JP5754232B2 - Manufacturing method of high coercive force NdFeB magnet - Google Patents

Manufacturing method of high coercive force NdFeB magnet Download PDF

Info

Publication number
JP5754232B2
JP5754232B2 JP2011102911A JP2011102911A JP5754232B2 JP 5754232 B2 JP5754232 B2 JP 5754232B2 JP 2011102911 A JP2011102911 A JP 2011102911A JP 2011102911 A JP2011102911 A JP 2011102911A JP 5754232 B2 JP5754232 B2 JP 5754232B2
Authority
JP
Japan
Prior art keywords
phase
magnetic
nonmagnetic
magnet
magnetic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011102911A
Other languages
Japanese (ja)
Other versions
JP2012234985A (en
Inventor
紀次 佐久間
紀次 佐久間
秀史 岸本
秀史 岸本
正雄 矢野
正雄 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011102911A priority Critical patent/JP5754232B2/en
Publication of JP2012234985A publication Critical patent/JP2012234985A/en
Application granted granted Critical
Publication of JP5754232B2 publication Critical patent/JP5754232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、NdFeB磁石の製造方法に関している。   The present invention relates to a method for manufacturing an NdFeB magnet.

本発明は、磁化曲線における保磁力が高いNdFeB磁石の製造方法に関する。なお、以後の説明においては、所定形状に成形された着磁前の成形体についても磁石という。   The present invention relates to a method for manufacturing an NdFeB magnet having a high coercivity in a magnetization curve. In the following description, the molded body before magnetization molded into a predetermined shape is also called a magnet.

永久磁石の応用はエレクトロニクス、情報通信、医療、工作機械分野、産業用・自動車用モータなど広範な分野に及んでおり、二酸化炭素排出量の抑制の要求が高まっている中、ハイブリッドカーの普及、産業分野での省エネ、発電効率の向上などで近年さらに高特性の永久磁石開発への期待が高まっている。   The application of permanent magnets extends to a wide range of fields such as electronics, information communication, medical care, machine tool fields, industrial and automotive motors, and the demand for suppression of carbon dioxide emissions is increasing. In recent years, there are increasing expectations for the development of permanent magnets with even higher characteristics due to energy savings and improved power generation efficiency in the industrial field.

現在、高性能磁石として市場を席巻しているNd−Fe−B系磁石は、HV/EHV用の駆動モーター用磁石にも使用されている。そして、昨今、モーターのさらなる小型化、高出力化(磁石の残留磁化の増加)が追求されていることに対応して、Nd−Fe−B系磁石に関しても、高性能化、とりわけ高保磁力化の要求が強まっている。   At present, Nd—Fe—B type magnets, which are dominating the market as high performance magnets, are also used as magnets for drive motors for HV / EHV. In response to the recent demand for further miniaturization and higher output of motors (increase in remanent magnetization of magnets), Nd-Fe-B magnets have higher performance, especially higher coercive force. The demand for is growing.

Nd−Fe−B系磁石はいまから20年以上前に佐川らにより発明されたものである(非特許文献1)。それ以降NdFe14B化合物を超える磁石材料は見いだされていない。 The Nd-Fe-B magnet was invented by Sagawa et al. Over 20 years ago (Non-Patent Document 1). Since then, no magnet material exceeding the Nd 2 Fe 14 B compound has been found.

NdFeB系磁石を超える性能を有する材料開発の一つとして、ナノコンポジット磁石の研究が進められている。ナノコンポジット磁石の材料設計思想は、いずれもnmオーダの微細な結晶粒である高保磁力の硬磁性相(Nd2Fe14B相)と高飽和磁化の軟磁性相(α−Fe相)を全体の組織内に共存させ、両相の特性を交換接合作用を介して同時に発現させ、もって高エネルギー積を達成するというものである。ナノコンポジット磁石は、高保磁力と高飽和磁化を両立させうるコンセプトとして、有望と考えられている。   Research on nanocomposite magnets is underway as one of the developments of materials with performance exceeding that of NdFeB magnets. The material design philosophy of the nanocomposite magnet is that the hard magnetic phase with high coercivity (Nd2Fe14B phase) and the soft magnetic phase with high saturation magnetization (α-Fe phase), both of which are fine crystal grains on the order of nm, are contained in the entire structure. By coexisting, the characteristics of both phases are expressed at the same time through exchange bonding, thereby achieving a high energy product. Nanocomposite magnets are considered promising as a concept that can achieve both high coercivity and high saturation magnetization.

NdFeB系材料を用いた種々のナノコンポジット磁石が提案されており、例えば次のような異方性交換スプリング磁石が提案されている(特許文献1)。   Various nanocomposite magnets using NdFeB-based materials have been proposed. For example, the following anisotropic exchange spring magnets have been proposed (Patent Document 1).

この磁石は、NdFe82CoCuの組成を有する合金の溶湯を超急冷法で薄膜片にしたのちそれを粉砕し、得られた粉末を冷間プレスして予備成形体にし、更にその予備成形体を熱間プレスして高密度化したのち熱間据え込み加工して製造されている。 In this magnet, a melt of an alloy having a composition of Nd 7 Fe 82 Co 5 Cu 3 B 3 is made into a thin film piece by a super-quenching method and then pulverized, and the obtained powder is cold-pressed into a preform. Further, the preform is manufactured by hot pressing and densification after hot pressing.

この磁石は、NdFe14B相、α−Fe相、およびNd−Cu相の3相混合物であり、NdFe14B相が硬磁性相、α−Fe相が軟磁性相になっている。これら3相のうち、Nd−Cu相は他の相の粒界に介在する粒界相になっていて、上記した据え込み加工時に各相の間の流動性を向上させて、保磁力を高める働きをするとされている。 This magnet is a three-phase mixture of Nd 2 Fe 14 B phase, α-Fe phase, and Nd—Cu phase, where Nd 2 Fe 14 B phase is a hard magnetic phase and α-Fe phase is a soft magnetic phase. Yes. Among these three phases, the Nd—Cu phase is a grain boundary phase intervening in the grain boundaries of the other phases, and improves the fluidity between the phases during the upsetting process described above and increases the coercive force. It is supposed to work.

ナノコンポジット磁石の場合、それを構成する硬磁性相と軟磁性相のそれぞれの結晶粒径は、磁気特性を規定する重大なパラメータであるが、特許文献1では、NdFe14B相、α−Fe相、およびNd−Cu相の結晶粒径の検討や、更には結晶粒径と磁気特性との相関関係についての検討は行われていなかった。 In the case of a nanocomposite magnet, the crystal grain sizes of the hard magnetic phase and the soft magnetic phase constituting the magnet are important parameters that define the magnetic characteristics, but in Patent Document 1, the Nd 2 Fe 14 B phase, α The examination of the crystal grain size of the -Fe phase and the Nd-Cu phase, and the correlation between the crystal grain size and the magnetic properties have not been conducted.

この点に関して、特許文献2では、NdFe14B相、α−Fe相、およびNd−Cu相の3相を含むナノコンポジット磁石における各相の結晶粒の集合状態を電子顕微鏡で観察して各相の結晶粒径を測定し、その結晶粒径と磁気特性との関係を調査している。その調査結果によると、結晶粒径が磁気特性を規定している、と記載されている。より詳しくは、Nd−Cu相の結晶粒の大きさが、磁化容易軸方向における最大エネルギー積を規定しており、そして、そのNd−Cu相の結晶粒の大きさは37nm以下が好ましい、と記載されている。 In this regard, Patent Document 2 observes an aggregate state of crystal grains of each phase in a nanocomposite magnet including three phases of an Nd 2 Fe 14 B phase, an α-Fe phase, and an Nd—Cu phase with an electron microscope. The crystal grain size of each phase is measured, and the relationship between the crystal grain size and magnetic properties is investigated. According to the survey results, it is described that the crystal grain size defines the magnetic properties. More specifically, the crystal grain size of the Nd—Cu phase defines the maximum energy product in the direction of the easy axis of magnetization, and the crystal grain size of the Nd—Cu phase is preferably 37 nm or less. Have been described.

また、特許文献2における磁石の製造工程においては、700〜1100℃の温度域で行う塑性加工の工程を必須の工程として含んでいる。この工程が、磁性相の相互流動性が保障されて磁性相は特定方向に配向させ、そのことにより、各磁性相の磁化容易軸が揃い、大きな異方化度が実現され、ひいては高保磁力が実現されるとしている。   Moreover, in the manufacturing process of the magnet in patent document 2, the process of the plastic working performed in a 700-1100 degreeC temperature range is included as an essential process. This process guarantees the mutual fluidity of the magnetic phase, and orients the magnetic phase in a specific direction, which aligns the easy axis of magnetization of each magnetic phase, realizes a large degree of anisotropy, and consequently a high coercivity. It will be realized.

特開2002−57015号公報JP 2002-57015 A 特開2005−93731号公報JP 2005-93731 A

M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. 55 (1984),2083.M.M. Sagawa, S .; Fujimura, N .; Togawa, H .; Yamamoto, and Y.J. Matsuura, J. et al. Appl. Phys. 55 (1984), 2083.

本発明はNdFeB系磁石の製造方法に関するものである。一般に、NdFeB系磁石は、Fe,Nd,Bを主成分とする合金から製造され、NdFe14B化合物を主相とし、主相の周りに粒界相が存在する。主相のNdFe14Bが磁区となり高残留磁化をもたらし、粒界相が、磁壁の移動、発生を妨げ高保磁力を発現させる。 The present invention relates to a method for producing an NdFeB magnet. In general, an NdFeB-based magnet is manufactured from an alloy containing Fe, Nd, and B as main components, and has a Nd 2 Fe 14 B compound as a main phase and a grain boundary phase around the main phase. The main phase Nd 2 Fe 14 B becomes a magnetic domain and causes a high remanent magnetization, and the grain boundary phase prevents the movement and generation of the domain wall and develops a high coercive force.

しかしながら、高磁化を狙って、主相のNdFe14Bの含有率を高くした組成物では、粒界相が欠乏し、主相のNdFe14B粒子間の分断性が低下し、保磁力が低下する。逆に、主相のNdFe14Bの含有率を低くした組成物(粒界相含有率の高い組成)では、粒界相が増え、分断性が向上し、保磁力は増加するが、粒界相が局所的に偏在することにより、相対的に主相のNdFe14Bの含有率が下がり、磁化の低下を招く。 However, in a composition in which the content of the main phase Nd 2 Fe 14 B is increased with the aim of high magnetization, the grain boundary phase is deficient, and the fragmentability between the main phase Nd 2 Fe 14 B particles is reduced, The coercive force decreases. On the contrary, in the composition having a low content of Nd 2 Fe 14 B in the main phase (a composition having a high content of the grain boundary phase), the grain boundary phase is increased, the breakability is improved, and the coercive force is increased. When the grain boundary phase is locally unevenly distributed, the content of the main phase Nd 2 Fe 14 B is relatively lowered, leading to a decrease in magnetization.

また、NdFeB系磁石の磁化の向上させるために、軟磁性相、例えばα−Fe相をさらに含んだ、ナノコンポジット磁石も知られている。   Also known is a nanocomposite magnet that further includes a soft magnetic phase, for example, an α-Fe phase, in order to improve the magnetization of the NdFeB magnet.

しかしながら、2相系ナノコンポジット磁石の組成では、Ndリッチ相(ナノ結晶磁石で言うところの粒界相)が存在しないため、NdFeB相同士が連結することがある。NdFeBが連結することで、粒子径の大きいNdFeBのように振舞い、単磁区ではなくなり、保磁力が低下するという問題点がある。   However, in the composition of the two-phase nanocomposite magnet, the Nd-rich phase (the grain boundary phase as referred to in the nanocrystalline magnet) does not exist, and thus the NdFeB phases may be connected. When NdFeB is connected, there is a problem that it behaves like NdFeB having a large particle diameter, is not a single magnetic domain, and the coercive force decreases.

特許文献1および2で原料にあらかじめCu等を加える手法が提案されている。加えられたCu等は、Nd−Fe−B相の粒界を取り囲む粒界相となり、この粒界相がNd−Fe−B相の流動性を向上させて、結晶の方向をそろえて異方性を高め、ひいては保磁力を高める働きをするとされている。   Patent Documents 1 and 2 propose a method of adding Cu or the like to a raw material in advance. The added Cu or the like becomes a grain boundary phase surrounding the grain boundary of the Nd-Fe-B phase, and this grain boundary phase improves the fluidity of the Nd-Fe-B phase and aligns the direction of the crystal to be anisotropic. It is said that it works to increase the coercive force by increasing the coercivity.

しかしながら、Nd−Fe−B相とα−Fe相の交換接合は、これらの相間の距離が5nm〜10nm程度の場合に成立すると考えられており、Nd−Fe−B相/α−Fe相間に10nm以上の粒界相(NdCu等の相)が存在すると、交換接合は起こらず、残留磁化の増大は起こりえない。   However, it is considered that the exchange bonding between the Nd-Fe-B phase and the α-Fe phase is established when the distance between these phases is about 5 nm to 10 nm, and between the Nd-Fe-B phase and the α-Fe phase. When a grain boundary phase (phase such as NdCu) of 10 nm or more exists, exchange junction does not occur, and an increase in residual magnetization cannot occur.

特許文献1および2で提案されたCu等を加える手法では、加えられた3相目の粒界(Nd−Cu相等)の膜厚が大きすぎ、Feとの交換接合が成立せず、残留磁化の増大を得られないという問題点がある。   In the method of adding Cu or the like proposed in Patent Documents 1 and 2, the film thickness of the added third phase grain boundary (Nd—Cu phase or the like) is too large, and the exchange junction with Fe is not established, and residual magnetization is not established. There is a problem that it is not possible to obtain an increase.

本発明は、上記した先行技術の問題点を解決し得る、高磁化残留と高保磁力を兼ね備えたNdFeB磁石の製法を提供することを目的とする。   An object of the present invention is to provide a method for producing an NdFeB magnet having both high magnetization remanence and high coercive force, which can solve the above-described problems of the prior art.

上記課題を解決するため手段として、本発明により以下のものが提供される。   As means for solving the above problems, the present invention provides the following.

(1)NdFe14B相を含んでなる磁性組織に非磁性相を接触させる工程、
前記非磁性相をその融点以上の温度まで加熱する工程、および
前記非磁性相を前記磁性組織に粒界拡散させる工程を含んでなり、
ここで前記NdFe14B相を含んでなる磁性組織の少なくとも一部は、粒子径が10〜300nmのナノ結晶粒子である、磁石の製造方法。
(1) a step of bringing a nonmagnetic phase into contact with a magnetic structure comprising an Nd 2 Fe 14 B phase;
Heating the non-magnetic phase to a temperature equal to or higher than its melting point, and diffusing the non-magnetic phase into the magnetic structure.
Here, at least a part of the magnetic structure including the Nd 2 Fe 14 B phase is a nanocrystal particle having a particle diameter of 10 to 300 nm.

(2)前記NdFe14B相を含んでなる磁性組織が、α−Fe相をさらに含んでなるNdFeB/Feナノコンポジット磁性組織である、(1)に記載の方法。 (2) The method according to (1), wherein the magnetic structure comprising the Nd 2 Fe 14 B phase is an NdFeB / Fe nanocomposite magnetic structure further comprising an α-Fe phase.

(3)RxFe(100−x−y−z)ByTzの組成を有し、ここでRは1種類、または2種類以上の希土類元素、TはGa,Zn,Si,Al,Nb,Zr,Ni,Cu,Cr,Hf,Mo,P,C,Mg,Hg,Ag,Au,Coよりなる1種類以上、および、不可避不純物、2≦x<14、1≦y<10、0≦z<5である、合金の溶湯を用意する工程、および
前記合金の溶湯を急冷してリボンを得る工程、
により前記NdFe14B相を含んでなる磁性組織が調製される、(1)または(2)に記載の方法。
(3) It has a composition of RxFe (100-xyz) ByTz, where R is one kind or two or more kinds of rare earth elements, T is Ga, Zn, Si, Al, Nb, Zr, Ni , Cu, Cr, Hf, Mo, P, C, Mg, Hg, Ag, Au, Co, and inevitable impurities, 2 ≦ x <14, 1 ≦ y <10, 0 ≦ z <5 A step of preparing a molten alloy, and a step of rapidly cooling the molten alloy to obtain a ribbon,
The method according to (1) or (2), wherein a magnetic structure comprising the Nd 2 Fe 14 B phase is prepared.

(4)前記リボンを焼結して焼結体を得る工程、をさらに含んでなる(3)に記載の方法。   (4) The method according to (3), further comprising a step of sintering the ribbon to obtain a sintered body.

(5)粒界拡散された前記非磁性相の厚みが10nm以下である、(1)〜(4)のいずれか1つに記載の方法。   (5) The method according to any one of (1) to (4), wherein a thickness of the nonmagnetic phase diffused at grain boundaries is 10 nm or less.

(6)前記非磁性相がR−Mの組成を有し、ここでRは1種類、または2種類以上の希土類元素、MはGa,Zn,Si,Al,Nb,Zr,Ni,Cu,Cr,Hf,Mo,P,C,Mg,Hg,Ag,Au,よりなる1種類以上である、(1)〜(5)のいずれか1つに記載の方法。   (6) The nonmagnetic phase has a composition of RM, where R is one kind or two or more kinds of rare earth elements, M is Ga, Zn, Si, Al, Nb, Zr, Ni, Cu, The method according to any one of (1) to (5), wherein the method is one or more of Cr, Hf, Mo, P, C, Mg, Hg, Ag, Au.

(7)前記非磁性相の融点が700℃以下である、(1)〜(6)のいずれか1つに記載の方法。   (7) The method according to any one of (1) to (6), wherein the nonmagnetic phase has a melting point of 700 ° C. or lower.

(8)前記非磁性相を前記磁性組織に粒界拡散させる時間が1分以上、30分以下である、(1)〜(7)のいずれか1つに記載の方法。   (8) The method according to any one of (1) to (7), wherein the time for diffusing the nonmagnetic phase into the magnetic structure is 1 minute or longer and 30 minutes or shorter.

(9)前記非磁性相はNdCu合金である、(1)〜(8)のいずれか1つに記載の方法。   (9) The method according to any one of (1) to (8), wherein the nonmagnetic phase is an NdCu alloy.

(10)前記非磁性相はNdCu合金において、Nd含有率が50at%以上且つ82at%以下である、(9)に記載の方法。   (10) The method according to (9), wherein in the NdCu alloy, the nonmagnetic phase has an Nd content of 50 at% or more and 82 at% or less.

(11)前記磁性組織の質量を基準として、前記非磁性相は1wt%以上且つ50wt%以下の割合で粒界拡散される、(1)〜(10)のいずれか1つに記載の方法。   (11) The method according to any one of (1) to (10), wherein the nonmagnetic phase is grain boundary diffused at a ratio of 1 wt% or more and 50 wt% or less based on the mass of the magnetic structure.

図1は、非磁性相が拡散するイメージを表わした図である。FIG. 1 is a diagram showing an image in which a nonmagnetic phase diffuses. 図2は、磁性組織が、α−Fe相も含むNdFeB/Feナノコンポジット磁性組織である場合の、非磁性相が拡散するイメージを表わした図である。FIG. 2 is a diagram showing an image in which a nonmagnetic phase diffuses when the magnetic structure is an NdFeB / Fe nanocomposite magnetic structure including an α-Fe phase. 図3は、NdCu状態図である。FIG. 3 is an NdCu phase diagram. 図4は、急冷リボンとNdCu粉末の加熱経路を表わした図である。FIG. 4 is a diagram showing a heating path of the quenching ribbon and the NdCu powder. 図5は、急冷リボンとNdCu粉末を加熱する方法の概略を表わした図である。FIG. 5 is a diagram showing an outline of a method for heating the quenching ribbon and the NdCu powder. 図6は、実施例1および比較例1で得た磁石の減磁曲線を表わした図である。6 is a diagram showing demagnetization curves of the magnets obtained in Example 1 and Comparative Example 1. FIG. 図7は、実施例1および比較例1で得た磁石の保磁力の温度依存性を表わした図である。FIG. 7 is a diagram showing the temperature dependence of the coercivity of the magnets obtained in Example 1 and Comparative Example 1. 図8は、実施例1および比較例1の磁石のTEM像である。FIG. 8 is a TEM image of the magnets of Example 1 and Comparative Example 1. 図9は、NdFeB焼結体とNdCuの加熱経路を表わした図である。FIG. 9 is a diagram showing a heating path of the NdFeB sintered body and NdCu. 図10は、NdFeB焼結体とNdCuの加熱する方法の概略を表わした図である。FIG. 10 is a diagram showing an outline of a method of heating the NdFeB sintered body and NdCu. 図11は、実施例2および比較例2で得た磁石の減磁曲線を表わした図である。FIG. 11 is a diagram showing the demagnetization curves of the magnets obtained in Example 2 and Comparative Example 2. 図12は、実施例2および比較例2で得た磁石のXRD測定結果を表わした図である。FIG. 12 is a diagram showing the XRD measurement results of the magnets obtained in Example 2 and Comparative Example 2. 図13は、実施例2および比較例2で得た磁石のSEM像を表わした図である。FIG. 13 is a diagram showing SEM images of the magnets obtained in Example 2 and Comparative Example 2. 図14は、急冷リボンとNdCu粉末の加熱経路を表わした図である。FIG. 14 is a diagram showing a heating path of the quenching ribbon and the NdCu powder. 図15は、実施例3および比較例3で得た磁石の拡散時間を変化させたときの保磁力の変化率を表わした図である。FIG. 15 is a graph showing the rate of change of coercive force when the diffusion time of the magnets obtained in Example 3 and Comparative Example 3 is changed. 図16は、実施例3および比較例3で得た磁石の減曲線を表わした図である。FIG. 16 is a diagram showing a decreasing curve of the magnets obtained in Example 3 and Comparative Example 3. 図17は、急冷リボンとNdCu粉末の加熱経路を表わした図である。FIG. 17 is a diagram showing a heating path of the quenching ribbon and the NdCu powder. 図18は、比較例4および実施例4で得た磁石の減磁曲線を表わした図である。FIG. 18 is a diagram illustrating the demagnetization curves of the magnets obtained in Comparative Example 4 and Example 4. 図19は、非磁性相(NdCu)の量と保磁力を表わした図である。FIG. 19 shows the amount of nonmagnetic phase (NdCu) and the coercive force. 図20は、非磁性相(NdCu)の量が200wt%の磁石についてのSEM観察結果を表わした図である。FIG. 20 is a diagram showing the SEM observation results for a magnet having a nonmagnetic phase (NdCu) amount of 200 wt%.

本発明による磁石の製造方法の一実施態様は、以下の工程を含んでなる。
(1)NdFe14B相を含んでなる磁性組織に非磁性相を接触させる工程、
(2)前記非磁性相をその融点以上の温度まで加熱する工程、および
(3)前記非磁性相を前記磁性組織に粒界拡散させる工程。
One embodiment of the method for producing a magnet according to the present invention comprises the following steps.
(1) a step of bringing a nonmagnetic phase into contact with a magnetic structure comprising an Nd 2 Fe 14 B phase;
(2) a step of heating the nonmagnetic phase to a temperature equal to or higher than its melting point; and (3) a step of diffusing the nonmagnetic phase into the magnetic structure.

以下、各工程について詳細に説明する。   Hereinafter, each step will be described in detail.

(1)の工程で用いられる、NdFe14B相を含んでなる磁性組織は、NdFe14B相は高磁化を付与する磁性組織であって、本発明で得られる磁石のベースとなるものである。 The magnetic structure comprising the Nd 2 Fe 14 B phase used in the step (1) is a magnetic structure that imparts high magnetization to the Nd 2 Fe 14 B phase, and the base of the magnet obtained in the present invention It will be.

ここで前記NdFe14B相を含んでなる磁性組織の少なくとも一部は、粒子径が10〜300nmのナノ結晶粒子である。粒子径がこの範囲であると、単磁区粒子の割合が多くなる。単磁区とは内部に磁壁の存在しない一つの磁区のみが存在する状態のことである。単磁区粒子の集合した組織では、各磁区の磁化の変化が磁化の回転の機構によってのみ生じる。単磁区に対して、多磁区とは内部に磁壁が存在し複数の磁区が存在する状態のことである。多磁区粒子の集合した組織では、磁壁の移動による各磁区の磁化の変化も生じる。したがって、多磁区の場合よりも単磁区の場合、磁壁の移動がないので磁化の変化が生じにくく、すなわち保磁力が高くなる。
この粒子径が300nmより大きくなると、単磁区ではなくなり、固有保磁力の低下を招く。一方、この粒子サイズが10nm程度までが小さくなると、NdFe14B相が磁気特性的には等方性を示しはじめる。したがって、NdFe14B相を含んでなる磁性組織の少なくとも一部は、粒子径が10〜300nmである。
Here, at least a part of the magnetic structure including the Nd 2 Fe 14 B phase is nanocrystalline particles having a particle diameter of 10 to 300 nm. When the particle diameter is within this range, the ratio of single domain particles increases. A single magnetic domain is a state in which only one magnetic domain having no domain wall exists. In a structure in which single magnetic domain particles are aggregated, a change in magnetization of each magnetic domain occurs only by a mechanism of rotation of magnetization. In contrast to a single magnetic domain, a multiple magnetic domain is a state in which a domain wall exists and a plurality of magnetic domains exist. In a structure in which multi-domain particles are aggregated, a change in magnetization of each magnetic domain also occurs due to movement of the domain wall. Therefore, in the case of a single magnetic domain as compared with the case of multiple magnetic domains, there is no movement of the domain wall, so that the change in magnetization is difficult to occur, that is, the coercive force is increased.
When this particle diameter is larger than 300 nm, it is not a single magnetic domain, and the intrinsic coercive force is reduced. On the other hand, when the particle size is reduced to about 10 nm, the Nd 2 Fe 14 B phase starts to show isotropic magnetic properties. Therefore, at least a part of the magnetic structure including the Nd 2 Fe 14 B phase has a particle diameter of 10 to 300 nm.

NdFe14B相を含んでなる磁性組織が、α−Fe相をさらに含んでなるNdFeB/Feナノコンポジット磁性組織であってもよい。ナノコンポジット磁石とは、ナノメートルオーダーの微細な硬磁性相と軟磁性相が組織内に共存している磁石である。高飽和磁化の軟磁性相(α−Fe相)を含むことにより、高磁化がもたらされる。加えて、α−Fe相は本来軟磁性であり、保磁力は高くないが、硬磁性相(Nd−Fe−B相)との交換接合によって、高保磁力も備えたナノコンポジット磁石がもたらされる。
一般に、ナノコンポジット磁石において、NdFe14B相およびα−Fe相は、それぞれナノメートルオーダーの粒子として存在していることが求められる。例えば、NdFe14B相の粒子サイズは10〜300nm程度になっていることが好適である。これが300nmより大きくなると、単磁区ではなくなり、固有保磁力の低下を招くというような問題が発生するからである。一方、この粒子サイズが10nm程度までが小さくなると、NdFe14B相が磁気特性的には等方性を示しはじめる。したがって、通常、NdFe14B相の粒子サイズは10〜300nmに規制することが好ましい。
また、α−Fe相の粒子サイズは10〜50nm程度になっていることが好適である。これが10nmより小さい場合は、このα−Fe相は非磁性となってしまい、また50nmより大きい場合は、NdFe14B相の粒子との間での交換相互作用が劣化してしまいナノコンポジット磁石としての機能低下が起こるからである。通常、良好な交換相互作用の発現のためには、α−Fe相の粒子サイズは10〜20nmにすることが好ましい。
The magnetic structure including the Nd 2 Fe 14 B phase may be an NdFeB / Fe nanocomposite magnetic structure further including an α-Fe phase. A nanocomposite magnet is a magnet in which a fine hard magnetic phase and soft magnetic phase of nanometer order coexist in a tissue. By including a soft magnetic phase (α-Fe phase) with high saturation magnetization, high magnetization is brought about. In addition, the α-Fe phase is inherently soft magnetic and does not have a high coercive force, but exchange bonding with the hard magnetic phase (Nd—Fe—B phase) results in a nanocomposite magnet having a high coercive force.
Generally, in a nanocomposite magnet, the Nd 2 Fe 14 B phase and the α-Fe phase are each required to exist as nanometer order particles. For example, the particle size of the Nd 2 Fe 14 B phase is suitably it is in the order of 10 to 300 nm. This is because when the thickness is larger than 300 nm, a single magnetic domain is lost and a problem such as a decrease in intrinsic coercivity occurs. On the other hand, when the particle size is reduced to about 10 nm, the Nd 2 Fe 14 B phase starts to show isotropic magnetic properties. Therefore, it is usually preferable to regulate the particle size of the Nd 2 Fe 14 B phase to 10 to 300 nm.
The particle size of the α-Fe phase is preferably about 10 to 50 nm. If this is smaller than 10 nm, this α-Fe phase becomes non-magnetic, and if it is larger than 50 nm, the exchange interaction with the particles of the Nd 2 Fe 14 B phase deteriorates, resulting in a nanocomposite. This is because the function as a magnet is reduced. Usually, it is preferable that the particle size of the α-Fe phase is 10 to 20 nm in order to develop a good exchange interaction.

このNdFe14B相を含んでなる磁性組織(ナノ結晶粒子またはナノコンポジット磁性組織)は以下の工程によって調製できる。
1)RFe(100−x−y−z)の組成を有する合金の溶湯を用意する工程、および
2)前記合金の溶湯を急冷してリボンを得る工程。
This magnetic structure (nanocrystalline particle or nanocomposite magnetic structure) comprising the Nd 2 Fe 14 B phase can be prepared by the following steps.
1) R x Fe (100- x-y-z) B y T process for preparing a melt of an alloy having a composition of z, and 2) obtaining a ribbon by quenching a melt of the alloy.

まず工程1)について説明する。
ここでRは1種類、または2種類以上の希土類元素である。例えば、例えばNd,Pr,Gd,Tb,Dy,Ce,Pm,Sm,Eu,Ho,Er,Tm,Yb,Luの1種または2種以上を用いることができる。
TはGa,Zn,Si,Al,Nb,Zr,Ni,Cu,Cr,Hf,Mo,P,C,Mg,Hg,Ag,Au,Coよりなる1種類以上、および、不可避不純物である。合金材料であるため、微量の不純物が混入することは止むを得ないが、不純物量は少量であるほど好ましい。
また、組成式において、2≦x<14、1≦y<10、0≦z<5である。
Fe(100−x−y−z)の組成を有する合金を溶湯にするための溶融方式は、前記組成を有する合金の融点以上に加熱できるものであれば特に制限はない。例えば、溶融方式にはアークによる溶融、ヒーターによる溶融、高周波誘導加熱による溶融等がある。
First, step 1) will be described.
Here, R is one kind or two or more kinds of rare earth elements. For example, for example, one or more of Nd, Pr, Gd, Tb, Dy, Ce, Pm, Sm, Eu, Ho, Er, Tm, Yb, and Lu can be used.
T is one or more kinds of Ga, Zn, Si, Al, Nb, Zr, Ni, Cu, Cr, Hf, Mo, P, C, Mg, Hg, Ag, Au, and Co, and inevitable impurities. Since it is an alloy material, it is unavoidable that a small amount of impurities are mixed in, but a smaller amount of impurities is more preferable.
In the composition formula, 2 ≦ x <14, 1 ≦ y <10, and 0 ≦ z <5.
R x Fe fusion type for the alloy melt having a composition of (100-x-y-z ) B y T z is not particularly limited as long as it can be heated above the melting point of the alloy having the composition . For example, the melting method includes melting by an arc, melting by a heater, melting by high frequency induction heating, and the like.

次いで工程2)について説明する。
この合金の溶湯を急冷してリボンを得るための方法として、メルトスピニング、アトマイジング、単ロール法等がある。ここでは単ロール炉を用いて説明をする。前記組成を有する合金インゴットを単ロール炉にセットし、高周波誘導加熱で溶融させた後、その溶融している合金を回転するロールに噴射して、ロール上で急冷し、急冷リボンを得る。前記合金の溶湯は、通常不活性ガス、例えばアルゴンや窒素を使用して、噴射ノズルから噴射される。溶湯温度、噴射圧力、噴射ノズル径等は適宜調整される。
Next, step 2) will be described.
As a method for rapidly cooling a molten metal of this alloy to obtain a ribbon, there are melt spinning, atomizing, single roll method and the like. Here, a description will be given using a single roll furnace. An alloy ingot having the above composition is set in a single roll furnace and melted by high frequency induction heating, and then the molten alloy is sprayed onto a rotating roll and rapidly cooled on the roll to obtain a quenched ribbon. The molten alloy is usually injected from an injection nozzle using an inert gas such as argon or nitrogen. The molten metal temperature, injection pressure, injection nozzle diameter, and the like are adjusted as appropriate.

前記の急冷法を用いるにあたって、その種類、ロールの材質、ロールの大きさなどについては、特に限定されない。例えば、前記ロールとしては、Crメッキを施した銅製のロールを用いることが可能である。前記ロールの大きさは、製造スケールに応じて決定することが望ましい。   In using the rapid cooling method, the type, the material of the roll, the size of the roll, etc. are not particularly limited. For example, as the roll, a copper roll plated with Cr can be used. The size of the roll is preferably determined according to the production scale.

この急冷して得られたリボンを焼結して焼結体を得る工程を加えてもよい。焼結工程には、公知の焼結磁石の製造方法に用いられる手段を採用することができる。磁石の焼結・熱処理設備として、小規模生産の場合はバッチ式の真空・雰囲気焼結炉、熱処理炉を利用することができる。バッチ式炉は同じチャンバー内で温度パターンに従って加熱・冷却することができる。焼結によって焼結体の密度を上昇することにより、(i)残留磁束密度Brが高くなる、(ii)機械強度が増大する、(iii)酸化などの腐食に強くなる、などの効果が生まれる。   A step of sintering the ribbon obtained by this rapid cooling to obtain a sintered body may be added. In the sintering step, means used in a known method for producing a sintered magnet can be employed. As a magnet sintering / heat treatment facility, a batch-type vacuum / atmosphere sintering furnace or heat treatment furnace can be used for small-scale production. The batch furnace can be heated and cooled in the same chamber according to the temperature pattern. By increasing the density of the sintered body by sintering, effects such as (i) an increase in residual magnetic flux density Br, (ii) an increase in mechanical strength, and (iii) resistance to corrosion such as oxidation are produced. .

非磁性相について説明する。
非磁性相は、最終的に得られる磁石において、粒界相となり得るものである。粒界相は、NdFe14B相を含んでなる磁性組織の間に存在し、NdFe14B相を含んでなる磁性組織どうしを分離させるものである。粒界相の状況に応じて磁石の保磁力は変化しうる。例えば、NdFe14B相を含んでなる二つの磁性組織が粒界相を挟んで存在している場合、一方の磁性組織において磁化の変化があっても、粒界相の存在によって、他方の磁性組織にはその磁化の変化の影響は及びにくくなり、結果として保磁力が高まる。
The nonmagnetic phase will be described.
The nonmagnetic phase can be a grain boundary phase in the finally obtained magnet. The grain boundary phase is to separate the exists between the magnetic structure comprising Nd 2 Fe 14 B phase, the magnetic structure each other comprising Nd 2 Fe 14 B phase. The coercive force of the magnet can change depending on the situation of the grain boundary phase. For example, when two magnetic structures including an Nd 2 Fe 14 B phase exist with a grain boundary phase in between, even if there is a change in magnetization in one magnetic structure, This magnetic structure is less affected by the change in magnetization, and as a result, the coercive force is increased.

この粒界相を得るために、まず、工程(1)でNdFe14B相を含んでなる磁性組織に非磁性相を接触させる。次いで、工程(2)で非磁性相をその融点以上の温度まで加熱する。加熱された非磁性相は溶融する。次いで、工程(3)で、非磁性相を磁性組織に粒界拡散する。すなわち、溶融した非磁性相が、磁性組織との接触面から浸透して、磁性組織間に粒界相として拡散する。 In order to obtain this grain boundary phase, first, in step (1), a nonmagnetic phase is brought into contact with a magnetic structure comprising an Nd 2 Fe 14 B phase. Next, in step (2), the nonmagnetic phase is heated to a temperature equal to or higher than its melting point. The heated nonmagnetic phase melts. Next, in step (3), the nonmagnetic phase is diffused into the magnetic structure at the grain boundaries. That is, the molten nonmagnetic phase permeates from the contact surface with the magnetic structure and diffuses as a grain boundary phase between the magnetic structures.

この方法で、非磁性相を磁性組織間に粒界拡散させると、偏在した粒界相を作ることなく、粒界相が磁性組織を均質に取り囲み、保磁力を向上させることができる。また、粒界相に偏在が無いことは、粒界相の量(磁石中の体積分率)を抑制することにつながり、ひいては磁性組織の量(磁石中の体積分率)を高くすることができ、磁石の高磁化がもたらされる。   When the nonmagnetic phase is diffused between the magnetic structures by this method, the grain boundary phase uniformly surrounds the magnetic structure without forming an uneven grain boundary phase, and the coercive force can be improved. Moreover, the fact that the grain boundary phase is not unevenly distributed leads to suppression of the amount of grain boundary phase (volume fraction in the magnet), which in turn increases the amount of magnetic structure (volume fraction in the magnet). Can result in high magnetization of the magnet.

図1を用いて、非磁性相が拡散するイメージを説明する。図1の拡散前では、NdFe14B相を含んでなる磁性組織(主相)が多く、高磁化がもたらされている。粒界相も存在するが、その量は少なく、磁性組織(主相)どうしが接しているため、保磁力は高くない。この状態から、非磁性相(例えばNdCu)を粒界拡散させる。拡散させる非磁性相の量は、磁性組織(主相)の量(体積分率)を出来るだけ減らさず、且つ、非磁性相が粒界相として非磁性相が粒界相として磁性組織(主相)を十分に分断するように、適当に調整可能である。磁性相が粒界相として拡散した後では、粒界相が磁性組織(主相)を分断されている。その効果として、保磁力の向上がもたらされる。また、磁性組織の量(体積分率)を出来るだけ減らさないようにしたので、高磁化も保たれている。 An image in which the nonmagnetic phase diffuses will be described with reference to FIG. Before diffusion in FIG. 1, there are many magnetic structures (main phases) including the Nd 2 Fe 14 B phase, and high magnetization is brought about. There is also a grain boundary phase, but the amount thereof is small and the magnetic structure (main phase) is in contact with each other, so the coercive force is not high. From this state, a nonmagnetic phase (for example, NdCu) is diffused at grain boundaries. The amount of the nonmagnetic phase to be diffused does not reduce the amount (volume fraction) of the magnetic structure (main phase) as much as possible, and the nonmagnetic phase becomes the grain boundary phase and the nonmagnetic phase becomes the grain boundary phase. The phase can be adjusted appropriately so that it is sufficiently divided. After the magnetic phase diffuses as the grain boundary phase, the grain boundary phase divides the magnetic structure (main phase). As an effect, the coercive force is improved. In addition, since the amount (volume fraction) of the magnetic structure is not reduced as much as possible, high magnetization is maintained.

図2は、磁性組織が、α−Fe相も含むNdFeB/Feナノコンポジット磁性組織である場合の、非磁性相が拡散するイメージを示している。図2の拡散前(右下)では、NdFe14B相を含んでなる磁性組織(主相)とα−Fe相のみからなるNdFeB/Feナノコンポジット磁性組織が示されている。この状態から、非磁性相(例えばNdCu)を粒界拡散させる。非磁性相は、主相どうしの間、主相とα−Fe相の間、またはα−Fe相どうしの間に拡散しはじめ(図2の右中)、最終的には主相およびα−Fe相のそれぞれを分断する(図2の右上)。
この分断による効果について説明する。まず、主相どうしが分断されることにより、保磁力が向上する。加えて、主相およびα−Fe相も分断されるが、主相とα−Fe相との間の交換接合は保たれたままとすることが出来る。すなわち、ナノコンポジット磁石の特徴である、軟磁性相(α−Fe相)による高磁化の効果を保つことができる。つまり、分断された主相とα−Fe相との間の距離、すなわち粒界相の厚みを適当に調節することができ、ひいては主相とα−Fe相との間の交換接合が成立する範囲内に調節することができる。
FIG. 2 shows an image in which the nonmagnetic phase diffuses when the magnetic structure is an NdFeB / Fe nanocomposite magnetic structure that also includes an α-Fe phase. Before diffusion (lower right) in FIG. 2, a magnetic structure (main phase) including an Nd 2 Fe 14 B phase and an NdFeB / Fe nanocomposite magnetic structure including only an α-Fe phase are shown. From this state, a nonmagnetic phase (for example, NdCu) is diffused at grain boundaries. The nonmagnetic phase begins to diffuse between the main phases, between the main phase and the α-Fe phase, or between the α-Fe phases (right middle in FIG. 2), and finally the main phase and the α- Each of the Fe phases is divided (upper right in FIG. 2).
The effect of this division will be described. First, the coercive force is improved by separating the main phases. In addition, the main phase and the α-Fe phase are also separated, but the exchange junction between the main phase and the α-Fe phase can be maintained. That is, the effect of high magnetization due to the soft magnetic phase (α-Fe phase), which is a feature of the nanocomposite magnet, can be maintained. That is, the distance between the divided main phase and the α-Fe phase, that is, the thickness of the grain boundary phase can be appropriately adjusted, and as a result, an exchange junction is established between the main phase and the α-Fe phase. Can be adjusted within range.

NdFeB/Feナノコンポジット磁性組織において、NdFeB/Fe間の交換接合が成立する距離は5nm〜10nm程度と言われており、NdFeB/Fe間に存在する粒界相(非磁性相)の厚みは10nm以下であることが好ましい。粒界相(非磁性相)の厚みが10nmを超えると、NdFeB/Fe間の交換接合が成立せず、高磁化が望めないからである。また、粒界相(非磁性相)の厚みは0.5nm以上であることが好ましい。粒界相(非磁性相)の厚みが0.5nm未満であると、NdFeB/NdFeB間の交換接合を切り、磁気的な分断性を十分に向上させることが望めないからである。   In the NdFeB / Fe nanocomposite magnetic structure, the distance at which the exchange junction between NdFeB / Fe is established is said to be about 5 nm to 10 nm, and the thickness of the grain boundary phase (nonmagnetic phase) existing between NdFeB / Fe is 10 nm. The following is preferable. This is because when the thickness of the grain boundary phase (nonmagnetic phase) exceeds 10 nm, the exchange junction between NdFeB / Fe is not established and high magnetization cannot be expected. The thickness of the grain boundary phase (nonmagnetic phase) is preferably 0.5 nm or more. This is because if the thickness of the grain boundary phase (nonmagnetic phase) is less than 0.5 nm, it is not possible to cut the exchange junction between NdFeB / NdFeB and sufficiently improve the magnetic separation property.

非磁性相はR−Mの組成を有することができ、ここでRは1種類、または2種類以上の希土類元素、MはGa,Zn,Si,Al,Nb,Zr,Ni,Cu,Cr,Hf,Mo,P,C,Mg,Hg,Ag,Au,よりなる1種類以上である。   The non-magnetic phase can have a composition of R-M, where R is one or more rare earth elements, M is Ga, Zn, Si, Al, Nb, Zr, Ni, Cu, Cr, One or more kinds of Hf, Mo, P, C, Mg, Hg, Ag, Au.

これらのR−M組成物は概して融点が低く、700℃以下であってもよい。表1は、典型的なR−M組成物の融点を示したものである。   These RM compositions generally have a low melting point and may be up to 700 ° C. Table 1 shows the melting points of typical RM compositions.

工程(2)で非磁性相はその融点以上の温度まで加熱され、同時にNdFe14B相を含んでなる磁性相も加熱される。NdFe14B相を含んでなる磁性相は700℃を超える温度で加熱されると、粒子の粗大化を招き、固有保磁力の低下を招くことがある。本発明では、R−M組成物の融点が概して低いため、700℃を超えて加熱する必要がない。したがって、NdFe14B相を含んでなる磁性相の粗大化、ひいては固有保磁力の低下を防ぐことができる。 In the step (2), the nonmagnetic phase is heated to a temperature equal to or higher than its melting point, and at the same time, the magnetic phase including the Nd 2 Fe 14 B phase is also heated. When the magnetic phase comprising the Nd 2 Fe 14 B phase is heated at a temperature exceeding 700 ° C., the particles become coarse and the intrinsic coercive force may be lowered. In the present invention, since the melting point of the RM composition is generally low, it is not necessary to heat above 700 ° C. Accordingly, it is possible to prevent the magnetic phase including the Nd 2 Fe 14 B phase from becoming coarse and thus reducing the intrinsic coercive force.

また、非磁性相を前記磁性組織に粒界拡散させる時間は短時間でよい。粒界拡散させる時間は、磁性相や非磁性相の種類や性状(融点、粒径、密度等)等に応じて、適当に調整してもよい。例えば、粒界拡散させる時間の下限は10分以上、30分以上等であってもよく、粒界拡散させる時間の上限は30分以下、40分以下、50分以下、60分以下等であってもよい。拡散時間が短すぎると、例えば5分未満であると、粒界拡散が十分でなく、NdFe14B相を含んでなる磁性相を十分に分断することができず、ひいては高保磁力が得られないことがある。拡散時間が長すぎると、例えば60分超であると、粒子の粗大化を招き、固有保磁力の低下を招くことがある。 Also, the time for diffusing the nonmagnetic phase into the magnetic structure may be short. The time for grain boundary diffusion may be appropriately adjusted according to the type and properties (melting point, particle size, density, etc.) of the magnetic phase and nonmagnetic phase. For example, the lower limit of the grain boundary diffusion time may be 10 minutes or more, 30 minutes or more, and the upper limit of the grain boundary diffusion time is 30 minutes or less, 40 minutes or less, 50 minutes or less, 60 minutes or less, etc. May be. If the diffusion time is too short, for example, if it is less than 5 minutes, the grain boundary diffusion is not sufficient, and the magnetic phase containing the Nd 2 Fe 14 B phase cannot be sufficiently separated, resulting in high coercivity. It may not be possible. If the diffusion time is too long, for example, if it exceeds 60 minutes, the particles are coarsened and the intrinsic coercive force may be lowered.

非磁性相、R−MはNdCu合金であってもよい。その理由として以下が挙げられる。NdFe14B相を含んでなる磁性相の周りには、Ndを含有した粒界相が存在していることが多い。そのため、NdCu合金を粒界相として拡散した場合、既に存在しているNdを含有した粒界相との親和性が高い。また、NdCu合金の融点は520℃と低い。 The nonmagnetic phase, RM, may be an NdCu alloy. The reason is as follows. In many cases, a grain boundary phase containing Nd exists around the magnetic phase containing the Nd 2 Fe 14 B phase. Therefore, when the NdCu alloy is diffused as the grain boundary phase, the affinity with the existing grain boundary phase containing Nd is high. The melting point of the NdCu alloy is as low as 520 ° C.

さらに、NdCu合金のNd含有率は調節することができる。その場合、NdCu合金におけるNd含有率は50at%以上、且つ82at%以下にすることができる。図3のNdCu状態図によれば、その範囲のNdCu合金は、融点が700℃以下であり、同時に加熱されるNdFe14B相(磁性相)の粗大化、ひいては固有保磁力の低下を防ぐことができる。 Furthermore, the Nd content of the NdCu alloy can be adjusted. In that case, the Nd content in the NdCu alloy can be 50 at% or more and 82 at% or less. According to the NdCu phase diagram of FIG. 3, the NdCu alloy in that range has a melting point of 700 ° C. or less, and the Nd 2 Fe 14 B phase (magnetic phase) that is heated at the same time becomes coarse, and as a result, the intrinsic coercive force decreases. Can be prevented.

粒界拡散される非磁性相の質量比率(磁性組織の質量を基準とする)は適当に調節することができる。非磁性相の質量比率の下限値は1wt%以上、2wt%以上、3wt%以上、5wt%以上、10wt%以上、20wt%以上等であってもよい。非磁性相の質量比率の上限値は、100wt%以下、80wt%以下、70wt%以下、60wt%以下、50wt%以下等としてもよい。非磁性相の質量比率が低すぎると、例えば1wt%未満では、粒界拡散が十分でなく、NdFe14B相を含んでなる磁性相を十分に分断することができず、ひいては高保磁力が得られないことがある。非磁性相の質量比率が高すぎると、例えば100wt%超では、NdFe14B相を含んでなる磁性相の質量比率が相対的に低く、高磁化が得られない。 The mass ratio of the nonmagnetic phase diffused at the grain boundary (based on the mass of the magnetic structure) can be appropriately adjusted. The lower limit of the mass ratio of the nonmagnetic phase may be 1 wt% or more, 2 wt% or more, 3 wt% or more, 5 wt% or more, 10 wt% or more, 20 wt% or more, or the like. The upper limit value of the mass ratio of the nonmagnetic phase may be 100 wt% or less, 80 wt% or less, 70 wt% or less, 60 wt% or less, 50 wt% or less, or the like. If the mass ratio of the nonmagnetic phase is too low, for example, if it is less than 1 wt%, the grain boundary diffusion is not sufficient, and the magnetic phase containing the Nd 2 Fe 14 B phase cannot be sufficiently separated, and as a result, the high coercive force May not be obtained. If the mass ratio of the nonmagnetic phase is too high, for example, if it exceeds 100 wt%, the mass ratio of the magnetic phase including the Nd 2 Fe 14 B phase is relatively low, and high magnetization cannot be obtained.

以下、本発明の実施例を示す。   Examples of the present invention will be described below.

実施例1
(1)急冷リボン(磁性組織)の調製
Nd、Fe、B、Ga、AlおよびCuの原子数比が13.3:80.2:5.9:0.3:0.2:0.1の割合になるように原料を所定量秤量し、アーク溶解炉にて合金インゴットを作製した。次いで、表2に示す単ロール炉にて合金インゴットを高周波で溶解し、表2に示す単ロール炉使用条件で銅ロールに噴射し、Nd13.3Fe80.25.9Ga0.3Al0.2Cu0.1組成の急冷リボンを作製した。
Example 1
(1) Preparation of quenched ribbon (magnetic structure) The atomic ratio of Nd, Fe, B, Ga, Al and Cu is 13.3: 80.2: 5.9: 0.3: 0.2: 0.1 The raw material was weighed in a predetermined amount so that the ratio was as follows, and an alloy ingot was produced in an arc melting furnace. Next, the alloy ingot was melted at a high frequency in a single roll furnace shown in Table 2, and sprayed onto a copper roll under the single roll furnace use conditions shown in Table 2, and Nd 13.3 Fe 80.2 B 5.9 Ga 0. A quenched ribbon having a composition of 3 Al 0.2 Cu 0.1 was prepared.

(2)非磁性相の粒界拡散
得られたNd13.3Fe80.25.9Ga0.3Al0.2Cu0.1急冷リボンを、NdCu粉末(Nd70Cu30(at%))とともに、加熱した。加熱は、図4の加熱経路に従って行った。図5に、急冷リボンとNdCu粉末を加熱する方法の概略を示している。加熱を通じて、NdCu粉末(非磁性相)が溶融し、急冷リボン(磁性組織)の中に粒界拡散し、実施例1の磁石を得た。
(2) Grain boundary diffusion of nonmagnetic phase The obtained Nd 13.3 Fe 80.2 B 5.9 Ga 0.3 Al 0.2 Cu 0.1 quenching ribbon was treated with NdCu powder (Nd 70 Cu 30 (at %)) And heated. Heating was performed according to the heating path of FIG. FIG. 5 shows an outline of a method for heating the quenching ribbon and the NdCu powder. Through heating, the NdCu powder (nonmagnetic phase) was melted and diffused into the quenching ribbon (magnetic structure) to obtain the magnet of Example 1.

(3)磁気特性評価、電子顕微鏡観察
得られた磁石を回収し、その磁気特性をVSM(Lake Shorc社製)で評価した。VSMとは、試料振動型磁力計(Vibrating Sample Magnetometer)のことであり、均一磁場中においた試料を一定の周波数・振幅で振動させ、試料近辺に配置した検出コイルに誘起される起電力をロックインアンプを用いて検出することにより、試料の磁化特性を測定する装置である。また、得られた磁石組織観察も、電子顕微鏡(SEMおよび/またはTEM)により実施した。
(3) Magnetic property evaluation and electron microscope observation The obtained magnets were collected, and their magnetic properties were evaluated by VSM (manufactured by Lake Shorc). VSM is a vibrating sample magnetometer, which vibrates a sample in a uniform magnetic field with a certain frequency and amplitude, and locks the electromotive force induced in the detection coil placed near the sample. It is an apparatus that measures the magnetization characteristics of a sample by detecting using an in-amplifier. Moreover, the obtained magnetic structure observation was also implemented with the electron microscope (SEM and / or TEM).

(4)比較例1
実施例1と同様の急冷リボンを調製した。実施例1との相違は、NdCu粉末(非磁性相)の拡散は行わなかったことである。得られた急冷リボンについて、実施例1と同様に、磁気特性評価(VSM分析)、電子顕微鏡観察を実施した。
(4) Comparative Example 1
A quenched ribbon similar to that of Example 1 was prepared. The difference from Example 1 is that NdCu powder (nonmagnetic phase) was not diffused. The obtained quenched ribbon was subjected to magnetic property evaluation (VSM analysis) and electron microscope observation in the same manner as in Example 1.

(5)結果
・磁気特性評価(VSM分析)
実施例1および比較例1の磁気特性評価結果を図6および図7に示す。図6は、室温(25℃)における実施例1および比較例1で得た磁石の減磁曲線のグラフである。室温(25℃)における保磁力は、比較例1の非磁性相の拡散処理をしなかった磁石で16.7kOeだったが、実施例1の非磁性相の拡散処理をした磁石では23.3kOeまで増加した。図7は、実施例1および比較例1で得た磁石の保磁力の温度依存性を示したグラフである。室温(25℃)から170℃の範囲で、実施例1の磁石は、比較例1の磁石よりも高い保磁力を示した。
・電子顕微鏡観察
図8に、実施例1および比較例1の磁石のTEM像を示した。図8から、非磁性相(NdCu)の拡散前後の様子を観察することができる。拡散前は主相(NdFeB系磁性組織)どうしが直接結合している様子が多く観察された。一方、拡散後は数nm厚さの粒界相(NdCuリッチ相)が均質に主相界面に存在し、主相どうしを分断している様子が観察された。この分断性の向上により、保磁力が向上したと考えられる。
(5) Results and magnetic property evaluation (VSM analysis)
The magnetic property evaluation results of Example 1 and Comparative Example 1 are shown in FIGS. FIG. 6 is a graph of demagnetization curves of the magnets obtained in Example 1 and Comparative Example 1 at room temperature (25 ° C.). The coercive force at room temperature (25 ° C.) was 16.7 kOe for the magnet that was not subjected to the diffusion treatment of the nonmagnetic phase of Comparative Example 1, but was 23.3 kOe for the magnet that was subjected to the diffusion treatment of the nonmagnetic phase of Example 1. Increased to. FIG. 7 is a graph showing the temperature dependence of the coercivity of the magnets obtained in Example 1 and Comparative Example 1. In the range of room temperature (25 ° C.) to 170 ° C., the magnet of Example 1 showed higher coercivity than the magnet of Comparative Example 1.
-Electron microscope observation In FIG. 8, the TEM image of the magnet of Example 1 and the comparative example 1 was shown. From FIG. 8, it is possible to observe the state before and after the diffusion of the nonmagnetic phase (NdCu). It was observed that the main phase (NdFeB magnetic structure) was directly bonded before diffusion. On the other hand, after diffusion, it was observed that a grain boundary phase (NdCu rich phase) having a thickness of several nanometers existed uniformly at the main phase interface, and the main phases were separated from each other. It is considered that the coercive force has been improved by the improvement of the division property.

実施例2
(1)急冷リボン(磁性組織)の調製
Nd、Fe、BおよびGaの原子数比が10.4:83.4:5.2:1.0の割合になるように原料を所定量秤量し、アーク溶解炉にて合金インゴットを作製した。次いで、表2に示す単ロール炉にて合金インゴットを高周波で溶解し、表2に示す単ロール炉使用条件で銅ロールに噴射し、Nd10.4Fe83.45.2Ga1.0組成の急冷リボンを作製した。
Example 2
(1) Preparation of quenched ribbon (magnetic structure) A predetermined amount of raw material was weighed so that the atomic ratio of Nd, Fe, B and Ga was 10.4: 83.4: 5.2: 1.0. An alloy ingot was produced in an arc melting furnace. Next, the alloy ingot was melted at a high frequency in the single roll furnace shown in Table 2, and sprayed onto the copper roll under the single roll furnace use conditions shown in Table 2, and Nd 10.4 Fe 83.4 B 5.2 Ga 1. A zero- quenched ribbon was prepared.

(2)焼結体の調製
回収した急冷リボンから目視、磁選にて柱状晶組織化した急冷リボンの部分を除き、残部をビニールにつめて手で粉砕し、通電加熱焼結装置のカーボンダイスに充填した。次いで、表3の条件で焼結体を作製した。
(2) Preparation of sintered body Except the portion of the quenched ribbon that has been columnarly crystallized by visual inspection and magnetic separation from the recovered rapidly cooled ribbon, the remaining portion is filled with vinyl and pulverized by hand, and used as a carbon die for an electric heating and sintering apparatus. Filled. Subsequently, the sintered compact was produced on the conditions of Table 3.

得られたNd10.4Fe83.45.2Ga1.0焼結体を回収し、所定寸法(およそ2x2x2mm)に切断した。 The obtained Nd 10.4 Fe 83.4 B 5.2 Ga 1.0 sintered body was recovered and cut into a predetermined dimension (approximately 2 × 2 × 2 mm).

(3)非磁性相の粒界拡散
切断したNd10.4Fe83.45.2Ga1.0焼結体を、NdCu粉末(Nd70Cu30(at%))とともに、加熱した。加熱は、図9の加熱経路に従って行った。図10に、焼結体とNdCu粉末を加熱する方法の概略を示している。加熱を通じて、NdCu粉末(非磁性相)が溶融し、焼結体(磁性組織)の中に粒界拡散し、実施例2の磁石を得た。
(3) Grain boundary diffusion of non-magnetic phase The cut Nd 10.4 Fe 83.4 B 5.2 Ga 1.0 sintered body was heated together with NdCu powder (Nd 70 Cu 30 (at%)). Heating was performed according to the heating path of FIG. FIG. 10 shows an outline of a method for heating the sintered body and the NdCu powder. Through heating, the NdCu powder (nonmagnetic phase) was melted and diffused at the grain boundaries in the sintered body (magnetic structure) to obtain the magnet of Example 2.

(4)磁気特性評価、XRD分析、電子顕微鏡観察
得られた磁石を回収し、その磁気特性をVSM(Lake Shorc社製)で評価した。また、得られた磁石のXRD分析も行った。また、得られた磁石組織観察も、電子顕微鏡(SEMおよび/またはTEM)により実施した。
(4) Magnetic property evaluation, XRD analysis, electron microscope observation The obtained magnets were collected, and their magnetic properties were evaluated by VSM (manufactured by Lake Shorc). Moreover, the XRD analysis of the obtained magnet was also performed. Moreover, the obtained magnetic structure observation was also implemented with the electron microscope (SEM and / or TEM).

(5)比較例2
実施例2と同様の焼結体を調製した。実施例2との相違は、NdCu粉末(非磁性相)の拡散は行わなかったことである。得られた比較例2の磁石について、実施例2と同様に、磁気特性評価(VSM分析)、XRD分析、電子顕微鏡観察を実施した。
(5) Comparative Example 2
A sintered body similar to that of Example 2 was prepared. The difference from Example 2 is that the NdCu powder (nonmagnetic phase) was not diffused. About the obtained magnet of the comparative example 2, similarly to Example 2, magnetic property evaluation (VSM analysis), XRD analysis, and electron microscope observation were implemented.

(6)結果
・磁気特性評価(VSM分析)
実施例2および比較例2の磁気特性評価結果を図11に示す。図11は、比較例2および実施例2で得た磁石、すなわち粒界相を拡散させる前とさせた後の磁石の減磁曲線のグラフである。拡散後の磁石(実施例2)は拡散前の磁石(比較例2)に比べ保磁力が向上した(5.17kOe→8.16kOe)。これは、非磁性相(NdCu)が粒界拡散し、主相(NdFeB/Fe系ナノコンポジット組織)間を効果的に分断したためと考えられる。
磁化に関して、実施例2および比較例2の間で残留磁化率(Mr/Ms)は変化しなかった。これは、非磁性相(NdCu)が硬磁性相(NdFeB系組織)と軟磁性相(Fe系組織)の間には存在しないか、または存在するとしても十分に薄く、軟磁性相(Fe系組織)の磁気スピンを支えられる程度の交換接合を保っていると考えられる。
・XRD分析
図12に、拡散後の磁石(実施例2)および拡散前の磁石(比較例2)のXRD測定結果を示す。拡散前に見られなかった結晶質のNdのピークが拡散後に観察された。すなわち、拡散後の磁石が、NdFeB系組織、Fe系組織、Ndリッチ相の3相組織を有することが分かった。
・電子顕微鏡観察
図13に、実施例2および比較例2の磁石のSEM像を示した。図13から、非磁性相(NdCu)の拡散前後の様子を観察することができる。拡散前はNdFeB系組織(灰色部)、Fe系組織(黒色部)の2相組織である様子が観察された。一方、拡散後は、Ndと考えられる粒界相(白色部)が確認された。
(6) Results and magnetic property evaluation (VSM analysis)
The magnetic property evaluation results of Example 2 and Comparative Example 2 are shown in FIG. FIG. 11 is a graph of the demagnetization curve of the magnet obtained in Comparative Example 2 and Example 2, that is, the magnet before and after the grain boundary phase is diffused. The magnet after diffusion (Example 2) had an improved coercive force (5.17 kOe → 8.16 kOe) compared to the magnet before diffusion (Comparative Example 2). This is presumably because the nonmagnetic phase (NdCu) diffused at the grain boundaries and effectively divided the main phase (NdFeB / Fe nanocomposite structure).
Regarding magnetization, the residual magnetic susceptibility (Mr / Ms) did not change between Example 2 and Comparative Example 2. This is because the nonmagnetic phase (NdCu) does not exist between the hard magnetic phase (NdFeB system structure) and the soft magnetic phase (Fe system structure), or if it exists, it is sufficiently thin, and the soft magnetic phase (Fe system structure) It is thought that the exchange junction that can support the magnetic spin of the tissue is maintained.
-XRD analysis In FIG. 12, the XRD measurement result of the magnet after diffusion (Example 2) and the magnet before diffusion (Comparative Example 2) is shown. A crystalline Nd peak that was not seen before diffusion was observed after diffusion. That is, it was found that the magnet after diffusion has a three-phase structure of NdFeB structure, Fe structure, and Nd-rich phase.
-Electron microscope observation In FIG. 13, the SEM image of the magnet of Example 2 and the comparative example 2 was shown. From FIG. 13, it is possible to observe the state before and after the diffusion of the nonmagnetic phase (NdCu). Before diffusion, a two-phase structure of NdFeB structure (gray part) and Fe system structure (black part) was observed. On the other hand, after the diffusion, a grain boundary phase (white part) considered to be Nd was confirmed.

実施例3
(1)急冷リボン(磁性組織)の調製
Nd、Fe、BおよびAlの原子数比が14.76:78.55:5.69:1.0の割合になるように原料を所定量秤量し、アーク溶解炉にて合金インゴットを作製した。次いで、表2に示す単ロール炉にて合金インゴットを高周波で溶解し、表2に示す単ロール炉使用条件で銅ロールに噴射し、Nd14.76Fe78.555.69Al1.0組成の急冷リボンを作製した。
Example 3
(1) Preparation of quenching ribbon (magnetic structure) A predetermined amount of raw material is weighed so that the atomic ratio of Nd, Fe, B and Al is 14.76: 78.55: 5.69: 1.0. An alloy ingot was produced in an arc melting furnace. Next, the alloy ingot was melted at a high frequency in a single roll furnace shown in Table 2, and injected into a copper roll under the single roll furnace use conditions shown in Table 2. Nd 14.76 Fe 78.55 B 5.69 Al 1. A zero- quenched ribbon was prepared.

(2)非磁性相の粒界拡散(拡散時間の保磁力への影響)
得られたNd14.76Fe78.555.69Al1.0急冷リボンを、NdCu粉末(Nd70Cu30(at%))とともに、加熱した。加熱は、図14の加熱経路に従って行った。加熱時間を0〜60分の間で変化させたことを除けば、急冷リボンとNdCu粉末を加熱する方法は、実施例1と同様とした(図5を参照)。加熱を通じて、NdCu粉末(非磁性相)が溶融し、急冷リボン(磁性組織)の中に粒界拡散し、実施例3の磁石を得た。
(2) Grain boundary diffusion of nonmagnetic phase (effect of diffusion time on coercivity)
The resulting Nd 14.76 Fe 78.55 B 5.69 Al 1.0 quench ribbon was heated with NdCu powder (Nd 70 Cu 30 (at%)). Heating was performed according to the heating path of FIG. Except that the heating time was changed between 0 and 60 minutes, the method of heating the quenched ribbon and NdCu powder was the same as in Example 1 (see FIG. 5). Through heating, the NdCu powder (nonmagnetic phase) was melted and diffused into the quenching ribbon (magnetic structure) to obtain a magnet of Example 3.

(3)磁気特性評価
得られた磁石を回収し、その磁気特性をVSM(Lake Shorc社製)で評価した。
(3) Magnetic property evaluation The obtained magnet was collect | recovered and the magnetic property was evaluated by VSM (made by Lake Shorc).

(4)比較例3
実施例3と同様の急冷リボンを調製した。実施例3との相違は、NdCu粉末(非磁性相)の拡散は行わなかったことである。すなわち、比較例3の磁石は、拡散時間0分の磁石である。得られた磁石(急冷リボン)について、実施例3と同様に、磁気特性評価(VSM分析)を実施した。
(4) Comparative Example 3
A quench ribbon similar to that of Example 3 was prepared. The difference from Example 3 is that NdCu powder (nonmagnetic phase) was not diffused. That is, the magnet of Comparative Example 3 is a magnet having a diffusion time of 0 minutes. The obtained magnet (quenched ribbon) was evaluated for magnetic properties (VSM analysis) in the same manner as in Example 3.

(5)結果
・磁気特性評価(VSM分析)
実施例3および比較例3の磁気特性評価結果を図15および図16に示す。図15は、拡散時間を変化させたときの保磁力の変化率を示した。図15の保磁力の変化率に関して、拡散時間0分のものを基準、すなわち100%とした。非磁性相(NdCu)を拡散させる磁性組織が熱間塑性加工体(強加工体)である場合、非磁性相(NdCu)の拡散に60分程度の時間が必要と考えられていた。しかし、磁性組織が急冷リボンである場合、急冷リボンの厚みが薄く、20〜100μmであるため、非磁性相(NdCu)の拡散に要する時間は10分でもよいことが判明した。長時間の拡散(加熱)処理では、磁性組織の粗大化を招くおそれがあるが、このような短時間の拡散(加熱)処理によって粗大化が回避でき、このことは向上した保磁力の維持につながる。拡散時間が短い場合、例えば5分以下では、非磁性相(NdCu)が均質かつ十分に拡散することができず、すなわち磁性組織を均質かつ十分に分断できず、保磁力が向上しなかったと考えられる。
図16は、30分の拡散を行った実施例3の磁石と、拡散を行っていない比較例3の磁石の、減磁曲線のグラフである。非磁性相を30分拡散処理した実施例3の磁石の保磁力は、非磁性相の拡散処理をしなかった比較例3の磁石より、明らかに増加することが判明した。
(5) Results and magnetic property evaluation (VSM analysis)
The magnetic property evaluation results of Example 3 and Comparative Example 3 are shown in FIGS. FIG. 15 shows the change rate of the coercive force when the diffusion time is changed. With respect to the change rate of the coercive force in FIG. When the magnetic structure for diffusing the nonmagnetic phase (NdCu) is a hot plastic processed body (strongly processed body), it has been considered that it takes about 60 minutes to diffuse the nonmagnetic phase (NdCu). However, when the magnetic structure is a quenching ribbon, the quenching ribbon has a thin thickness of 20 to 100 μm, and thus it has been found that the time required for diffusion of the nonmagnetic phase (NdCu) may be 10 minutes. Long-time diffusion (heating) treatment may lead to coarsening of the magnetic structure, but such short-time diffusion (heating) treatment can avoid coarsening, which helps maintain an improved coercivity. Connected. If the diffusion time is short, for example, 5 minutes or less, the nonmagnetic phase (NdCu) cannot be uniformly and sufficiently diffused, that is, the magnetic structure cannot be homogeneously and sufficiently divided, and the coercive force is not improved. It is done.
FIG. 16 is a graph of demagnetization curves of the magnet of Example 3 that performed diffusion for 30 minutes and the magnet of Comparative Example 3 that did not perform diffusion. It was found that the coercive force of the magnet of Example 3 in which the nonmagnetic phase was diffusion-treated for 30 minutes was clearly increased as compared with the magnet of Comparative Example 3 in which the nonmagnetic phase was not diffused.

実施例4
(1)急冷リボン(磁性組織)の調製
Nd、Fe、およびBの原子数比が10.6:84.1:5.3の割合になるように原料を所定量秤量し、アーク溶解炉にて合金インゴットを作製した。次いで、表2に示す単ロール炉にて合金インゴットを高周波で溶解し、表2に示す単ロール炉使用条件で銅ロールに噴射し、Nd10.6Fe84.15.3組成の急冷リボンを作製した。
Example 4
(1) Preparation of quenching ribbon (magnetic structure) A predetermined amount of raw materials are weighed so that the atomic ratio of Nd, Fe, and B is 10.6: 84.1: 5.3, and the resultant is put into an arc melting furnace. An alloy ingot was prepared. Next, the alloy ingot was melted at a high frequency in the single roll furnace shown in Table 2, and sprayed onto the copper roll under the single roll furnace use conditions shown in Table 2, to rapidly cool the Nd 10.6 Fe 84.1 B 5.3 composition. A ribbon was made.

(2)非磁性相の粒界拡散(拡散量の保磁力への影響)
得られたNd10.6Fe84.15.3急冷リボンを、Nd70Cu30(at%)組成の合金粉末とともに、550℃で0.5時間加熱した。加熱は、図17の加熱経路に従って行った。NdCu粉末の量を変化させたことを除けば、焼結体とNdCu粉末を加熱する方法は、実施例1と同様とした(図5参照)。NdCu粉末の量は、焼結体(磁性体)の質量を基準として、1wt%から50wt%まで変化させた。加熱を通じて、NdCu粉末(非磁性相)が溶融し、焼結体(磁性組織)の中に粒界拡散し、実施例4の磁石を得た。
(2) Grain boundary diffusion of nonmagnetic phase (effect of diffusion amount on coercive force)
The obtained Nd 10.6 Fe 84.1 B 5.3 quenched ribbon was heated at 550 ° C. for 0.5 hour together with an alloy powder having a Nd 70 Cu 30 (at%) composition. Heating was performed according to the heating path of FIG. Except for changing the amount of NdCu powder, the method of heating the sintered body and the NdCu powder was the same as in Example 1 (see FIG. 5). The amount of NdCu powder was varied from 1 wt% to 50 wt% based on the mass of the sintered body (magnetic body). Through heating, the NdCu powder (non-magnetic phase) melted and diffused at the grain boundaries in the sintered body (magnetic structure) to obtain the magnet of Example 4.

(3)磁気特性評価、電子顕微鏡観察
得られた磁石を回収し、その磁気特性をVSM(Lake Shorc社製)で評価した。また、得られた磁石組織観察も、電子顕微鏡(SEMおよび/またはTEM)により実施した。
(3) Magnetic property evaluation and electron microscope observation The obtained magnets were collected, and their magnetic properties were evaluated by VSM (manufactured by Lake Shorc). Moreover, the obtained magnetic structure observation was also implemented with the electron microscope (SEM and / or TEM).

(4)比較例4
実施例4と同様の焼結体を調製した。実施例4との相違は、NdCu粉末(非磁性相)の量を1wt%から50wt%の範囲外としたことである。得られた比較例4の磁石について、実施例4と同様に、磁気特性評価(VSM分析)、電子顕微鏡観察を実施した。
(4) Comparative Example 4
A sintered body similar to that of Example 4 was prepared. The difference from Example 4 is that the amount of NdCu powder (non-magnetic phase) is outside the range of 1 wt% to 50 wt%. About the obtained magnet of the comparative example 4, similarly to Example 4, magnetic characteristic evaluation (VSM analysis) and electron microscope observation were implemented.

(5)結果
・磁気特性評価(VSM分析)/電子顕微鏡観察
実施例4および比較例4の磁気特性評価結果を図18、図19に示す。図18は、比較例4および実施例4で得た磁石、すなわち非磁性相(NdCu)の量を変化させた磁石の減磁曲線のグラフである。非磁性相(NdCu)の量の増加とともに、保磁力も向上した。図19に、非磁性相(NdCu)の量と保磁力のグラフを示す。しかしながら、非磁性相(NdCu)の量が100wt%以上では、減磁曲線が階段状になってしまった(図18参照)。これに関して、図20は、非磁性相(NdCu)の量が200wt%の磁石についてのSEM観察結果である。図20から、ナノコンポジット組成の急冷リボン組織(磁性組織)が、拡散させたNdCu合金に遊離している様子が観察される。これにより、階段状の特異な減磁曲線が現れたものと考えられる。また、非磁性相(NdCu)の量が多くなると、相対的に磁性相の量が少なくなり、磁化が低下する。これらの点を考慮して、非磁性相(NdCu)の量は、50wt%以下としてもよい。
(5) Results / Magnetic Characteristic Evaluation (VSM Analysis) / Electron Microscope Observation The magnetic characteristic evaluation results of Example 4 and Comparative Example 4 are shown in FIGS. FIG. 18 is a graph of a demagnetization curve of the magnet obtained in Comparative Example 4 and Example 4, that is, a magnet in which the amount of the nonmagnetic phase (NdCu) is changed. As the amount of the nonmagnetic phase (NdCu) increased, the coercive force also improved. FIG. 19 shows a graph of the amount of nonmagnetic phase (NdCu) and the coercive force. However, when the amount of the nonmagnetic phase (NdCu) is 100 wt% or more, the demagnetization curve is stepped (see FIG. 18). In this regard, FIG. 20 shows SEM observation results for a magnet having a nonmagnetic phase (NdCu) amount of 200 wt%. From FIG. 20, it is observed that the rapidly cooled ribbon structure (magnetic structure) of the nanocomposite composition is released in the diffused NdCu alloy. As a result, it is considered that a step-like unique demagnetization curve appeared. Further, when the amount of the nonmagnetic phase (NdCu) is increased, the amount of the magnetic phase is relatively decreased and the magnetization is lowered. Considering these points, the amount of the nonmagnetic phase (NdCu) may be 50 wt% or less.

Claims (9)

NdFe14B相を含んでなる磁性組織に非磁性相を接触させる工程、
前記非磁性相をその融点以上の温度で700℃以下まで加熱する工程、および
前記非磁性相を前記磁性組織に粒界拡散させる工程を含んでなり、
ここで前記NdFe14B相を含んでなる磁性組織の少なくとも一部は、粒子径が10〜300nmのナノ結晶粒子であり、
前記磁性組織の質量を基準として、前記非磁性相は1wt%以上且つ50wt%以下の割合で粒界拡散され、
ここで、前記Nd Fe 14 B相を含んでなる磁性組織が、α−Fe相をさらに含んでなるNdFeB/Feナノコンポジット磁性組織である、磁石の製造方法。
Contacting a non-magnetic phase with a magnetic structure comprising an Nd 2 Fe 14 B phase;
Heating the nonmagnetic phase to a temperature equal to or higher than its melting point up to 700 ° C. , and diffusing the nonmagnetic phase into the magnetic structure.
Here, at least a part of the magnetic structure comprising the Nd 2 Fe 14 B phase is nanocrystal particles having a particle diameter of 10 to 300 nm,
Based on the mass of the magnetic structure, the nonmagnetic phase is grain boundary diffused at a ratio of 1 wt% or more and 50 wt% or less,
Here, the Nd 2 Fe 14 B phase comprising at magnetic tissue, Ru NdFeB / Fe nanocomposite magnetic tissue der further comprise an alpha-Fe phase, the production method of a magnet.
RxFe(100−x−y−z)ByTzの組成を有し、ここでRは1種類、または2種類以上の希土類元素、TはGa,Zn,Si,Al,Nb,Zr,Ni,Cu,Cr,Hf,Mo,P,C,Mg,Hg,Ag,Au,Coよりなる1種類以上、および、不可避不純物、2≦x<14、1≦y<10、0≦z<5である、合金の溶湯を用意する工程、および
前記合金の溶湯を急冷してリボンを得る工程、
により前記NdFe14B相を含んでなる磁性組織が調製される、請求項1記載の方法。
RxFe (100-xyz) ByTz, where R is one type or two or more types of rare earth elements, T is Ga, Zn, Si, Al, Nb, Zr, Ni, Cu, One or more kinds of Cr, Hf, Mo, P, C, Mg, Hg, Ag, Au, Co, and inevitable impurities, 2 ≦ x <14, 1 ≦ y <10, 0 ≦ z <5. Preparing a molten alloy, and rapidly cooling the molten alloy to obtain a ribbon;
The method according to claim 1 , wherein a magnetic structure comprising the Nd 2 Fe 14 B phase is prepared.
前記リボンを焼結して焼結体を得る工程、をさらに含んでなる請求項に記載の方法。 The method according to claim 2 , further comprising the step of sintering the ribbon to obtain a sintered body. 粒界拡散された前記非磁性相の厚みが10nm以下である、請求項1〜のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3 , wherein a thickness of the nonmagnetic phase subjected to grain boundary diffusion is 10 nm or less. 前記非磁性相がR−Mの組成を有し、ここでRは1種類、または2種類以上の希土類元素、MはGa,Zn,Si,Al,Nb,Zr,Ni,Cu,Cr,Hf,Mo,P,C,Mg,Hg,Ag,Au,よりなる1種類以上である、請求項1〜のいずれか1項に記載の方法。 The nonmagnetic phase has a composition of R-M, where R is one kind or two or more kinds of rare earth elements, M is Ga, Zn, Si, Al, Nb, Zr, Ni, Cu, Cr, Hf. , Mo, P, C, Mg , Hg, Ag, Au, is more becomes 1 or more, the method according to any one of claims 1-4. 前記非磁性相の融点が700℃以下である、請求項1〜のいずれか1項に記載の方法。 The melting point of the non-magnetic phase is 700 ° C. or less, The method according to any one of claims 1-5. 前記非磁性相を前記磁性組織に粒界拡散させる時間が10分以上、60分以下である、請求項1〜のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6 , wherein a time during which the nonmagnetic phase is diffused into the magnetic structure is 10 minutes or more and 60 minutes or less. 前記非磁性相はNdCu合金である、請求項1〜のいずれか1項に記載の方法。 The nonmagnetic phase is NdCu alloy, the method according to any one of claims 1-7. 前記非磁性相はNdCu合金において、Nd含有率が50at%以上且つ82at%以下である、請求項に記載の方法。 The method according to claim 8 , wherein the nonmagnetic phase is an NdCu alloy and the Nd content is 50 at% or more and 82 at% or less.
JP2011102911A 2011-05-02 2011-05-02 Manufacturing method of high coercive force NdFeB magnet Expired - Fee Related JP5754232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102911A JP5754232B2 (en) 2011-05-02 2011-05-02 Manufacturing method of high coercive force NdFeB magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011102911A JP5754232B2 (en) 2011-05-02 2011-05-02 Manufacturing method of high coercive force NdFeB magnet

Publications (2)

Publication Number Publication Date
JP2012234985A JP2012234985A (en) 2012-11-29
JP5754232B2 true JP5754232B2 (en) 2015-07-29

Family

ID=47435021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102911A Expired - Fee Related JP5754232B2 (en) 2011-05-02 2011-05-02 Manufacturing method of high coercive force NdFeB magnet

Country Status (1)

Country Link
JP (1) JP5754232B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180046A (en) * 1984-09-28 1986-04-23 Eiken Kizai Kk Sputum gathering cell method by dithiothreitol
JP5732877B2 (en) * 2011-02-04 2015-06-10 株式会社豊田中央研究所 Magnetic material and method for producing the same
DE112012004742T5 (en) 2011-11-14 2014-10-23 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and process for its production
US9818520B2 (en) 2012-01-04 2017-11-14 Toyota Jidosha Kabushiki Kaisha Rare-earth nanocomposite magnet
JP5742813B2 (en) 2012-01-26 2015-07-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP5790617B2 (en) 2012-10-18 2015-10-07 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP2014086529A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Rare-earth sintered magnet and manufacturing method therefor
JP5870914B2 (en) * 2012-12-25 2016-03-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6265368B2 (en) 2013-04-22 2018-01-24 昭和電工株式会社 R-T-B rare earth sintered magnet and method for producing the same
CN109300640B (en) 2013-06-05 2021-03-09 丰田自动车株式会社 Rare earth magnet and method for producing same
JP5915637B2 (en) * 2013-12-19 2016-05-11 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6003920B2 (en) 2014-02-12 2016-10-05 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6021837B2 (en) * 2014-02-26 2016-11-09 三菱電機株式会社 Rare earth permanent magnet and manufacturing method thereof
JP6007945B2 (en) * 2014-06-05 2016-10-19 トヨタ自動車株式会社 Manufacturing method of nanocomposite magnet
DE102014218369A1 (en) * 2014-09-12 2016-03-31 Siemens Aktiengesellschaft Electrochemical deposition of neodymium to increase the coercivity of rare earth permanent magnets
US10950373B2 (en) 2014-12-08 2021-03-16 Lg Electronics Inc. Hot-pressed and deformed magnet comprising nonmagnetic alloy and method for manufacturing same
JP6332006B2 (en) * 2014-12-12 2018-05-30 トヨタ自動車株式会社 Rare earth magnet powder and method for producing the same
CN104795228B (en) * 2015-01-21 2017-11-28 北京科技大学 A kind of method that grain boundary decision Dy Cu alloys prepare high-performance neodymium-iron-boron magnet
CN104851545B (en) * 2015-05-21 2017-11-17 王怡 A kind of permanent-magnet material preparation method with grain boundary decision layer
CN105895358A (en) * 2016-06-15 2016-08-24 北京科技大学 Method for preparing NdFeB magnet through grain boundary diffusion permeation
CN108987013A (en) * 2018-06-21 2018-12-11 宁波招宝磁业有限公司 The method for preparing the sintered Nd-Fe-B permanent magnet of high-coercive force

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093731A (en) * 2003-09-17 2005-04-07 Daido Steel Co Ltd Anisotropic magnet, its manufacturing method, and motor using it
JP5093485B2 (en) * 2007-03-16 2012-12-12 信越化学工業株式会社 Rare earth permanent magnet and manufacturing method thereof
JP5739093B2 (en) * 2009-09-10 2015-06-24 株式会社豊田中央研究所 Rare earth magnet, manufacturing method thereof, and magnet composite member

Also Published As

Publication number Publication date
JP2012234985A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP6229783B2 (en) Method for producing microcrystalline alloy intermediate product and microcrystalline alloy intermediate product
JP6274216B2 (en) R-T-B system sintered magnet and motor
JP6330813B2 (en) R-T-B system sintered magnet and motor
TWI673729B (en) R-Fe-B based sintered magnet and manufacturing method thereof
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP6848735B2 (en) RTB series rare earth permanent magnet
JP2011049441A (en) Method for manufacturing r-t-b based permanent magnet
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP5757394B2 (en) Rare earth permanent magnet manufacturing method
WO2021182591A1 (en) Iron base rare earth boron-based isotropic magnet alloy
JP2011049440A (en) Method for manufacturing r-t-b based permanent magnet
JP2018174314A (en) R-T-B based sintered magnet
WO2012029527A1 (en) Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor
US7390369B2 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
KR20200144853A (en) Manufacturing method of sintered magnet
JP2006249456A (en) R-fe-b-based rare earth sintered magnet and method for manufacturing the same
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
WO2024057653A1 (en) Iron base rare earth boron-based isotropic nanocomposite magnet alloy, method for producing iron base rare earth boron-based isotropic nanocomposite magnet alloy, and method for producing resin-bonded permanent magnet
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4484024B2 (en) Rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

LAPS Cancellation because of no payment of annual fees