPrのみ(不可避的不純物は含む)である。さらに高いHcJを得ることができるからである。また、Dy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。但し、本開示は前記重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量はR2−Ga−Fe−A系合金全体の10mass%以下(R2−Ga−Fe−A系合金中の重希土類元素が10mass%以下)であることが好ましく、5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことがさらに好ましい。R2−Ga−Fe−A系合金のRに前記重希土類元素を含有する場合も、R2の50mass%以上がPrであることが好ましく、重希土類元素を除いたR2がPrのみ(不可避的不純物は含む)であることがより好ましい。
(Step of preparing R2-Ga-Fe-A alloy)
First, the composition of the R2-Ga-Fe-A alloy in the step of preparing the R2-Ga-Fe-A alloy will be described. By including all of R, Ga, and Fe in a specific range described below, Fe in the R2-Ga-Fe-A-based alloy is added to R1-T1-B- in the step of performing the first heat treatment described later. It can be introduced into the Cu-M1 alloy bulk body.
R2 is at least one of rare earth elements and always contains at least one of Nd and Pr. It is preferable that 50% or more of R2 is Pr. This is because a higher H cJ can be obtained. Here, "50% or more of R2 is Pr" means that, for example, when R2 in the R2-Ga-Fe-A based alloy is 50 mass%, 25 mass% or more is Pr. More preferably, R2 is only Pr (including inevitable impurities). This is because a higher H cJ can be obtained. Further, a small amount of a heavy rare earth element such as Dy, Tb, Gd or Ho may be contained. However, according to the present disclosure, sufficiently high H cJ can be obtained without using a large amount of the heavy rare earth element. Therefore, the content of the heavy rare earth element is preferably 10 mass% or less of the entire R2-Ga-Fe-A alloy (the heavy rare earth element in the R2-Ga-Fe-A alloy is 10 mass% or less), It is more preferably 5 mass% or less, and further preferably not contained (substantially 0 mass%). Even when R of the R2-Ga-Fe-A based alloy contains the heavy rare earth element, it is preferable that 50 mass% or more of R2 is Pr, and R2 excluding the heavy rare earth element is Pr only (inevitable impurities are Is more preferable.

R2はR2−Ga−Fe−A系合金全体の35mass%以上91mass%以下である。R2が35mass%未満では後述する第一の熱処理で拡散が十分に進行せず、最終的に得られるR3−T2−B−Cu−M2系磁石の[T2]/[B]のmol比を14.0超にすることができず、高いHcJを得ることができない恐れがある。一方、R2が91mass%を超えても本開示の効果を得ることはできるが、R2−Ga−Fe−A系合金の製造工程中における合金粉末が非常に活性になり、合金粉末の著しい酸化や発火などを生じることがあるため、91mass%以下が好ましい。R2は50mass%以上91mass%以下であることがより好ましく、60mass%以上85mass%以下であることがさらに好ましい。より高いHcJを得ることができるからである。 R2 is 35 mass% or more and 91 mass% or less of the entire R2-Ga-Fe-A alloy. When R2 is less than 35 mass%, diffusion does not proceed sufficiently in the first heat treatment described later, and the [T2] / [B] mol ratio of the finally obtained R3-T2-B-Cu-M2 system magnet is 14%. There is a possibility that it cannot be made higher than 0.0 and a high H cJ cannot be obtained. On the other hand, even if R2 exceeds 91 mass%, the effect of the present disclosure can be obtained, but the alloy powder becomes extremely active during the manufacturing process of the R2-Ga-Fe-A alloy, and the significant oxidation and oxidation of the alloy powder occurs. Since it may cause ignition, 91 mass% or less is preferable. R2 is more preferably 50 mass% or more and 91 mass% or less, and further preferably 60 mass% or more and 85 mass% or less. This is because a higher H cJ can be obtained.

Gaは、R2−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。Gaが2.5mass%未満では、後述する第1の熱処理を実施する工程においてR2−Ga−Fe−A系合金中のFeがR1−T1−B−Cu−M1系合金バルク体の内部に導入され難くなる。これにより、最終的に得られるR3−T2−B−Cu−M2系磁石の[T2]/[B]のmol比を14.0超とすることができず、高いHcJを得ることができない。一方、Gaが40mass%以上であると、Bが大幅に低下する恐れがある。Gaは4mass%以上30mass%以下であることがより好ましく、4mass%以上20mass%以下であることがさらに好ましい。より高いHcJを得ることができるからである。 Ga is 2.5 mass% or more and 40 mass% or less of the entire R2-Ga-Fe-A alloy. When Ga is less than 2.5 mass%, Fe in the R2-Ga-Fe-A based alloy is introduced into the R1-T1-B-Cu-M1 based alloy bulk body in the step of performing the first heat treatment described later. It becomes difficult to be done. As a result, the finally obtained R3-T2-B-Cu-M2 magnet cannot have a [T2] / [B] molar ratio of more than 14.0, and cannot obtain a high H cJ. .. On the other hand, if Ga is greater than or equal to 40 mass%, there is a possibility that B r is greatly reduced. Ga is more preferably 4 mass% or more and 30 mass% or less, and further preferably 4 mass% or more and 20 mass% or less. This is because a higher H cJ can be obtained.

Feは、R2−Ga−Fe−A系合金全体の4mass%以上40mass%以下である。Feが4mass%未満では、後述する第1の熱処理を実施する工程においてR2−Ga−Fe−A系合金中のFeのR1−T1−B−Cu−M1系合金バルク体への導入量が少なすぎるため、最終的に得られるR3−T2−B−Cu−M2系磁石の[T2]/[B]のmol比を14.0超とすることができず、高いHcJを得ることができない。一方、Feが40mass%以上であると、後述する第一の熱処理で拡散が十分に進行せず、[T2]/[B]のmol比を14.0超にすることができず、高いHcJを得ることができない恐れがある。Feは4mass%以上30mass%以下であることがより好ましく、4mass%以上25mass%以下であることがさらに好ましい。より高いHcJを得ることができるからである。 Fe is 4 mass% or more and 40 mass% or less of the entire R2-Ga-Fe-A alloy. When Fe is less than 4 mass%, the amount of Fe introduced into the R1-T1-B-Cu-M1 alloy bulk is small in the R2-Ga-Fe-A alloy in the step of performing the first heat treatment described later. Therefore, the molar ratio [T2] / [B] of the finally obtained R3-T2-B-Cu-M2 magnet cannot be set to more than 14.0, and high HcJ cannot be obtained. .. On the other hand, when Fe is 40 mass% or more, diffusion does not proceed sufficiently in the first heat treatment described later, the [T2] / [B] mol ratio cannot exceed 14.0, and high H It may not be possible to obtain cJ . Fe is more preferably 4 mass% or more and 30 mass% or less, and further preferably 4 mass% or more and 25 mass% or less. This is because a higher H cJ can be obtained.

Aは、Al、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、Agから選択される一種以上であり、R2−Ga−Fe−A系合金全体の0mass%以上1mass%以下である。Aは1mass%以下含有しても構わないが、より高いHcJを得るためには、Aは含有しない(すなわち0mass%)ことが好ましい。 A is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, Mo, and Ag, and in the entire R2-Ga-Fe-A alloy. It is 0 mass% or more and 1 mass% or less. A may be contained in an amount of 1 mass% or less, but in order to obtain higher H cJ , it is preferable that A is not contained (that is, 0 mass%).

さらに、R2−Ga−Fe−A系合金は、Ndメタル、Prメタル、ジジム合金(Nd−Pr)、電解鉄などの合金中及び製造工程中に通常含有される不可避的不純物及び少量の上記以外の元素を含んでいても良い。例えば、La、Ce、Sm、Ca、Mg、O(酸素)、N(炭素)、C(窒素)、Hf、Ta、Wなどをそれぞれ含有してもよい。   Further, the R2-Ga-Fe-A alloy is an unavoidable impurity usually contained in alloys such as Nd metal, Pr metal, didymium alloy (Nd-Pr), electrolytic iron and in the manufacturing process, and a small amount other than the above. The element may be included. For example, La, Ce, Sm, Ca, Mg, O (oxygen), N (carbon), C (nitrogen), Hf, Ta, W, etc. may be contained.

次にR2−Ga−Fe−A系合金を準備する工程について説明する。R2−Ga−Fe−A系合金は、Nd−Fe−B系磁石に代表される一般的な製造方法において採用されている原料合金の作製方法、例えば、金型鋳造法やストリップキャスト法や単ロール超急冷法(メルトスピニング法)やアトマイズ法などを用いて準備することができる。また、R2−Ga−Fe−A系合金は、前記によって得られた合金をピンミルなどの公知の粉砕手段によって粉砕されたものであってもよい。   Next, the step of preparing the R2-Ga-Fe-A alloy will be described. The R2-Ga-Fe-A based alloy is a raw material alloy manufacturing method adopted in a general manufacturing method represented by an Nd-Fe-B based magnet, for example, a die casting method, a strip casting method or a simple casting method. It can be prepared by using a roll ultra-quenching method (melt spinning method) or an atomizing method. Further, the R2-Ga-Fe-A alloy may be one obtained by pulverizing the alloy obtained above by a known pulverizing means such as a pin mill.

