JP3254229B2 - Manufacturing method of rare earth permanent magnet - Google Patents
Manufacturing method of rare earth permanent magnetInfo
- Publication number
- JP3254229B2 JP3254229B2 JP25969491A JP25969491A JP3254229B2 JP 3254229 B2 JP3254229 B2 JP 3254229B2 JP 25969491 A JP25969491 A JP 25969491A JP 25969491 A JP25969491 A JP 25969491A JP 3254229 B2 JP3254229 B2 JP 3254229B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- alloy
- phases
- same
- transition metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種電気、電子機器に
用いられる、磁気特性に優れた希土類永久磁石の製造方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet having excellent magnetic properties and used for various electric and electronic devices.
【0002】[0002]
【従来の技術】希土類磁石の中でもNd-Fe-B系磁石は、
主成分であるNdが資源的に豊富でコストが安く、磁気特
性に優れているために、近年益々その利用が広がりつつ
ある。磁気特性向上のための開発研究も、Nd系磁石の発
明以来精力的に行われてきており、数多くの研究や発明
が提案されている。Nd系焼結磁石の製造方法の1つであ
る2種類の組成の異なった合金粉体を混合、焼結して高
性能Nd磁石を製造する方法(以下、2合金法という)に
関しても数々の発明考案が提案されている。2. Description of the Related Art Among rare earth magnets, Nd-Fe-B magnets are:
In recent years, Nd, which is a main component, is abundant in resources, low in cost, and excellent in magnetic properties, and thus its use has been expanding in recent years. Research and development for improving magnetic properties has been energetically conducted since the invention of the Nd-based magnet, and many studies and inventions have been proposed. There are many methods for manufacturing high-performance Nd magnets by mixing and sintering two types of alloy powders having different compositions, which is one of the methods for manufacturing Nd-based sintered magnets (hereinafter referred to as the two-alloy method). Inventions have been proposed.
【0003】これまでに提案されている2合金法を大き
く分けると、3種類に分類することができる。第1の方
法は、混合する原料合金粉体の一方を液体急冷法によっ
て非晶質あるいは微細結晶合金を作製し、それに通常の
希土類合金粉末を混合するか、あるいは両方の原料合金
粉体を共に液体急冷法で作製混合する方法[特開昭63-9
3841、 特開昭63-115307、特開昭63-252403、特開昭63-278
208、特開平1-108707、特開平1-146310、 特開平1-146309、
特開平1-155603各号公報参照]である。この液体急冷
法による合金を使用する2合金法については、最近50MG
Oeを越える磁気特性が得られたと報告[E.Otuki,T.Otuka
and T.Imai;11th.Int.Workshopon Rare Earth Magnet
s,Pittsburgh,Pennsylvania,USA,October(1990),p.328
参照 ]されている。The two alloy methods proposed so far can be roughly classified into three types. In the first method, one of the raw material alloy powders to be mixed is made into an amorphous or microcrystalline alloy by a liquid quenching method, and a normal rare earth alloy powder is mixed therewith, or both raw material alloy powders are mixed together. A method of producing and mixing by a liquid quenching method [JP-A-63-9
3841, JP-A-63-115307, JP-A-63-252403, JP-A-63-278
208, JP-A-1-108707, JP-A-1-46310, JP-A-1-146309,
Japanese Patent Application Laid-Open No. 1-155603]. Recently, a 50MG alloy using this liquid quenching alloy has been
Reported that magnetic properties exceeding Oe were obtained [E. Otuki, T. Otuka
and T.Imai; 11th.Int.Workshopon Rare Earth Magnet
s, Pittsburgh, Pennsylvania, USA, October (1990), p. 328
See].
【0004】第2の方法は、混合する2種類の原料合金
粉体を共に主としてR2 Fe14B化合物とし含有される希
土類元素の種類、含有量を変えた合金を作製して混合焼
結する方法である。即ち、含有するNdリッチ相の量比あ
るいは希土類元素の種類を変えた合金を2種類混合する
方法[特開昭61-81603、 特開昭61-81604、 特開昭61-816
05、 特開昭61-81606、 特開昭61-81607、 特開昭61-11900
7、特開昭61-207546、特開昭63-245903、特開平1-177335各
号公報参照]である。A second method is to prepare an alloy in which the two kinds of raw material alloy powders to be mixed are changed mainly as R 2 Fe 14 B compounds and the kinds and contents of the rare earth elements contained therein are mixed and sintered. Is the way. That is, a method of mixing two kinds of alloys in which the amount ratio of the contained Nd-rich phase or the kind of the rare earth element is changed [Japanese Patent Application Laid-Open Nos. 61-81603, 61-81604 and 61-816]
05, JP-A-61-81606, JP-A-61-81607, JP-A-61-11900
7, JP 61-207546, JP 63-245 90 3, Hei 1-177335 is the JP reference.
【0005】第3の方法は、一方の合金を主としてR2
Fe14B化合物からなる合金粉末とし、これに各種低融点
元素、低融点合金、希土類合金、炭化物、硼化物、水素
化物等の粉末を混合焼結して、Nd系希土類磁石を製造す
る方法 [特開昭60-230959、特開昭61-263201、特開昭62-1
81402、特開昭62-182249、特開昭62-206802、特開昭62-270
746、特開昭63-6808、特開昭63-104406、特開昭63-114939、
特開昭63-272006、特開平1-111843、 特開平1-146308各号
公報参照] である。The third method is to use one of the alloys mainly as R 2
A method of producing an Nd-based rare earth magnet by mixing and sintering powders of various low-melting elements, low-melting alloys, rare-earth alloys, carbides, borides, hydrides and the like into an alloy powder composed of an Fe 14 B compound [ JP-A-60-230959, JP-A-61-263201, JP-A-62-1
81402, JP-A-62-182249, JP-A-62-206802, JP-A-62-270
746, JP-A-63-6808, JP-A-63-104406, JP-A-63-114939,
JP-A-63-272006, JP-A-1-111843, and JP-A-1-146308.
【0006】[0006]
【発明が解決しようとする課題】従来技術による2合金
法ではNd系磁石合金の真に優れた磁気特性を実現させる
のに適切でなかったり不充分だったりする点が多く存在
する。即ち、前述した第1の方法では磁石合金のエネル
ギ−積は高いが保磁力は約9kOe 程度で、温度上昇によ
って保磁力が低下するというNd磁石特有の欠点のため
に、実用的には不充分な磁石特性である。最も大きな問
題点は、磁場配向性である。第1の方法でも組成を適当
に選ぶことによって、室温で磁性を示す合金を得ること
ができるが、液体急冷法によって得られる合金は非晶質
アモルファス相あるいは微細結晶となるため、微粉にし
て磁場中で配向させても特定の結晶方位を磁場方向に配
向させることができない。従って、混合した原料合金粉
体を磁場中成形しても得られる成形体の配向性は悪く、
焼結後充分な磁石特性が得られないことになる。There are many points that the two-alloy method according to the prior art is not suitable or insufficient for realizing the truly excellent magnetic properties of Nd-based magnet alloys. That is, in the first method described above, the energy product of the magnet alloy is high, but the coercive force is about 9 kOe, and the coercive force decreases with increasing temperature. Magnet properties. The biggest problem is the magnetic field orientation. In the first method, an alloy exhibiting magnetism at room temperature can be obtained by appropriately selecting the composition. However, since the alloy obtained by the liquid quenching method becomes an amorphous amorphous phase or a fine crystal, the alloy is formed into a fine powder and a magnetic field. A specific crystal orientation cannot be oriented in the direction of the magnetic field even if it is oriented in a magnetic field. Therefore, the orientation of the molded body obtained even when the mixed raw material alloy powder is molded in a magnetic field is poor,
After sintering, sufficient magnet properties cannot be obtained.
