JP3865180B2 - Heat-resistant rare earth alloy anisotropic magnet powder - Google Patents

Heat-resistant rare earth alloy anisotropic magnet powder Download PDF

Info

Publication number
JP3865180B2
JP3865180B2 JP26414998A JP26414998A JP3865180B2 JP 3865180 B2 JP3865180 B2 JP 3865180B2 JP 26414998 A JP26414998 A JP 26414998A JP 26414998 A JP26414998 A JP 26414998A JP 3865180 B2 JP3865180 B2 JP 3865180B2
Authority
JP
Japan
Prior art keywords
rare earth
magnet powder
anisotropic
alloy
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26414998A
Other languages
Japanese (ja)
Other versions
JP2000096102A (en
Inventor
義信 本蔵
典彦 濱田
千里 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP26414998A priority Critical patent/JP3865180B2/en
Publication of JP2000096102A publication Critical patent/JP2000096102A/en
Application granted granted Critical
Publication of JP3865180B2 publication Critical patent/JP3865180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Description

【0001】
【発明の属する技術分野】
本発明は,各種モーター, アクチュエーター等に用いることが可能な高保磁力を有する強力な永久磁石用希土類磁石の技術分野に属する.
【0002】
【従来の技術】
強力な希土類合金異方性磁石粉末として,高温水素熱処理による製造方法が特開平10−135019号公報(従来技術1)に開示されている.また,高保磁力を有する希土類合金異方性磁石粉末の製造方法として,希土類元素と鉄とホウ素とを主成分とする希土類磁石の希土類元素の一部を異方性磁場の大きい希土類元素(Dy,Tb)と置換する方法が,例えば特開平9−165601号公報(従来技術2)に開示されている.
【0003】
従来技術1の希土類合金異方性磁石粉末は,大きな磁気異方性を有し,かつ室温ではある程度の大きな保磁力を有するが,80℃を越えるような温度では保磁力が小さくなり,使用できない.実際に従来技術1の希土類合金異方性磁石粉末を作製し保磁力の評価を行ったところ,室温では955kA/mであるが,80℃では720kA/m ,120℃では400kA/mとなっている.
【0004】
また,従来技術2の希土類合金異方性磁石粉末は,RE:11〜15at%(但し,REはR1とR2からなり,R1はYを含む希土類元素の少なくとも1種で,PrまたはNdの1種または2種をR1のうち90at%異常現有し,R2はTb,Dyのうち1種もしくは2種で,かつR1とR2のat%比は0.003<R2/R1<0.06の関係を満たす),T:76〜84at%(但し,TはFeまたはFeの一部を50%以下のCoで置換可能),ME:0.05〜5at%(但し,MEはGa,Zr,Nb,Hf,Ta,Wのうち1種または2種以上),B:5〜9at%で,かつR2とMEとCoのat%比において(R2+ME+Co/10)<6の関係を満たすことにより,高い磁化と大きな保磁力を両立できることを特徴としている.しかし,実際に作製してみると,安定した特性が得られないことが分かった.なぜならば, 合金鋳塊作製の際,異方性磁場の大きい希土類元素(Dy,Tb)は極微量しか添加しないため,かつ,蒸気圧が大きいため組成の制御が非常に困難であり,故に,安定した特性が得られない.例えば, R2/R1<0.02の場合では,異方性磁場の大きい希土類元素(Dy,Tb)を置換しない場合に比べて,保磁力の向上はほとんど見られず,また,異方性磁場の大きい希土類元素(Dy,Tb)を添加すると,急激な異方性の低下のため十分なエネルギー積が得られない.
【0005】
【発明が解決しようとする課題】
そこで本願発明は,80℃を越えるような温度においても十分な保磁力を保ち,かつ,大きな磁気異方性を有する耐熱希土類合金異方性磁石粉末と安定した生産が可能なその製造方法を提供することを課題とする.
【0006】
80℃を越えるような温度で十分な保磁力を確保する方法は,(1)保磁力の温度係数の改善,(2)80℃を越えるような温度で保磁力が低下しても十分な値が確保できるよう,室温での保磁力を向上させる,の2点が従来から知られている.
【0007】
上記(1)の保磁力の温度係数を改善する方法は,磁気特性の中核である正方晶構造Nd2Fe14B型化合物相の磁気異方性の温度依存性が大きいため,実現は困難である.これに対し,上記(2)の室温での保磁力の向上は,例えば,特開平9−165601号公報に開示されている.
【0008】
本発明者は,希土類合金異方性磁石粉末の逆磁区の発生場所を検討し,逆磁区発生を抑制する方法を発見し,高保磁力を有し,大きな磁気異方性を有する希土類合金異方性磁石粉末とその製造方法を発明した.
本発明はかかる見解の元で完成されたものである.
【0009】
【課題を解決するための手段】
本発明の耐熱希土類合金異方性磁石粉末は、異方性希土類磁石粉末の表面に、Nd,Dy,Tb,Pr(以下、M系元素という)からなるコーティング層を持つことを特徴とする。