(第一の熱処理を実施する工程)
前記によって準備したR1−T1−B−Cu−M1系合金バルク体の表面の少なくとも一部に、前記R2−Ga−Fe−A系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上950℃以下の温度で熱処理をする。本開示においてこの熱処理を第一の熱処理という。これにより、R2−Ga−Fe−A系合金からGaやFeを含む液相が生成し、その液相がR1−T1−B−Cu−M1系合金バルク体の粒界を経由してバルク体表面から内部に拡散導入される。第一の熱処理温度が700℃以下であると、GaやFeを含む液相量が少なすぎて後述する第二の熱処理を実施する工程により生成されるR−T−Ga相の生成量が少なくなったり、最終的に得られるR3−T2−B−Cu−M2系磁石の[T2]/[B]のmol比を14.0超とすることができず、高いHcJを得ることが出来ない。一方、950℃を超えると主相であるR14B相が過剰に結晶粒成長してHcJが低下する恐れがある。熱処理温度は、750℃以上900℃以下が好ましい。より高いHcJを得ることが出来るからである。なお、熱処理時間はR1−T1−B−Cu−M1系合金バルク体やR2−Ga−Fe−A系合金の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下がさらに好ましい。
(Step of carrying out the first heat treatment)
At least a portion of the surface of the R1-T1-B-Cu-M1-based alloy bulk body prepared as described above is brought into contact with at least a portion of the R2-Ga-Fe-A-based alloy in a vacuum or an inert gas atmosphere. Heat treatment is performed at a temperature of 700 ° C. or higher and 950 ° C. or lower. In the present disclosure, this heat treatment is referred to as the first heat treatment. As a result, a liquid phase containing Ga or Fe is generated from the R2-Ga-Fe-A alloy, and the liquid phase passes through the grain boundaries of the R1-T1-B-Cu-M1 alloy bulk body to form the bulk body. Diffusion is introduced from the surface to the inside. When the first heat treatment temperature is 700 ° C. or lower, the amount of liquid phase containing Ga and Fe is too small, and the amount of RT-Ga phase generated in the step of performing the second heat treatment described later is small. Or , the [T2] / [B] mol ratio of the finally obtained R3-T2-B-Cu-M2 system magnet cannot be set to more than 14.0, and high HcJ can be obtained. Absent. On the other hand, if the temperature exceeds 950 ° C., the main phase R 2 T 14 B phase may excessively grow crystal grains and H cJ may decrease. The heat treatment temperature is preferably 750 ° C. or higher and 900 ° C. or lower. This is because a higher H cJ can be obtained. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-B-Cu-M1-based alloy bulk body and the R2-Ga-Fe-A-based alloy, the heat treatment temperature, etc., but 5 minutes or more and 20 hours or less. Is preferable, 10 minutes or more and 15 hours or less is more preferable, and 30 minutes or more and 10 hours or less is further preferable.

第一の熱処理は、R1−T1−B−Cu−M1系合金バルク体表面に、任意形状のR2−Ga−Fe−A系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R1−T1−B−Cu−M1系合金バルク体表面をR2−Ga−Fe−A系合金の粉末層で覆い、第一の熱処理を行うことができる。例えば、R2−Ga−Fe−A系合金を分散媒中に分散させたスラリーをR1−T1−B−Cu−M1系合金バルク体表面に塗布した後、分散媒を蒸発させてR2−Ga−Fe−A系合金とR1−T1−B−Cu−M1系合金バルク体とを接触させてもよい。また、後述する実験例に示す様に、R2−Ga−Fe−A系合金は、R1−T1−B−Cu−M1系合金バルク体の配向方向に対して垂直な表面に接触させるように配置することが好ましい。なお、分散媒として、アルコール(エタノール等)、アルデヒド及びケトンを例示できる。また、第一の熱処理が実施されたR1−T1−B−Cu−M1系合金バルク体に対して切断や切削など公知の機械加工を行ってもよい。   The first heat treatment can be performed using a known heat treatment apparatus by arranging an R2-Ga-Fe-A alloy having an arbitrary shape on the surface of the R1-T1-B-Cu-M1 alloy bulk body. For example, the first heat treatment can be performed by covering the surface of the R1-T1-B-Cu-M1-based alloy bulk body with a powder layer of the R2-Ga-Fe-A-based alloy. For example, a slurry in which an R2-Ga-Fe-A-based alloy is dispersed in a dispersion medium is applied to the surface of an R1-T1-B-Cu-M1-based alloy bulk body, and then the dispersion medium is evaporated to R2-Ga-. The Fe-A based alloy and the R1-T1-B-Cu-M1 based alloy bulk body may be brought into contact with each other. Further, as shown in an experimental example described later, the R2-Ga-Fe-A based alloy is arranged so as to be in contact with a surface perpendicular to the orientation direction of the R1-T1-B-Cu-M1 based alloy bulk body. Preferably. Examples of the dispersion medium include alcohol (ethanol etc.), aldehyde and ketone. Further, known mechanical processing such as cutting or cutting may be performed on the R1-T1-B-Cu-M1-based alloy bulk body on which the first heat treatment is performed.

(第二の熱処理を実施する工程)
第一の熱処理が実施されたR1−T1−B−Cu−M1系合金バルク体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で熱処理を行う。本開示においてこの熱処理を第二の熱処理という。第二の熱処理を行うことにより、磁石内部の少なくとも一部にR−T−Ga相、典型的にはR13Z相(ZはCu及び/又はGaを必ず含む)を生成させる。これにより、GaやCuを含む厚い二粒子粒界が得られ、高いHcJを得ることができる。第二の熱処理の温度が450℃未満及び600℃超の場合は、R−T−Ga相の生成量が少なすぎて、高いHcJを得ることができない恐れがある。熱処理温度は、480℃以上560℃以下が好ましい。より高いHcJを得ることが出来る。なお、熱処理時間はR1−T1−B−Cu−M1系合金バルク体の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下がさらに好ましい。
(Process of performing the second heat treatment)
The R1-T1-B-Cu-M1-based alloy bulk body subjected to the first heat treatment is heat-treated at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere. In the present disclosure, this heat treatment is referred to as the second heat treatment. By performing the second heat treatment, R-T-Ga phase in at least a portion of the internal magnet, typically R 6 T 13 Z-phase (Z always contains a Cu and / or Ga) to produce. Thereby, a thick two-particle grain boundary containing Ga or Cu can be obtained, and high H cJ can be obtained. When the temperature of the second heat treatment is lower than 450 ° C. or higher than 600 ° C., the amount of the RT-Ga phase produced is too small, and high H cJ may not be obtained. The heat treatment temperature is preferably 480 ° C. or higher and 560 ° C. or lower. Higher H cJ can be obtained. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-B-Cu-M1 alloy bulk body, the heat treatment temperature, etc., but is preferably 5 minutes or longer and 20 hours or shorter, and 10 minutes or longer and 15 hours or shorter. It is more preferably 30 minutes or more and 10 hours or less.

なお、前記のR13Z相(R13Z化合物)において、Rは希土類元素のうち少なくとも一種でありPr及びNdの少なくとも一方を必ず含み、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。R13Z化合物は代表的にはNdFe13Ga化合物である。また、R13Z化合物はLaCo11Ga型結晶構造を有する。R13Z化合物はその状態によってはR13−δ1+δ化合物になっている場合がある。なお、R3−T2−B−Cu−M2系磁石中に比較的多くのCu、Al及びSiが含有される場合、R13−δ(Ga1−a−b−cCuaAlbSic1+δになっている場合がある。 In the R 6 T 13 Z phase (R 6 T 13 Z compound), R is at least one of rare earth elements and always contains at least one of Pr and Nd, and T is at least one of transition metal elements. Yes Fe is always included. The R 6 T 13 Z compound is typically an Nd 6 Fe 13 Ga compound. Further, the R 6 T 13 Z compound has a La 6 Co 11 Ga 3 type crystal structure. The R 6 T 13 Z compound may be an R 6 T 13-δ Z 1 + δ compound depending on its state. Incidentally, R3-T2-B-Cu -M2 system relatively much Cu in the magnet, if the Al and Si are contained, R 6 T 13-δ ( Ga 1-a-b-c Cu a Al b Si c ) It may be 1 + δ .