【0007】第2の方法においては、磁石合金中のR2
Fe14B化合物と共存する相はNdリッチ相あるいはNd1+XF
e4B4 相であり、この両相とも室温では磁性を示さな
い。従って、磁性を持たない化合物の混在が配向性を乱
すことになって、磁気特性の優れた磁石は得られない。
また、混合する粉体として各種元素や種々の化合物を用
いる第3の方法においてもこれらの化合物は磁性をもた
ないために、磁場中配向時に反磁場が大きくなって有効
磁場強度が減少し、そのため磁場方向への磁性粒子の回
転が不充分となって配向が乱れる。In the second method, R 2 in the magnet alloy is
The phase coexisting with the Fe 14 B compound is an Nd-rich phase or Nd 1 + X F
e 4 B 4 phase, and both phases do not show magnetism at room temperature. Therefore, the presence of a compound having no magnetism disturbs the orientation, and a magnet having excellent magnetic properties cannot be obtained.
Also, in the third method using various elements and various compounds as powders to be mixed, since these compounds do not have magnetism, the demagnetizing field increases during orientation in a magnetic field, and the effective magnetic field strength decreases. Therefore, the rotation of the magnetic particles in the direction of the magnetic field becomes insufficient, and the orientation is disturbed.
【0008】第3の方法において、混合する粉体に低融
点の元素あるいは合金を利用して磁気特性を向上させよ
うとする提案があるが、これは焼結中に混合した低融点
相が、R2 Fe14B化合物の粒界に存在する格子欠陥や酸
化物相などのニュークリエーションサイトを除去し、粒
界をクリーニングして保磁力を向上させるという考え方
によるものである。しかし、低融点相の存在は次に述べ
るような理由から、実際には磁気特性の向上に対して逆
に不利な条件となっている。低融点相が例えば660 ℃付
近から融液となっていると、実際の焼結温度1,100 ℃で
は低融点相の粘度はかなり小さくなってしまう。その結
果、成形体は液相焼結によって収縮しながら同時に粒の
周囲を囲む融液の粘度が小さいために磁性粒子の回転が
容易に起り、配向が乱れて磁気特性が劣化する。つま
り、Nd磁石の液相焼結における望ましい液相成分は、適
当な粘度を保って粒子の配向を乱さず、かつまた成形体
を緻密化し、粒界を十分にクリーニングアップできるこ
とが必要なのである。従来の2合金法においては、液相
成分が関与する磁場配向性と保磁力向上の両方の役割を
充分に考慮し、これらが最適な条件となるよう液相合金
成分の磁性と融点を適切に調整してはいなかった。本発
明は2合金法における前述したような欠点を改良し、バ
ランスのとれた磁気特性に優れた希土類永久磁石の製造
方法を提供しようとするものである。In the third method, there is a proposal to improve the magnetic properties by using a low melting point element or alloy in the powder to be mixed. This is based on the idea that nucleation sites such as lattice defects and oxide phases existing at the grain boundaries of the R 2 Fe 14 B compound are removed and the grain boundaries are cleaned to improve the coercive force. However, the presence of the low melting point phase is actually a disadvantageous condition for improving the magnetic properties for the following reasons. If the low-melting phase is melted from, for example, around 660 ° C., the viscosity of the low-melting phase becomes considerably small at an actual sintering temperature of 1,100 ° C. As a result, the compact shrinks due to liquid phase sintering, and at the same time, the viscosity of the melt surrounding the grains is low, so that the rotation of the magnetic particles easily occurs, the orientation is disturbed, and the magnetic properties deteriorate. In other words, a desirable liquid phase component in the liquid phase sintering of the Nd magnet needs to maintain an appropriate viscosity without disturbing the orientation of the particles, and also to densify the compact and sufficiently clean up the grain boundaries. In the conventional two-alloy method, the roles of the magnetic field orientation and the coercive force improvement involving the liquid phase component are both sufficiently taken into consideration, and the magnetism and melting point of the liquid phase alloy component are appropriately adjusted so that these become the optimum conditions. I didn't adjust it. An object of the present invention is to improve the above-mentioned drawbacks of the two-alloy method and to provide a method for producing a rare-earth permanent magnet having excellent balanced magnetic properties.
【0009】[0009]
【課題を解決するための手段】本発明者等は、かかる課
題を解決するために2合金法を基本的に見直し、磁性体
構成相の種類、特性等を適切に選択し組合せることによ
り充分満足できるバランスのとれた磁気特性が得られる
ことを見出し、製造条件を詳細に検討して本発明を完成
させた。 本発明の要旨は、A合金を主としてR2T14
B相(ここにRは、Nd、Pr、Dyを主体とする少な
くとも1種以上の希土類元素、TはFeまたはFeおよ
びCoを表す)から成る合金とし、B合金をR、Co、
Fe、B、M(ここにRは上記に同じ、Mは、Al、C
u、Zn、In、Si、P、S、Ti、V、Cr、M
n、Ge、Zr、Nb、Mo、Pd、Ag、Cd、S
n、Sb、Hf、Ta、Wの内から選ぶ1種又は2種以
上の元素を表す)からなり、成分を20<R≦40、
0.1≦Fe≦55、15≦Co≦80、0.1≦B≦
20、0.1≦M≦20(何れも原子%)の組成範囲と
し、かつ、B合金中の構成相としてR2T1 14L相および
/またはRリッチ相(ここにRは上記に同じ、T1はC
oまたはCoおよびFeからなる遷移金属、同遷移金属
およびM(ここにMは上記に同じ)、LはB、Bおよび
M(ここにMは上記に同じ)を表す)並びにRT2 4L
相、RT2 3相、RT2 2相、R2T2 7相およびRT2 5相
(ここにRおよびLは上記に同じ、T2はCoまたはC
oおよびFeからなる遷移金属、同遷移金属およびB、
同遷移金属およびM(ここにMは上記に同じ)、同遷移
金属およびBおよびM(ここにMは上記に同じ)を表
す)の5相の内の1種または2種以上の相であって、そ
の1種または2種以上の相のうちの少なくとも1種の相
の融点が700℃以上1,155℃以下である相との混
合相とからなる合金とし、A合金粉末99〜70重量%
に対してB合金粉末を1〜30重量%の割合で混合し、
該混合合金粉末を磁場中加圧成形し、該成形体を真空ま
たは不活性ガス雰囲気中で焼結し、さらに焼結温度以下
の低温で時効熱処理することを特徴とする希土類永久磁
石の製造方法であり、更に詳しくは、該B合金に含まれ
るRT2 4L相、RT2 3相、RT2 2相、R2T2 7相および
RT2 5相の5つの構成相の内の、少なくとも1種以上の
相が室温以上のキューリー温度を有する磁性体であり、
また、該B合金に含まれるRT2 4L相、RT2 3相、RT
2 2相、R2T2 7相およびRT2 5相の5つの構成相の内
の、少なくとも1種以上の相が室温以上のキューリー温
度ならびに結晶磁気異方性を有する磁性体であることを
特徴とする希土類永久磁石の製造方法である。さらに、
前記A合金、B合金ならびにAB混合合金粉末の平均粒
径が、0.5〜20μmの範囲内であることを特徴とす
るものである。Means for Solving the Problems In order to solve the above problems, the present inventors have basically reviewed the two-alloy method, and it is sufficient to properly select and combine the types and characteristics of the constituent phases of the magnetic material. The present inventors have found that satisfactory and well-balanced magnetic properties can be obtained, and have studied the manufacturing conditions in detail to complete the present invention. The gist of the present invention is that A alloy is mainly composed of R 2 T 14
An alloy composed of a B phase (where R represents at least one or more rare earth elements mainly composed of Nd, Pr, and Dy, and T represents Fe or Fe and Co), and the B alloy is composed of R, Co,
Fe, B, M (where R is the same as above, M is Al, C
u, Zn, In, Si, P, S, Ti, V, Cr, M
n, Ge, Zr, Nb, Mo, Pd, Ag, Cd, S
n, Sb, Hf, Ta, or W, representing one or more elements selected from the group consisting of 20 <R ≦ 40;
0.1 ≦ Fe ≦ 55, 15 ≦ Co ≦ 80, 0.1 ≦ B ≦
20, 0.1 and the composition range of ≦ M ≦ 20 (both atomic%), and, R 2 T 1 14 L-phase and / or the R-rich phase as a phase in the B alloy (here R is as defined above , T 1 is C
transition metals consisting of o or Co and Fe, the transition metal and M (where M is the same), L represents B, B and M a (where M is the same)) and RT 2 4 L
Phase, RT 2 3-phase, RT 2 2-phase, R 2 T 2 7 phase and RT 2 5 phase (wherein R and L are as defined above, T 2 is Co or C
a transition metal consisting of o and Fe, the same transition metal and B,
One or more of the five phases of the same transition metal and M (where M is the same as above), the same transition metal and B and M (where M is the same as above) And at least one of the one or more phases has a melting point of 700 ° C. or more and 1,155 ° C. or less as a mixed phase, and the A alloy powder is 99 to 70% by weight. %
B alloy powder is mixed at a ratio of 1 to 30% by weight with respect to
A method for producing a rare-earth permanent magnet, comprising subjecting the mixed alloy powder to pressure molding in a magnetic field, sintering the compact in a vacuum or an inert gas atmosphere, and further performing aging heat treatment at a low temperature equal to or lower than the sintering temperature. , and the more particularly, RT 2 4 L phase contained in the B alloy, RT 2 3-phase, RT 2 2-phase, of the five constituent phase of R 2 T 2 7 phase and RT 2 5 phases, at least At least one phase is a magnetic material having a Curie temperature of room temperature or higher;
Moreover, RT 2 4 L phase contained in the B alloy, RT 2 3-phase, RT
2 two-phase, of the five constituent phase of R 2 T 2 7 phase and RT 2 5 phase, that at least one or more phases of a magnetic material having a Curie temperature and crystal magnetic anisotropy of more than room temperature This is a method for producing a rare earth permanent magnet. further,
The average particle size of the A alloy, the B alloy, and the AB mixed alloy powder is in a range of 0.5 to 20 μm.
【0010】以下本発明を詳細に説明する。本発明は所
謂2合金法と称する希土類永久磁石(以下、磁石合金C
という)の製造方法であり、原料となるA合金は主とし
てR2 T14B化合物相からなり、RはYを含む La,Ce,P
r,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbおよびLuから選択
されるNd、Pr、Dyを主体とする少なくとも1種類以上の希
土類元素である。またTはFeまたはFeおよびCoを表し、
Coの含有量は重量%で0.1 〜40%である。Co添加により
A合金のキューリー温度が上昇し、また合金の耐食性も
改善される。A合金は原料金属を真空または不活性ガ
ス、好ましくはAr雰囲気中で溶解し鋳造する。原料金属
は純希土類元素あるいは希土類合金、純鉄、フェロボロ
ン、さらにはこれらの合金等を使用するが、一般的な工
業生産において不可避な微量不純物は含まれるものとす
る。得られたインゴットは、R2 T14B相がαFeと希土
類リッチ相との包晶反応によって形成されるため、鋳造
後も凝固偏析によってαFe相、Rリッチ相、Bリッチ
相、Nd3Co 相等が残留する場合がある。本発明において
はA合金中のR2 Fe14B相が多いほうが望ましいので、
必要に応じて溶体化処理を行う。その条件は真空または
Ar雰囲気下、700 〜1,200 ℃の温度領域で1時間以上熱
処理すれば良い。Hereinafter, the present invention will be described in detail. The present invention relates to a rare-earth permanent magnet (hereinafter referred to as a magnet alloy C) called a so-called two-alloy method.
A) as a raw material is mainly composed of an R 2 T 14 B compound phase, and R is Y containing La, Ce, P
It is at least one or more rare earth elements mainly composed of Nd, Pr, and Dy selected from r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. T represents Fe or Fe and Co,
The Co content is 0.1 to 40% by weight. The addition of Co increases the Curie temperature of the A alloy and also improves the corrosion resistance of the alloy. The alloy A is prepared by melting a raw metal in a vacuum or an inert gas, preferably an Ar atmosphere. As a raw material metal, a pure rare earth element or a rare earth alloy, pure iron, ferroboron, or an alloy thereof is used, but a trace impurity inevitable in general industrial production is included. In the obtained ingot, since the R 2 T 14 B phase is formed by the peritectic reaction between αFe and the rare earth rich phase, the αFe phase, the R rich phase, the B rich phase, the Nd 3 Co phase, etc. are also solidified and segregated after casting. May remain. In the present invention, since it is desirable that the R 2 Fe 14 B phase in the A alloy is large,
Solution treatment is performed as necessary. The condition is vacuum or
In an Ar atmosphere, heat treatment may be performed in a temperature range of 700 to 1,200 ° C. for 1 hour or more.
【0011】B合金は主としてR、Co、Fe、Bおよび
Mから成る合金で、組成式RaFebCocBdMe、
ここにRは、Yを含むLa、Ce、Pr、Nd、Pm、
Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
bおよびLuから選択されるNd、Pr、Dyを主体と
する少なくとも1種以上の希土類元素、Mは、Al、C
u、Zn、In、Si、P、S、Ti、V、Cr、M
n、Ge、Zr、Nb、Mo、Pd、Ag、Cd、S
n、Sb、Hf、Ta、Wの内から選ぶ1種又は2種以
上の元素を表す。また添え字a、b、c、d、eの範囲
は、20<a≦40、 0.1≦b≦55、15≦c≦8
0、0.1≦d≦20、0.1≦e≦20、a+b+c+d+
e=100(各原子%))で表わされ、A合金と同様に
原料金属を真空または不活性ガス、好ましくはAr雰囲
気中で溶解し鋳造する。原料金属としては純希土類元素
あるいは希土類合金、純鉄、純コバルト、フェロボロ
ン、各種純金属さらにはこれらの合金等を使用するが、
一般的な工業生産において不可避な微量不純物は含まれ
るものとする。希土類元素Rの量aが20原子%以下で
はRが少な過ぎるために焼結工程において十分な量の液
相が得られず、焼結体の密度が上がらなくなり、40原
子%を越えると合金の融点が低くなり過ぎて磁気特性の
向上効果がなくなる。Coの量cが15原子%未満では
RT2 4B相、RT2 3相、RT2 2相、R2T2 7相
およびRT2 5相等の各相の出現が不安定であり、磁気
特性の向上効果が充分には得られない。Fe・B・M
は、所望の金属間化合物がB合金中に平衡相として出現
するためにCoとともに必須の成分であって、Fe・B
・Mについては、上に示した範囲が好ましい組成範囲で
ある。また、液体急冷法によって得られた薄帯を熱処理
してもB合金を作製することができる。即ち、液体急冷
法において、急冷後のB合金はアモルファス相或は微細
結晶相となっており、これを結晶化温度以上の温度で一
定時間以上加熱することにより、結晶化或は再結晶成長
させて、本発明の所定の構成相を析出させることが出来
る。[0011] B alloy mainly R, Co, Fe, an alloy consisting of B and M, the composition formula R a Fe b Co c B d M e,
Here, R is La, Ce, Pr, Nd, Pm, including Y.
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b and Lu, at least one or more rare earth elements mainly composed of Nd, Pr and Dy, M is Al, C
u, Zn, In, Si, P, S, Ti, V, Cr, M
n, Ge, Zr, Nb, Mo, Pd, Ag, Cd, S
represents one or more elements selected from n, Sb, Hf, Ta and W. The subscripts a, b, c, d, and e are in the range of 20 <a ≦ 40, 0.1 ≦ b ≦ 55, and 15 ≦ c ≦ 8.
0, 0.1 ≦ d ≦ 20, 0.1 ≦ e ≦ 20, a + b + c + d +
e = 100 (each atomic%), and the raw material metal is melted and cast in a vacuum or an inert gas, preferably an Ar atmosphere like the A alloy. As the raw material metal, a pure rare earth element or a rare earth alloy, pure iron, pure cobalt, ferroboron, various pure metals, and furthermore, an alloy of these are used.
Trace impurities inevitable in general industrial production shall be included. When the amount a of the rare earth element R is less than 20 atomic%, the amount of R is too small, so that a sufficient amount of liquid phase cannot be obtained in the sintering step, and the density of the sintered body does not increase. The melting point is so low that the effect of improving the magnetic properties is lost. Co amount c is RT 2 4 B-phase is less than 15 atomic%, RT 2 3-phase, RT 2 2 phase, and the appearance of each phase of R 2 T 2 7 phase and RT 2 5 equality is unstable magnetic properties Is not sufficiently obtained. Fe ・ B ・ M
Is an essential component together with Co in order for the desired intermetallic compound to appear as an equilibrium phase in the B alloy, and Fe.B
-Regarding M, the range shown above is a preferable composition range. Further, a B alloy can be produced by heat-treating a ribbon obtained by the liquid quenching method. That is, in the liquid quenching method, the B alloy after quenching is in an amorphous phase or a fine crystalline phase. By heating this at a temperature higher than the crystallization temperature for a certain period of time, crystallization or recrystallization growth is performed. Thus, the predetermined constituent phase of the present invention can be precipitated.
【0012】この組成範囲においてB合金中に主に出現
する相は、R2T1 14B相(主としてR2Fe14B
相)および/またはRリッチ相(ここにRは上記に同
じ、T1はCoまたはCoおよびFeからなる遷移金
属、同遷移金属およびM(ここにMは上記に同じ)、L
はB、BおよびMを(ここにMは上記に同じ)表す)並
びにRT2 4B相、RT2 3相、RT2 2相、R2T2
7相およびRT2 5相(ここにRは上記に同じ、T2は
CoまたはCoおよびFe からなる遷移金属、同遷移
金属およびB、同遷移金属およびM(ここにMは上記に
同じ)、同遷移金属およびBおよびM(ここにMは上記
に同じ)を表す)等であり、本発明では、前2相および
後5相の内少なくとも1種または2種以上の相を含むB
合金を使用することに特徴がある。なおRリッチ相と表
記した相は、R成分が35原子%以上となるRに富んだ
各種の相全てを表すものとする。これら7種類の相のう
ち、R2Fe14B相、Rリッチ相の2相は、従来公知の
2合金法や、通常の希土類鉄ボロン系磁石合金の製造法
によっても出現していた相である。残りのRT2 4B
相、RT2 3相、RT2 2相、R2T2 7相、RT2 5
相の5種類の相は、B合金に5原子%以上のCoを添加
することにより出現し、本発明の2合金法において特有
のものである。図1は、本発明のB合金の鋳造組織写真
を走査電子顕微鏡により撮影し、組成をEPMA(電子
プローブX線マイクロアナライザー)およびX線解析に
より求めた1例で、1:RT2 4B相、2:RT
2 3相、3:RT2 2相、4:Rリッチ相の存在が明確
に表されている。本発明による2合金法は、B合金中に
これら5相のうち、少なくとも1種以上含むことを特徴
とし、これらの相の存在によって2合金法で作製された
磁石合金に高い磁気特性を実現することができた。[0012] Phase mainly appearing B alloy in this composition range, R 2 T 1 14 B phase (mainly R 2 Fe 14 B
Phase) and / or R-rich phase (where R is the same as above, T 1 is a transition metal consisting of Co or Co and Fe, the same transition metal and M (where M is the same as above), L
Is B, B and M (here M is as defined above) represents) and RT 2 4 B-phase, RT 2 3-phase, RT 2 2-phase, R 2 T 2
7 phase and RT 2 5 phase (where R is the same as above, T 2 is a transition metal consisting of Co or Co and Fe, the same transition metal and B, the same transition metal and M (where M is the same as above), The transition metal and B and M (where M represents the same as described above), and the like. In the present invention, B containing at least one or two or more phases out of two phases before and after five phases
It is characterized by using an alloy. Note that the phase described as the R-rich phase represents all the various R-rich phases in which the R component is 35 atomic% or more. Of these seven types of phases, two phases, R 2 Fe 14 B phase and R-rich phase, are phases that have also appeared by a conventionally known two-alloy method or a normal rare-earth iron-boron-based magnet alloy manufacturing method. is there. The rest of the RT 2 4 B
Phase, RT 2 3-phase, RT 2 2-phase, R 2 T 2 7 phase, RT 2 5
The five types of phases appear by adding 5 atomic% or more of Co to the B alloy, and are unique to the two-alloy method of the present invention. Figure 1 is a cast structure photograph of B alloy of the present invention taken by a scanning electron microscope, the composition in one example determined by EPMA (electron probe X-ray microanalyzer) and X-ray analysis, 1: RT 2 4 B-phase , 2: RT
2 3-phase, 3: RT 2 2-phase, 4: the presence of R-rich phase is clearly represented. The two-alloy method according to the present invention is characterized in that at least one of these five phases is contained in the B alloy, and the presence of these phases realizes high magnetic properties in a magnet alloy produced by the two-alloy method. I was able to.
【0013】本発明では以上述べたA合金、B合金を特
定割合に混合し、所謂2合金法によって磁石合金Cを作
製し、高い磁気特性を発現させることができた。以下、
B合金におけるこれら混合相の存在が磁石合金の高い磁
気特性をもたらした理由について述べる。まず第1の理
由として、これら混合相が室温以上のキューリー温度を
持つことが挙げられ、これは添加元素Coによって達成さ
れた。さらに、これらの相は特定の結晶方向に結晶磁気
異方性を持つ。従って、主な構成相としてこれらの相の
1種以上を含有するB合金粉末を主にR2Fe14 B相から
成るA合金粉末に混合して磁場中配向させると、B合金
も強磁性体で磁気異方性を持つため、加えた磁場方向に
ほぼ全ての粒子が結晶方向を揃えて配向し、高い磁気特
性が得られることになる。In the present invention, the above alloys A and B are mixed at a specific ratio, and a magnet alloy C is produced by a so-called two-alloy method, whereby high magnetic properties can be exhibited. Less than,
The reason why the presence of these mixed phases in the B alloy resulted in the high magnetic properties of the magnet alloy will be described. The first reason is that these mixed phases have a Curie temperature above room temperature, which was achieved by the additive element Co. Further, these phases have magnetocrystalline anisotropy in a specific crystal direction. Therefore, when a B alloy powder containing one or more of these phases as a main constituent phase is mixed with an A alloy powder mainly composed of R 2 Fe 14 B phase and oriented in a magnetic field, the B alloy also becomes a ferromagnetic material. , Almost all the grains are oriented with the crystal direction aligned in the direction of the applied magnetic field, and high magnetic properties can be obtained.
【0014】第2の理由は、これらの相の融点がNd系希
土類磁石の液相焼結にとって適当な温度範囲、即ち700
℃以上1,155 ℃以下の範囲となることである。この温度
範囲はNdリッチ相の融点(500 〜 650℃)よりは高く、
しかもR2Fe14 B相の融点( 1,155 ℃)以下の温度
である。従って、通常の焼結温度においてNdリッチ相の
みが存在していて融液の粘度が下がり過ぎてしまい、そ
の結果粒子の配向を乱してしまうようなことがなく、か
つまた液相となって粒界をクリーニングしながら密度を
上げ、焼結後高い磁石特性を実現することになる。Co添
加によるもう1つの効果として、耐食性の向上が挙げら
れる。B合金はA合金より希土類元素を多く含有するた
め酸化劣化しやすくなるが、Coを添加することにより酸
化劣化を防止することができ、安定した磁気特性が得ら
れる。またA合金にCoを添加することも合金の耐食性を
向上させ酸化劣化が少なくなって、安定した磁気特性が
得られる。B合金に添加されるDyは、焼結、時効後も粒
界近傍に多く存在し、磁石合金Cの保磁力を向上させる
効果がある。同じくB合金に添加される各種元素M(こ
こにMは、Al、Cu、Zn、In、Si、P、S、Ti、V、Cr、
Mn、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、W
の内から選ぶ1種又は2種以上の元素を表す)も、磁石
合金Cの保磁力を向上させる効果がある。The second reason is that the melting points of these phases are in a temperature range suitable for liquid phase sintering of Nd-based rare earth magnets, ie, 700 ° C.
It should be in the range of not less than 1,155 ° C. This temperature range is higher than the melting point of the Nd-rich phase (500-650 ° C),
In addition, the temperature is lower than the melting point (1,155 ° C.) of the R 2 Fe 14 B phase. Therefore, at the normal sintering temperature, only the Nd-rich phase is present and the viscosity of the melt does not decrease too much, so that the orientation of the particles is not disturbed, and the liquid phase is formed. The density is increased while cleaning the grain boundaries, and high magnet properties are realized after sintering. Another effect of the addition of Co is an improvement in corrosion resistance. The B alloy contains more rare earth elements than the A alloy and thus is easily oxidized and deteriorated. However, by adding Co, the oxidized deterioration can be prevented and stable magnetic properties can be obtained. Addition of Co to the A alloy also improves the corrosion resistance of the alloy, reduces oxidative degradation, and provides stable magnetic properties. Dy added to the B alloy is still present in the vicinity of the grain boundaries even after sintering and aging, and has the effect of improving the coercive force of the magnet alloy C. Similarly, various elements M added to the B alloy (where M is Al, Cu, Zn, In, Si, P, S, Ti, V, Cr,
Mn, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W
Represents one or more elements selected from the above) also has the effect of improving the coercive force of the magnet alloy C.
【0015】次に2合金法による磁石合金Cの製造方法
を述べる。上記のようにして得られたA合金およびB合
金は、各インゴットを別々に粉砕した後、所定割合に混
合される。粉砕は、湿式又は乾式粉砕にて行われる。希
土類合金は非常に活性であり、粉砕中の酸化を防ぐこと
を目的に、乾式粉砕の場合はAr又は窒素などの雰囲気中
で、湿式粉砕の場合はフロンなどの非反応性の有機溶媒
中で行われる。混合工程も必要に応じて不活性雰囲気又
は溶媒中で行われる。粉砕は一般に粗粉砕、微粉砕と段
階的に行われるが、混合はどの段階で行われても良い。
即ち粗粉砕後に所定量混合し引続いて微粉砕を行っても
よいし、全ての粉砕を完了した後に所定の割合に混合し
てもよい。A、B両合金がほぼ同じ平均粒径で均一に混
合されることが必要で、平均粒径は0.5 〜20μmの範囲
が良く、0.5 μm未満では酸化され劣化し易く、20μm
を越えると焼結性が悪くなる。Next, a method for producing the magnet alloy C by the two-alloy method will be described. The A alloy and the B alloy obtained as described above are separately mixed and then mixed at a predetermined ratio. The pulverization is performed by wet or dry pulverization. Rare earth alloys are very active, and are used in an atmosphere such as Ar or nitrogen in the case of dry grinding and in a non-reactive organic solvent such as Freon in the case of wet grinding in order to prevent oxidation during grinding. Done. The mixing step is also performed in an inert atmosphere or a solvent as necessary. The pulverization is generally performed stepwise as coarse pulverization and fine pulverization, but mixing may be performed at any stage.
That is, a predetermined amount may be mixed after coarse pulverization and then finely pulverized, or may be mixed at a predetermined ratio after all pulverization is completed. It is necessary that both the A and B alloys are uniformly mixed with substantially the same average particle size. The average particle size is preferably in the range of 0.5 to 20 μm, and if it is less than 0.5 μm, it is easily oxidized and deteriorated.
If it exceeds sinterability, the sinterability deteriorates.
【0016】A合金粉末とB合金粉末の混合割合は、A
合金粉末99〜70重量%に対してB合金粉末を1〜30重量
%の範囲で混合するのが良く、B合金粉末が1重量%未
満では焼結密度が上がらなくなり保磁力が得られない
し、30重量%を越えると焼結後の非磁性相の割合が大き
くなり過ぎて、残留磁束密度が小さくなってしまう。得
られたA合金とB合金の混合微粉は、次に磁場中成型プ
レスによって所望の寸法に成型され、さらに焼結熱処理
する。焼結は900 〜1,200 ℃の温度範囲で真空又はアル
ゴン雰囲気中にて30分以上行ない、続いて焼結温度以下
の低温で30分以上時効熱処理する。焼結後、磁石合金C
の成形体の密度は対真密度比で95%以上に緻密化してお
り高い残留磁束密度が得られる。The mixing ratio of the A alloy powder and the B alloy powder is
It is preferable to mix the B alloy powder in the range of 1 to 30% by weight with respect to 99 to 70% by weight of the alloy powder. If the B alloy powder is less than 1% by weight, the sintering density does not increase and no coercive force is obtained, If it exceeds 30% by weight, the proportion of the nonmagnetic phase after sintering becomes too large, and the residual magnetic flux density becomes small. The obtained mixed powder of the alloy A and the alloy B is molded into a desired size by a molding press in a magnetic field, and further subjected to a sintering heat treatment. Sintering is performed in a vacuum or argon atmosphere at a temperature in the range of 900 to 1200 ° C. for 30 minutes or more, followed by aging heat treatment at a temperature lower than the sintering temperature for 30 minutes or more. After sintering, magnet alloy C
The compact has a density of 95% or more in terms of true density, and a high residual magnetic flux density can be obtained.
【0017】[0017]
【実施例】以下、本発明の具体的な実施態様を実施例を
挙げて説明するが、本発明はこれらに限定されるもので
はない。 (実施例1、比較例1)純度99.9重量%のNd、 Feメタル
とフェロボロンを用いて組成式12.5Nd-6B-81.5Fe(各原
子%)の合金を、高周波溶解炉のAr雰囲気中にて溶解鋳
造した後、このインゴットを1,070 ℃、Ar雰囲気中にて
20時間溶体化した。これをA1合金とする。次に同じく
純度99.9重量%のNd、 Dy、Fe、 Co、 Alメタルとフェロボ
ロンを用いて組成式20Nd-10Dy-20Fe-6B-40Coー4Al の合
金を高周波溶解炉を用いAr雰囲気にて溶解鋳造し、これ
をB1合金とした。A1合金インゴットとB1合金イン
ゴットをそれぞれ別々に窒素雰囲気中にて粗粉砕して30
メッシュ以下とし、次にA1合金粗粉90重量%にB1合
金粗粉を10重量%秤量して、窒素置換したVブレンダー
中で30分間混合した。この混合粗粉を高圧窒素ガスを用
いたジェットミルにて、平均粒径約5μmに微粉砕し
た。得られた混合微粉末を15kOe の磁場中で配向させな
がら、約1Ton/cm2 の圧力でプレス成型した。次いで、
この成形体はAr雰囲気の焼結炉内で1,070 ℃で1時間焼
結され、さらに530 ℃で1時間時効熱処理して急冷し、
磁石合金C1を作製した。EXAMPLES Hereinafter, specific embodiments of the present invention will be described with reference to examples, but the present invention is not limited thereto. (Example 1, Comparative Example 1) An alloy of composition formula 12.5Nd-6B-81.5Fe (atomic%) using Nd, Fe metal and ferroboron having a purity of 99.9% by weight in an Ar atmosphere of a high-frequency melting furnace. After melting and casting, the ingot is heated at 1,070 ° C in an Ar atmosphere.
Solution was obtained for 20 hours. This is an A1 alloy. Next, an alloy of the composition formula 20Nd-10Dy-20Fe-6B-40Co-4Al is also melt-cast in an Ar atmosphere using a high-frequency melting furnace using Nd, Dy, Fe, Co, Al metal and ferroboron having a purity of 99.9% by weight. This was used as a B1 alloy. A1 alloy ingot and B1 alloy ingot are separately coarsely pulverized in a nitrogen atmosphere.
The mesh was made smaller than the mesh, and then the B1 alloy coarse powder was weighed at 90% by weight and the B1 alloy coarse powder at 10% by weight, and mixed in a nitrogen-purged V blender for 30 minutes. This mixed coarse powder was finely pulverized with a jet mill using high-pressure nitrogen gas to an average particle size of about 5 μm. The obtained mixed fine powder was press-molded at a pressure of about 1 Ton / cm 2 while being oriented in a magnetic field of 15 kOe. Then
This compact was sintered at 1,070 ° C for 1 hour in a sintering furnace in an Ar atmosphere, and further quenched by aging heat treatment at 530 ° C for 1 hour.
Magnet alloy C1 was produced.
【0018】比較のため実施例1と同じ組成となる合金
を従来の1合金法にて製造し、比較例1とした。即ち、
A1、B1両合金混合後と同じ組成(磁石合金C1)を
最初から秤量し、溶解、粉砕、焼結、時効熱処理して2
合金法による磁石(実施例1の磁石組成C1)と磁気特
性を比較した。この磁石合金C1の組成は、2合金法に
よる実施例1、1合金法による比較例1共に、13.1Nd-
0.8Dy-3.2Co-6.0B-0.3Al-76.6Fe である。表1に実施
例1と比較例1の両焼結体磁石において得られた磁気特
性の値と焼結体密度を示す。実施例1の磁気特性は比較
例1に比較して、焼結体密度は殆ど同じであるが、残留
磁束密度、保磁力、最大エネルギ−積等、全ての値にお
いて実施例1が大きく勝っている。このように磁石合金
Cの組成が全く同一でも磁気特性にはかなりの差が生じ
ており、2合金法がNd磁石の磁気特性向上のために極め
て有効な方法であることを示している。B1合金の鋳造
状態での金属組織を、図1に走査電子顕微鏡の反射電子
像写真によって示した。写真の明暗から判る通りB1合
金中の主な構成相は4つある。各相は、EPMA(電子プロ
ーブX線マイクロアナライザー)およびX線解析によっ
て、図中に示したようにRT2 4B相、RT2 3相、RT2 2
相、Rリッチ相であることが判明した。For comparison, an alloy having the same composition as in Example 1 was produced by a conventional one-alloy method, and Comparative Example 1 was obtained. That is,
The same composition (magnet alloy C1) as after mixing both alloys A1 and B1 was weighed from the beginning, melted, pulverized, sintered, and subjected to aging heat treatment.
The magnet characteristics were compared with the magnet by the alloy method (magnet composition C1 of Example 1). The composition of this magnet alloy C1 was 13.1 Nd- in both Example 1 by the two-alloy method and Comparative Example 1 by the one-alloy method.
0.8Dy-3.2Co-6.0B-0.3Al-76.6Fe. Table 1 shows the values of the magnetic properties and the sintered body densities obtained for both sintered body magnets of Example 1 and Comparative Example 1. The magnetic properties of Example 1 are almost the same as those of Comparative Example 1, but the density of the sintered body is almost the same. However, Example 1 is far superior in all values such as residual magnetic flux density, coercive force, and maximum energy product. I have. As described above, even if the composition of the magnet alloy C is exactly the same, there is a considerable difference in the magnetic properties, indicating that the two-alloy method is a very effective method for improving the magnetic properties of the Nd magnet. The metal structure of the B1 alloy in the cast state is shown in FIG. 1 by a backscattered electron image photograph of a scanning electron microscope. As can be seen from the light and dark of the photograph, there are four main constituent phases in the B1 alloy. Each phase, EPMA by (electron probe X-ray microanalyzer) and X-ray analysis, RT 2 4 B-phase as shown in FIG, RT 2 3-phase, RT 2 2
Phase, an R-rich phase.
【0019】(実施例2〜24、比較例2〜24) 表1、表2および表3に示したように実施例2〜24の合
金組成に対応して、A合金としてA2〜A24の組成合
金を作り、B合金としてB2〜B24の組成合金を作製
し、以下実施例1と同様の方法で粉砕、所定の比率に混
合、磁場中成形、焼結(1,050 〜1,120 ℃×1時間)、
時効処理(500 〜650 ℃×1〜10時間)を行い2合金法
磁石合金C2〜C24を製造し、その磁気特性を測定して
表1、表2、表3に示した。比較のため実施例2〜24と
同じ組成となる合金を比較例1と同様1合金法により磁
石合金C2〜C24を製造し、磁気特性を測定して比較例
2〜24とし、表1、表2、表3に示した。(Examples 2 to 24, Comparative Examples 2 to 24) As shown in Tables 1, 2 and 3, corresponding to the alloy compositions of Examples 2 to 24, the compositions of A alloys A2 to A24 corresponded to the alloy compositions of Examples 2 to 24. An alloy was prepared, and a composition alloy of B2 to B24 was prepared as a B alloy. Thereafter, pulverization was performed in the same manner as in Example 1, mixed at a predetermined ratio, molded in a magnetic field, and sintered (1,050 to 1,120 ° C. × 1 hour).
An aging treatment (500 to 650 ° C. for 1 to 10 hours) was performed to produce 2-alloy magnet alloys C2 to C24, and the magnetic properties were measured and are shown in Tables 1, 2 and 3. For comparison, alloys having the same composition as in Examples 2 to 24 were manufactured by the same alloy method as in Comparative Example 1 to produce magnet alloys C2 to C24, and their magnetic properties were measured to obtain Comparative Examples 2 to 24. 2, shown in Table 3.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【表3】 [Table 3]
【0023】[0023]
【発明の効果】本発明により作製した希土類永久磁石
は、高価な添加元素を有効に活用して、従来法の同一組
成の希土類磁石と比べて磁気特性が数段優れており、高
保磁力、高残留磁束密度、さらには高エネルギー積のバ
ランスのとれた高性能磁石を提供することが可能となっ
た。従って今後、各種電気、電子機器用の高性能磁石と
して広汎に利用されることが期待される。The rare-earth permanent magnet produced according to the present invention has several steps more excellent magnetic properties than conventional rare-earth magnets having the same composition by effectively utilizing expensive additional elements, and has a high coercive force and high coercive force. It has become possible to provide a high-performance magnet with a good balance of residual magnetic flux density and high energy product. Therefore, it is expected that it will be widely used as a high-performance magnet for various electric and electronic devices in the future.
【図1】実施例1のB1合金の鋳造状態での金属組織を
示す走査電子顕微鏡写真である。FIG. 1 is a scanning electron micrograph showing a metal structure of a B1 alloy of Example 1 in a cast state.
【符号の説明】 1 RT2 4B相 2 RT2 3相 3 RT2 2相 4 Rリッチ相[EXPLANATION OF SYMBOLS] 1 RT 2 4 B-phase 2 RT 2 3-phase 3 RT 2 2 Phase 4 R-rich phase
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−288305(JP,A) 特開 平1−111843(JP,A) 特開 昭63−313807(JP,A) 特開 平3−250607(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-288305 (JP, A) JP-A-1-111184 (JP, A) JP-A-63-313807 (JP, A) JP-A-3- 250607 (JP, A)
Claims (4)
Rは、Nd、Pr、Dyを主体とする少なくとも1種以
上の希土類元素、TはFeまたはFeおよびCoを表
す)から成る合金とし、B合金をR、Co、Fe、B、
M(ここにRは上記に同じ、Mは、Al、Cu、Zn、
In、Si、P、S、Ti、V、Cr、Mn、Ge、Z
r、Nb、Mo、Pd、Ag、Cd、Sn、Sb、H
f、Ta、Wの内から選ぶ1種又は2種以上の元素を表
す)からなり、成分を20<R≦40、0.1≦Fe≦
55、15≦Co≦80、0.1≦B≦20、0.1≦
M≦20(何れも原子%)の組成範囲とし、かつ、B合
金中の構成相としてR2T1 14L相および/またはRリッ
チ相(ここにRは上記に同じ、T1はCoまたはCoお
よびFeからなる遷移金属、同遷移金属およびM(ここ
にMは上記に同じ)、LはB、BおよびM(ここにMは
上記に同じ)を表す)並びにRT2 4L相、RT2 3相、R
T2 2相、R2T2 7相およびRT2 5相(ここにRおよびL
は上記に同じ、T2はCoまたはCoおよびFeからな
る遷移金属、同遷移金属およびB、同遷移金属およびM
(ここにMは上記に同じ)、同遷移金属およびBおよび
M(ここにMは上記に同じ)を表す)の5相の内の1種
または2種以上の相であって、その1種または2種以上
の相のうちの少なくとも1種の相の融点が700℃以上
1,155℃以下である相との混合相とからなる合金と
し、A合金粉末99〜70重量%に対してB合金粉末を
1〜30重量%の割合で混合し、該混合合金粉末を磁場
中加圧成形し、該成形体を真空または不活性ガス雰囲気
中で焼結し、さらに焼結温度以下の低温で時効熱処理す
ることを特徴とする希土類永久磁石の製造方法。1. An alloy A mainly composed of an R 2 T 14 B phase (where R represents at least one or more rare earth elements mainly composed of Nd, Pr, and Dy, and T represents Fe or Fe and Co). Alloy, and B alloy is R, Co, Fe, B,
M (where R is the same as above, M is Al, Cu, Zn,
In, Si, P, S, Ti, V, Cr, Mn, Ge, Z
r, Nb, Mo, Pd, Ag, Cd, Sn, Sb, H
f, Ta, or W, which represents one or more elements selected from the group consisting of 20 <R ≦ 40, 0.1 ≦ Fe ≦
55, 15 ≦ Co ≦ 80, 0.1 ≦ B ≦ 20, 0.1 ≦
The composition range of M ≦ 20 (both atomic%), One or, B if <br/> R 2 T 1 14 L-phase as a phase in the alloy and / or R-rich phase (here R is as defined above , T 1 is a transition metal consisting of Co or Co and Fe, the transition metal and M (where M is the same as above), L represents B, B and M (where M is the same as above), and RT 2 4 L-phase, RT 2 3-phase, R
T 2 2-phase, R 2 T 2 7 phase and RT 2 5 phase (here R and L
Is the same as above, T 2 is a transition metal composed of Co or Co and Fe, the same transition metal and B, the same transition metal and M
(Where M is the same as above), one or more of the five phases of the same transition metal and B and M (where M is the same as above), and one of the five phases Or two or more
At least one of the phases has a melting point of at least 700 ° C.
An alloy consisting of a mixed phase with a phase of 1,155 ° C. or lower is mixed, and B alloy powder is mixed at a ratio of 1 to 30% by weight with respect to 99 to 70% by weight of the A alloy powder. A method for producing a rare earth permanent magnet, comprising: performing medium pressure molding; sintering the molded body in a vacuum or an inert gas atmosphere; and performing aging heat treatment at a low temperature equal to or lower than a sintering temperature.
合金に含まれるRT 4 L相、RT 3 相、RT 2 相、R 2 T 7
相およびRT 5 相の5つの構成相の内の1種または2種
以上の相の内の、少なくとも1種以上の相が室温以上の
キューリー温度を有する磁性体であることを特徴とする
希土類永久磁石の製造方法。2. A B alloy according to claim 1, wherein B
RT 4 L phase that is part of the alloy, RT 3 phase, RT 2 phase, R 2 T 7
Phase and one or two of the five constituent phases of the RT 5 phase
A method for preparing a rare earth permanent magnet, characterized in that more of the phases of one or more phases even without least is a magnetic material having the above Curie temperature room.
合金に含まれるRT 4 L相、RT 3 相、RT 2 相、R 2 T 7
相およびRT 5 相の5つの構成相の内の1種または2種
以上の相の内の、少なくとも1種以上の相が室温以上の
キューリー温度ならびに結晶磁気異方性を有する磁性体
であることを特徴とする希土類永久磁石の製造方法。3. The B alloy according to claim 1 , wherein said B alloy
Alloy included Ru RT 4 L-phase, RT 3 phase, RT 2 phase, R 2 T 7
Phase and one or two of the five constituent phases of the RT 5 phase
Rare-earth manufacturing method of a permanent magnet, characterized in that more of the phases of a magnetic material in which one or more phases having a Curie temperature and crystal magnetic anisotropy of more than room temperature even without low.
の平均粒径が、0.5 〜20μmの範囲内であることを
特徴とする請求項1から請求項3のいずれかに記載の希
土類永久磁石の製造方法。4. A alloy, the average particle size of B alloys and AB mixed alloy powder, according to any one of claims 1 to 3 you being in the range of 0.5 ~20Myuemu Nozomi <br/> earth manufacturing method of a permanent magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25969491A JP3254229B2 (en) | 1991-09-11 | 1991-09-11 | Manufacturing method of rare earth permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25969491A JP3254229B2 (en) | 1991-09-11 | 1991-09-11 | Manufacturing method of rare earth permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0574618A JPH0574618A (en) | 1993-03-26 |
JP3254229B2 true JP3254229B2 (en) | 2002-02-04 |
Family
ID=17337629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25969491A Expired - Lifetime JP3254229B2 (en) | 1991-09-11 | 1991-09-11 | Manufacturing method of rare earth permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3254229B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5482575A (en) * | 1992-12-08 | 1996-01-09 | Ugimag Sa | Fe-Re-B type magnetic powder, sintered magnets and preparation method thereof |
FR2707421B1 (en) * | 1993-07-07 | 1995-08-11 | Ugimag Sa | Additive powder for the manufacture of sintered magnets type Fe-Nd-B, manufacturing method and corresponding magnets. |
DE69938811D1 (en) * | 1998-12-11 | 2008-07-10 | Shinetsu Chemical Co | Manufacturing method of a rare earth permanent magnet |
KR100877875B1 (en) | 2001-06-14 | 2009-01-13 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Corrosion Resistant Rare Earth Magnet and Its Preparation |
JPWO2002103719A1 (en) * | 2001-06-19 | 2004-10-07 | 三菱電機株式会社 | Rare earth permanent magnet material |
JP4547840B2 (en) * | 2001-07-27 | 2010-09-22 | Tdk株式会社 | Permanent magnet and method for manufacturing the same |
JP4162884B2 (en) | 2001-11-20 | 2008-10-08 | 信越化学工業株式会社 | Corrosion-resistant rare earth magnet |
US6966953B2 (en) * | 2002-04-29 | 2005-11-22 | University Of Dayton | Modified sintered RE-Fe-B-type, rare earth permanent magnets with improved toughness |
US6994755B2 (en) * | 2002-04-29 | 2006-02-07 | University Of Dayton | Method of improving toughness of sintered RE-Fe-B-type, rare earth permanent magnets |
JP2005286176A (en) * | 2004-03-30 | 2005-10-13 | Tdk Corp | R-t-b-based sintered magnet and its manufacturing method |
WO2007010860A1 (en) | 2005-07-15 | 2007-01-25 | Neomax Co., Ltd. | Rare earth sintered magnet and method for production thereof |
JP4645336B2 (en) * | 2005-07-15 | 2011-03-09 | 日立金属株式会社 | Rare earth sintered magnet and manufacturing method thereof |
US8182618B2 (en) * | 2005-12-02 | 2012-05-22 | Hitachi Metals, Ltd. | Rare earth sintered magnet and method for producing same |
KR100796390B1 (en) * | 2007-03-29 | 2008-01-22 | (주)은하 | Filter unit for range hood |
US20110074530A1 (en) * | 2009-09-30 | 2011-03-31 | General Electric Company | Mixed rare-earth permanent magnet and method of fabrication |
JP5552868B2 (en) * | 2010-03-30 | 2014-07-16 | Tdk株式会社 | Sintered magnet, motor and automobile |
CN110993233B (en) * | 2019-12-09 | 2021-08-27 | 厦门钨业股份有限公司 | R-T-B series permanent magnetic material, raw material composition, preparation method and application |
-
1991
- 1991-09-11 JP JP25969491A patent/JP3254229B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0574618A (en) | 1993-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3143156B2 (en) | Manufacturing method of rare earth permanent magnet | |
EP0126802B2 (en) | Process for producing of a permanent magnet | |
JP3254229B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP2746818B2 (en) | Manufacturing method of rare earth sintered permanent magnet | |
JPH0789521B2 (en) | Rare earth iron permanent magnet | |
JPH07105289B2 (en) | Rare earth permanent magnet manufacturing method | |
JP3715573B2 (en) | Magnet material and manufacturing method thereof | |
JP2853838B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP3488358B2 (en) | Method for producing microcrystalline permanent magnet alloy and permanent magnet powder | |
JP2853839B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP2024023206A (en) | Anisotropic rare earth sintered magnet and manufacturing method thereof | |
JP2024020341A (en) | Anisotropic rare earth sintered magnet and method for manufacturing the same | |
JP2747236B2 (en) | Rare earth iron permanent magnet | |
JP3143157B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPH045740B2 (en) | ||
JPH061726B2 (en) | Method of manufacturing permanent magnet material | |
JPH0461042B2 (en) | ||
JP3151265B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP3126199B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPH045739B2 (en) | ||
JPH045738B2 (en) | ||
JP3254232B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPH0320048B2 (en) | ||
JPH10130796A (en) | Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder | |
JPH045737B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |