JP3254232B2 - Manufacturing method of rare earth permanent magnet - Google Patents

Manufacturing method of rare earth permanent magnet

Info

Publication number
JP3254232B2
JP3254232B2 JP35780491A JP35780491A JP3254232B2 JP 3254232 B2 JP3254232 B2 JP 3254232B2 JP 35780491 A JP35780491 A JP 35780491A JP 35780491 A JP35780491 A JP 35780491A JP 3254232 B2 JP3254232 B2 JP 3254232B2
Authority
JP
Japan
Prior art keywords
alloy
rare earth
powder
mainly composed
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35780491A
Other languages
Japanese (ja)
Other versions
JPH05182814A (en
Inventor
的生 楠
昌夫 吉川
武久 美濃輪
正信 島尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP35780491A priority Critical patent/JP3254232B2/en
Publication of JPH05182814A publication Critical patent/JPH05182814A/en
Application granted granted Critical
Publication of JP3254232B2 publication Critical patent/JP3254232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種電気、電子機器に
用いられる、磁気特性に優れた希土類永久磁石の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet having excellent magnetic properties and used for various electric and electronic devices.

【0002】[0002]

【従来の技術】希土類磁石の中でもNd-Fe-B系磁石は、
主成分であるNdが資源的に豊富でコストが安く、磁気特
性に優れているために、近年益々その利用が広がりつつ
ある。磁気特性向上のための開発研究も、Nd系磁石の発
明以来精力的に行われてきており、数多くの研究や発明
が提案されている。これらのNd系焼結磁石製造方法の中
で、各種金属粉体や組成の異なる合金粉体を混合、焼結
して高性能Nd磁石を製造する方法(以下、簡単に混合法
という)に関しても数々の発明考案が提案されている。
2. Description of the Related Art Among rare earth magnets, Nd-Fe-B magnets are:
In recent years, Nd, which is a main component, is abundant in resources, low in cost, and excellent in magnetic properties, and thus its use has been expanding in recent years. Research and development for improving magnetic properties has been energetically conducted since the invention of the Nd-based magnet, and many studies and inventions have been proposed. Among these Nd-based sintered magnet production methods, there is also a method for producing high-performance Nd magnets by mixing and sintering various metal powders and alloy powders with different compositions (hereinafter simply referred to as the mixing method). Numerous inventions have been proposed.

【0003】これまでに提案されている混合法を大きく
分けると、以下に示すような四つの種類に分類すること
ができる。第1の方法は、混合する原料合金粉体の一方
を液体急冷法によって非晶質あるいは微細結晶合金を作
製し、それに通常の希土類合金粉末を混合するか、ある
いは両方の原料合金粉体を共に液体急冷法で作製混合す
る方法[特開昭63-93841、特開昭63-115307、特開昭63-25
2403、特開昭63-278208、特開平1-108707、 特開平1-14631
0、 特開平1-146309、 特開平1-155603各号公報参照]で
ある。この液体急冷法による合金を使用する混合法につ
いては、最近50MGOeを越える磁気特性が得られたと報告
[E.Otuki,T.Otuka and T.Imai;11th.Int.Workshop onRa
re Earth Magnets,Pittsburgh,Pennsylvania,USA,Octob
er(1990),p.328 参照]されている。
The mixing methods proposed so far can be roughly classified into the following four types. In the first method, one of the raw material alloy powders to be mixed is made into an amorphous or microcrystalline alloy by a liquid quenching method, and a normal rare earth alloy powder is mixed therewith, or both raw material alloy powders are mixed together. A method of producing and mixing by a liquid quenching method [JP-A-63-93841, JP-A-63-115307, JP-A-63-25
2403, JP-A-63-278208, JP-A-1-108707, JP-A-1-4631
0, JP-A-1-146309 and JP-A-1-155603]. The mixing method using an alloy by the liquid quenching method recently reported magnetic properties exceeding 50 MGOe.
[E.Otuki, T.Otuka and T.Imai; 11th.Int.Workshop onRa
re Earth Magnets, Pittsburgh, Pennsylvania, USA, Octob
er (1990), p. 328].

【0004】第2の方法は、混合する2種類の原料合金
粉体を共に主としてR2 Fe14B化合物からなる合金と
し、含有される希土類元素の種類、含有量を変えた2種
類の合金を作製して混合焼結する方法[特開昭61-8160
3、 特開昭61-81604、 特開昭61-81605、 特開昭61-81606、
特開昭61-81607、 特開昭61-119007、特開昭61-207546、
特開昭63-245昭3、特開平1-177335各号公報参照]であ
る。この方法において、各合金中に含まれる相は従来知
られているR2 Fe14B相、希土類リッチ相、Nd1+XFe4
4 相である。
In a second method, two kinds of raw material alloy powders to be mixed are both made of an alloy mainly composed of an R 2 Fe 14 B compound, and two kinds of alloys in which the kinds and contents of rare earth elements are changed are produced. Mixed sintering method [Japanese Patent Laid-Open No. 61-8160
3, JP-A-61-81604, JP-A-61-81605, JP-A-61-81606,
JP-A-61-81607, JP-A-61-119007, JP-A-61-207546,
See JP-A-63-245, and JP-A-1-177335]. In this method, the phases contained in each alloy are a conventionally known R 2 Fe 14 B phase, a rare earth rich phase, and Nd 1 + XFe 4 B.
Four phases.

【0005】第3の方法は、一方の合金を主としてR2
Fe14B化合物からなる合金粉末とし、これに各種低融点
元素、低融点合金、希土類合金、炭化物、硼化物、水素
化物、その他の粉末を混合焼結して、Nd系希土類磁石を
製造する方法 [特開昭60-230959、特開昭61-263201、特開
昭62-181402、特開昭62-182249、特開昭62-206802、特開昭
62-270746、特開昭63-6808、特開昭63-104406、特開昭63-1
14939、特開昭63-272006、特開平1-111843、 特開平1-1463
08各号公報参照] である。
The third method is to use one of the alloys mainly as R 2
A method of producing an Nd-based rare earth magnet by mixing and sintering various low melting point elements, low melting point alloys, rare earth alloys, carbides, borides, hydrides, and other powders with an alloy powder composed of an Fe 14 B compound. (JP-A-60-230959, JP-A-61-263201, JP-A-62-181402, JP-A-62-182249, JP-A-62-206802, JP-A-62-206802
62-270746, JP-A-63-6808, JP-A-63-104406, JP-A-63-1
14939, JP-A-63-272006, JP-A-1-111843, JP-A-1-1463
08 gazettes].

【0006】第4の方法は、本発明者等が最近新しく発
明した方法で、混合する合金に特殊な金属間化合物を存
在させることを特徴とする混合法[特願平03-159765 、
特願平03-159766、特願平03-198476、特願平03-198479、特
願平03-259694 各号] である。
[0006] A fourth method is a method newly invented by the present inventors, which is characterized by the presence of a special intermetallic compound in the alloy to be mixed [Japanese Patent Application No. 03-159765,
Japanese Patent Application Nos. 03-159766, 03-198476, 03-198479, and 03-259694.

【0007】[0007]

【発明が解決しようとする課題】従来技術による混合法
の製造法においては、磁石合金に真に優れた磁気特性を
実現させるのに,適切でなかったり不充分だったりする
点が数多く存在した。例えば、前述した第1の方法では
磁石合金のエネルギ−積は高いが保磁力はたかだか約9
kOe 程度で、温度上昇によって保磁力が低下するという
Nd磁石特有の欠点を考えると、実用的に不充分な磁石特
性である。また液体急冷法で製造するのは、コストがか
かり過ぎるために工業的な方法とは言えない。
There are many points in the prior art mixing process that are not suitable or sufficient to achieve truly excellent magnetic properties in the magnet alloy. For example, in the first method described above, the energy product of the magnet alloy is high but the coercive force is at most about 9
At about kOe, the coercive force decreases with increasing temperature.
Considering the disadvantages unique to Nd magnets, the magnet properties are not practically sufficient. Further, the production by the liquid quenching method is not an industrial method because the cost is too high.