(R3−T2−B−Cu−M2系磁石)
前記第二の熱処理を実施する工程後のR3−T2−B−Cu−M2系磁石の組成について説明する。
尚、R3−T2−B−Cu−M2系磁石におけるR3、T2及びCuについては、上述したR1−T1−B−Cu−M1系合金バルク体のR1、T1及びCuと同じ組成であるため、説明を省略する。
前記T2とBとは、[T2]/[B]のmol比が14.0超となるように設定する。[T2]/[B]のmol比が14.0超にすることにより高いHcJを得ることができる。この条件は、主相(R14B化合物)形成に使われるT量に対して相対的にB量が少ないことを示している。また、BはR3−T2−B−Cu−M2系磁石全体の0.8mass%以上1.0mass%未満が好ましい。Bが0.8mass%未満であると、Brの大幅な低下を招く恐れがあるため好ましくない。一方、Bが1.0mass%以上であると[T2]/[B]のmol比を14.0超にできず高いHcJを得ることができない。Bは0.81mass%以上0.95mass%以下であることがより好ましく、0.82mass%以上0.93mass%以下であることがさらに好ましい。M2はGa及びAgでありGaを必ず含み、M2は0.1mass%以上3mass%以下である。M2が0.1mass%未満であると高いHcJが得られない恐れがあり、3mass%を超えるとBが低下する恐れがある。T2は、R3、B、Cu,M2及び不可避的不純物以外の残部を占めることが好ましい。
(R3-T2-B-Cu-M2 system magnet)
The composition of the R3-T2-B-Cu-M2 system magnet after the step of performing the second heat treatment will be described.
Since R3, T2, and Cu in the R3-T2-B-Cu-M2 series magnet have the same composition as R1, T1 and Cu of the R1-T1-B-Cu-M1 series alloy bulk body described above, The description is omitted.
The T2 and B are set so that the molar ratio of [T2] / [B] is more than 14.0. High H cJ can be obtained by setting the molar ratio of [T2] / [B] to more than 14.0. This condition indicates that the amount of B is relatively small with respect to the amount of T used for forming the main phase (R 2 T 14 B compound). Further, B is preferably 0.8 mass% or more and less than 1.0 mass% of the entire R3-T2-B-Cu-M2 magnet. If B is less than 0.8 mass%, B r may be significantly reduced, which is not preferable. On the other hand, when B is 1.0 mass% or more, the molar ratio of [T2] / [B] cannot exceed 14.0 and high H cJ cannot be obtained. B is more preferably 0.81 mass% or more and 0.95 mass% or less, and further preferably 0.82 mass% or more and 0.93 mass% or less. M2 is Ga and Ag and always contains Ga, and M2 is 0.1 mass% or more and 3 mass% or less. M2 is there may not be obtained is the high H cJ less than 0.1mass%, there is a possibility that B r decreases exceeds 3 mass%. It is preferable that T2 occupy the balance other than R3, B, Cu, M2 and unavoidable impurities.

さらに、R3−T2−B−Cu−M2系磁石は、Ndメタル、Prメタル、ジジム合金(Nd−Pr)、電解鉄、フェロボロンなどの合金中及び製造工程中に通常含有される不可避的不純物及び少量の上記以外の元素を含んでいても良い。例えば、La、Ce、Sm、Ca、Mg、O(酸素)、N(炭素)、C(窒素)、Hf、Ta、Wなどをそれぞれ含有してもよい。   Furthermore, the R3-T2-B-Cu-M2 system magnet contains unavoidable impurities usually contained in alloys such as Nd metal, Pr metal, didymium alloy (Nd-Pr), electrolytic iron, and ferroboron, and in the manufacturing process. It may contain a small amount of elements other than the above. For example, La, Ce, Sm, Ca, Mg, O (oxygen), N (carbon), C (nitrogen), Hf, Ta, W, etc. may be contained.

前記の第二の熱処理を実施する工程によって得られたR3−T2−B−Cu−M2系磁石は、切断や切削など公知の機械加工を行ったり、耐食性を付与するためのめっきなど、公知の表面処理を行うことができる。   The R3-T2-B-Cu-M2 system magnet obtained by the step of performing the second heat treatment is subjected to known machining such as cutting and cutting, and plating such as plating for imparting corrosion resistance. Surface treatment can be performed.

本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。   The present disclosure will be described in more detail by way of examples, but the present disclosure is not limited thereto.

実験例1
[R1−T1−B−Cu−M1系合金バルク体(バルク体)を準備する工程]
バルク体がおよそ表1の符号1−Aから1−Hに示す組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 1
[Step of preparing R1-T1-B-Cu-M1 alloy bulk body (bulk body)]
Each element was weighed and cast by a strip casting method so that the bulk body had a composition indicated by reference numerals 1-A to 1-H in Table 1, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. Obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment in which it was heated to 550 ° C. in a vacuum and then cooled to obtain a coarse pulverized powder. Next, zinc stearate as a lubricant was added to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder, and the mixture was mixed with a nitrogen gas using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle diameter D 50 is the volume center value (volume-based median diameter) obtained by the laser diffraction method using the air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体の密度は4.1〜4.3Mg/m3であった。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a compact. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device. The density of the obtained molded body was 4.1 to 4.3 Mg / m 3 .

得られた成形体に対して、HDDR処理を行った。具体的には、圧粉体を100kPa(大気圧)のアルゴン流気中で880℃まで加熱し、その後、雰囲気を100kPa(大気圧)の水素流気に切り替えた後、880℃、2時間保持して水素化・不均化反応を行った。その後、温度を保持したまま、5.3kPaに減圧したアルゴン流気中で1時間保持し、脱水素、再結合反応を行った後、大気圧アルゴン流気中で室温まで冷却した。HDDR処理後の成形体は、密度(寸法及び質量から計算)が7.0Mg/m3以下であった。その後、成形体を図4に示すホットプレス装置を用いて加熱圧縮を行い高密度化した。具体的には、HDDR処理後のサンプルを研削加工した後、カーボン製のダイス内にセットし、このダイスをホットプレス装置内にセットして、真空中において700℃の条件下、50MPaの圧力で圧縮した。ホットプレスで得られたバルク体の密度は7.5Mg/m3以上であった。また、配向方向に平行な断面の走査電子顕微鏡観察(SEM観察)から求められた平均結晶粒径(円相当径)はいずれのサンプルも200nm以上800nm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在することを確認した。得られたバルク体の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、バルク体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表1における「[T1]/[B]」は、T1を構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(c)と、Bの分析値(mass%)をBの原子量で除したもの(d)との比(c/d)である。以下の全ての表も同様である。なお、表1の各組成および酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他表についても同様である。 HDDR treatment was performed on the obtained molded body. Specifically, the green compact is heated to 880 ° C. in an argon stream of 100 kPa (atmospheric pressure), and then the atmosphere is switched to a hydrogen stream of 100 kPa (atmospheric pressure), and then held at 880 ° C. for 2 hours. Then, a hydrogenation / disproportionation reaction was carried out. Then, while maintaining the temperature, the mixture was kept for 1 hour in argon stream depressurized to 5.3 kPa to carry out dehydrogenation and recombination reaction, and then cooled to room temperature in atmospheric pressure argon stream. The density (calculated from dimensions and mass) of the molded body after the HDDR treatment was 7.0 Mg / m 3 or less. Then, the molded body was heated and compressed using the hot press device shown in FIG. 4 to increase the density. Specifically, after grinding the sample after the HDDR treatment, the sample was set in a carbon-made die, and the die was set in a hot press machine under a condition of 700 ° C. in vacuum and a pressure of 50 MPa. Compressed. The bulk body obtained by hot pressing had a density of 7.5 Mg / m 3 or more. The average crystal grain size (equivalent circle diameter) determined by scanning electron microscope observation (SEM observation) of a cross section parallel to the orientation direction is 200 nm or more and 800 nm or less, and the longest grain size of the individual crystal grains. It was confirmed that crystal grains having a ratio b / a of b to the shortest grain size a of less than 2 were present in an amount of 50% by volume or more of all crystal grains. The results of the components of the obtained bulk body are shown in Table 1. In addition, each component in Table 1 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the bulk body by a gas melting-infrared absorption method, it was confirmed that all were around 0.5 mass%. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass%. “[T1] / [B]” in Table 1 is obtained by dividing the analytical value (mass%) for each element (here, Fe, Al, Si, and Mn) constituting T1 by the atomic weight of the element. It is the ratio (c / d) between the value obtained by summing these values (c) and the value obtained by dividing the B analysis value (mass%) by the atomic weight of B (d). The same applies to all the tables below. It should be noted that the total of each composition, the oxygen content, and the carbon content in Table 1 does not reach 100 mass%. This is because the analysis method differs depending on each component as described above. The same applies to the other tables.

[R2−Ga−Fe−A系合金を準備する工程]
R2−Ga−Fe−A系合金がおよそ表2の符号1−aに示す組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させ、R2−Ga−Fe−A系合金を準備した。得られたR2−Ga−Fe−A系合金の組成を表2に示す。尚、表2における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing R2-Ga-Fe-A alloy]
Each element was weighed and their raw materials were melted so that the R2-Ga-Fe-A based alloy had the composition shown by the symbol 1-a in Table 2, and the single-roll ultra-quenching method (melt spinning method) was used. A ribbon or flake alloy was obtained. The obtained alloy was crushed in an argon atmosphere using a mortar and then passed through a sieve with a mesh size of 425 μm to prepare an R2-Ga-Fe-A alloy. Table 2 shows the composition of the obtained R2-Ga-Fe-A alloy. Each component in Table 2 was measured using a high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

[第一の熱処理を実施する工程]
表1の符号1−Aから1−HのR1−T1−B−Cu−M1系合金バルク体を切断、切削加工し、4.4mm×10.0mm×11.0mmの直方体(10.0mm×11.0mmの面が配向方向と垂直な面)とした。次に、図3に示すように、ニオブ箔により作製した処理容器3中に、主に磁石素材の配向方向(図中の矢印方向)と垂直な面がR2−Ga−Fe−A系合金と接触するように、表2に示す符号1−aのR2−Ga−Fe−A系合金を、符号1−Aから1−HのR1−T1−B−Cu−M1系合金バルク体のそれぞれの上下に配置した。次に、管状流気炉を用いて、200Paに制御した減圧アルゴン中で、表3の第一の熱処理に示す温度及び時間で前記R2−Ga−Fe−A合金及び前記R1−T1−B−Cu−M1系合金バルク体を加熱して第一の熱処理を実施した後、冷却した。
[Step of performing first heat treatment]
The R1-T1-B-Cu-M1-based alloy bulk bodies 1-A to 1-H in Table 1 are cut and machined to form a 4.4 mm × 10.0 mm × 11.0 mm rectangular parallelepiped (10.0 mm × The 11.0 mm plane was defined as a plane perpendicular to the orientation direction). Next, as shown in FIG. 3, in a processing container 3 made of niobium foil, a surface mainly perpendicular to the orientation direction of the magnet material (the direction of the arrow in the drawing) is an R2-Ga-Fe-A alloy. As shown in Table 2, the R2-Ga-Fe-A based alloy of reference numeral 1-a is replaced with the R1-T1-B-Cu-M1 based alloy bulk material of reference numerals 1-A to 1-H. Placed one above the other. Next, using a tubular air-flow furnace, the R2-Ga-Fe-A alloy and the R1-T1-B- at the temperature and time shown in the first heat treatment of Table 3 in reduced pressure argon controlled to 200 Pa. The Cu-M1 alloy bulk body was heated to perform the first heat treatment, and then cooled.

[第二の熱処理を実施する工程]
第二の熱処理を、管状流気炉を用いて200Paに制御した減圧アルゴン中で、表3の第二の熱処理に示す温度及び時間で、第一の熱処理が実施されたR1−T1−B−Cu−M1系合金バルク体に対して実施した後、冷却した。熱処理後の各サンプルに対して各サンプルを切断、切削加工し、4.0mm×4.0mm×4.0mmの立方体状のサンプル(R3−T2−B−Cu−M2系磁石)を得た。尚、第一の熱処理を実施する工程におけるR2−Ga−Fe−A合金及びR1−T1−B−Cu−M1系合金バルク体の加熱温度、並びに、第二の熱処理を実施する工程におけるR1−T1−B−Cu−M1系合金バルク体の加熱温度は、それぞれバルク体に熱電対を取り付けることにより測定した。
[Step of performing second heat treatment]
The second heat treatment was carried out in a reduced pressure argon controlled to 200 Pa using a tubular flow furnace, at the temperature and time shown in the second heat treatment of Table 3, the first heat treatment was performed R1-T1-B- After carrying out on a Cu-M1-based alloy bulk body, it was cooled. Each sample after the heat treatment was cut and cut to obtain a cubic sample (R3-T2-B-Cu-M2 series magnet) of 4.0 mm x 4.0 mm x 4.0 mm. In addition, the heating temperature of the R2-Ga-Fe-A alloy and the R1-T1-B-Cu-M1-based alloy bulk body in the step of performing the first heat treatment, and R1- in the step of performing the second heat treatment. The heating temperature of the T1-B-Cu-M1 alloy bulk body was measured by attaching a thermocouple to each bulk body.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表3に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表4に示す。表4における「[T2]/[B]」は、T2を構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(c)と、Bの分析値(mass%)をBの原子量で除したもの(d)との比(c/d)である。以下の全ての表も同様である。表3の通り、R1−T1−B−Cu−M1系合金バルク体における[T1]/[B]のmol比を13.0以上14.0以下とし、且つ、第二の熱処理が実施されたR3−T2−B−Cu−M2系磁石(表4)における[T2]/[B]のmol比が14.0超である本発明例はいずれも高いB及び高いHcJが得られていることがわかる。これに対し、第二の熱処理が実施されたR3−T2−B−Cu−M2系磁石における[T2]/[B]のmol比が14.0以下であるサンプルNo.1−1は高いHcJが得られなかった。さらに、第二の熱処理が実施されたR3−T2−B−Cu−M2系磁石における[T2]/[B]のmol比が14.0超であっても、R1−T1−B−Cu−M1系合金バルク体における[T1]/[B]のmol比が本開示の範囲外であるサンプルNo.1−4([T]/[B]のmol比が14.2)はBが大幅に低下している。また、R1−T1−B−Cu−M1系合金バルク体におけるCu量が0.1mass%以上1.5mass%以下でないサンプルNo.1−5、及びサンプルNo.1−8(Cu量がサンプルNo.1−5は0.04mass%、サンプルNo.1−8は2.01mass%)は、高いHcJが得られなかった。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 3. Table 4 shows the results of measuring the components of the sample by using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). “[T2] / [B]” in Table 4 is obtained by dividing the analytical value (mass%) by the atomic weight of each element (here, Fe, Al, Si, and Mn) constituting T2. It is the ratio (c / d) between the value obtained by summing these values (c) and the value obtained by dividing the B analysis value (mass%) by the atomic weight of B (d). The same applies to all the tables below. As shown in Table 3, the molar ratio [T1] / [B] in the R1-T1-B-Cu-M1-based alloy bulk body was set to 13.0 or more and 14.0 or less, and the second heat treatment was performed. R3-T2-B-Cu- M2 magnet (Table 4) in [T2] / Inventive example mol ratio of 14.0 greater than [B] is obtained a high B r and a high H cJ none I understand that On the other hand, in the R3-T2-B-Cu-M2 system magnet on which the second heat treatment was performed, the [T2] / [B] molar ratio was 14.0 or less. 1-1 did not obtain high H cJ . Furthermore, even if the molar ratio of [T2] / [B] in the R3-T2-B-Cu-M2 system magnet that has been subjected to the second heat treatment is more than 14.0, R1-T1-B-Cu- Sample No. in which the molar ratio of [T1] / [B] in the M1-based alloy bulk body is outside the range of the present disclosure. In the case of 1-4 ([T] / [B] molar ratio is 14.2), Br is significantly reduced. In addition, in the sample No. 1 in which the Cu content in the R1-T1-B-Cu-M1-based alloy bulk body is not less than 0.1 mass% and not more than 1.5 mass%. 1-5, and sample No. 1-8 (the amount of Cu is 0.04 mass% for sample No. 1-5 and 2.01 mass% for sample No. 1-8), high H cJ could not be obtained.

実験例2
[R1−T1−B−Cu−M1系合金バルク体を準備する工程]
バルク体がおよそ表5の符号2−Aに示すとなるように、各元素を秤量する以外は実験例1と同じ方法でR1−T1−B−Cu−M1系合金バルク体を作製した。
得られたR1−T1−B−Cu−M1系合金バルク体の密度は7.5Mg/m 以上であった。得られたR1−T1−B−Cu−M1系合金バルク体の成分の結果を表5に示す。表5における各成分は実験例1と同じ方法で測定した。なお、R1−T1−B−Cu−M1系合金バルク体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental example 2
[Step of preparing R1-T1-B-Cu-M1-based alloy bulk body]
An R1-T1-B-Cu-M1 based alloy bulk body was produced in the same manner as in Experimental Example 1 except that each element was weighed so that the bulk body has a symbol 2-A in Table 5.
The density of the obtained R1-T1-B-Cu-M1-based alloy bulk body was 7.5 Mg / m 3 or more. Table 5 shows the results of the components of the obtained R1-T1-B-Cu-M1-based alloy bulk body. Each component in Table 5 was measured by the same method as in Experimental Example 1. In addition, as a result of measuring the oxygen content of the R1-T1-B-Cu-M1-based alloy bulk body by the gas melting-infrared absorption method, it was confirmed that all were about 0.5 mass%. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass%.

[R2−Ga−Fe−A系合金を準備する工程]
R2−Ga−Fe−A系合金がおよそ表6の符号2−aから2−fに示す組成となるように各元素を秤量する以外は、実験例1と同じ方法でR2−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Ga−Fe−A系合金の組成を表6に示す。
[Step of preparing R2-Ga-Fe-A alloy]
R2-Ga-Fe- was prepared in the same manner as in Experimental Example 1, except that each element was weighed so that the composition of the R2-Ga-Fe-A alloy was approximately 2-a to 2-f in Table 6. An A type alloy was prepared. Table 6 shows the composition of the R2-Ga-Fe-A based alloy measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

[第一の熱処理を実施する工程]
表7の第一の熱処理に示す温度及び時間でR2−Ga−Fe−A系合金及びR1−T1−B−Cu−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
The same method as in Experimental Example 1 was used except that the R2-Ga-Fe-A based alloy and the R1-T1-B-Cu-M1 based bulk body were heated at the temperature and time shown in the first heat treatment in Table 7. One heat treatment was performed.

[第二の熱処理を実施する工程]
表7の第二の熱処理に示す温度及び時間でR1−T1−B−Cu−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法で加工しR3−T2−B−Cu−M2系磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was performed in the same manner as in Experimental Example 1 except that the R1-T1-B-Cu-M1 based alloy bulk body was heated at the temperature and time shown in the second heat treatment in Table 7. The heat-treated samples were processed in the same manner as in Experimental Example 1 to obtain R3-T2-B-Cu-M2 magnets.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表7に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表8に示す。表7の通り、R2−Ga−Fe−A系合金のFe量が4mass%以上40mass%以下である本発明例は高いB及び高いHcJが得られていることがわかる。また、表8の通り、R2−Ga−Fe−A系合金のFe量が本開示の範囲外であると、最終的に得られるR3−T2−B−Cu−M2系磁石における[T2]/[B]のmol比を14.0超とすることができず(表8中の比較例)、高いHcJを得ることができなかった。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 7. Table 8 shows the results of measuring the components of the sample by using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As Table 7, the present invention examples of the Fe content is less than 4 mass% or more 40 mass% of the R2-Ga-Fe-A alloy it can be seen that the high B r and a high H cJ are achieved. Further, as shown in Table 8, when the Fe content of the R2-Ga-Fe-A system alloy is out of the range of the present disclosure, [T2] / in the finally obtained R3-T2-B-Cu-M2 system magnet. The molar ratio of [B] could not be made higher than 14.0 (comparative example in Table 8), and high H cJ could not be obtained.

実験例3
[R1−T1−B−Cu−M1系合金バルク体を準備する工程]
R1−T1−B−Cu−M1系合金バルク体がおよそ表9の符号3−Aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR1−T1−B−Cu−M1系合金バルク体を作製した。得られたR1−T1−B−Cu−M1系合金バルク体の密度は7.5Mg/m 以上であった。得られたR1−T1−B−Cu−M1系合金バルク体の成分の結果を表9に示す。表9における各成分は実験例1と同じ方法で測定した。なお、R1−T1−B−Cu−M1系合金バルク体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental example 3
[Step of preparing R1-T1-B-Cu-M1-based alloy bulk body]
R1-T1-B-Cu-M1-based alloy bulk material was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the composition represented by the reference numeral 3-A in Table 9 was obtained. A Cu-M1 system alloy bulk body was produced. The density of the obtained R1-T1-B-Cu-M1-based alloy bulk body was 7.5 Mg / m 3 or more. Table 9 shows the results of the components of the obtained R1-T1-B-Cu-M1-based alloy bulk body. Each component in Table 9 was measured by the same method as in Experimental Example 1. In addition, as a result of measuring the oxygen content of the R1-T1-B-Cu-M1-based alloy bulk body by the gas melting-infrared absorption method, it was confirmed that all were about 0.5 mass%. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass%.

[R2−Ga−Fe−A系合金を準備する工程]
R2−Ga−Fe−A系合金がおよそ表10の符号3−a〜3−jに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Ga−Fe−A系合金の組成を表10に示す。
[Step of preparing R2-Ga-Fe-A alloy]
R2-Ga-Fe- was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the composition of the R2-Ga-Fe-A based alloy was approximately as indicated by the symbols 3-a to 3-j in Table 10. An A type alloy was prepared. Table 10 shows the composition of the R2-Ga-Fe-A based alloy measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

[第一の熱処理を実施する工程]
表11の第一の熱処理に示す温度及び時間でR2−Ga−Fe−A合金及びR1−T1−B−Cu−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
In the same manner as in Experimental Example 1, except that the R2-Ga-Fe-A alloy and the R1-T1-B-Cu-M1 alloy bulk body were heated at the temperature and time shown in the first heat treatment in Table 11 Was performed.

[第二の熱処理を実施する工程]
表11の第二の熱処理に示す温度及び時間でR1−T1−B−Cu−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。尚、サンプル3−17及び3−18は、第二の熱処理を実施しなかった。熱処理後の各サンプルを実験例1と同じ方法で加工しR3−T2−B−Cu−M2系磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was performed in the same manner as in Experimental Example 1 except that the R1-T1-B-Cu-M1 based alloy bulk body was heated at the temperature and time shown in the second heat treatment in Table 11. The samples 3-17 and 3-18 were not subjected to the second heat treatment. The heat-treated samples were processed in the same manner as in Experimental Example 1 to obtain R3-T2-B-Cu-M2 magnets.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表11に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表12に示す。表11の通り、R2−Ga−Fe−A系合金のR2量が35mass%以上91mass%以下、Ga量が2.5mass%以上40mass%以下である本発明例は高いB及び高いHcJが得られていることがわかる。また、表12の通り、R2−Ga−Fe−A合金におけるR2、Gaのいずれかが本開示の範囲外であると、最終的に得られるR3−T2−B−Cu−M2系磁石における[T2]/[B]のmol比を14.0超とすることができず(表12中の比較例)、高いHcJを得ることができない。このように、R1、Ga(及び実施例2に示す様にFe)の含有量が本開示の範囲内にあることにより、[T2]/[B]のmol比が14.0超となるFeの必要量を磁石表面から内部に導入させることが可能となる。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 11. Table 12 shows the results of measuring the components of the sample by using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As Table 11, R2 of R2-Ga-Fe-A based alloy less 35 mass% or more 91mass%, the present invention example Ga amount is less 2.5 mass% or more 40 mass% has a high B r and a high H cJ You can see that it has been obtained. In addition, as shown in Table 12, when either R2 or Ga in the R2-Ga-Fe-A alloy is out of the range of the present disclosure, the finally obtained R3-T2-B-Cu-M2-based magnet is [[ The molar ratio of T2] / [B] cannot be set to more than 14.0 (comparative example in Table 12), and high H cJ cannot be obtained. As described above, when the contents of R1 and Ga (and Fe as shown in Example 2) are within the range of the present disclosure, the molar ratio of [T2] / [B] is more than 14.0 Fe. It is possible to introduce the required amount of the above into the inside from the magnet surface.

実験例4
[R1−T1−B−Cu−M1系合金バルク体を準備する工程]
R1−T1−B−Cu−M1系合金バルク体がおよそ表13の符号4−Aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR1−T1−B−Cu−M1系合金バルク体を作製した。
得られたR1−T1−B−Cu−M1系合金バルク体の密度は7.5Mg/m 以上であった。得られたR1−T1−B−Cu−M1系合金バルク体の成分の結果を表13に示す。表13における各成分は実験例1と同じ方法で測定した。なお、R1−T1−B−Cu−M1系合金バルク体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental example 4
[Step of preparing R1-T1-B-Cu-M1-based alloy bulk body]
R1-T1-B-Cu-M1-based alloy bulk material was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the composition represented by the symbol 4-A in Table 13 was obtained. A Cu-M1 system alloy bulk body was produced.
The density of the obtained R1-T1-B-Cu-M1-based alloy bulk body was 7.5 Mg / m 3 or more. Table 13 shows the results of the components of the obtained R1-T1-B-Cu-M1-based alloy bulk body. Each component in Table 13 was measured by the same method as in Experimental Example 1. In addition, as a result of measuring the oxygen content of the R1-T1-B-Cu-M1-based alloy bulk body by the gas melting-infrared absorption method, it was confirmed that all were about 0.5 mass%. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass%.

[R2−Ga−Fe−A系合金を準備する工程]
R2−Ga−Fe−A系合金がおよそ表14の符号4−aに示組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Ga−Fe−A系合金の組成を表14に示す。
[Step of preparing R2-Ga-Fe-A alloy]
An R2-Ga-Fe-A based alloy was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the composition of the R2-Ga-Fe-A based alloy was approximately 4a in Table 14. Got ready. Table 14 shows the composition of the R2-Ga-Fe-A based alloy measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

[第一の熱処理を実施する工程]
表15の第一の熱処理に示す温度及び時間でR2−Ga−Fe−A合金及びR1−T1−B−Cu−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
In the same manner as in Experimental Example 1 except that the R2-Ga-Fe-A alloy and the R1-T1-B-Cu-M1 alloy bulk body were heated at the temperature and time shown in the first heat treatment in Table 15, Was performed.

[第二の熱処理を実施する工程]
表15の第二の熱処理に示す温度及び時間でR1−T1−B−Cu−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法で加工しR3−T2−B−Cu−M2系磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was performed in the same manner as in Experimental Example 1 except that the R1-T1-B-Cu-M1 alloy bulk body was heated at the temperature and time shown in the second heat treatment in Table 15. The heat-treated samples were processed in the same manner as in Experimental Example 1 to obtain R3-T2-B-Cu-M2 magnets.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表15に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表16に示す。表15の通り、本開示の第一の熱処理温度(700℃以上950℃以下)及び第二の熱処理温度(450℃以上600℃以下)である本発明例は、高いB及び高いHcJが得られていることがわかる。また、表16の通り、第一の熱処理温度又は第二の熱処理温度が本開示の範囲外である比較例は、最終的に得られるR3−T2−B−Cu−M2系磁石における[T2]/[B]のmol比を14.0超とすることができず(表16中の比較例)、高いHcJを得ることができなかった。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 15. Table 16 shows the results of measuring the components of the sample using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As Table 15, the present invention embodiment the first heat treatment temperature (700 ° C. or higher 950 ° C. or less) and a second heat-treatment temperature (450 ° C. or higher 600 ° C. or less) of the present disclosure, a high B r and a high H cJ You can see that it has been obtained. In addition, as shown in Table 16, in the comparative example in which the first heat treatment temperature or the second heat treatment temperature is outside the range of the present disclosure, [T2] in the finally obtained R3-T2-B-Cu-M2 system magnet. The molar ratio of / [B] could not be set to more than 14.0 (comparative example in Table 16), and high H cJ could not be obtained.

実験例5
[R1−T1−B−Cu−M1系合金バルク体(バルク体)を準備する工程]
R1−T1−B−Cu−M1系合金バルク体がおよそ表17の符号5−Aに示す組成となるように、各元素を秤量しブックモールド法により鋳造し、厚み10〜20mmのブロック状の原料合金を得た。得られた原料合金を減圧アルゴン雰囲気中で1120℃×20時間の熱処理を行った後、冷却した。その後、絶対圧250kPaの加圧水素雰囲気で2時間保持することにより、合金に水素を吸蔵させた後、真空引きを行って水素を極力除去した。その後、500μmのメッシュにて解砕することで、粉末を得た。
Experimental example 5
[Step of preparing R1-T1-B-Cu-M1 alloy bulk body (bulk body)]
Each element was weighed and cast by a book molding method so that the R1-T1-B-Cu-M1-based alloy bulk body had a composition shown by reference numeral 5-A in Table 17, and was formed into a block shape having a thickness of 10 to 20 mm. A raw material alloy was obtained. The obtained raw material alloy was heat-treated in a reduced pressure argon atmosphere at 1120 ° C. for 20 hours and then cooled. Then, the alloy was allowed to occlude hydrogen by holding it in a pressurized hydrogen atmosphere with an absolute pressure of 250 kPa for 2 hours, and then vacuumed to remove hydrogen as much as possible. Then, powder was obtained by crushing with a mesh of 500 μm.

得られた粉末に対して、HDDR処理を行った。具体的には、粉末を100kPa(大気圧)のアルゴン流気中で890℃まで加熱し、その後、雰囲気を100kPa(大気圧)の水素流気に切り替えた後、890℃で2時間保持して水素化・不均化反応を行った。温度を保持したまま、5.3kPaに減圧したアルゴン流気中で1時間保持し、脱水素、再結合反応を行った後、大気圧アルゴン流気中で室温まで冷却した。HDDR処理により、粉末が若干凝集していたため、目開き500μmのメッシュで解砕した。   HDDR treatment was performed on the obtained powder. Specifically, the powder was heated to 890 ° C. in an argon stream of 100 kPa (atmospheric pressure), and then the atmosphere was changed to a hydrogen stream of 100 kPa (atmospheric pressure) and then held at 890 ° C. for 2 hours. Hydrogenation / disproportionation reaction was performed. While maintaining the temperature, the mixture was kept for 1 hour in an argon stream depressurized to 5.3 kPa to carry out dehydrogenation and a recombination reaction, and then cooled to room temperature in an atmospheric pressure argon stream. Since the powder was slightly aggregated by the HDDR treatment, it was crushed with a mesh having a mesh of 500 μm.

その後、粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と垂直方向に60MPaの圧力を印加して圧粉体を作製した。得られた圧粉体をホットプレス装置の金型に充填し、その後金型をホットプレス装置内に設置して、1×10−2Pa以下の真空中で200MPaの圧力を印加しながら、高周波加熱により金型を750℃まで加熱した。保持温度までの昇温時間は60秒とした。その後、750℃で2分間保持し加熱圧縮処理を行い、保持時間経過の10秒前にプレス圧力を解除し、保持時間経過後直ちにチャンバ内にヘリウムガスを導入して冷却して、実験に必要な数のR1−T1−B−Cu−M1系合金バルク体を作製した。ホットプレスで得られたR1−T1−B−Cu−M1系合金バルク体の密度は7.5Mg/m3以上であった。また、配向方向に平行な断面の走査電子顕微鏡観察(SEM観察)から求められた平均結晶粒径(円相当径)はいずれのサンプルも200nm以上800nm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在することを確認した。得られた磁石素材の成分の結果を表17に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した Then, the powder was filled in a die of a press machine, and a pressure of 60 MPa was applied in a magnetic field of 1.2 MA / m in a direction perpendicular to the magnetic field to produce a green compact. The obtained green compact was filled in a mold of a hot press machine, and then the mold was placed in the hot press machine, and a high frequency was applied while applying a pressure of 200 MPa in a vacuum of 1 × 10 −2 Pa or less. The mold was heated to 750 ° C. by heating. The heating time to the holding temperature was 60 seconds. After that, hold at 750 ° C for 2 minutes to perform heat compression treatment, release the press pressure 10 seconds before the holding time elapses, and immediately after the holding time elapses, introduce helium gas into the chamber to cool it, and then perform the experiment. A large number of R1-T1-B-Cu-M1-based alloy bulk bodies were produced. The density of the R1-T1-B-Cu-M1-based alloy bulk body obtained by hot pressing was 7.5 Mg / m 3 or more. The average crystal grain size (equivalent circle diameter) determined by scanning electron microscope observation (SEM observation) of a cross section parallel to the orientation direction is 200 nm or more and 800 nm or less, and the longest grain size of the individual crystal grains. It was confirmed that crystal grains having a ratio b / a of b to the shortest grain size a of less than 2 were present in an amount of 50% by volume or more of all crystal grains. Table 17 shows the results of the components of the obtained magnet material. In addition, each component in Table 1 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass%. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass%.

[R2−Ga−Fe−A系合金を準備する工程]
R2−Ga−Fe−A系合金がおよそ表18の符号6−a〜6−eに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Ga−Fe−A系合金の組成を表18に示す。
[Step of preparing R2-Ga-Fe-A alloy]
R2-Ga-Fe- was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the R2-Ga-Fe-A alloy had a composition shown by reference numerals 6-a to 6-e in Table 18. An A type alloy was prepared. Table 18 shows the composition of the R2-Ga-Fe-A based alloy measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

[第一の熱処理を実施する工程]
表19の第一の熱処理に示す温度及び時間でR2−Ga−Fe−A合金及びR1−T1−B−Cu−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
In the same manner as in Experimental Example 1, except that the R2-Ga-Fe-A alloy and the R1-T1-B-Cu-M1 alloy bulk body were heated at the temperature and time shown in the first heat treatment in Table 19, the first method was used. Was performed.

[第二の熱処理を実施する工程]
表19の第二の熱処理に示す温度及び時間でR1−T1−B−Cu−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法加工しR3−T2−B−Cu−M2系磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was performed in the same manner as in Experimental Example 1 except that the R1-T1-B-Cu-M1 based alloy bulk body was heated at the temperature and time shown in the second heat treatment in Table 19. The heat-treated samples were processed in the same manner as in Experimental Example 1 to obtain R3-T2-B-Cu-M2 series magnets.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表19に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表20に示す。表19の通り、平均粒子径20μm以上の合金をHDDR処理した後、得られた粉末を磁界中成形し、その後、加熱圧縮を行って得られたR1−T1−B―Cu−M1系合金バルク体を用いても高いHcJが得られていることがわかる。また、表24の通り、高いHcJが得られているサンプルは[T2]/[B]のmol比が14.0超となっていることがわかる。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 19. Table 20 shows the results of measuring the components of the sample by using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As shown in Table 19, R1-T1-B-Cu-M1 alloy bulk obtained by HDDR-treating an alloy having an average particle diameter of 20 μm or more, molding the obtained powder in a magnetic field, and then performing heat compression It can be seen that high H cJ was obtained even when using the body. Further, as shown in Table 24, it is found that the sample having a high H cJ has a [T2] / [B] mol ratio of more than 14.0.

実験例6
[R1−T1−B−Cu−M1系合金バルク体(バルク体)を準備する工程]
R1−T1−B−Cu−M1系合金バルク体がおよそ表21の符号6−Aに示す組成となるように、各元素を秤量しブックモールド法により鋳造し、厚み10〜20mmのブロック状の原料合金を得た。得られたブロック状の原料合金を単ロール超急冷法を用いて超急冷合金を作製した。具体的には周速度20m/秒で回転する純銅製のロール上に、石英管中で高周波溶解した原料合金を噴射することで厚さ20〜50μmのリボン状の合金を得た。得られた合金を乳鉢中で粉砕し、150μm以下の粉末を回収した。
Experimental example 6
[Step of preparing R1-T1-B-Cu-M1 alloy bulk body (bulk body)]
Each element was weighed and cast by the book molding method so that the R1-T1-B-Cu-M1-based alloy bulk body had a composition shown by reference numeral 6-A in Table 21, and was formed into a block shape having a thickness of 10 to 20 mm. A raw material alloy was obtained. An ultra-quenched alloy was produced from the obtained block-shaped raw material alloy by using a single-roll ultra-quenching method. Specifically, a raw material alloy melted in a high frequency in a quartz tube was jetted onto a roll made of pure copper that rotated at a peripheral speed of 20 m / sec to obtain a ribbon-shaped alloy having a thickness of 20 to 50 μm. The obtained alloy was crushed in a mortar and powder having a particle size of 150 μm or less was recovered.

得られた粉末を直径6mmの金型に挿入し、室温、200MPaの圧力で圧縮して成形体を作製した。成形体の高さは約8mmで、密度は約5.6Mg/m3であった。 The obtained powder was inserted into a mold having a diameter of 6 mm and compressed at room temperature under a pressure of 200 MPa to produce a molded body. The height of the molded body was about 8 mm, and the density was about 5.6 Mg / m 3 .

その後、得られた成形体をホットプレス装置の金型(内径6mm)に充填し、その後金型をホットプレス装置内に設置して、1×10-2Pa以下の真空中で50MPaの圧力を印加しながら、高周波加熱により金型を750℃まで加熱した。保持温度までの昇温時間は60秒とした。その後、750℃で5分間保持して加熱圧縮処理を行い、保持時間経過の10秒前にプレス圧力を解除し、保持時間経過後直ちにチャンバ内にヘリウムガスを導入して冷却した。密度は7.5Mg/m3以上まで向上した。 Then, the obtained molded body is filled in a die (inner diameter 6 mm) of a hot press machine, and then the die is installed in the hot press machine, and a pressure of 50 MPa is applied in a vacuum of 1 × 10 -2 Pa or less. While applying the voltage, the mold was heated to 750 ° C. by high frequency heating. The heating time to the holding temperature was 60 seconds. Then, the mixture was held at 750 ° C. for 5 minutes to perform heat compression treatment, the press pressure was released 10 seconds before the holding time elapsed, and helium gas was introduced into the chamber immediately after the holding time elapsed to cool. The density was improved to 7.5 Mg / m 3 or more.

その後、ホットプレスで得られた成形体に熱間加工を施した。具体的には、ホットプレス体(ホットプレスで得られた成形体)(直径6mm)を内径10mmの金型の中央部に設置し、その後金型をホットプレス装置内に設置して、1×10−2Pa以下の真空中で高周波加熱により金型を800℃まで加熱した。保持温度までの昇温時間は60秒とした。その後、50MPaの圧力を印加しながらパンチの変位の変化がほぼゼロになるまで保持し、保持時間経過の10秒前にプレス圧力を解除し、保持時間経過後直ちにチャンバ内にヘリウムガスを導入して冷却してR1−T1−B−Cu−M1系合金バルク体6−Aを得た。熱間加工で得られたR1−T1−B−Cu−M1系合金バルク体の密度は7.5Mg/m3以上であった。また、配向方向に平行な断面の走査電子顕微鏡観察(SEM観察)から求められた平均結晶粒径(円相当径)はいずれのサンプルも200nm以上800nm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2以上である結晶粒が全結晶粒の50体積%以上存在することを確認した。得られた磁石素材の成分の結果を表21に示す。なお、表21における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 Then, the compact obtained by hot pressing was subjected to hot working. Specifically, a hot-pressed body (molded body obtained by hot-pressing) (diameter: 6 mm) was placed in the center of a die having an inner diameter of 10 mm, and then the die was placed in a hot-pressing device, and 1 × The mold was heated to 800 ° C. by high frequency heating in a vacuum of 10 −2 Pa or less. The heating time to the holding temperature was 60 seconds. After that, while applying a pressure of 50 MPa, the punch is held until the change in displacement of the punch becomes almost zero, the press pressure is released 10 seconds before the holding time elapses, and helium gas is introduced into the chamber immediately after the holding time elapses. And cooled to obtain R1-T1-B-Cu-M1-based alloy bulk body 6-A. The density of the R1-T1-B-Cu-M1-based alloy bulk body obtained by hot working was 7.5 Mg / m 3 or more. The average crystal grain size (equivalent circle diameter) determined by scanning electron microscope observation (SEM observation) of a cross section parallel to the orientation direction is 200 nm or more and 800 nm or less, and the longest grain size of the individual crystal grains. It was confirmed that crystal grains having a ratio b / a of b to the shortest grain size a of 2 or more were present in an amount of 50% by volume or more of all crystal grains. Table 21 shows the results of the components of the obtained magnetic material. In addition, each component in Table 21 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass%. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass%.

[R2−Ga−Fe−A系合金を準備する工程]
R2−Ga−Fe−A系合金がおよそ表22の符号6−aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Ga−Fe−A系合金の組成を表22に示す。
[Step of preparing R2-Ga-Fe-A alloy]
An R2-Ga-Fe-A-based alloy was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the composition of the R2-Ga-Fe-A-based alloy was approximately 6-a in Table 22. Got ready. Table 22 shows the composition of the R2-Ga-Fe-A based alloy measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

[第一の熱処理を実施する工程]
R1−T1−B−Cu−M1系合金バルク体を切断、切削加工し、1.4mm×8.0mm×8.0mmの直方体(8.0mm×8.0mmの面が配向方向と垂直な面)とした。その後、このR1−T1−B−Cu−M1系合金バルク体の配向方向に垂直な面(二面)に、R−Fe−B−Cu−M系合金バルク体の100質量部(100mass%)に対して、R2−Ga−Fe−A系合金0.4質量部(0.4mass%)を散布し、その後、管状流気炉を用いて、50Paに制御した減圧アルゴン中で、表23の第一の熱処理に示す温度及び時間でR2−Ga−Fe−A合金及びR1−T1−B−Cu−M1系合金バルク体を加熱した。
[Step of performing first heat treatment]
A R1-T1-B-Cu-M1 alloy bulk body is cut and cut to form a rectangular parallelepiped having a size of 1.4 mm × 8.0 mm × 8.0 mm (a surface of 8.0 mm × 8.0 mm is a plane perpendicular to the orientation direction). ). Then, 100 parts by mass (100 mass%) of the R-Fe-B-Cu-M-based alloy bulk body were provided on the surfaces (two surfaces) perpendicular to the orientation direction of the R1-T1-B-Cu-M1-based alloy bulk body. On the other hand, 0.4 parts by mass (0.4 mass%) of R2-Ga-Fe-A alloy was sprayed, and then, using a tubular flow furnace, in a reduced pressure argon controlled to 50 Pa, as shown in Table 23. The R2-Ga-Fe-A alloy and the R1-T1-B-Cu-M1-based alloy bulk body were heated at the temperature and time shown in the first heat treatment.

[第二の熱処理を実施する工程]
表23の第二の熱処理に示す温度及び時間でR1−T1−B−Cu−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを。熱処理後の各サンプルの表面近傍に存在するR2−Ga−Fe−A系合金の濃化部を除去するため、表面研削盤を用いてR2−Ga−Fe−A系合金を散布した面を0.2mmずつ切削加工し、1.0×8.0mm×8.0mmの平板状のサンプル(R3−T2−B−Cu−M2系磁石)を得た。
[Step of performing second heat treatment]
The second heat treatment was carried out in the same manner as in Experimental Example 1 except that the R1-T1-B-Cu-M1-based alloy bulk body was heated at the temperature and time shown in the second heat treatment in Table 23. Each sample after heat treatment. In order to remove the concentrated portion of the R2-Ga-Fe-A alloy existing near the surface of each sample after the heat treatment, the surface on which the R2-Ga-Fe-A alloy was sprinkled was 0 using a surface grinder. It was cut by 0.2 mm each to obtain a flat plate-shaped sample (R3-T2-B-Cu-M2 system magnet) of 1.0 x 8.0 mm x 8.0 mm.

[サンプル評価]
得られたサンプルを、4枚重ねて、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表23に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表24に示す。表23の通り、超急冷法によって作製された合金を作製し、その後、熱間加工を行うことで作製されたR1−T1−B−Cu−M1系合金バルク体を用いても、高いHcJが得られていることがわかる。また、表24の通り、高いHcJが得られているサンプルは[T2]/[B]のmol比が14.0超となっていることがわかる。
[sample test]
The resulting samples, overlapping four, were measured B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 23. Table 24 shows the results of measuring the components of the sample by using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As shown in Table 23, even if an R1-T1-B-Cu-M1-based alloy bulk body produced by producing an alloy produced by the ultra-quenching method and then performing hot working is used, a high H cJ is obtained. It can be seen that is obtained. Further, as shown in Table 24, it is found that the sample having a high H cJ has a [T2] / [B] mol ratio of more than 14.0.

本開示により得られたR3−T2−B−Cu−M2系磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに好適に利用することができる。   The R3-T2-B-Cu-M2 system magnets obtained by the present disclosure are used in various types such as voice coil motors (VCM) for hard disk drives, electric vehicle (EV, HV, PHV, etc.) motors, industrial equipment motors, and the like. It can be suitably used for motors and home appliances.

1 R1−T1−B−Cu−M1系合金バルク体
2 R2−Ga−Fe−A系合金
3 処理容器
1 R1-T1-B-Cu-M1-based alloy bulk body 2 R2-Ga-Fe-A-based alloy 3 Processing container

Claims (7)

以下の要件(1)〜(7)を満たすR1−T1−B−Cu−M1系合金バルク体を準備する工程と、
(1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1−T1−B−Cu−M1系合金バルク体全体の27mass%以上35mass%以下である。
(2)T1はFe又はFeとX1であり、X1はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(3)[T1]/[B]のmol比が13.0以上14.0以下である。
(4)CuはR1−T1−B−Cu−M1系合金バルク体全体の0.1mass%以上1.5mass%以下である。
(5)M1はGa及びAgの少なくとも一方であり、R1−T1−B−Cu−M1系合金バルク体全体の0mass%以上1mass%以下である。
(6)不可避的不純物を含んでも良い。
(7)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
以下の要件(8)〜(12)を満たすR2−Ga−Fe−A系合金を準備する工程と、
(8)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2−Ga−Fe−A系合金全体の35mass%以上91mass%以下である。
(9)GaはR2−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。
(10)FeはR2−Ga−Fe−A系合金全体の4mass%以上40mass%以下である。
(11)AはAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、Agから選択される一種以上であり、R2−Ga−Fe−A系合金全体の0mass%以上1mass%以下である。
(12)不可避的不純物を含んでも良い。
前記R1−T1−B−Cu−M1系合金バルク体の表面の少なくとも一部に、前記R2−Ga−Fe−A系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上950℃以下の温度で第一の熱処理を実施する工程と、
前記第一の熱処理が実施されたR1−T1−B−Cu−M1系合金バルク体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、
を含む、以下の要件(13)〜(19)を満たすR3−T2−B−Cu−M2系磁石の製造方法。
(13)R3は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R3−T2−B−Cu−M2系磁石全体の27mass%以上35mass%以下である。
(14)T2はFe又はFeとX2であり、X2はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(15)[T2]/[B]のmol比が14.0超である。
(16)CuはR3−T2−B−Cu−M2系磁石全体の0.1mass%以上1.5mass%以下である。
(17)M2はGa及びAgでありGaを必ず含み、R3−T2−B−Cu−M2系磁石全体の0.1mass%以上3mass%以下である。
(18)不可避的不純物を含んでいても良い。
(19)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
A step of preparing an R1-T1-B-Cu-M1-based alloy bulk body that satisfies the following requirements (1) to (7),
(1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-Cu-M1 alloy bulk body.
(2) T1 is Fe or Fe and X1, and X1 is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(3) The molar ratio of [T1] / [B] is 13.0 or more and 14.0 or less.
(4) Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-B-Cu-M1-based alloy bulk body.
(5) M1 is at least one of Ga and Ag, and is 0 mass% or more and 1 mass% or less of the entire R1-T1-B-Cu-M1-based alloy bulk body.
(6) Inevitable impurities may be included.
(7) The main phase R 2 T 14 B phase has an average crystal grain size of 1 μm or less and has magnetic anisotropy.
A step of preparing an R2-Ga-Fe-A based alloy satisfying the following requirements (8) to (12),
(8) R2 is at least one of rare earth elements and always contains at least one of Nd and Pr, and is 35 mass% or more and 91 mass% or less of the entire R2-Ga-Fe-A based alloy.
(9) Ga is 2.5 mass% or more and 40 mass% or less of the entire R2-Ga-Fe-A alloy.
(10) Fe is 4 mass% or more and 40 mass% or less of the entire R2-Ga-Fe-A alloy.
(11) A is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, Mo, Ag, and R2-Ga-Fe-A alloy. It is 0 mass% or more and 1 mass% or less of the whole.
(12) Inevitable impurities may be included.
At least a part of the surface of the R1-T1-B-Cu-M1-based alloy bulk body is brought into contact with at least a part of the R2-Ga-Fe-A-based alloy, and the temperature is 700 ° C. in a vacuum or an inert gas atmosphere. A step of performing the first heat treatment at a temperature of 950 ° C. or lower,
The R1-T1-B-Cu-M1-based alloy bulk body on which the first heat treatment has been performed is subjected to a second heat treatment at a temperature of 450 ° C. or more and 600 ° C. or less in a vacuum or an inert gas atmosphere. Process,
And a method for manufacturing an R3-T2-B-Cu-M2 system magnet that satisfies the following requirements (13) to (19).
(13) R3 is at least one of rare earth elements and always contains at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire R3-T2-B-Cu-M2 magnet.
(14) T2 is Fe or Fe and X2, and X2 is one or more selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(15) The molar ratio of [T2] / [B] is more than 14.0.
(16) Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R3-T2-B-Cu-M2 magnet.
(17) M2 is Ga and Ag and always contains Ga, and is 0.1 mass% or more and 3 mass% or less of the entire R3-T2-B-Cu-M2 magnet.
(18) It may contain unavoidable impurities.
(19) The main phase R 2 T 14 B phase has an average crystal grain size of 1 μm or less and has magnetic anisotropy.
前記R2−Ga−Fe−A系合金は重希土類元素を含有していない請求項1に記載のR3−T2−B−Cu−M2系磁石の製造方法。   The method for producing an R3-T2-B-Cu-M2 system magnet according to claim 1, wherein the R2-Ga-Fe-A system alloy does not contain a heavy rare earth element. 前記R2−Ga−Fe−A系合金中のR2の50mass%以上がPrである請求項1又は2に記載のR3−T2−B−Cu−M2系磁石の製造方法。   The method for producing an R3-T2-B-Cu-M2 magnet according to claim 1, wherein 50 mass% or more of R2 in the R2-Ga-Fe-A alloy is Pr. 前記R3−T2−B−Cu−M2系磁石中の重希土類元素は1mass%以下である請求項1から3のいずれかに記載のR3−T2−B−Cu−M2系磁石の製造方法。   The method for producing an R3-T2-B-Cu-M2 system magnet according to claim 1, wherein the heavy rare earth element in the R3-T2-B-Cu-M2 system magnet is 1 mass% or less. 前記R1−T1−B−Cu−M1系合金バルク体を準備する工程は、R14B相を主体とする平均粒子径1μm以上10μm以下の粉末を磁界中成形した後、HDDR処理し、その後、加熱圧縮を行うことを含む、請求項1から4のいずれかに記載のR3−T2−B−Cu−M2系磁石の製造方法。 In the step of preparing the R1-T1-B-Cu-M1-based alloy bulk body, after the powder having an average particle diameter of 1 μm or more and 10 μm or less, which is mainly composed of the R 2 T 14 B phase, is molded in a magnetic field, HDDR treatment is performed, Then, the manufacturing method of the R3-T2-B-Cu-M2 type | system | group magnet in any one of Claim 1 to 4 including performing heat compression. 前記R1−T1−B−Cu−M1系合金バルク体を準備する工程は、R14B相を主体とする平均粒子径20μm以上の合金をHDDR処理した後、得られた粉末を磁界中成形し、その後、加熱圧縮を行うことを含む、請求項1から4のいずれかに記載のR3−T2−B−Cu−M2系磁石の製造方法。 Preparing the R1-T1-B-Cu- M1 alloy bulk process, after HDDR process the average particle size 20μm or more alloy mainly composed of R 2 T 14 B phase, in the magnetic field and the resulting powder The method for producing an R3-T2-B-Cu-M2 system magnet according to any one of claims 1 to 4, which comprises molding and then performing heat compression. 前記R1−T1−B−Cu−M1系合金バルク体を準備する工程は、超急冷法によって作製された合金を作製し、その後、熱間加工を行うことを含む、請求項1から4のいずれかに記載のR3−T2−B−Cu−M2系磁石の製造方法。

The step of preparing the R1-T1-B-Cu-M1-based alloy bulk body includes producing an alloy produced by a super-quenching method, and then performing hot working, any one of claims 1 to 4. A method for producing an R3-T2-B-Cu-M2 system magnet according to claim 1.

JP2016197943A 2016-10-06 2016-10-06 Method for manufacturing RTB magnet Active JP6691666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197943A JP6691666B2 (en) 2016-10-06 2016-10-06 Method for manufacturing RTB magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197943A JP6691666B2 (en) 2016-10-06 2016-10-06 Method for manufacturing RTB magnet

Publications (2)

Publication Number Publication Date
JP2018060930A JP2018060930A (en) 2018-04-12
JP6691666B2 true JP6691666B2 (en) 2020-05-13

Family

ID=61908611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197943A Active JP6691666B2 (en) 2016-10-06 2016-10-06 Method for manufacturing RTB magnet

Country Status (1)

Country Link
JP (1) JP6691666B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188172B2 (en) * 2019-02-21 2022-12-13 Tdk株式会社 R-T-B system permanent magnet
JP7252105B2 (en) * 2019-09-10 2023-04-04 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof
JP7243609B2 (en) * 2019-12-13 2023-03-22 信越化学工業株式会社 rare earth sintered magnet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264115A (en) * 2002-03-11 2003-09-19 Hitachi Powdered Metals Co Ltd Manufacturing method for bulk magnet containing rare earth
JP4656323B2 (en) * 2006-04-14 2011-03-23 信越化学工業株式会社 Method for producing rare earth permanent magnet material
JP2011210879A (en) * 2010-03-29 2011-10-20 Hitachi Metals Ltd Method for manufacturing rare-earth magnet
US9484151B2 (en) * 2011-01-19 2016-11-01 Hitachi Metals, Ltd. Method of producing R-T-B sintered magnet
JP5906874B2 (en) * 2011-03-28 2016-04-20 日立金属株式会社 Manufacturing method of RTB-based permanent magnet
JP2013207134A (en) * 2012-03-29 2013-10-07 Hitachi Metals Ltd Bulk rh diffusion source
JP6265368B2 (en) * 2013-04-22 2018-01-24 昭和電工株式会社 R-T-B rare earth sintered magnet and method for producing the same
DE112014003688T5 (en) * 2013-08-09 2016-04-28 Tdk Corporation Sintered magnet based on R-T-B and motor
US10410777B2 (en) * 2013-08-09 2019-09-10 Tdk Corporation R-T-B based sintered magnet and motor
JP2015220335A (en) * 2014-05-16 2015-12-07 住友電気工業株式会社 Rare earth magnet, and method for manufacturing rare earth magnet

Also Published As

Publication number Publication date
JP2018060930A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
JP4873008B2 (en) R-Fe-B porous magnet and method for producing the same
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
KR20140049480A (en) Rare earth sintered magnet and making method
JP4872887B2 (en) Porous material for R-Fe-B permanent magnet and method for producing the same
JP6471669B2 (en) Manufacturing method of RTB-based magnet
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
JP2014150119A (en) Method of manufacturing r-t-b based sintered magnet
JP6221233B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JP5691989B2 (en) Method for producing magnetic powder for forming sintered body of rare earth magnet precursor
TWI738932B (en) R-Fe-B series sintered magnet and its manufacturing method
WO2013027592A1 (en) Method for producing powder compact for magnet, powder compact for magnet, and sintered body
JP6051922B2 (en) Method for producing RTB-based sintered magnet
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
WO2019151244A1 (en) Permanent magnet
JP6198103B2 (en) Manufacturing method of RTB-based permanent magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2013115156A (en) Method of manufacturing r-t-b-based permanent magnet
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP2012195392A (en) Method of manufacturing r-t-b permanent magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6691666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350