【0010】
また、本発明の耐熱希土類合金異方性磁石粉末は、異方性希土類磁石粉末の表面に、Nd,Dy,Tb,Pr の一種または2種以上で構成される合金(以下、M系元素合金という)からなるコーティング層を持つことを特徴とする。
【0011】
さらに、本発明の耐熱希土類合金異方性磁石粉末は、前記M系元素に対して、高温水素熱処理温度THに比べ融点TMが500°C≦TM≦TH+100°Cになるような元素(以下、L系元素という)の一種もしくは2種以上を合金化させた合金(以下、ML系合金という)からなるコーティング層を持つことを特徴とする。
【0012】
本発明の耐熱希土類合金異方性磁石粉末は、前記のM系元素合金に、L系元素の一種もしくは2種以上を合金化させたML系合金からなるコーティング層を持つことを特徴とする。
【0013】
本発明の耐熱希土類合金異方性磁石粉末は、異方性希土類磁石粉末の表面に、DyCo合金からなるコーティング層を持つことを特徴とする。
【0014】
本発明の耐熱希土類合金異方性磁石粉末は、異方性希土類磁石粉末の表面に、当該異方性希土類磁石粉末の正方晶構造R2Fe14B型化合物(Rはイットリウムを含む希土類元素のうち1種または2種以上からなる希土類元素)のRの一部と、すくなくともM系元素(Nd,Dy,Tb)のうち1種または2種以上が置換した拡散層を持つことを特徴とする。
【0015】
本発明の耐熱希土類合金異方性磁石粉末の製造方法は、正方晶構造R2Fe14B型化合物(Rはイットリウムを含む希土類元素のうち1種または2種以上からなる希土類元素)からなる異方性希土類磁石粉末と、M系元素粉末、M系元素合金粉末、又は、ML系合金粉末の両者を、at%比X=m/(r+m)×100(mはM系元素、M系元素合金、又は、ML系合金におけるM系元素の全at%)(rは異方性希土類磁石粉末中における希土類元素の全at%)を0.03<X<24に特定して混合し、該混合物を真空中あるいは不活性ガス雰囲気中において熱処理温度TDを400℃≦TD≦高温水素処理温度TH+50°Cに保持することを特徴とする.
また、本発明の耐熱希土類合金異方性磁石粉末の製造方法は、正方晶構造R2Fe14B型化合物(Rはイットリウムを含む希土類元素のうち1種または2種以上からなる希土類元素)からなる異方性希土類磁石粉末と、M系元素水素化物粉末、M系元素合金水素化物粉末、又は、ML系合金水素化物粉末の両者を、at%比X= m/(r+m)×100(mはM系元素、M系元素合金、又は、ML系合金におけるM系元素の全at%)(rは異方性希土類磁石粉末中における希土類元素の全at%)を0.03<X<24に特定して混合し、該混合物を真空中あるいは不活性ガス雰囲気中において熱処理温度TDを400℃≦TD≦高温水素処理温度TH+50°Cに保持することを特徴とする.
また、本発明のボンド磁石の製造方法は、前記のいずれかの耐熱希土類合金異方性磁石粉末に樹脂または低融点金属を混合し成形固化することを特徴とする.
【0016】
なお,異方性磁石粉末の最大エネルギー積(以下(BH)maxと称す),残留磁束密度(以下Brと称す)には,通常のBHトレーサーが使用できないため,本発明では(BH)max ,Brの測定方法として次の方法を採用した.まず異方性磁石粉末を212μm以下の粒径のものに分級して用いた.そして反磁場が0.2になるように成形し.磁場中で配向後4568kA/mで着磁し,VSMで測定して(BH)max ,Brを求めた.
【0017】
【発明の実施の形態】
従来の異方性磁石粉末の逆磁区の発生場所は,粉末の表面である.粉末表面の粗さ,磁気特性の担い手であるR2Fe14Bの粉末表面のR原子の結合が切れているためと考えられる.すなわち,粉末表面をスムーズにし, 磁気特性の担い手であるR2Fe14Bの粉末表面のR原子が何らかの原子と結合していればよい.従って,R2Fe14BのRの異方性磁場以上の元素が少なくとも逆磁区発生場所である粉末表面に結合されていれば保磁力が向上する. R2Fe14BのRの異方性磁場以上の元素として,Nd,Dy,Tb,Prから選ばれる1種または2種以上が利用できる.中でもコスト及び磁気特性の理由からDyを用いることが好ましい.
【0018】
粉末表面をスムーズにし, 磁気特性の担い手であるR2Fe14Bの粉末表面のR原子がM系元素と結合していればよいため,極微量のM系元素, M系元素合金, ML系元素合金ができる限り均一かつ薄く粉末表面にあればよい.従って,M系元素,M系元素合金,ML系元素合金中のMの下限を0.03<m/(r+ m )×100とする. これに対し, M系元素, M系元素合金, ML系元素合金の量が大きければ,より均一に粉末表面にRと結合できるが,(BH)maxが低下する.従って, RあるいはR合金の上限をm/(r+ m )×100<24とする.
【0019】
耐熱希土類合金異方性磁石粉末の製造方法において,正方晶構造R2Fe14B型化合物の異方性磁石粉末とMあるいはM合金を混合させた後,400℃以下の熱処理では,拡散が起こりにくく,正方晶構造R2Fe14B型化合物中のRとM系元素,M系元素合金,ML系元素合金中のMとの結合が困難である.正方晶構造R2Fe14B型化合物の異方性磁石粉末は,通常,高温水素熱処理され,微細組織を有しているため,高温水素熱処理温度を大きく越えた温度での熱処理は急激な結晶粒の粗大化が起こる.従って,熱処理条件は400℃から高温水素処理温度TH+50°Cとした.
【0020】
【発明の効果】
80℃を越えるような温度においても十分な保磁力を保ち,かつ,大きな磁気異方性を有する永久磁石用希土類合金粉末と安定した生産が可能なその製造方法を提供できる.
【0021】
【実施例】
以下,実施例により具体的に説明する.
(実施例1)平均粒度が10μm〜5000μmで少なくとも80vol%以上の正方晶構造R2Fe14B型化合物の異方性磁石粉末を212μm以下に分級したものを母材粉末とした.母材粉末の磁気特性を表1に示す.
【0022】
【表1】

Figure 0003865180
また,ボタンアーク溶解にてML系合金を融点が800℃以下になるような組成に溶製し,乳鉢あるいは振動ミルで粉砕した. ML系合金の組成,平均粒度を表2に示す.
【0023】
【表2】
Figure 0003865180
その後,母材粉末とML系合金粉末を乳鉢にて混合し,表3に示す条件で熱処理を真空中で行った.また,比較材として,母材粉末のみの熱処理を行った.
【0024】
【表3】
Figure 0003865180
【0025】
具体的には,異方性希土類磁石粉末とML系合金粉末の両者を、at%比X=m/(r+m)×100(mはML系合金におけるM系元素の全at%)(rは異方性希土類磁石粉末中における希土類元素の全at%)のXを0.1〜24になるよう混合した.試料として約50gと極めて少なくし,真空チャンバー内に入れ,拡散ポンプで真空引きしながら所定の温度,時間で熱処理を行った.熱処理終了後は,高純度アルゴンガスを導入することにより急冷した.これにより希土類合金異方性磁石粉末を製造した.得られた希土類合金異方性磁石粉末の磁気特性を測定し,これを表3に示す.表3中のNo.17〜23の結果を用いて,保磁力に及ぼす熱処理温度の影響を図1に示す.
図1より900℃では急激に保磁力が低下している.これは,母材の高温水素熱処理の温度が820℃であり,母材の結晶粒が成長したためである.すなわち,母材の高温水素熱処理温度よりも明らかに高い温度で熱処理をすると逆に保磁力が低下することが分かる.一方,ML系合金の融点より約100℃低い温度で熱処理を行っても保磁力の増加している.また,均一に母材粉末表面にML系合金が結合するためには,ML系合金の平均粒度も重要なパラメーターの1つとなる. 表3中のNo.28,33〜37の結果を用いて,保磁力に及ぼすML系合金の平均粒度の影響を図2に示す.図2よりML系合金の平均粒度が小さいと保磁力は高くなる. 平均粒度が小さいとより均一に母材粉末表面に結合するためと考えられる. また, ML系合金の添加量の調査も行った.表3中のNo.27〜32の結果を用いて,最大エネルギー積,保磁力に及ぼす異方性希土類磁石粉末中の全希土類金属とML系合金の全希土類金属のat%比の影響をそれぞれ図3,4に示す.また,合わせて,合金鋳塊を作製する時にDyを添加した結果も示す. 図3,4より,合金鋳塊法と比較して,少ないDy量で大きい最大エネルギー積と高い保磁力が得られていることが分かる. 一方,母材のみの熱処理では保磁力の増加はない.また,図3,4中には示していないが,異方性希土類磁石粉末中の全希土類金属とML系合金の全希土類金属のat%比Xが24の場合は,最大エネルギー積が母材のみに比べて大きく低下している.
【0026】
得られた磁石粉末(表3中のNo.20)を用い,熱硬化性樹脂としてフェノール樹脂を磁石粉末98gに対して2g使用し,型内で2.5Tの磁場を作用させながら圧縮成形してボンド磁石を得た.また,比較材に表3中のNo.2の磁石粉末を用いた.得られたボンド磁石を用いて室温,80℃及び120℃での保磁力をVSMにて測定し,表4に示す.
【0027】
【表4】
Figure 0003865180
その結果,比較材の80℃の保磁力と本発明磁粉の120℃の保磁力がほぼ同じ値になり,120℃以下では十分な保磁力を有していることがわかる.保磁力だけに注目した場合,耐熱性が約40℃向上している.
【0028】
(実施例2)実施例1と同じく,平均粒度が10μm〜5000μmで少なくとも80vol%以上の正方晶構造R2Fe14B型化合物の異方性磁石粉末を212μm以下に分級したものを母材粉末とした.母材粉末の磁気特性を表1に示す.また, M系元素,M系元素合金,ML系元素合金の水素化物を温度:800℃,時間:1h,水素圧力:0.1MPaの条件で作製し,乳鉢あるいは振動ミルで粉砕し,母材粉末と水素化物粉末を乳鉢にて混合した.水素化物の平均粒度を表5に示す.
【0029】
【表5】
Figure 0003865180
その後,表6に示す条件で熱処理を真空中で行った.
【0030】
【表6】
Figure 0003865180
【0031】
具体的には,異方性希土類磁石粉末とM系元素,M系元素合金,ML系合金粉末の水素化物の両者を、at%比X=m/(r+m)×100(mはM系元素、M系元素合金、又は、ML系合金の水素化物におけるM系元素の全at%)(rは異方性希土類磁石粉末中における希土類元素の全at%)のXを8になるよう混合した.実施例1と同様に, 試料として約50gと極めて少なくし,真空チャンバー内に入れ,拡散ポンプで真空引きしながら所定の温度,時間で熱処理を行った.このとき,水素化物が脱水素され, M系元素,M系元素合金,ML系合金単体となる.熱処理終了後は,高純度アルゴンガスを導入することにより急冷した.これにより希土類合金異方性磁石粉末を製造した.得られた希土類合金異方性磁石粉末の磁気特性を測定した.これを表6に示す.異方性磁場が大きい元素ほどより保磁力が増加する傾向にあることがわかる.
【0032】
得られた磁石粉末(表6中のNo.60)を用い,実施例1と同様に,熱硬化性樹脂としてフェノール樹脂を磁石粉末98gに対して2g使用し,型内で2.5Tの磁場を作用させながら圧縮成形してボンド磁石を得た. 比較材は表4中のNo.52である. 得られたボンド磁石を用いて室温,80℃及び120℃での保磁力をVSMにて測定し,表7に示す.
【0033】
【表7】
Figure 0003865180
その結果,実施例1と同様に,比較材の80℃の保磁力と本発明磁粉の120℃の保磁力がほぼ同じ値になり,120℃以下では十分な保磁力を有していることがわかる.保磁力だけに注目した場合,耐熱性が約40℃向上している.
【図面の簡単な説明】
【図1】希土類合金異方性磁石粉末とML系合金(DyCo)の混合体の保磁力に及ぼす熱処理温度の影響を示す図である.
【図2】希土類合金異方性磁石粉末とML系合金(DyCo)の混合体の保磁力に及ぼすML系合金(DyCo)の平均粒度の影響を示す図である.
【図3】希土類合金異方性磁石粉末とML系合金(DyCo)の混合体の最大エネルギー積に及ぼす希土類磁石粉末中の全希土類金属とML系合金の全希土類金属のat%比Xの影響を示す図である.
【図4】希土類合金異方性磁石粉末とML系合金(DyCo)の混合体の保磁力に及ぼす希土類磁石粉末中の全希土類金属とML系合金の全希土類金属のat%比Xの影響を示す図である.[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of powerful permanent magnets for permanent magnets having high coercive force that can be used for various motors, actuators, and the like.
[0002]
[Prior art]
As a strong rare earth alloy anisotropic magnet powder, a manufacturing method by high-temperature hydrogen heat treatment is disclosed in Japanese Patent Laid-Open No. 10-135019 (Prior Art 1). Further, as a method for producing a rare earth alloy anisotropic magnet powder having a high coercive force, a part of a rare earth element of a rare earth magnet mainly composed of a rare earth element, iron and boron is converted into a rare earth element (Dy, A method for replacing Tb) is disclosed, for example, in JP-A-9-165601 (Prior Art 2).
[0003]
The rare earth alloy anisotropic magnet powder of Prior Art 1 has a large magnetic anisotropy and a large coercive force to some extent at room temperature, but the coercive force becomes small at temperatures exceeding 80 ° C. and cannot be used. . Actually, when the rare earth alloy anisotropic magnet powder of the prior art 1 was fabricated and the coercive force was evaluated, it was 955 kA / m at room temperature, 720 kA / m at 80 ° C., and 400 kA / m at 120 ° C. Yes.
[0004]
Further, the rare earth alloy anisotropic magnet powder of Prior Art 2 has RE of 11 to 15 at% (where RE is composed of R1 and R2, R1 is at least one rare earth element including Y, and Pr or Nd 1). Species or two species are 90at% abnormal in R1, R2 is one or two of Tb and Dy, and the at% ratio of R1 and R2 is 0.003 <R2 / R1 <0.06 T: 76 to 84 at% (where T is Fe or a part of Fe can be replaced by 50% or less Co), ME: 0.05 to 5 at% (where ME is Ga, Zr, Nb) , Hf, Ta, W or more), B: 5-9 at%, and high by satisfying the relation of (R2 + ME + Co / 10) <6 in the ratio of R2 to ME and Co at% Specialized in being able to achieve both magnetization and large coercivity. It is set to. However, when actually fabricated, it was found that stable characteristics could not be obtained. This is because, in the production of an alloy ingot, rare earth elements (Dy, Tb) having a large anisotropic magnetic field are added in a very small amount, and the composition is very difficult to control because the vapor pressure is large. Stable characteristics cannot be obtained. For example, in the case of R2 / R1 <0.02, the coercive force is hardly improved as compared with the case where rare earth elements (Dy, Tb) having a large anisotropic magnetic field are not replaced, and the anisotropic magnetic field is not observed. When a rare earth element (Dy, Tb) having a large size is added, a sufficient energy product cannot be obtained due to a rapid decrease in anisotropy.
[0005]
[Problems to be solved by the invention]
Accordingly, the present invention provides a heat-resistant rare earth alloy anisotropic magnet powder having a sufficient coercive force even at a temperature exceeding 80 ° C. and having a large magnetic anisotropy, and a production method thereof capable of stable production. The task is to do.
[0006]
The methods to ensure a sufficient coercive force at a temperature exceeding 80 ° C are (1) improvement of the temperature coefficient of the coercive force, and (2) a sufficient value even if the coercive force is decreased at a temperature exceeding 80 ° C. There are two known points to improve the coercive force at room temperature.
[0007]
The method of improving the temperature coefficient of the coercive force (1) above is difficult to realize because the temperature dependence of the magnetic anisotropy of the tetragonal Nd2Fe14B type compound phase, which is the core of the magnetic properties, is large. On the other hand, the improvement of the coercive force at room temperature (2) is disclosed in, for example, Japanese Patent Laid-Open No. 9-165601.
[0008]
The present inventor has examined the occurrence location of the reverse magnetic domain of the rare earth alloy anisotropic magnet powder, discovered a method for suppressing the occurrence of the reverse magnetic domain, has a high coercive force, and has a large magnetic anisotropy. Have invented a conductive magnet powder and its manufacturing method.
The present invention has been completed based on this view.
[0009]
[Means for Solving the Problems]
The heat-resistant rare earth alloy anisotropic magnet powder of the present invention is characterized by having a coating layer made of Nd, Dy, Tb, Pr (hereinafter referred to as M-based element) on the surface of the anisotropic rare earth magnet powder.
[0010]
The heat-resistant rare earth alloy anisotropic magnet powder of the present invention is an alloy composed of one or more of Nd, Dy, Tb, Pr on the surface of the anisotropic rare earth magnet powder (hereinafter referred to as M-based element alloy). It is characterized by having a coating layer consisting of.
[0011]
Furthermore, the heat-resistant rare earth alloy anisotropic magnet powder of the present invention has a melting point T M of 500 ° C. ≦ T M ≦ T H + 100 ° C. compared to the high-temperature hydrogen heat treatment temperature T H for the M element. It is characterized by having a coating layer made of an alloy (hereinafter referred to as ML alloy) obtained by alloying one or more of these elements (hereinafter referred to as L-based elements).
[0012]
The heat-resistant rare earth alloy anisotropic magnet powder of the present invention is characterized by having a coating layer made of an ML-based alloy obtained by alloying the above-mentioned M-based element alloy with one or more L-based elements.
[0013]
The heat-resistant rare earth alloy anisotropic magnet powder of the present invention has a coating layer made of a DyCo alloy on the surface of the anisotropic rare earth magnet powder.
[0014]
The heat-resistant rare earth alloy anisotropic magnet powder of the present invention has a tetragonal structure R2Fe14B type compound (R is one kind of rare earth elements containing yttrium or the like) on the surface of the anisotropic rare earth magnet powder. It is characterized by having a diffusion layer in which a part of R of rare earth elements composed of two or more types and at least one or more of M-based elements (Nd, Dy, Tb) are substituted.
[0015]
The method for producing a heat-resistant rare earth alloy anisotropic magnet powder of the present invention comprises an anisotropic rare earth magnet comprising a tetragonal structure R2Fe14B type compound (where R is a rare earth element comprising one or more of yttrium-containing rare earth elements). Powder, M-type element powder, M-type element alloy powder, or ML-type alloy powder are mixed at% ratio X = m / (r + m) × 100 (where m is an M-type element, M-type element alloy, or The total amount of M-based elements in the ML-based alloy (r is the total at% of rare-earth elements in the anisotropic rare-earth magnet powder) is specified as 0.03 <X <24 and mixed, and the mixture is vacuumed Alternatively, the heat treatment temperature T D is maintained at 400 ° C. ≦ T D ≦ high temperature hydrogen treatment temperature T H + 50 ° C. in an inert gas atmosphere.
In addition, the method for producing a heat-resistant rare earth alloy anisotropic magnet powder of the present invention comprises an anisotropy comprising a tetragonal structure R2Fe14B type compound (where R is a rare earth element comprising one or more of yttrium-containing rare earth elements). Both the rare earth magnet powder, M-based element hydride powder, M-based element alloy hydride powder, or ML-based alloy hydride powder, at% ratio X = m / (r + m) × 100 (where m is an M-based element) , M-based element alloy or ML-based alloy in total at% of M-based element) (r is the total at% of rare-earth element in anisotropic rare earth magnet powder) is specified as 0.03 <X <24 The mixture is mixed, and the heat treatment temperature T D is maintained at 400 ° C. ≦ T D ≦ high temperature hydrogen treatment temperature T H + 50 ° C. in a vacuum or in an inert gas atmosphere.
The method for producing a bonded magnet according to the present invention is characterized in that any one of the above heat-resistant rare earth alloy anisotropic magnet powders is mixed with a resin or a low-melting-point metal and solidified by molding.
[0016]
In the present invention, since the normal BH tracer cannot be used for the maximum energy product (hereinafter referred to as (BH) max) and the residual magnetic flux density (hereinafter referred to as Br) of the anisotropic magnet powder, (BH) max, The following method was adopted as a method for measuring Br. First, anisotropic magnet powder was classified into particles having a particle size of 212 μm or less. Then, mold so that the demagnetizing field is 0.2. After orientation in a magnetic field, it was magnetized at 4568 kA / m and measured by VSM to obtain (BH) max and Br.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The location of the reverse magnetic domain of the conventional anisotropic magnet powder is on the surface of the powder. This is thought to be because the R atom bonds on the powder surface of R2Fe14B, which is responsible for the roughness and magnetic properties of the powder surface, are broken. In other words, the powder surface should be smooth, and R atoms on the powder surface of R2Fe14B, which is responsible for magnetic properties, should be bonded to some kind of atom. Therefore, the coercive force is improved if an element having an anisotropic magnetic field equal to or greater than the R anisotropic magnetic field of R2Fe14B is bonded to the powder surface where the reverse magnetic domain is generated. One or more elements selected from Nd, Dy, Tb, and Pr can be used as an element having an anisotropic magnetic field greater than or equal to the R magnetic field of R2Fe14B. Of these, Dy is preferably used for reasons of cost and magnetic properties.
[0018]
Since the surface of the powder of R2Fe14B, which is responsible for the magnetic properties, needs to be bonded to the M-based element, the powder surface is smooth, so that a very small amount of M-based element, M-based element alloy, and ML-based element alloy can be produced. It should be as uniform and thin as possible on the powder surface. Therefore, the lower limit of M in the M element, M element alloy, and ML element alloy is 0.03 <m / (r + m) × 100. On the other hand, if the amount of M-based element, M-based element alloy, and ML-based element alloy is large, R can be more uniformly bonded to the powder surface, but (BH) max decreases. Therefore, the upper limit of R or R alloy is m / (r + m) × 100 <24.
[0019]
In the method of manufacturing a heat-resistant rare earth alloy anisotropic magnet powder, a tetragonal structure R2Fe14B type compound anisotropic magnet powder and M or M alloy are mixed, and then heat treatment at 400 ° C. or less hardly causes diffusion. It is difficult to bond R in the structure R2Fe14B type compound with M in the M element, M element alloy, and ML element alloy. Since anisotropic magnet powder of tetragonal structure R2Fe14B type compound is usually subjected to high-temperature hydrogen heat treatment and has a fine structure, heat treatment at a temperature greatly exceeding the high-temperature hydrogen heat treatment temperature causes rapid grain coarsening Happens. Therefore, the heat treatment conditions were set from 400 ° C. to the high temperature hydrogen treatment temperature T H + 50 ° C.
[0020]
【The invention's effect】
It is possible to provide a rare earth alloy powder for permanent magnets having a sufficient coercive force even at a temperature exceeding 80 ° C. and having a large magnetic anisotropy and a production method capable of stable production.
[0021]
【Example】
In the following, this will be described in detail by way of examples.
(Example 1) An anisotropic magnetic powder of a tetragonal structure R2Fe14B type compound having an average particle size of 10 µm to 5000 µm and at least 80 vol% or more was classified to 212 µm or less was used as a base material powder. Table 1 shows the magnetic properties of the base metal powder.
[0022]
[Table 1]
Figure 0003865180
In addition, ML alloy was melted by button arc melting so that the melting point was 800 ° C. or less, and pulverized with a mortar or vibration mill. Table 2 shows the composition and average particle size of the ML alloy.
[0023]
[Table 2]
Figure 0003865180
Thereafter, the base material powder and the ML alloy powder were mixed in a mortar, and heat treatment was performed in vacuum under the conditions shown in Table 3. As a comparative material, only the base material powder was heat-treated.
[0024]
[Table 3]
Figure 0003865180
[0025]
Specifically, both the anisotropic rare earth magnet powder and the ML alloy powder are divided into at% ratio X = m / (r + m) × 100 (m is the total at% of the M element in the ML alloy) (r is The X of 0.1 to 24 was mixed so that X of all rare earth elements in the anisotropic rare earth magnet powder was 0.1 to 24. The sample was very small, about 50 g, placed in a vacuum chamber, and heat-treated at a predetermined temperature and time while evacuating with a diffusion pump. After the heat treatment, it was quenched by introducing high purity argon gas. This produced rare-earth alloy anisotropic magnet powder. The magnetic properties of the obtained rare earth alloy anisotropic magnet powder were measured and are shown in Table 3. No. in Table 3 Figure 1 shows the effect of heat treatment temperature on the coercive force using the results of 17-23.
As shown in Fig. 1, the coercive force suddenly decreases at 900 ° C. This is because the temperature of the high temperature hydrogen heat treatment of the base material was 820 ° C., and the crystal grains of the base material grew. In other words, it can be seen that the coercive force decreases conversely when the heat treatment is performed at a temperature clearly higher than the high temperature hydrogen heat treatment temperature of the base metal. On the other hand, the coercive force increases even when heat treatment is performed at a temperature about 100 ° C. lower than the melting point of the ML alloy. In addition, the average particle size of the ML alloy is one of the important parameters in order for the ML alloy to bond uniformly to the surface of the base powder. No. in Table 3 Using the results of Nos. 28 and 33 to 37, Fig. 2 shows the influence of the average grain size of the ML alloy on the coercive force. From Fig. 2, the coercive force increases when the average grain size of the ML-based alloy is small. This is probably because when the average particle size is small, it is more uniformly bonded to the surface of the base powder. We also investigated the amount of ML alloy added. No. in Table 3 Using the results of 27-32, the effects of the at% ratio of all rare earth metals in anisotropic rare earth magnet powder and all rare earth metals of ML-based alloy on the maximum energy product and coercive force are shown in FIGS. . In addition, the results of adding Dy when producing an alloy ingot are also shown. 3 and 4, it can be seen that a large maximum energy product and a high coercive force are obtained with a small amount of Dy, compared with the alloy ingot method. On the other hand, the coercive force does not increase by heat treatment using only the base metal. Although not shown in FIGS. 3 and 4, when the at% ratio X of the total rare earth metal in the anisotropic rare earth magnet powder to the total rare earth metal in the ML alloy is 24, the maximum energy product is the base material. Compared to only, it is greatly reduced.
[0026]
Using the obtained magnet powder (No. 20 in Table 3), 2 g of phenol resin was used as thermosetting resin for 98 g of magnet powder, and compression molding was performed while applying a 2.5 T magnetic field in the mold. A bonded magnet was obtained. In addition, as a comparative material, No. Two magnet powders were used. Using the obtained bonded magnet, coercive force at room temperature, 80 ° C. and 120 ° C. was measured by VSM and shown in Table 4.
[0027]
[Table 4]
Figure 0003865180
As a result, the coercive force at 80 ° C. of the comparative material and the coercive force at 120 ° C. of the magnetic powder of the present invention are almost the same value. When focusing only on the coercive force, the heat resistance is improved by about 40 ° C.
[0028]
(Example 2) As in Example 1, an anisotropic magnet powder of a tetragonal structure R2Fe14B type compound having an average particle size of 10 µm to 5000 µm and at least 80 vol% or more was classified to 212 µm or less. Table 1 shows the magnetic properties of the base metal powder. In addition, hydrides of M-based elements, M-based element alloys, and ML-based element alloys are prepared under conditions of temperature: 800 ° C., time: 1 h, hydrogen pressure: 0.1 MPa, and pulverized with a mortar or vibration mill. The powder and hydride powder were mixed in a mortar. Table 5 shows the average particle size of the hydride.
[0029]
[Table 5]
Figure 0003865180
Thereafter, heat treatment was performed in vacuum under the conditions shown in Table 6.
[0030]
[Table 6]
Figure 0003865180
[0031]
Specifically, both the anisotropic rare earth magnet powder and the hydride of the M-based element, M-based element alloy, and ML-based alloy powder are mixed at% ratio X = m / (r + m) × 100 (m is the M-based element) , M type element alloy, or ML type alloy hydride, M type element total at%) (r is total rare earth element total at% in anisotropic rare earth magnet powder) X was mixed to 8 . As in Example 1, the sample was reduced to approximately 50 g, placed in a vacuum chamber, and heat-treated at a predetermined temperature and time while evacuating with a diffusion pump. At this time, the hydride is dehydrogenated and becomes an M element, M element alloy, or ML alloy alone. After the heat treatment, it was quenched by introducing high purity argon gas. This produced rare-earth alloy anisotropic magnet powder. The magnetic properties of the obtained rare earth alloy anisotropic magnet powder were measured. This is shown in Table 6. It can be seen that the coercive force tends to increase as the anisotropic magnetic field increases.
[0032]
Using the obtained magnet powder (No. 60 in Table 6), as in Example 1, 2 g of phenol resin was used as thermosetting resin with respect to 98 g of magnet powder, and a magnetic field of 2.5 T was used in the mold. The bonded magnet was obtained by compression molding with the action of. The comparative material is No. 1 in Table 4. 52. Using the obtained bonded magnet, coercive force at room temperature, 80 ° C and 120 ° C was measured by VSM and shown in Table 7.
[0033]
[Table 7]
Figure 0003865180
As a result, as in Example 1, the coercive force of the comparative material at 80 ° C. and the coercive force of the magnetic powder of the present invention at 120 ° C. are almost the same value, and the coercive force is sufficient at 120 ° C. or less. Recognize. When focusing only on the coercive force, the heat resistance is improved by about 40 ° C.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of heat treatment temperature on the coercivity of a mixture of rare earth alloy anisotropic magnet powder and ML alloy (DyCo).
FIG. 2 is a diagram showing the influence of the average particle size of ML alloy (DyCo) on the coercive force of a mixture of rare earth alloy anisotropic magnet powder and ML alloy (DyCo).
FIG. 3 shows the effect of the at% ratio X of the total rare earth metal in the rare earth magnet powder and the total rare earth metal of the ML alloy on the maximum energy product of the mixture of the rare earth alloy anisotropic magnet powder and the ML alloy (DyCo). Is a diagram showing.
FIG. 4 shows the effect of the at% ratio X of the total rare earth metal in the rare earth magnet powder and the total rare earth metal of the ML alloy on the coercive force of the mixture of the rare earth alloy anisotropic magnet powder and the ML alloy (DyCo). It is a figure to show.

Claims (7)

正方晶構造R2Fe14B型化合物(Rはイットリウムを含む希土類元素のうちの1種以上からなる希土類元素)からなる異方性希土類磁石粉末のRの一部がDyまたはTbによって置換された拡散層を該異方性希土類磁石粉末の表面に有することを特徴とする耐熱希土類合金異方性磁石粉末。  A diffusion layer in which a part of R of an anisotropic rare earth magnet powder composed of a tetragonal structure R2Fe14B type compound (R is a rare earth element including one or more of rare earth elements including yttrium) is substituted with Dy or Tb A heat-resistant rare earth alloy anisotropic magnet powder having an anisotropic rare earth magnet powder surface. 正方晶構造R2Fe14B型化合物(Rはイットリウムを含む希土類元素のうちの1種以上からなる希土類元素)からなる異方性希土類磁石粉末の表面に、DyまたはTbの1種以上とFeまたはCoの1種以上とを含む合金からなるコーティング層を備え、
該コーティング層によって該異方性希土類磁石粉末のRの一部がDyまたはTbによって置換された拡散層該異方性希土類磁石粉末の表面に形成されることを特徴とする耐熱希土類合金異方性磁石粉末。
On the surface of an anisotropic rare earth magnet powder composed of a tetragonal structure R2Fe14B type compound (R is a rare earth element comprising one or more of rare earth elements including yttrium), one or more of Dy or Tb and 1 of Fe or Co A coating layer made of an alloy containing more than seeds
Heat rare earth alloy anisotropic diffusion layer part of R of the anisotropic rare earth magnet powder is replaced by Dy or Tb by the coating layer, characterized in Rukoto formed on the surface of the anisotropic rare earth magnet powder Magnet powder.
正方晶構造R2Fe14B型化合物(Rはイットリウムを含む希土類元素のうち1種以上からなる希土類元素)からなり高温水素熱処理された異方性希土類磁石粉末とDyまたはTbを含む粉末とを下記に示すXが0.03<X<24となる割合で混合する混合工程と、
該混合工程後の混合物を真空中あるいは不活性ガス雰囲気中に熱処理温度T D を400℃≦T D ≦高温水素処理温度T H +50° C に保持する熱処理工程とを備え、
請求項1に記載の耐熱希土類合金異方性磁石粉末が得られることを特徴とする耐熱希土類合金異方性磁石粉末の製造方法。
X=m/(r+m)×100
:DyまたはTbを含む粉末中におけるDyおよびTbの全at%
:異方性希土類磁石粉末中における希土類元素の全at%
Tetragonal structure R2Fe14B type compound (R is a rare earth element consists of one or more of the rare earth elements including yttrium) showing the powder containing anisotropic rare earth magnet powder and Dy or Tb Ri which are high-temperature hydrogen annealing Tona below A mixing step in which X is mixed at a ratio of 0.03 <X <24;
A heat treatment step of maintaining the heat treatment temperature T D at 400 ° C. ≦ T D ≦ high temperature hydrogen treatment temperature T H + 50 ° C. in a vacuum or an inert gas atmosphere after the mixing step,
A heat-resistant rare earth alloy anisotropic magnet powder according to claim 1, wherein the heat-resistant rare earth alloy anisotropic magnet powder is obtained.
X = m / (r + m) × 100
m : total at% of Dy and Tb in the powder containing Dy or Tb
r : Total at% of rare earth element in anisotropic rare earth magnet powder
正方晶構造R2Fe14B型化合物(Rはイットリウムを含む希土類元素のうち1種以上からなる希土類元素)からなり高温水素熱処理された異方性希土類磁石粉末とDyまたはTbの1種以上とFeまたはCoの1種以上とを含む合金粉末とを下記に示すXが0.03<X<24となる割合で混合する混合工程と、An anisotropic rare earth magnet powder composed of a tetragonal structure R2Fe14B type compound (R is a rare earth element comprising one or more of yttrium-containing rare earth elements), one or more of Dy or Tb, and Fe or Co. A mixing step of mixing an alloy powder containing one or more at a ratio such that X shown below is 0.03 <X <24;
該混合工程後の混合物を真空中あるいは不活性ガス雰囲気中に熱処理温度TThe mixture after the mixing step is subjected to a heat treatment temperature T in a vacuum or in an inert gas atmosphere. DD を400℃≦T400 ℃ ≦ T DD ≦高温水素処理温度T≦ High temperature hydrogen treatment temperature T HH +50°+ 50 ° CC に保持する熱処理工程とを備え、Heat treatment step
請求項2に記載の耐熱希土類合金異方性磁石粉末が得られることを特徴とする耐熱希土類合金異方性磁石粉末の製造方法。A method for producing a heat-resistant rare earth alloy anisotropic magnet powder, characterized in that the heat-resistant rare earth alloy anisotropic magnet powder according to claim 2 is obtained.
X=m/X = m / (( r+m)×100r + m) × 100
m:DyまたはTbを含む粉末中におけるDyおよびTbの全at%m: Total at% of Dy and Tb in the powder containing Dy or Tb
r:異方性希土類磁石粉末中における希土類元素の全at%r: Total at% of rare earth element in anisotropic rare earth magnet powder
前記DyまたはTbを含む粉末は、DyまたはTbの1種以上の水素化物粉末である請
求項3に記載の耐熱希土類合金異方性磁石粉末の製造方法。
The method for producing a heat-resistant rare earth alloy anisotropic magnet powder according to claim 3, wherein the powder containing Dy or Tb is one or more hydride powders of Dy or Tb.
請求項1または2に記載の耐熱希土類合金異方性磁石粉末と、樹脂または低融点金属とからなることを特徴とするボンド磁石。  A bonded magnet comprising the heat-resistant rare earth alloy anisotropic magnet powder according to claim 1 or 2 and a resin or a low melting point metal. 請求項1または2に記載の耐熱希土類合金異方性磁石粉末と樹脂または低融点金属との混合物を成形および固化してボンド磁石を得ることを特徴とするボンド磁石の製造方法。  A method for producing a bonded magnet, wherein a bonded magnet is obtained by molding and solidifying a mixture of the heat-resistant rare earth alloy anisotropic magnet powder according to claim 1 or 2 and a resin or a low melting point metal.
JP26414998A 1998-09-18 1998-09-18 Heat-resistant rare earth alloy anisotropic magnet powder Expired - Lifetime JP3865180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26414998A JP3865180B2 (en) 1998-09-18 1998-09-18 Heat-resistant rare earth alloy anisotropic magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26414998A JP3865180B2 (en) 1998-09-18 1998-09-18 Heat-resistant rare earth alloy anisotropic magnet powder

Publications (2)

Publication Number Publication Date
JP2000096102A JP2000096102A (en) 2000-04-04
JP3865180B2 true JP3865180B2 (en) 2007-01-10

Family

ID=17399154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26414998A Expired - Lifetime JP3865180B2 (en) 1998-09-18 1998-09-18 Heat-resistant rare earth alloy anisotropic magnet powder

Country Status (1)

Country Link
JP (1) JP3865180B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3452254B2 (en) * 2000-09-20 2003-09-29 愛知製鋼株式会社 Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
EP1330015A4 (en) * 2000-10-25 2007-03-21 Nec Tokin Corp Magnetic core, coil component comprising it, and power source circuit
JP4828044B2 (en) * 2001-05-31 2011-11-30 Necトーキン株式会社 Power circuit
CN101006534B (en) * 2005-04-15 2011-04-27 日立金属株式会社 Rare earth sintered magnet and process for producing the same
JP4742966B2 (en) * 2006-04-19 2011-08-10 日立金属株式会社 Method for producing R-Fe-B rare earth sintered magnet
JP5125818B2 (en) * 2007-07-24 2013-01-23 日産自動車株式会社 Magnetic compact and manufacturing method thereof
JP5417632B2 (en) * 2008-03-18 2014-02-19 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
JP5381435B2 (en) * 2009-07-14 2014-01-08 富士電機株式会社 Method for producing magnet powder for permanent magnet, permanent magnet powder and permanent magnet
WO2011070827A1 (en) * 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare earth anisotropic magnet and process for production thereof
CN107424694A (en) 2009-12-09 2017-12-01 爱知制钢株式会社 Rare-earth anisotropic magnetic iron powder and its manufacture method and binding magnet
WO2011145674A1 (en) * 2010-05-20 2011-11-24 独立行政法人物質・材料研究機構 Method for producing rare earth permanent magnets, and rare earth permanent magnets
US8480815B2 (en) * 2011-01-14 2013-07-09 GM Global Technology Operations LLC Method of making Nd-Fe-B sintered magnets with Dy or Tb
KR101341344B1 (en) 2012-02-08 2013-12-13 한양대학교 산학협력단 R-Fe-B Sintered magnet with enhanced coercivity and fabrication method thereof
JP6819328B2 (en) * 2017-02-03 2021-01-27 株式会社豊田中央研究所 Magnetic powder and its manufacturing method
CN109087767A (en) * 2018-08-08 2018-12-25 杭州电子科技大学 A kind of crystal boundary spreads the neodymium iron boron magnetic body and preparation method thereof of nanoscale diffusate in situ
CN113936877A (en) * 2020-06-29 2022-01-14 有研稀土新材料股份有限公司 Modified sintered neodymium-iron-boron magnet and preparation method and application thereof

Also Published As

Publication number Publication date
JP2000096102A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2008060241A (en) High resistance rare-earth permanent magnet
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP4170468B2 (en) permanent magnet
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JP3222482B2 (en) Manufacturing method of permanent magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP2747236B2 (en) Rare earth iron permanent magnet
JPH045740B2 (en)
JPH045739B2 (en)
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JPS61136656A (en) Production of sintered material for permanent magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3178848B2 (en) Manufacturing method of permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term