【0008】第2の方法においては、二つの原料合金粉
とも共存する相は、R2 Fe14B化合物、それとNd1+XFe4
4 相である。これらの相は、通常の一種類の合金を用
いた製造法において存在する相と基本的には同じであ
り、二つの合金において存在割合が違っているだけであ
る。またNdリッチ相の融点は 750℃以下と低く、焼結温
度に至る前に液相となってしまう。このため雰囲気中の
酸素ガスによって液相が酸化されてしまい、高い磁気特
性が得られないことになる。
In the second method, a phase coexisting with the two raw alloy powders is an R 2 Fe 14 B compound and Nd 1 + XFe 4
B 4 phase. These phases are basically the same as the phases that exist in a manufacturing method using one kind of alloy, and the only difference is the existence ratio between the two alloys. In addition, the melting point of the Nd-rich phase is as low as 750 ° C or less, and becomes a liquid phase before reaching the sintering temperature. Therefore, the liquid phase is oxidized by the oxygen gas in the atmosphere, and high magnetic properties cannot be obtained.

【0009】第3の方法において、混合する粉体に低融
点の元素あるいは合金を利用して磁気特性を向上させよ
うとする提案があるが、これは焼結中に混合した低融点
相が、R2 Fe14B化合物の粒界に存在する格子欠陥や酸
化物相などのニュークリエーションサイトを除去し、粒
界をクリーニングして保磁力を向上させるという考え方
によるものである。しかし低融点相の存在は、実際には
磁気特性の向上に対して逆に不利な条件となっている。
低融点相が例えば 600℃付近から融液となっていると、
実際の焼結温度 1,100℃では低融点相の粘度はかなり小
さくなってしまう。その結果、磁性粒子の周囲を囲む融
液の粘度が小さくなって粒子の回転が容易に起り、配向
が乱れて磁気特性が劣化する。また第2の方法と同じ
く、低温での液相が容易に酸化されてしまい高い磁気特
性が得られない。第4の方法においては、B合金中に平
衡して存在する相の一つとして、融点の低いNdリッチ相
が存在する。この相が、低温で液相となるために他の場
合と同様に酸化の影響を受けて、磁気特性が劣化してし
まう。以上、従来技術による混合法においては、液相成
分が関与するいろいろな役割を充分に考慮し、これらが
最適な条件となるよう、液相合金成分や融点を適切に調
整してはいなかった。本発明は、従来技術による混合法
によるNd磁石の製造法の欠点を改良し、バランスのとれ
た磁気特性に優れた希土類永久磁石の製造方法を提供し
ようとするものである。
In the third method, there is a proposal to improve the magnetic properties by using a low-melting element or an alloy in the powder to be mixed. This is based on the idea that nucleation sites such as lattice defects and oxide phases existing at the grain boundaries of the R 2 Fe 14 B compound are removed and the grain boundaries are cleaned to improve the coercive force. However, the presence of the low melting point phase is actually a disadvantageous condition for improving the magnetic properties.
If the low-melting phase becomes a melt from around 600 ° C, for example,
At an actual sintering temperature of 1,100 ° C, the viscosity of the low melting point phase becomes considerably small. As a result, the viscosity of the melt surrounding the magnetic particles decreases, and the rotation of the particles easily occurs, the orientation is disturbed, and the magnetic characteristics are deteriorated. Further, similarly to the second method, the liquid phase at a low temperature is easily oxidized and high magnetic properties cannot be obtained. In the fourth method, an Nd-rich phase having a low melting point exists as one of the phases existing in equilibrium in the B alloy. Since this phase becomes a liquid phase at a low temperature, it is affected by oxidation as in the other cases, and the magnetic properties are degraded. As described above, in the mixing method according to the related art, various roles related to the liquid phase component are sufficiently considered, and the liquid phase alloy component and the melting point are not appropriately adjusted so that these conditions are optimal. An object of the present invention is to improve the drawbacks of the conventional method for producing Nd magnets by a mixing method, and to provide a method for producing rare earth permanent magnets having excellent balanced magnetic properties.

【0010】[0010]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために従来の混合法を基本的に見直し、磁
性体構成相の種類、特性等を適切に選択し組み合わせる
ことにより充分満足できるバランスの取れた磁気特性が
得られることを見いだし、製造条件を詳細に検討して本
発明を完成させた。本発明の要旨は、A合金を主として
14B相[ここにRは、Nd、Pr、Dyを主体
とする少なくとも1種以上の希土類元素、TはFeまた
はFeおよびCoを主体とする少なくとも1種類以上の
遷移金属を表す]から成る合金とし、B合金を結晶構造
がP6/mmmの空間群で表されるCeCoB型の組
成式RFeCoM[ここにRは、Nd、Pr、D
yを主体とする少なくとも1種以上の希土類元素、M
は、Al、Cu、Zn、In、Si、P、S、Ti、
V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、M
o、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wの
内から選ばれる1種又は2種以上の元素、Mは、B,
C,N,Oの内から選ばれる1種又は2種以上の元素を
表す]であって、融点が750℃以上2,000℃以下
である金属間化合物から主になる合金として、A合金粉
末99〜60重量%に対してB合金粉末を重量で1〜4
0重量%混合し、該混合粉末を磁場中加圧成形し、該成
形体を真空または不活性ガス雰囲気中で焼結し、さらに
焼結温度以下の低温で熱処理することを特徴とする希土
類永久磁石の製造方法であり、更に詳しくは、B合金で
ある組成式RFeCoMの金属間化合物が、組成
式RFeCo [ここに添字a,b,
c,d,eは各元素の原子%で、13≦a≦26、0<
b≦60、20≦c≦80、0≦d≦40、1≦e≦4
5の範囲を表す]で表されるものであり、A合金とB合
金との混合粉末中に含まれる希土類元素の総和が10〜
15原子%であり、A合金粉末およびB合金粉末または
これらを混合して造られる混合粉末の平均粒径が、0.
2〜30μmであることを特徴とする希土類磁石の製造
方法である。
In order to solve this problem, the present inventors have basically reviewed the conventional mixing method, and have found that it is sufficient to appropriately select and combine the types and characteristics of the constituent phases of the magnetic material. The present inventors have found that satisfactory and balanced magnetic properties can be obtained, and have studied the manufacturing conditions in detail to complete the present invention. The gist of the present invention is that the A alloy is mainly an R 2 T 14 B phase [where R is at least one or more rare earth elements mainly composed of Nd, Pr and Dy, and T is mainly composed of Fe or Fe and Co. Represents at least one transition metal], and the B alloy is a CeCo 4 B-type composition formula RFeCoM 1 M 2 whose crystal structure is represented by a space group of P6 / mmm [where R is Nd, Pr, D
at least one or more rare earth elements mainly composed of y, M 1
Are Al, Cu, Zn, In, Si, P, S, Ti,
V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, M
o, Pd, Ag, Cd, Sn, Sb, Hf, Ta, 1 or two or more elements selected from among W, M 2 is, B,
Represents one or more elements selected from C, N, and O] , and has a melting point of 750 ° C or more and 2,000 ° C or less.
As an alloy mainly composed of an intermetallic compound, B alloy powder is 1 to 4 wt% based on 99 to 60 wt% of A alloy powder.
0% by weight, press-forming the mixed powder in a magnetic field, sintering the formed body in a vacuum or an inert gas atmosphere, and further heat-treating at a low temperature not higher than the sintering temperature. a method for producing a magnet, more specifically, the intermetallic compound having the composition formula RFeCoM 1 M 2 is B alloy, the composition formula R a Fe b Co c M 1 d M 2 e [ here subscripts a, b,
c, d and e are atomic% of each element, 13 ≦ a ≦ 26, 0 <
b ≦ 60, 20 ≦ c ≦ 80, 0 ≦ d ≦ 40, 1 ≦ e ≦ 4
5 in which the total of the rare earth elements contained in the mixed powder of the A alloy and the B alloy is 10 to 10.
15 atomic% der is, the average particle diameter of the mixed powder is made by mixing A alloy powder and B alloy powder, or these, 0.
A method for producing a rare earth magnet, wherein the thickness is 2 to 30 μm.

【0011】以下本発明を詳細に説明する。本発明は、
主にR2 Fe14B相からなる合金に、特定の結晶構造をも
つ金属間化合物を含む合金粉末を混合する希土類永久磁
石の製造方法である(以下、化合物粉末混合法とい
う)。原料となるA合金は、主としてR2 Fe14B化合物
相からなり、RはYを含む La ,Ce,Pr,Nd,Sm,Eu,
Gd,Tb,Dy,Ho,Er,YbおよびLuから選択されるNd、P
r、Dyを主体とする少なくとも2種類以上の希土類元素
である。またTは、FeまたはFeおよびCoを主体とする少
なくとも1種類以上の遷移金属を表し、Coの含有量は重
量%で0 〜40%である。Co添加によりA合金のキューリ
ー温度が上昇し、また合金の耐食性も改善される。A合
金は原料金属を真空または不活性ガス、好ましくはAr雰
囲気中で溶解し鋳造する。原料金属は純希土類元素ある
いは希土類合金、純鉄、フェロボロン、さらにはこれら
の合金等を使用するが、一般的な工業生産において不可
避な微量不純物は含まれるものとする。得られたインゴ
ットは、R2 Fe14B相がαFeと希土類リッチ相との包晶
反応によって形成されるため、鋳造後も凝固偏析によっ
てαFe相、Rリッチ相、Bリッチ相、Nd3Co 相等が残留
する場合がある。本発明においてはA合金中のR2 Fe14
B相の多いほうが望ましいので、必要に応じて溶体化処
理を行う。その条件は真空またはAr雰囲気下、700 〜1,
200 ℃の温度領域で1時間以上熱処理すれば良い。
Hereinafter, the present invention will be described in detail. The present invention
This is a method for producing a rare-earth permanent magnet in which an alloy mainly containing an R 2 Fe 14 B phase is mixed with an alloy powder containing an intermetallic compound having a specific crystal structure (hereinafter, referred to as a compound powder mixing method). The alloy A, which is a raw material, is mainly composed of an R 2 Fe 14 B compound phase, and R represents La, Ce, Pr, Nd, Sm, Eu, and Y containing Y.
Nd, P selected from Gd, Tb, Dy, Ho, Er, Yb and Lu
At least two or more rare earth elements mainly composed of r and Dy. T represents Fe or at least one or more transition metals mainly composed of Fe and Co, and the Co content is 0 to 40% by weight. The addition of Co increases the Curie temperature of the A alloy and also improves the corrosion resistance of the alloy. The alloy A is prepared by melting a raw metal in a vacuum or an inert gas, preferably an Ar atmosphere. As a raw material metal, a pure rare earth element or a rare earth alloy, pure iron, ferroboron, or an alloy thereof is used, but a trace impurity inevitable in general industrial production is included. In the obtained ingot, since the R 2 Fe 14 B phase is formed by the peritectic reaction between αFe and the rare earth rich phase, the αFe phase, the R rich phase, the B rich phase, the Nd 3 Co phase, etc. May remain. In the present invention, R 2 Fe 14 in alloy A is used.
Since it is desirable to have more B phases, a solution treatment is performed if necessary. The condition is 700 ~ 1, under vacuum or Ar atmosphere.
The heat treatment may be performed in a temperature range of 200 ° C. for 1 hour or more.

【0012】A合金粉末99〜60重量%に対して、結
晶構造がP6/mmmの空間群で表されるCeCo
型の組成式RFeCoM[ここにRは、Nd、P
r、Dyを主体とする少なくとも1種以上の希土類元
素、Mは、Al、Cu、Zn、In、Si、P、S、
Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、N
b、Mo、Pd、Ag、Cd、Sn、Sb、Hf、T
a、Wの内から選ばれる1種又は2種以上の元素、M
は、B,C,N,Oの内から選ばれる1種又は2種以上
の元素を表す]であって、融点が750℃以上2,00
0℃以下である金属間化合物から主になるB合金粉末
を、重量で1〜40重量%混合し、該混合粉末を磁場中
加圧成形し、該成形体を真空または不活性ガス雰囲気中
で焼結し、さらに焼結温度以下の低温で熱処理する。上
記の結晶構造がP6/mmmの空間群で表されるCeC
B型の組成式RFeCoM であって、融点が
750℃以上2,000℃以下である各種金属間化合物
は、組成式がRFeCo [ここに添
字a,b,c,d,eの示す範囲は原子%で、13≦a
≦26、0<b≦60、20≦c≦80、0≦d≦4
0、1≦e≦45である]で表されるもので、a,b,
c,d,eの範囲は、この範囲内において結晶構造がP
6/mmmの空間群で表されるCeCoB型の組成式
RFeCoM であって、融点が750℃以上2,
000℃以下である金属間化合物が安定して存在するこ
とから決定されたものであり、この範囲内を外れるとこ
れらの金属間化合物が存在しなくなり高い磁気特性は得
られない。B合金は、原料金属を秤量して真空または不
活性ガス、好ましくはAr雰囲気中で溶解し鋳造する。
原材料金属は純希土類元素あるいは希土類合金、純鉄、
フェロボロン、各種純金属さらにはこれらの合金等を使
用するが、一般的な工業生産において不可避な微量不純
物は含まれるものとする。得られたインゴットは、凝固
偏析がある場合は必要に応じて溶体化処理を行う。その
条件は真空またはAr雰囲気下、700〜1,500℃
の温度領域で1時間以上熱処理すれば良い。
CeCo 4 B having a crystal structure represented by a space group of P6 / mmm with respect to 99 to 60% by weight of the A alloy powder.
Composition formula RFeCoM 1 M 2 [where R is Nd, P
At least one or more rare earth elements mainly composed of r and Dy, and M 1 are Al, Cu, Zn, In, Si, P, S,
Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, N
b, Mo, Pd, Ag, Cd, Sn, Sb, Hf, T
one or more elements selected from a and W, M 2
Represents one or more elements selected from among B, C, N, and O] , and has a melting point of 750 ° C. or more and 2,000
A B alloy powder mainly composed of an intermetallic compound having a temperature of 0 ° C. or less is mixed in an amount of 1 to 40% by weight, and the mixed powder is subjected to pressure molding in a magnetic field, and the compact is subjected to vacuum or an inert gas atmosphere. Sinter and heat-treat at low temperature below the sintering temperature. CeC in which the above crystal structure is represented by a space group of P6 / mmm
A o 4 B-type composition formula RFeCoM 1 M 2, the melting point
Various intermetallic compound is 750 ° C. or higher 2,000 ° C. or less, the range indicated composition formula of R a Fe b Co c M 1 d M 2 e [ here subscripts a, b, c, d, e are atomic% And 13 ≦ a
≦ 26, 0 <b ≦ 60, 20 ≦ c ≦ 80, 0 ≦ d ≦ 4
0, 1 ≦ e ≦ 45], and a, b,
The range of c, d and e is such that the crystal structure is P
A CeCo 4 B type composition formula RFeCoM 1 M 2 represented by a space group of 6 / mmm, having a melting point of 750 ° C. or higher.
It is determined from the fact that the intermetallic compound having a temperature of 000 ° C. or lower is stably present. If the intermetallic compound is out of this range, these intermetallic compounds do not exist and high magnetic properties cannot be obtained. The alloy B is weighed and melted in a vacuum or an inert gas, preferably an Ar atmosphere, and cast.
Raw material metals are pure rare earth elements or rare earth alloys, pure iron,
Ferroboron, various pure metals, and alloys thereof are used, but shall contain trace impurities inevitable in general industrial production. If there is solidification segregation, the obtained ingot is subjected to a solution treatment if necessary. The conditions are 700-1500 ° C. in a vacuum or Ar atmosphere.
The heat treatment may be performed for one hour or more in the above temperature range.

【0013】液体急冷法によって得られた所定の組成の
薄帯を熱処理しても,前述の各種金属間化合物を作製す
ることができる。すなわち液体急冷法においては急冷後
の合金はアモルファス或は微細結晶となっているが、こ
れを結晶化温度以上の温度で一定時間以上加熱すると、
急冷合金は結晶化或は再結晶成長し、その結果本発明に
必要な前述の各種金属間化合物相を析出させることがで
きる。従って液体急冷法によるアモルファス合金の粉末
を用いた混合法においても、焼結が進行する以前にアモ
ルファス相が結晶化し、本発明に必要な前述の各金属間
化合物が出現する場合には、本発明による方法と同一の
方法と見做すことができる。既に述べたが、本発明に用
いる原材料は通常の工業生産に用いる材料を使用してい
るので、工業生産の製法上不可避な不純物元素は含まれ
ている。例えば、もっとも代表的な工業的不純物である
C元素は、本発明のいずれの合金中においても0.01〜0.
3 重量%の範囲で含まれている。本発明における磁石の
製造方法は、微粉末をもちいた粉末冶金法をその基本製
法としている。したがって、各工程でガス置換などの雰
囲気管理は行われているが、粉末表面積の増大と表面の
活性化による材料酸化を完全に防止することは困難であ
り、本発明によって製造された磁石に最終的には、0.05
〜 0.6重量%の範囲の酸素が含まれる。
The above-mentioned various intermetallic compounds can be produced by heat-treating a ribbon having a predetermined composition obtained by the liquid quenching method. In other words, in the liquid quenching method, the alloy after quenching is amorphous or fine crystal, but when this is heated at a temperature higher than the crystallization temperature for a certain period of time,
The quenched alloy is crystallized or recrystallized, and as a result, the various intermetallic compound phases required for the present invention can be precipitated. Therefore, even in a mixing method using an amorphous alloy powder by a liquid quenching method, if the amorphous phase is crystallized before sintering proceeds and the above-mentioned intermetallic compounds necessary for the present invention appear, the present invention Can be regarded as the same method as the method by As described above, the raw materials used in the present invention use materials used in ordinary industrial production, and therefore include impurity elements inevitable in the production method of industrial production. For example, element C, which is the most typical industrial impurity, is present in any of the alloys of the present invention in a range of 0.01 to 0.
It is contained in the range of 3% by weight. The manufacturing method of the magnet according to the present invention uses a powder metallurgy method using fine powder as a basic manufacturing method. Therefore, although atmosphere control such as gas replacement is performed in each step, it is difficult to completely prevent material oxidation due to an increase in powder surface area and activation of the surface. Typically, 0.05
Contains oxygen in the range of ~ 0.6% by weight.

【0014】本発明では以上述べたようにA合金粉末に
B合金粉末を所定の割合で混合することによって、高い
磁気特性を得ることができた。以下、本発明の化合物粉
混合法が高い磁気特性をもたらした理由について述べ
る。まず第1の理由として、結晶構造がP6/mmmの
空間群で表されるCeCoB型の組成式RFeCoM
の金属間化合物相の融点が、Nd系希土類磁石の
液相焼結にとって適当な750℃以上2,000℃以下
となることである。この温度範囲はいわゆるNdリッチ
相の融点よりは高くなっている。従来のNd磁石製造法
や本法以外の混合法においては、融点の低いNdリッチ
相が存在するために、焼結温度ではNdリッチ相融液の
粘度が下がり過ぎてしまい、粒子の配向が乱れて充分な
磁気特性が得られない。かつまた低温から液相となって
いるために、昇温過程で雰囲気中の酸素や水分などと反
応してしまう。このため、液相に酸化物を多く含むこと
になって粒界のクリーニングが充分にできなくなり、高
い磁気特性が得られなくなる。本発明においては添加合
金を結晶構造がP6/mmmの空間群で表されるCeC
B型の組成式RFeCoM であって、融点が
750℃以上2,000℃以下である金属間化合物相を
主に含む合金とすることにより、A合金との混合粉体中
に融点の低いNdリッチ相を含ませなくすることができ
る。したがって、焼結工程に受ける雰囲気の影響が小さ
くなり高い磁気特性が得られる。
In the present invention, as described above, a high magnetic property can be obtained by mixing the B alloy powder with the A alloy powder at a predetermined ratio. Hereinafter, the reason why the compound powder mixing method of the present invention provided high magnetic properties will be described. First, as a first reason, a CeCo 4 B-type composition formula RFeCoM whose crystal structure is represented by a space group of P6 / mmm.
The melting point of the 1 M 2 intermetallic compound phase is that the 2,000 ° C. or less suitable 750 ° C. or higher for liquid phase sintering of the Nd-based rare earth magnet. This temperature range is higher than the melting point of the so-called Nd-rich phase. In the conventional Nd magnet manufacturing method and the mixing method other than the present method, since the Nd-rich phase having a low melting point is present, the viscosity of the Nd-rich phase melt is too low at the sintering temperature, and the orientation of the particles is disturbed. And sufficient magnetic characteristics cannot be obtained. Further, since the liquid phase is changed from a low temperature, it reacts with oxygen, moisture and the like in the atmosphere during the temperature raising process. As a result, the liquid phase contains a large amount of oxide, so that the grain boundary cannot be sufficiently cleaned, and high magnetic properties cannot be obtained. In the present invention, the added alloy is made of CeC whose crystal structure is represented by a space group of P6 / mmm.
A o 4 B-type composition formula RFeCoM 1 M 2, the melting point
By using an alloy mainly containing an intermetallic compound phase at 750 ° C. or more and 2,000 ° C. or less, it is possible to prevent the Nd-rich phase having a low melting point from being contained in the powder mixed with the A alloy. Therefore, the influence of the atmosphere on the sintering process is reduced, and high magnetic properties can be obtained.

【0015】第2の理由は、Co添加による耐食性の向上
である。混合法において添加する合金や化合物は、ベー
ス合金より希土類元素を一般に多く含有するため微粉の
状態では酸化劣化しやすい。しかし、本発明の製造法に
おけるように、Coを含有した金属間化合物にすることに
よって、これらの微粉の酸化劣化を防止することがで
き、したがって安定した磁気特性が得られることにな
る。一般に金属微粉の表面には、物理吸着あるいは化学
吸着によって多くの水分が付着している。活性の強い希
土類合金の微粉もその例外ではなく、空気中の水分を多
量に表面に吸着している。この水分は、焼結炉の真空排
気のみによっては取り除くことができず、昇温中に微粉
と反応して、各種の水酸化物や、酸化物を形成すること
になる。本法の化合物粉混合法においては、希土類元素
の多い添加金属間化合物相にCoを添加することにより合
金粉の耐食性を向上させおり、その結果焼結過程での微
粉の酸化劣化が少なくなって、優れた磁気特性を安定し
て得ることができる。第3の理由は、保磁力を向上させ
るのに有効な各種合金元素をA合金中に多く含有させな
いで、添加する金属間化合物相に含ませていることであ
る。Nd磁石の保磁力向上に有効な元素として、Pr、Dy、T
b、Ga、Al、Cu やその他の元素が知られているが、これら
は保磁力を向上させる一方、添加量に比例して磁石性能
として重要な飽和磁化の値を減少させてしまう。強磁性
相であるR2 Fe14B相にこれらの元素を多く含有させる
と、保磁力は高くなるが残留磁束密度が小さくなってし
まうことになる。Nd磁石の保磁力は、Nd磁石の結晶粒界
の性質によって大きく左右される。したがって磁石合金
の結晶粒界が磁気的に強固になれば、粒界での磁壁ニュ
ークリエーションフィールドが大きくなって、磁石合金
の保磁力を向上させることができる。上記の各種合金元
素は、結晶磁気異方性を向上させたり粒界の格子欠陥や
歪みを減少させて、粒界での磁壁のニュークリエーショ
ンフィールドを大きくすると考えられている。本発明に
おいては、A合金と混合した各種金属間化合物が、焼結
温度近傍で合金自身で溶融あるいはA合金と反応しなが
ら溶融し、さらに拡散反応が進行してR2 Fe14B相とNd
リッチ相を形成する。この反応によって結晶粒界付近に
液相が生じ、液相によって液相焼結が進行するが、金属
間化合物中に多く添加されていたPr、Dy、Tb、Ga、Al、Cu や
各種元素Mは、焼結後も粒界近傍に多く存在することに
なる。したがって、磁石の保磁力向上に有効な結晶粒界
付近のみを磁気的に強化することになり、R2 Fe14B相
の内部まで入り込んで飽和磁化を下げることがなく、極
めて効率的に保磁力の向上を計ることができる。
The second reason is that the corrosion resistance is improved by adding Co. Alloys and compounds added in the mixing method generally contain a larger amount of rare earth elements than the base alloy, and thus are susceptible to oxidative deterioration in the state of fine powder. However, by using a Co-containing intermetallic compound as in the production method of the present invention, the oxidative deterioration of these fine powders can be prevented, and thus stable magnetic properties can be obtained. Generally, a large amount of moisture is attached to the surface of metal fine powder by physical adsorption or chemical adsorption. Fine powder of a rare earth alloy having strong activity is no exception, and a large amount of moisture in the air is adsorbed on the surface. This water cannot be removed only by vacuum evacuation of the sintering furnace, and reacts with the fine powder during the heating to form various hydroxides and oxides. In the compound powder mixing method of the present method, the corrosion resistance of the alloy powder is improved by adding Co to the added intermetallic compound phase containing a large amount of rare earth elements, and as a result, the oxidative deterioration of the fine powder during the sintering process is reduced. And excellent magnetic characteristics can be stably obtained. The third reason is that various alloy elements effective for improving the coercive force are not contained in the A alloy in a large amount but are contained in the intermetallic compound phase to be added. Pr, Dy, and T are effective elements for improving the coercive force of Nd magnets.
Although b, Ga, Al, Cu and other elements are known, they improve the coercive force, but decrease the value of saturation magnetization, which is important for magnet performance, in proportion to the amount of addition. When a large amount of these elements is contained in the R 2 Fe 14 B phase, which is a ferromagnetic phase, the coercive force increases but the residual magnetic flux density decreases. The coercive force of an Nd magnet is greatly affected by the nature of the crystal grain boundaries of the Nd magnet. Therefore, when the crystal grain boundaries of the magnet alloy become magnetically strong, the domain wall nucleation field at the grain boundaries increases, and the coercive force of the magnet alloy can be improved. It is believed that the above-mentioned various alloy elements increase the magnetic field anisotropy and reduce lattice defects and strain at grain boundaries, thereby increasing the nucleation field of domain walls at grain boundaries. In the present invention, various intermetallic compounds mixed with the A alloy are melted by the alloy itself at the vicinity of the sintering temperature or melted while reacting with the A alloy, and further the diffusion reaction proceeds, and the R 2 Fe 14 B phase and Nd
Forms a rich phase. By this reaction, a liquid phase is generated near the crystal grain boundaries, and liquid phase sintering is progressed by the liquid phase. However, Pr, Dy, Tb, Ga, Al, Cu and various elements M Will remain in the vicinity of the grain boundaries even after sintering. Therefore, only the vicinity of the crystal grain boundary effective for improving the coercive force of the magnet is magnetically strengthened, and the coercive force is extremely efficiently prevented without lowering the saturation magnetization by penetrating into the R 2 Fe 14 B phase. Can be improved.

【0016】次に本発明の化合物粉混合法の詳細な製造
方法について述べる。上記のようにして得られたA合金
およびB合金は、各インゴットを粉砕して所定の割合に
混合される。粉砕は、湿式又は乾式粉砕にて行われる。
希土類合金は非常に活性であり、粉砕中の酸化を防ぐこ
とを目的に、乾式粉砕の場合はAr又は窒素などの雰囲気
中で、湿式粉砕の場合はフロンなどの非反応性の有機溶
媒中で行われる。混合工程も必要に応じて不活性ガス雰
囲気又は溶媒中で行われる。粉砕は一般に粗粉砕、微粉
砕と段階的に行われるが、混合はどの段階で行われても
良い。即ち粗粉砕後に所定量混合し引続いて微粉砕を行
ってもよいし、全ての粉砕を完了した後に所定の割合に
混合してもよい。A合金及びB合金がほぼ同じ平均粒径
で、かつまた均一に混合されることが必要である。各粉
末の粉の平均粒径は0.2 〜30μmの範囲が好ましく、平
均粒径が0.2 μm未満では酸化されて劣化し易く、平均
粒径が30μmを越えると焼結性が悪くなり高い磁気特性
が得られなくなる。
Next, a detailed production method of the compound powder mixing method of the present invention will be described. The A alloy and the B alloy obtained as described above are pulverized into ingots and mixed at a predetermined ratio. The pulverization is performed by wet or dry pulverization.
Rare earth alloys are very active, and are used in an atmosphere such as Ar or nitrogen in the case of dry grinding and in a non-reactive organic solvent such as Freon in the case of wet grinding in order to prevent oxidation during grinding. Done. The mixing step is also performed in an inert gas atmosphere or a solvent as necessary. The pulverization is generally performed stepwise as coarse pulverization and fine pulverization, but mixing may be performed at any stage. That is, a predetermined amount may be mixed after coarse pulverization and then finely pulverized, or may be mixed at a predetermined ratio after all pulverization is completed. It is necessary that the A alloy and the B alloy have approximately the same average particle size and are also uniformly mixed. The average particle size of each powder is preferably in the range of 0.2 to 30 μm. If the average particle size is less than 0.2 μm, the powder tends to be oxidized and deteriorated. If the average particle size exceeds 30 μm, the sinterability deteriorates and high magnetic properties are obtained. No longer available.

【0017】A合金粉末とB合金粉末の混合割合は、A
合金粉末99〜60重量%に対して1〜40重量%の範囲で添
加混合するのが良く、B合金粉末が1重量%未満では、
焼結性が悪くなって焼結密度が上がらなくなって保磁力
が得られないし、40重量%を越えると焼結後の非磁性相
の割合が大きくなり過ぎて、残留磁束密度が減少し高い
磁気特性が得られなくなる。得られた混合微粉は、次に
磁場中成型プレスによって所望の寸法に成型され、さら
に焼結熱処理する。焼結は900 〜1,250 ℃の温度範囲で
真空又はアルゴン雰囲気中にて10分以上行ない、続いて
焼結温度以下の低温で10分以上熱処理する。焼結後の混
合微粉の焼結体密度は、対真密度比で95%以上に緻密化
しており、高い残留磁束密度と大きな保磁力および角型
性の良好な優れた希土類磁石が得られる。
The mixing ratio of the A alloy powder and the B alloy powder is
It is better to add and mix in the range of 1 to 40% by weight with respect to 99 to 60% by weight of the alloy powder, and if the B alloy powder is less than 1% by weight,
The sinterability deteriorates, the sintering density cannot be increased, and no coercive force can be obtained. If it exceeds 40% by weight, the proportion of the non-magnetic phase after sintering becomes too large, and the residual magnetic flux density decreases, resulting in high magnetic properties. Characteristics cannot be obtained. The obtained mixed fine powder is then formed into a desired size by a molding press in a magnetic field, and further subjected to a sintering heat treatment. Sintering is performed in a vacuum or argon atmosphere at a temperature in the range of 900 to 1,250 ° C. for 10 minutes or more, followed by heat treatment at a temperature lower than the sintering temperature for 10 minutes or more. The sintered body density of the mixed fine powder after sintering is densified to 95% or more in terms of true density ratio, so that an excellent rare earth magnet having a high residual magnetic flux density, a large coercive force and a good squareness can be obtained.

【0018】[0018]

【実施例】以下、本発明の具体的な実施態様を実施例を
挙げて説明するが、本発明はこれらに限定されるもので
はない。 (実施例1、比較例1)純度99.9重量%のNd、P
r、Fe、Coメタルとフェロボロンを用いて高周波溶
解炉のAr雰囲気中にてAl合金を溶解鋳造した。鋳造
後、このインゴットを1,070℃、Ar雰囲気中にて
10時間溶体化した。得られた合金の組成は、11.0
Nd−1.5Pr−4.5B−1.0Co−bal.F
e(以下各原子%、bal.は残部元素の原子%を表
す)であった。同じく純度99.9重量%のNd、D
y、Fe、Coメタルとフェロボロンを原料として、結
晶構造がP6/mmmの空間群で表されるCeCo
型の金属間化合物からなるB1合金を高周波溶解炉を用
い,Ar囲気にて溶解鋳造し、組成8.4Nd−8.4
Dy−15.2Fe−16.7B−bal.Coの合金
を得た。A1とB1の各インゴットをそれぞれ別々に窒
素雰囲気中にて粗粉砕して30メッシュ以下とし、次に
A1合金粗粉を89.0重量%、B1合金を11.0重
量%秤量して、窒素置換したVブレンダー中で30分間
混合した。この混合粗粉を高圧窒素ガスを用いたジェッ
トミルにて、平均粒径約5μmに微粉砕した。得られた
混合微粉末を15kOeの磁場中で配向させながら、約
1Ton/cmの圧力でプレス成型した。次いで、こ
の成形体はAr雰囲気の焼結炉内で1,070℃で1時
間焼結され、さらに530℃で1時間時効熱処理して急
冷し、実施例1磁石合金M1を作製した。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described with reference to examples, but the present invention is not limited thereto. (Example 1, Comparative Example 1) Nd, P having a purity of 99.9% by weight
Al alloy was melt-cast using r, Fe, Co metal and ferroboron in an Ar atmosphere of a high-frequency melting furnace. After casting, this ingot was solution-solutioned at 1,070 ° C. in an Ar atmosphere for 10 hours. The composition of the resulting alloy was 11.0
Nd-1.5Pr-4.5B-1.0Co-bal. F
e (hereinafter each atomic%, bal. represents the atomic% of the remaining elements). Nd, D also having a purity of 99.9% by weight
CeCo 4 B whose crystal structure is represented by a space group of P6 / mmm using y, Fe, Co metal and ferroboron as raw materials
B1 alloy composed of a mold type intermetallic compound was melt-cast in an Ar atmosphere using a high-frequency melting furnace, and the composition was 8.4 Nd-8.4.
Dy-15.2Fe-16.7B-bal. An alloy of Co was obtained. Each of the ingots A1 and B1 was coarsely pulverized separately in a nitrogen atmosphere to 30 mesh or less. Then, the A1 alloy coarse powder was weighed 89.0% by weight and the B1 alloy was weighed 11.0% by weight. Mix for 30 minutes in the displacement V blender. This mixed coarse powder was finely pulverized with a jet mill using high-pressure nitrogen gas to an average particle size of about 5 μm. The obtained mixed fine powder was press-molded at a pressure of about 1 Ton / cm 2 while being oriented in a magnetic field of 15 kOe. Next, the formed body was sintered at 1,070 ° C. for 1 hour in a sintering furnace in an Ar atmosphere, further subjected to aging heat treatment at 530 ° C. for 1 hour, and quenched to prepare Example 1 magnet alloy M1.

【0019】比較のため実施例M1 と同じ組成となる合
金を従来の1合金法にて製造し、比較例1磁石合金E1
とした。即ち、A1 粉とB1 粉とを混合して焼結(実施
例M1 )したものと同じ組成となるように初めから一つ
の合金(比較例E1)で秤量、溶解、粉砕、焼結、時効
熱処理して、化合物粉混合法による磁石と磁気特性を比
較した。この磁石合金の組成は、化合物粉混合法による
実施例M1 、1合金法による比較例E1 共に、10.6Nd-
1.3Pr-1.2Dy-7.9Co-6.2B-0.3O-bal.Fe である。なおこ
の組成は、最終的な焼結体を分析して得られた値であ
り、ここで含有されている酸素は、合金添加元素として
含有させたのではなく、製造工程中微粉の表面が酸化す
るなどして混入した不純物である。ただしその量は、工
業的な値、約3,000ppm付近となるよう、実施例、比較例
ともにグローボックスを用いたり雰囲気をコントロール
するなどして調整した。表1に実施例M1 と比較例E1
の両焼結体磁石において得られた磁気特性の値と焼結体
密度を示す。実施例M1 の磁気特性は比較例E1 に比較
して、焼結体密度は殆ど同じであるが、残留磁束密度、
保磁力、最大エネルギ−積等、全ての値において実施例
M1 が大きく勝っている。このように磁石合金の組成が
全く同一でも磁気特性にはかなりの差が生じており、化
合物粉混合法がNd磁石の磁気特性向上のために極めて有
効な方法であることを示している。図1は、B1 合金イ
ンゴットのX線解析パターンである。これからB1 合金
は、結晶構造がP6/mmmの空間群で表されるCeCo4
B型の金属間化合物から主に成ることが解る。
For comparison, an alloy having the same composition as that of Example M1 was produced by the conventional one-alloy method, and Comparative Example 1 was used for magnet alloy E1.
And That is, weighing, melting, pulverizing, sintering, and aging heat treatment of one alloy (Comparative Example E1) from the beginning so that the same composition as that obtained by mixing and sintering A1 powder and B1 powder (Example M1) is obtained. Then, the magnetic properties were compared with the magnets obtained by the compound powder mixing method. The composition of this magnet alloy was 10.6 Nd-in both Example M1 by the compound powder mixing method and Comparative Example E1 by the one alloy method.
1.3Pr-1.2Dy-7.9Co-6.2B-0.3O-bal.Fe. This composition is a value obtained by analyzing the final sintered body, and the oxygen contained here is not included as an alloying additive element, but the surface of the fine powder is oxidized during the manufacturing process. It is an impurity that has been mixed in due to However, the amount was adjusted by using a glow box or controlling the atmosphere in both the examples and comparative examples so that the amount would be an industrial value of about 3,000 ppm. Table 1 shows Example M1 and Comparative Example E1.
2 shows the values of the magnetic properties and the sintered body densities obtained for both sintered body magnets. The magnetic properties of the example M1 are almost the same as those of the comparative example E1, but the residual magnetic flux density,
In all the values, such as the coercive force and the maximum energy product, the embodiment M1 is greatly superior. As described above, even if the composition of the magnet alloy is exactly the same, there is a considerable difference in the magnetic properties, indicating that the compound powder mixing method is an extremely effective method for improving the magnetic properties of the Nd magnet. FIG. 1 is an X-ray analysis pattern of a B1 alloy ingot. From now on, the B1 alloy is made of CeCo 4 whose crystal structure is represented by a space group of P6 / mmm.
It turns out that it mainly consists of a B type intermetallic compound.

【0020】(実施例2〜6、比較例2〜6)純度9
9.9重量%のNd、Pr、Dy、Fe、Coメタルと
フェロボロンを用いて高周波溶解炉のAr雰囲気中にて
A2〜6合金を溶解鋳造した。鋳造後、このインゴット
を1,070℃、Ar雰囲気中にて10時間溶体化し
た。得られた合金のA2〜6の組成は、表2〜6に記載
した。同じく純度99.9重量%のNd、Dy、Fe、
Coメタルとフェロボロン及び各種メタルを原料とし
て、表2〜6中に示したような結晶構造がP6/mmm
の空間群で表されるCeCoB型の金属間化合物から
主に成るB2〜6合金を高周波溶解炉を用いAr雰囲気
にて溶解鋳造した。得られた組成も同じく表中に記載し
た。A2〜6合金とB2〜6合金をそれぞれ別々に窒素
雰囲気中にて粗粉砕して30メッシュ以下とし、次に表
中の混合重量の欄に記載した割合で混合し、窒素置換し
たVブレンダー中で30分間混合した。この混合粗粉を
高圧窒素ガスを用いたジェットミルにて、平均粒径約5
μmに微粉砕した。得られた混合微粉末を15kOeの
磁場中で配向させながら、約1Ton/cmの圧力で
プレス成型した。次いで、この成形体はAr雰囲気の焼
結炉内で1,080℃で1時間焼結され、さらに500
〜580℃で1時間時効熱処理して急冷し、実施例2〜
6磁石合金M2〜6を作製した。
(Examples 2 to 6, Comparative Examples 2 to 6) Purity 9
A2-6 alloy was melt-cast using 9.9% by weight of Nd, Pr, Dy, Fe, Co metal and ferroboron in an Ar atmosphere of a high frequency melting furnace. After casting, this ingot was solution-solutioned at 1,070 ° C. in an Ar atmosphere for 10 hours. Tables 2 to 6 show the compositions of A2 to A6 of the obtained alloy. Nd, Dy, Fe also having a purity of 99.9% by weight,
Using Co metal, ferroboron and various metals as raw materials, the crystal structure shown in Tables 2 to 6 is P6 / mmm
B2-6 alloys mainly composed of CeCo 4 B type intermetallic compounds represented by the following space group were melt-cast in an Ar atmosphere using a high-frequency melting furnace. The composition obtained is also described in the table. A2 to 6 alloys and B2 to 6 alloys were coarsely pulverized separately in a nitrogen atmosphere to 30 mesh or less, and then mixed at the ratio described in the column of mixed weight in the table in a nitrogen-blended V blender. For 30 minutes. This mixed coarse powder is jet-milled using high-pressure nitrogen gas, and has an average particle size of about 5
It was pulverized to μm. The obtained mixed fine powder was press-molded at a pressure of about 1 Ton / cm 2 while being oriented in a magnetic field of 15 kOe. Next, the compact was sintered at 1,080 ° C. for 1 hour in a sintering furnace in an Ar atmosphere, and further sintered for 500 hours.
Aging heat treatment at ~ 580 ° C for 1 hour followed by rapid cooling.
Six magnet alloys M2 to M6 were produced.

【0021】比較のため実施例M2 〜6 と同じ組成とな
る合金を従来の1合金法にて製造し、比較例E2 〜6 と
した。即ち、A2 〜6 合金とB2 〜6 合金を混合して焼
結したものと同じ組成となるように初めから一つの合金
(比較例E2〜6)で秤量、溶解、粉砕、焼結、時効熱
処理して、化合物粉混合法による磁石(実施例M2 〜6
)と磁気特性を比較した。この磁石合金M2 〜6 の組
成は、化合物粉末混合法による実施例M2 〜6 、1合金
法による比較例E2 〜6 共に、表2〜6中に記載してあ
る。なおこの組成は、最終的な焼結体を分析して得られ
た値であり、ここで含有されている酸素は、合金添加元
素として含有させたのではなく、製造工程中微粉の表面
が酸化するなどして混入した不純物である。ただしその
量は、工業的な値、約3,000 〜5,000ppm付近となるよ
う、実施例、比較例ともにグローボックスを用いたり雰
囲気をコントロールするなどして調整した。表2〜6に
実施例M2 〜6 と比較例E2 〜6 の両焼結体磁石におい
て得られた磁気特性の値と焼結体密度を示す。実施例M
2 〜6 の磁気特性は比較例E2 〜6に比較して、焼結体
密度は殆ど同じであるが、残留磁束密度、保磁力、最大
エネルギ−積等、全ての値において実施例E2 〜6 が大
きく勝っている。このように磁石合金の組成が全く同一
でも磁気特性にはかなりの差が生じており、化合物粉混
合法がNd磁石の磁気特性向上のために極めて有効な方法
であることを示している。
For comparison, alloys having the same composition as in Examples M2 to M6 were produced by a conventional one-alloy method, and Comparative Examples E2 to E6 were made. That is, weighing, melting, pulverizing, sintering, and aging heat treatment of one alloy (Comparative Examples E2 to 6) from the beginning so as to have the same composition as that obtained by mixing and sintering the A2-6 alloy and the B2-6 alloy. And a magnet prepared by the compound powder mixing method (Examples M2 to M6)
) And magnetic properties were compared. The compositions of the magnet alloys M2 to M6 are described in Tables 2 to 6 in Examples M2 to M6 by the compound powder mixing method and Comparative Examples E2 to E6 by the alloy method. This composition is a value obtained by analyzing the final sintered body, and the oxygen contained here is not included as an alloying additive element, but the surface of the fine powder is oxidized during the manufacturing process. It is an impurity that has been mixed in due to However, the amount was adjusted by using a glow box or controlling the atmosphere in both the examples and comparative examples so that the amount would be an industrial value of about 3,000 to 5,000 ppm. Tables 2 to 6 show the values of the magnetic properties and the sintered body densities obtained for the sintered magnets of Examples M2 to M6 and Comparative Examples E2 to E6. Example M
Although the magnetic properties of the sintered bodies 2 to 6 are almost the same as those of the comparative examples E2 to E6, the density of the sintered bodies is almost the same as that of the comparative examples E2 to E6. Has greatly won. As described above, even if the composition of the magnet alloy is exactly the same, there is a considerable difference in the magnetic properties, indicating that the compound powder mixing method is an extremely effective method for improving the magnetic properties of the Nd magnet.

【0022】(実施例7、比較例7)純度99.9重量
%のNd、Pr、Fe、Coメタルとフェロボロンを用
いて高周波溶解炉のAr雰囲気中にてA7合金を溶解鋳
造した。鋳造後、このインゴットを1,070℃、Ar
雰囲気中にて10時間溶体化し、粗粉砕して30メッシ
ュ以下とした。得られた合金の組成は、10.0Nd−
2.5Pr−5.0B−1.7Co−bal.Fe(各
原子%)であった。同じく純度99.9重量%のPr、
Dy、Fe、Co、P、Tbメタルとフェロボロンを原
料として、高周波溶解炉を用いAr雰囲気にて結晶構造
がP6/mmmの空間群で表されるCeCoB型の金
属間化合物からなるB7合金を溶解鋳造し、窒素雰囲気
中にて粗粉砕して30メッシュ以下とした。次に450
℃、1atmの窒素中で10時間窒化処理し、さらに2
50℃、空気中で1時間酸化処理した。得られた合金を
分析して、8.5Pr−8.5Dy−13.2Fe−1
5.0B−2.0P−2.0Tb−2.0N−2.0O
−bal.Coの組成を得た。次に、A7合金粗粉を8
9.5重量%、B7合金粗粉を10.5重量%秤量し
て、窒素置換したVブレンダー中で30分間混合した。
この混合粗粉を高圧窒素ガスを用いたジェットミルに
て、平均粒径約5μmに微粉砕した。得られた混合微粉
末を15kOeの磁場中で配向させながら、約1Ton
/cmの圧力でプレス成型した。次いで、この成形体
はAr雰囲気の焼結炉内で1,070℃で1時間焼結さ
れ、さらに500℃で1時間時効熱処理して急冷し、実
施例7磁石合金M7を作製した。
Example 7 and Comparative Example 7 A7 alloy was melt-cast using Nd, Pr, Fe, Co metal having a purity of 99.9% by weight and ferroboron in an Ar atmosphere of a high-frequency melting furnace. After casting, the ingot was heated at 1,070 ° C., Ar
The solution was dissolved in an atmosphere for 10 hours and coarsely pulverized to 30 mesh or less. The composition of the obtained alloy was 10.0 Nd-
2.5 Pr-5.0B-1.7 Co-bal. Fe (atomic%). Pr having a purity of 99.9% by weight,
B7 alloy made of CeCo 4 B type intermetallic compound whose crystal structure is represented by a space group of P6 / mmm in an Ar atmosphere using a Dy, Fe, Co, P, Tb metal and ferroboron as raw materials in a high-frequency melting furnace Was melt-cast and coarsely pulverized in a nitrogen atmosphere to 30 mesh or less. Then 450
At 10 ° C. for 1 hour in nitrogen at 1 atm.
Oxidation treatment was performed at 50 ° C. in the air for 1 hour. The obtained alloy was analyzed and 8.5Pr-8.5Dy-13.2Fe-1
5.0B-2.0P-2.0Tb-2.0N-2.0O
-Bal. A composition of Co was obtained. Next, A7 alloy coarse powder was
9.5% by weight and 10.5% by weight of a B7 alloy coarse powder were weighed and mixed for 30 minutes in a nitrogen-purged V blender.
This mixed coarse powder was finely pulverized with a jet mill using high-pressure nitrogen gas to an average particle size of about 5 μm. While orienting the obtained mixed fine powder in a magnetic field of 15 kOe, about 1 Ton
/ Cm 2 under pressure. Next, this compact was sintered at 1,070 ° C. for 1 hour in a sintering furnace in an Ar atmosphere, further subjected to aging heat treatment at 500 ° C. for 1 hour, and quenched to prepare Example 7 magnet alloy M7.

【0023】比較のため実施例M7 と同じ組成となる合
金を従来の1合金法にて製造し、比較例E7とした。即
ち、A7 合金粉とB7 合金粉を混合して焼結したものと
同じ組成となるように初めから一つの合金(比較例E7
)で秤量、溶解、粉砕、焼結、時効熱処理して、化合
物粉末混合法による磁石(実施例M7 )と磁気特性を比
較した。この磁石合金M7 の組成は、化合物粉末混合法
による実施例M7 、1合金法による比較例E7 共に、8.
5Nd-3.4Pr-1.2Dy-8.3Co-6.5B-0.3P-0.3Tb-0.3N-0.6O-ba
l.Feである。なおこの組成は、最終的な焼結体を分析し
て得られた値であり、ここで含有されている酸素は、合
金添加元素として含有させたものと、製造工程中微粉の
表面が酸化するなどして混入した不純物との和である。
表7に実施例M7 と比較例E7 の両焼結体磁石において
得られた磁気特性の値と焼結体密度を示す。実施例M7
の磁気特性は比較例E7 に比較して、焼結体密度は殆ど
同じであるが、残留磁束密度、保磁力、最大エネルギ−
積等、全ての値において実施例7が大きく勝っている。
このように磁石合金の組成が全く同一でも磁気特性には
かなりの差が生じており、化合物粉混合法がNd磁石の磁
気特性向上のために極めて有効な方法であることを示し
ている。
For comparison, an alloy having the same composition as that of Example M7 was produced by a conventional one-alloy method, to thereby obtain Comparative Example E7. That is, one alloy (Comparative Example E7) was initially formed so as to have the same composition as that obtained by mixing and sintering the A7 alloy powder and the B7 alloy powder.
), Weighing, dissolving, pulverizing, sintering, and aging heat treatment, and comparing the magnetic properties with the magnet (Example M7) by the compound powder mixing method. The composition of the magnet alloy M7 was 8. in both Example M7 by the compound powder mixing method and Comparative Example E7 by the one alloy method.
5Nd-3.4Pr-1.2Dy-8.3Co-6.5B-0.3P-0.3Tb-0.3N-0.6O-ba
l.Fe. Note that this composition is a value obtained by analyzing the final sintered body, and the oxygen contained here is oxidized on the surface of the fine powder during the manufacturing process with the oxygen contained as an alloying additive element. It is the sum with the impurities mixed in as described above.
Table 7 shows the values of the magnetic properties and the sintered body densities obtained for both the sintered magnets of Example M7 and Comparative Example E7. Example M7
The magnetic properties of the sintered body are almost the same as those of the comparative example E7, but the residual magnetic flux density, the coercive force and the maximum energy
Example 7 is superior in all values such as the product.
As described above, even if the composition of the magnet alloy is exactly the same, there is a considerable difference in the magnetic properties, indicating that the compound powder mixing method is an extremely effective method for improving the magnetic properties of the Nd magnet.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【表7】 [Table 7]

【0031】[0031]

【発明の効果】本発明により作製した希土類永久磁石
は、高価な添加元素を有効に活用して、従来法の同一組
成の希土類磁石と比べて磁気特性が数段優れており、高
保磁力、高残留磁束密度、さらには高エネルギー積のバ
ランスのとれた高性能磁石を提供することが可能となっ
た。従って今後、各種電気、電子機器用の高性能磁石と
して広汎に利用されることが期待される。
The rare-earth permanent magnet produced according to the present invention has several steps more excellent magnetic properties than conventional rare-earth magnets having the same composition by effectively utilizing expensive additional elements, and has a high coercive force and high coercive force. It has become possible to provide a high-performance magnet with a good balance of residual magnetic flux density and high energy product. Therefore, it is expected that it will be widely used as a high-performance magnet for various electric and electronic devices in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のB1 合金インゴットのX線解析パタ
ーンを示す図である。
FIG. 1 is a view showing an X-ray analysis pattern of a B1 alloy ingot of Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美濃輪 武久 福井県武生市北府2丁目1番5号 信越 化学工業株式会社 磁性材料研究所内 (72)発明者 島尾 正信 福井県武生市北府2丁目1番5号 信越 化学工業株式会社 磁性材料研究所内 (56)参考文献 特開 平3−250607(JP,A) Journal of the Le ss−Common Metals,67 (1979),p.51−57 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takehisa Minowa 2-5-1-5 Kitafu, Takefu-shi, Fukui Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratory (72) Masanobu Shimao 2-1-1 Kitafu, Takefu-shi, Fukui No. 5 Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratory (56) References JP-A-3-250607 (JP, A) Journal of the Less-Common Metals, 67 (1979), p. 51-57

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 A合金を主としてR14B相[ここ
にRは、Nd、Pr、Dyを主体とする少なくとも1種
以上の希土類元素、TはFeまたはFeおよびCoを主
体とする少なくとも1種以上の遷移金属を表す]から成
る合金とし、B合金を結晶構造がP6/mmmの空間群
で表されるCeCoB型の組成式RFeCoM
[ここにRは、Nd、Pr、Dyを主体とする少なくと
も1種以上の希土類元素、Mは、Al、Cu、Zn、
In、Si、P、S、Ti、V、Cr、Mn、Ni、G
a、Ge、Zr、Nb、Mo、Pd、Ag、Cd、S
n、Sb、Hf、Ta、Wの内から選ばれる1種又は2
種以上の元素、Mは、B,C,N,Oの内から選ばれ
る1種又は2種以上の元素を表す]であって、融点が7
50℃以上2,000℃以下である金属間化合物から主
になる合金として、A合金粉末99〜60重量%に対し
てB合金粉末を重量で1〜40重量%混合し、該混合粉
末を磁場中加圧成形し、該成形体を真空または不活性ガ
ス雰囲気中で焼結し、さらに焼結温度以下の低温で熱処
理することを特徴とする希土類永久磁石の製造方法。
1. An A alloy mainly composed of an R 2 T 14 B phase, wherein R is at least one or more rare earth elements mainly composed of Nd, Pr, and Dy, and T is at least mainly composed of Fe or Fe and Co. Represents one or more transition metals], and the B alloy is a CeCo 4 B-type composition formula RFeCoM 1 M 2 whose crystal structure is represented by a space group of P6 / mmm.
[Where R is at least one or more rare earth elements mainly composed of Nd, Pr, and Dy, and M 1 is Al, Cu, Zn,
In, Si, P, S, Ti, V, Cr, Mn, Ni, G
a, Ge, Zr, Nb, Mo, Pd, Ag, Cd, S
one or two selected from n, Sb, Hf, Ta and W
Seed or more elements, M 2 is, B, C, a N, represents one or more elements selected from among O], mp 7
As an alloy mainly composed of an intermetallic compound having a temperature of 50 ° C. or more and 2,000 ° C. or less , 1 to 40% by weight of a B alloy powder is mixed with 99 to 60% by weight of an A alloy powder. A method for producing a rare earth permanent magnet, which comprises performing medium pressure molding, sintering the molded body in a vacuum or an inert gas atmosphere, and further performing heat treatment at a low temperature equal to or lower than a sintering temperature.
【請求項2】 請求項1に記載のB合金である組成式R
FeCoMの金属間化合物が、組成式RFe
Co [ここに添字a,b,c,d,eは
各元素の原子%で、13≦a≦26、0<b≦60、2
0≦c≦80、0≦d≦40、1≦e≦45の範囲を表
す]で表されるものであることを特徴とする希土類永久
磁石の製造方法。
2. The composition formula R which is the B alloy according to claim 1.
The intermetallic compound of FeCoM 1 M 2 has a composition formula of R a Fe b
Co c M 1 d M 2 e [where the subscripts a, b, c, d, and e are atomic% of each element, and 13 ≦ a ≦ 26, 0 <b ≦ 60, 2
0 ≦ c ≦ 80, 0 ≦ d ≦ 40, and 1 ≦ e ≦ 45]. A method for producing a rare earth permanent magnet.
【請求項3】 請求項1または2に記載のA合金とB合
金との混合粉末中に含まれる希土類元素の総和が10〜
15原子%であることを特徴とする希土類永久磁石の製
造方法。
3. The total of the rare earth elements contained in the mixed powder of the A alloy and the B alloy according to claim 1 or 2 is 10 to 10.
A method for producing a rare earth permanent magnet, wherein the amount is 15 atomic%.
【請求項4】 請求項1、2または3に記載のA合金粉
末およびB合金粉末またはこれらを混合して造られる混
合粉末の平均粒径が、0.2〜30μmであることを特
徴とする希土類永久磁石の製造方法。
4. The A alloy powder according to claim 1, 2 or 3.
Powder and B alloy powder or a mixture produced by mixing them
The average particle size of the composite powder is 0.2 to 30 μm.
Manufacturing method of rare earth permanent magnets.
JP35780491A 1991-12-26 1991-12-26 Manufacturing method of rare earth permanent magnet Expired - Fee Related JP3254232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35780491A JP3254232B2 (en) 1991-12-26 1991-12-26 Manufacturing method of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35780491A JP3254232B2 (en) 1991-12-26 1991-12-26 Manufacturing method of rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH05182814A JPH05182814A (en) 1993-07-23
JP3254232B2 true JP3254232B2 (en) 2002-02-04

Family

ID=18456010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35780491A Expired - Fee Related JP3254232B2 (en) 1991-12-26 1991-12-26 Manufacturing method of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP3254232B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100877875B1 (en) 2001-06-14 2009-01-13 신에쓰 가가꾸 고교 가부시끼가이샤 Corrosion Resistant Rare Earth Magnet and Its Preparation
JP4162884B2 (en) 2001-11-20 2008-10-08 信越化学工業株式会社 Corrosion-resistant rare earth magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of the Less−Common Metals,67(1979),p.51−57

Also Published As

Publication number Publication date
JPH05182814A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
US4975130A (en) Permanent magnet materials
US5110377A (en) Process for producing permanent magnets and products thereof
US4684406A (en) Permanent magnet materials
EP0126802B1 (en) Process for producing of a permanent magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH01219143A (en) Sintered permanent magnet material and its production
JPS6393841A (en) Rare-earth permanent magnet alloy
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JPH045740B2 (en)
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP3254232B2 (en) Manufacturing method of rare earth permanent magnet
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JP3143181B2 (en) Manufacturing method of rare earth permanent magnet
JP3143182B2 (en) Manufacturing method of rare earth permanent magnet
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH04338604A (en) Metallic bonding magnet and manufacture thereof
JPS6077959A (en) Permanent magnet material and its manufacture
JPH0549737B2 (en)
JPH0320048B2 (en)
JPH045738B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees