JP4484024B2 - Rare earth sintered magnet and manufacturing method thereof - Google Patents
Rare earth sintered magnet and manufacturing method thereof Download PDFInfo
- Publication number
- JP4484024B2 JP4484024B2 JP2003382936A JP2003382936A JP4484024B2 JP 4484024 B2 JP4484024 B2 JP 4484024B2 JP 2003382936 A JP2003382936 A JP 2003382936A JP 2003382936 A JP2003382936 A JP 2003382936A JP 4484024 B2 JP4484024 B2 JP 4484024B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- sintering
- raw material
- sintered magnet
- material alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、希土類元素、遷移金属元素及びホウ素を主成分とする希土類焼結磁石及びその製造方法に関するものであり、特に、焼結の際の結晶粒成長等を抑制し磁気特性を改善するための技術に関する。 The present invention relates to a rare earth sintered magnet mainly composed of a rare earth element, a transition metal element, and boron, and a method for producing the same, and in particular, to suppress grain growth during sintering and improve magnetic characteristics. Related to technology.
希土類焼結磁石、例えばNd−Fe−B系焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であること等の利点を有することから、近年、その需要は益々拡大する傾向にある。このような状況から、Nd−Fe−B系焼結磁石の磁気特性を向上するための研究開発(例えば、特許文献1等を参照。)や、品質の高い希土類焼結磁石を製造するための製造方法の改良(例えば、特許文献2や特許文献3等を参照。)等が各方面において進められている。 Rare earth sintered magnets, for example, Nd-Fe-B based sintered magnets have advantages such as excellent magnetic properties, Nd as a main component is abundant in resources, and is relatively inexpensive. In recent years, the demand has been increasing. Under such circumstances, research and development for improving the magnetic properties of Nd—Fe—B based sintered magnets (see, for example, Patent Document 1), and manufacturing high quality rare earth sintered magnets. Improvements in manufacturing methods (see, for example, Patent Document 2 and Patent Document 3) are being promoted in various directions.
例えば、特許文献1記載の発明では、合金組成にBiを加えることで、保磁力や残留磁束密度等の磁気特性を向上させている。特許文献2記載の発明では、特定の有機溶剤で希釈した潤滑剤を合金粉末に混合することで、潤滑剤の添加による成形体強度の低下を解消するようにしている。特許文献3記載の発明では、潤滑剤を添加するタイミングを変更することで、潤滑剤添加による配向度の向上等の効果を享受しつつ、粉砕機器の損耗を低減するようにしている。
希土類焼結磁石の製造方法としては、前述の各特許文献にも記載されるように、粉末冶金法が知られており、低コストでの製造が可能なことから、広く用いられている。粉末冶金法では、先ず、原料合金インゴットを粗粉砕及び微粉砕し、粒径が数μm程度の原料合金微粉を得る。このようにして得られた原料合金微粉を静磁場中で磁場配向させ、磁場を印加した状態でプレス成形を行う。磁場中成形後、成形体を真空中、または不活性ガス雰囲気中で焼結を行う。 As a method for producing a rare earth sintered magnet, as described in the aforementioned patent documents, a powder metallurgy method is known and widely used because it can be produced at a low cost. In the powder metallurgy method, a raw material alloy ingot is first roughly pulverized and finely pulverized to obtain a raw material alloy fine powder having a particle size of about several μm. The raw material alloy fine powder thus obtained is magnetically oriented in a static magnetic field, and press molding is performed in a state where a magnetic field is applied. After molding in a magnetic field, the compact is sintered in a vacuum or in an inert gas atmosphere.
希土類焼結磁石の焼結工程では、成形体を真空、若しくはAr等の不活性雰囲気中で加熱することによって焼結反応を進行させ、高密度な焼結体とすることが行われる。この時、加熱の熱源には抵抗加熱が広く採用されている。抵抗加熱では、Mo等の高融点金属若しくは炭素からなる棒状、あるいは板状の抵抗体に通電し、焼結炉内の温度を所定の温度にしている。 In the sintering process of the rare earth sintered magnet, the compact is heated in a vacuum or an inert atmosphere such as Ar to advance the sintering reaction to obtain a high-density sintered body. At this time, resistance heating is widely adopted as a heat source for heating. In resistance heating, a rod-shaped or plate-shaped resistor made of a refractory metal such as Mo or carbon is energized, and the temperature in the sintering furnace is set to a predetermined temperature.
ところで、前述の抵抗加熱の場合、加熱温度は通電する電力に依存し、主として輻射熱を利用して成形体に熱エネルギーを供給しているため、その昇温速度は工業的に要求されるほど速くはない。このため、所望の温度に到達するまでに、これよりも低い温度に長時間晒されることになる。また、真空雰囲気の場合には、不活性ガスが存在する場合に期待できる伝導熱による温度の均一化が全く期待できず、炉内の温度制御が非常に難しい。そのため、成形体の温度にばらつきが生ずる可能性が高い。 By the way, in the case of the resistance heating described above, the heating temperature depends on the energized electric power, and heat energy is supplied to the molded body mainly using radiant heat. There is no. For this reason, before reaching a desired temperature, it is exposed to a temperature lower than this for a long time. Further, in the case of a vacuum atmosphere, it is not possible to expect a uniform temperature due to conduction heat that can be expected when an inert gas is present, and temperature control in the furnace is very difficult. Therefore, there is a high possibility that the temperature of the molded body varies.
希土類焼結磁石の焼結では、焼結温度で液相となる低融点相(副相)が溶融し、主としてNd2Fe14B化合物からなる主相粒子の表面を濡らし、成形体内の空隙を外部に排除することによって高密度化(緻密化)が実現される。同時に、焼結温度では、固相同士(粒子同士)が反応することにより、主相結晶粒の粒成長が起こる。主相結晶粒の粒成長は、相対的に大きな主相粒子が、周囲の小さな粒子を吸収する形で進行する。さらに、焼結反応が進んでくると、小さな粒子を吸収した大きな主相粒子同士が反応して、より大きな粒子が生成する。 The sintering of the rare earth sintered magnet, a low-melting phase which is a liquid phase at the sintering temperature (subphase) is melted, wet the surface of the main phase particles mainly composed of Nd 2 Fe 14 B compound, the voids of the molded body Densification (densification) is realized by eliminating the outside. At the same time, at the sintering temperature, the solid phase (particles) react with each other to cause the growth of main phase crystal grains. Grain growth of main phase crystal grains proceeds in such a manner that relatively large main phase particles absorb surrounding small particles. Furthermore, as the sintering reaction proceeds, large main phase particles that have absorbed small particles react with each other to produce larger particles.
ここで、結晶粒の大きさは、希土類焼結磁石の特性、特に保磁力に対して大きな影響を及ぼし、結晶粒のサイズが大きいと保磁力低下の要因となることから、焼結に際しては主相結晶粒の粒成長をなるべく抑えることが要求される。すなわち、希土類焼結磁石の焼結では、成形体を構成する原料合金の微粉末のサイズをできる限り維持したまま高密度化が進むことが望ましい。 Here, the size of the crystal grains has a great influence on the characteristics of the rare earth sintered magnet, particularly the coercive force, and if the crystal grain size is large, the coercive force is reduced. It is required to suppress the growth of phase crystal grains as much as possible. That is, in the sintering of rare earth sintered magnets, it is desirable to increase the density while maintaining the size of the fine powder of the raw material alloy constituting the compact as much as possible.
高密度化と粒成長の抑制という双方の目的を達成するためには、焼結時の温度と時間のパターンの制御が非常に重要となる。例えば、短時間のうちに液相が主相粒子の表面を十分に濡らすようにすることができれば、液相移動による高密度化に要する時間を短縮し、主相の粒成長を抑制することができる。液相が自由に移動できる温度と、粒成長する温度とは重複するので、制御が必要な温度と時間は、単なる焼結炉内の温度ではなく、成形体の実際の温度であることは言うまでもない。 In order to achieve both the objectives of increasing the density and suppressing the grain growth, it is very important to control the temperature and time pattern during sintering. For example, if the liquid phase can sufficiently wet the surface of the main phase particles within a short period of time, the time required for densification by liquid phase transfer can be shortened and the grain growth of the main phase can be suppressed. it can. Since the temperature at which the liquid phase can move freely and the temperature at which the grains grow are overlapped, it goes without saying that the temperature and time that need to be controlled are not just the temperatures in the sintering furnace but the actual temperatures of the compact. Yes.
このような焼結反応から考えた場合、前述の抵抗加熱では粒成長を制御した焼結温度制御をすることは難しい。抵抗加熱では、輻射熱を利用しているために、温度の制御、特に急速な昇温、降温が困難であり、また、成形体の周囲と内部とで温度差が生じ易い。その結果、高密度化と粒成長の抑制を同時に達成することが困難であるという問題がある。また、抵抗加熱では、前記の通り、所望の温度に到達するまでに、これよりも低い温度に長時間晒されることになるため、異相が発生し易いという問題もある。主相粒子の粒成長や密度の低下、異相の発生は、いずれも得られる希土類焼結磁石の磁気特性の劣化の原因となり、その制御抑制が必要である。 Considering such a sintering reaction, it is difficult to control the sintering temperature by controlling the grain growth by the resistance heating described above. In resistance heating, since radiant heat is used, it is difficult to control temperature, in particular, rapid temperature increase and decrease, and a temperature difference is easily generated between the periphery and the inside of the molded body. As a result, there is a problem that it is difficult to achieve high density and suppression of grain growth at the same time. In addition, as described above, the resistance heating is exposed to a lower temperature for a long time before reaching a desired temperature, and thus there is a problem that a heterogeneous phase is likely to occur. The growth of main phase particles, the decrease in density, and the occurrence of heterogeneous phases all cause deterioration of the magnetic properties of the obtained rare earth sintered magnet, and it is necessary to suppress their control.
本発明は、このような従来の実情に鑑みて提案されたものであり、焼結時間を短縮し、高密度化と粒成長の抑制を同時に達成することができ、異相の形成も抑制することが可能な希土類焼結磁石の製造方法を提供し、保磁力等の磁気特性に優れた希土類焼結磁石を提供することを目的とする。 The present invention has been proposed in view of such conventional circumstances, and can shorten the sintering time, simultaneously achieve higher density and suppression of grain growth, and also suppress the formation of heterogeneous phases. It is an object of the present invention to provide a method for producing a rare earth sintered magnet capable of performing the above, and to provide a rare earth sintered magnet having excellent magnetic properties such as coercive force.
上述の目的を達成するために、本発明の希土類焼結磁石は、希土類元素、遷移金属元素及びホウ素を含む原料合金微粉を成形した成形体が高周波誘導加熱により焼結されてなり、酸素含有量が2500ppm以下であり、焼結前の原料合金微粉の平均粒径rと焼結後の焼結体の結晶粒径Rの比率R/rが1.7以下であることを特徴とする。また、本発明の希土類焼結磁石の製造方法は、希土類元素、遷移金属元素及びホウ素を含む原料合金微粉を成形した成形体を焼結し、希土類焼結磁石を製造するに際し、前記原料合金微粉に含まれる酸素量を2500ppm以下とし、焼結前の原料合金微粉の平均粒径rと焼結後の焼結体の結晶粒径Rの比率R/rが1.7以下となるように高周波誘導加熱による焼結を行うことを特徴とする。
In order to achieve the above-mentioned object, the rare earth sintered magnet of the present invention is formed by sintering a compact formed from a raw material alloy fine powder containing a rare earth element, a transition metal element, and boron by high frequency induction heating. The ratio R / r of the average particle diameter r of the raw material alloy fine powder before sintering and the crystal grain diameter R of the sintered body after sintering is 1.7 or less. The method for producing a rare earth sintered magnet of the present invention, a rare earth element, when a transition metal element and a molded body formed raw material alloy powder containing boron was sintered to produce a rare earth sintered magnet, the raw material alloy powder The amount of oxygen contained in the high frequency is 2500 ppm or less, and the ratio R / r of the average grain size r of the raw material alloy fine powder before sintering and the crystal grain size R of the sintered body after sintering is 1.7 or less. It is characterized by performing sintering by induction heating.
高周波誘導加熱では、電磁誘導により導体に渦電流を発生させ、そのジュール熱で加熱する。本発明では、成形体を構成する原料合金微粉に電流を発生させることで、ジュール熱により成形体が直接加熱されることになる。したがって、輻射熱を利用する抵抗加熱に比べて遙かに急速な昇温、降温が可能である。また、昇温中における成形体内での温度分布についても、均一性の高い状態が実現される。 In high-frequency induction heating, an eddy current is generated in a conductor by electromagnetic induction and heated by the Joule heat. In the present invention, the compact is directly heated by Joule heat by generating a current in the raw material alloy fine powder constituting the compact. Therefore, the temperature can be raised and lowered much more rapidly than resistance heating using radiant heat. In addition, a highly uniform state is realized with respect to the temperature distribution in the molded body during the temperature rise.
本発明では、焼結に高周波誘導加熱を採用し、前記高周波誘導加熱の特徴を活かすことにより、成形体の温度制御を容易なものとし、焼結パターンを任意に制御する。それにより、高密度化の促進と、粒成長の抑制、異相の抑制が同時に実現される。 In the present invention, high-frequency induction heating is employed for sintering, and the characteristics of the high-frequency induction heating are utilized to facilitate temperature control of the molded body, and the sintering pattern is arbitrarily controlled. Thereby, acceleration of densification, suppression of grain growth, and suppression of different phases are realized at the same time.
なお、希土類焼結磁石の焼結に高周波誘導加熱を利用する場合、酸素量に留意することが好ましい。例えば、原料合金微粉に含まれる酸素量が多いと、抵抗が大きくなり、電磁誘導作用により発生する電流値が低下する。電流値の低下は、発熱時間の長時間化等を招き、高周波誘導加熱の利点が損なわれる。焼結に高周波誘導加熱を利用する場合、例えば原料合金微粉に含まれる酸素量を2500ppm以下とする。これにより、円滑に高周波誘導加熱が行われ、前記の利点が最大限に発現される。 In addition, when using high frequency induction heating for sintering of a rare earth sintered magnet, it is preferable to pay attention to the amount of oxygen. For example, when the amount of oxygen contained in the raw material alloy fine powder is large, the resistance increases and the current value generated by the electromagnetic induction action decreases. The decrease in the current value leads to a long heat generation time, and the advantages of high frequency induction heating are impaired. When high frequency induction heating is used for sintering, for example, the amount of oxygen contained in the raw material alloy fine powder is set to 2500 ppm or less. Thereby, high-frequency induction heating is performed smoothly, and the above-described advantages are maximized.
本発明の希土類焼結磁石は、高周波誘導加熱により焼結されているので、高密度化と結晶粒成長の抑制、異相の発生の抑制が同時に実現される。したがって、本発明によれば、保磁力の高い磁気特性に優れた希土類焼結磁石を提供することが可能である。 Since the rare earth sintered magnet of the present invention is sintered by high frequency induction heating, it is possible to simultaneously achieve higher density, suppression of crystal grain growth, and generation of heterogeneous phases. Therefore, according to the present invention, it is possible to provide a rare earth sintered magnet having a high coercive force and excellent magnetic characteristics.
また、本発明の製造方法によれば、焼結に高周波誘導加熱を採用しているので、成形体の温度制御が容易なものとなり、焼結パターンを任意に制御することが可能である。したがって、焼結時間を短縮し、高密度化した焼結体を粒成長せずに得ることができ、得られる希土類焼結磁石の焼結状態を理想状態に近づけることができる。 Further, according to the manufacturing method of the present invention, since high frequency induction heating is employed for sintering, it becomes easy to control the temperature of the molded body, and the sintering pattern can be arbitrarily controlled. Therefore, the sintered time can be shortened and a sintered body with a high density can be obtained without grain growth, and the sintered state of the obtained rare earth sintered magnet can be brought close to the ideal state.
以下、本発明を適用した希土類焼結磁石及びその製造方法について、図面を参照して詳細に説明する。 Hereinafter, a rare earth sintered magnet to which the present invention is applied and a manufacturing method thereof will be described in detail with reference to the drawings.
本発明の希土類焼結磁石は、希土類元素、遷移金属元素及びホウ素を主成分とするものである。磁石組成は、目的に応じて任意に選択すればよい。 The rare earth sintered magnet of the present invention is mainly composed of a rare earth element, a transition metal element and boron. What is necessary is just to select a magnet composition arbitrarily according to the objective.
例えば、R−T−B(R=Yを含む希土類元素の1種または2種以上、T=FeまたはFe及びCoを必須とする遷移金属元素の1種または2種以上、B=ホウ素)系希土類焼結磁石とする場合、磁気特性に優れた希土類焼結磁石を得るためには、焼結後の磁石組成において、希土類元素Rが27.0〜32.0重量%、ホウ素Bが0.5〜2.0重量%、残部が実質的に遷移金属元素T(例えばFe)となるような配合組成とすることが好ましい。希土類元素Rの量が27.0重量%未満であると、軟磁性であるα−Fe等が析出し、保磁力が低下する。逆に、希土類元素Rが32.0重量%を越えると、Rリッチ相の量が多くなって耐蝕性が劣化するとともに、主相であるR2T14B結晶粒の体積比率が低下し、残留磁束密度が低下する。また、ホウ素Bが0.5重量%未満の場合には、高い保磁力を得ることができない。逆に、ホウ素Bが2.0重量%を越えると、残留磁束密度が低下する傾向がある。 For example, R-T-B (one or more of rare earth elements including R = Y, T = one or more of transition metal elements essential to Fe or Fe and Co, B = boron) system When a rare earth sintered magnet is used, in order to obtain a rare earth sintered magnet having excellent magnetic properties, the sintered magnet composition has a rare earth element R of 27.0 to 32.0 wt% and boron B of 0. It is preferable that the blending composition is 5 to 2.0% by weight and the balance is substantially the transition metal element T (for example, Fe). When the amount of the rare earth element R is less than 27.0% by weight, α-Fe or the like that is soft magnetic precipitates, and the coercive force decreases. Conversely, when the rare earth element R exceeds 32.0% by weight, the amount of the R-rich phase increases and the corrosion resistance deteriorates, and the volume ratio of the R 2 T 14 B crystal grains as the main phase decreases. The residual magnetic flux density is reduced. Further, when boron B is less than 0.5% by weight, a high coercive force cannot be obtained. Conversely, if boron B exceeds 2.0% by weight, the residual magnetic flux density tends to decrease.
ここで、希土類元素Rは、Yを含む希土類元素、すなわちY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる1種、または2種以上である。中でも、NdやPrは、磁気特性のバランスが良いこと、資源的に豊富で比較的安価であることから、主成分をNdやPrとすることが好ましい。また、Dy2Fe14BやTb2Fe14B化合物は、異方性磁界が大きく、保磁力Hcjを向上させる上で有効である。 Here, the rare earth element R is a rare earth element including Y, that is, one selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu, or 2 More than a seed. Among these, Nd and Pr are preferably Nd and Pr because the balance of magnetic properties is good and they are abundant and relatively inexpensive. Dy 2 Fe 14 B and Tb 2 Fe 14 B compounds have a large anisotropic magnetic field and are effective in improving the coercive force Hcj.
さらに、本発明の希土類焼結磁石は、添加元素Mを加えて、R−T−B−M系希土類焼結磁石とすることも可能である。この場合、添加元素Mとしては、Al、Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、V、Zr、Ti、Mo等を挙げることができ、これらの1種または2種以上を選択して添加することができる。例えば、高融点金属であるNb、Zr、W等の添加は、結晶粒成長を抑制する効果がある。勿論、これら組成に限らず、希土類焼結磁石の組成として従来公知の組成全般に適用可能であることは言うまでもない。 Furthermore, the rare earth sintered magnet of the present invention may be an R-TBM type rare earth sintered magnet by adding the additive element M. In this case, examples of the additive element M include Al, Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W, V, Zr, Ti, and Mo. One or two of these may be used. The above can be selected and added. For example, the addition of Nb, Zr, W or the like, which is a refractory metal, has an effect of suppressing crystal grain growth. Of course, it is needless to say that the composition of the rare earth sintered magnet is not limited to these compositions and can be applied to all known compositions.
また、本発明の希土類焼結磁石では、酸素の含有量を2500ppm以下とすることが好ましい。これは、後述の高周波誘導加熱を行うこととも関連するが、酸素含有量が2500ppmを越えると、希土類元素が酸化物として存在する量が増加し、主相及び副相に存在すべき磁気的に有効な希土類元素が減少して保磁力が低下するという問題が生ずる。さらに、生成した酸化物は非磁性であり、焼結体の磁化の低下も招く。酸素量と酸化物の生成量の関係は、化合物の化学量論比に従って直線的関係を有するが、近年の磁石応用製品において高性能希土類磁石に要求される保磁力や磁化を満足させるためには、2500ppm以下であることが要求される。 In the rare earth sintered magnet of the present invention, the oxygen content is preferably 2500 ppm or less. This is related to the high-frequency induction heating described later. However, when the oxygen content exceeds 2500 ppm, the amount of rare earth elements present as oxides increases, and the magnetic phase that should be present in the main phase and subphase is increased. There arises a problem that effective rare earth elements decrease and the coercive force decreases. Furthermore, the generated oxide is non-magnetic and causes a decrease in magnetization of the sintered body. The relationship between the amount of oxygen and the amount of oxide produced has a linear relationship according to the stoichiometric ratio of the compounds, but in order to satisfy the coercive force and magnetization required for high performance rare earth magnets in recent magnet applications. It is required to be 2500 ppm or less.
さらに、本発明の希土類焼結磁石は、炭素(C)の含有量が1500ppm以下、窒素(N)の含有量が200〜1500ppmであることが好ましい。炭素の含有量が1500ppmを越えると、炭素は希土類元素の一部と炭化物を形成し、磁気的に有効な希土類元素が減少して保磁力が低下する。また、窒素量を前記範囲とすることによって、優れた耐蝕性と高い磁気特性を両立させることができる。 Furthermore, the rare earth sintered magnet of the present invention preferably has a carbon (C) content of 1500 ppm or less and a nitrogen (N) content of 200 to 1500 ppm. When the carbon content exceeds 1500 ppm, carbon forms a carbide with a part of the rare earth element, and the magnetically effective rare earth element is reduced and the coercive force is lowered. Further, by setting the nitrogen amount in the above range, both excellent corrosion resistance and high magnetic properties can be achieved.
本発明の希土類焼結磁石は、粉末冶金法により製造されるものであり、特に、高周波誘導加熱によって焼結されてなるものである。以下、希土類焼結磁石の粉末冶金法による製造方法について説明する。 The rare earth sintered magnet of the present invention is manufactured by a powder metallurgy method, and in particular, sintered by high frequency induction heating. Hereinafter, a method for producing a rare earth sintered magnet by powder metallurgy will be described.
図1は、粉末冶金法による希土類焼結磁石の製造プロセスの一例を示すものである。この製造プロセスは、基本的には、合金化工程1、粗粉砕工程2、微粉砕工程3、磁場中成形工程4、焼結工程5、時効工程6、加工工程7、及び表面処理工程8とにより構成される。なお、酸化防止のために、焼結後までの各工程は、ほとんどの工程を真空中、あるいは不活性ガス雰囲気中(窒素雰囲気中、Ar雰囲気中等)で行う。
FIG. 1 shows an example of a process for producing a rare earth sintered magnet by powder metallurgy. This manufacturing process basically includes an alloying step 1, a coarse pulverizing step 2, a fine pulverizing step 3, a magnetic field forming step 4, a
合金化工程1では、原料となる金属、あるいは合金を磁石組成に応じて配合し、不活性ガス、例えばAr雰囲気中で溶解し、鋳造することにより合金化する。鋳造法としては、溶融した高温の液体金属を回転ロール上に供給し、合金薄板を連続的に鋳造するストリップキャスト法(連続鋳造法)が生産性等の観点から好適である。原料金属(合金)としては、純希土類元素、希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。インゴットとして鋳造した場合には、凝固偏析を解消すること等を目的に、必要に応じて溶体化処理を行ってもよい。溶体化処理の条件としては、例えば真空またはAr雰囲気下、700〜1200℃領域で1時間以上保持する。 In the alloying step 1, a metal or alloy as a raw material is blended according to the magnet composition, dissolved in an inert gas, for example, Ar atmosphere, and cast into an alloy. As a casting method, a strip casting method (continuous casting method) in which molten high-temperature liquid metal is supplied onto a rotating roll and an alloy thin plate is continuously cast is preferable from the viewpoint of productivity and the like. As the raw material metal (alloy), pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof can be used. When cast as an ingot, solution treatment may be performed as necessary for the purpose of eliminating solidification segregation. As a condition for the solution treatment, for example, it is kept in a 700 to 1200 ° C. region for 1 hour or more under vacuum or Ar atmosphere.
粗粉砕工程2では、先に鋳造した原料合金の薄板、あるいはインゴット等を、粒径数百μm程度になるまで粉砕する。粉砕手段としては、スタンプミル、ジョークラッシャー、ブラウンミル等を用いることができる。粗粉砕性を向上させるために、水素を吸蔵させて脆化させた後、粗粉砕を行うことが効果的である。 In the coarse pulverization step 2, the previously cast raw alloy thin plate, ingot or the like is pulverized until the particle size is about several hundreds of micrometers. As the pulverizing means, a stamp mill, a jaw crusher, a brown mill, or the like can be used. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen and embrittlement.
前述の粗粉砕工程2が終了した後、通常、粗粉砕した原料合金粉に粉砕助剤を添加する。粉砕助剤としては、例えば脂肪酸系化合物等を使用することができるが、特に、脂肪酸アミドを粉砕助剤として用いることで、良好な磁気特性、特に高配向度で高い磁化を有する希土類焼結磁石を得ることができる。粉砕助剤の添加量としては、0.03〜0.4重量%とすることが好ましい。粉砕助剤の添加量が0.03重量%未満であると、潤滑剤の磁気特性に与える効果が十分に得られず、0.4重量%以下の添加量であれば、焼結後の残留炭素の量を効果的に低減することができ、希土類焼結磁石の磁気特性を向上させる上で有効である。 After the coarse pulverization step 2 is completed, a pulverization aid is usually added to the coarsely pulverized raw material alloy powder. As the grinding aid, for example, fatty acid compounds can be used, and in particular, by using fatty acid amide as the grinding aid, a rare earth sintered magnet having good magnetic properties, particularly high orientation and high magnetization. Can be obtained. The addition amount of the grinding aid is preferably 0.03 to 0.4% by weight. If the addition amount of the grinding aid is less than 0.03% by weight, the effect on the magnetic properties of the lubricant cannot be sufficiently obtained. If the addition amount is 0.4% by weight or less, the residual after sintering The amount of carbon can be effectively reduced, which is effective in improving the magnetic properties of the rare earth sintered magnet.
粗粉砕工程2の後、微粉砕工程3を行うが、この微粉砕工程3は、例えば気流式粉砕機等を使用して行われる。微粉砕の際の条件は、用いる気流式粉砕機に応じて適宜設定すればよく、原料合金粉を平均粒径が1〜10μm程度、例えば3〜6μmとなるまで微粉砕する。気流式粉砕機としては、ジェットミル等が好適である。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粉体の粒子を加速し、粉体の粒子同士の衝突や、衝突板あるいは容器壁との衝突を発生させて粉砕する方法である。ジェットミルは、一般的に、流動層を利用するジェットミル、渦流を利用するジェットミル、衝突板を用いるジェットミル等に分類される。これらのジェットミルのうちでは、流動層を利用するジェットミル、及び渦流を利用するジェットミルが好ましく、特に流動層を利用するジェットミルが好ましい。例えば原料合金粉と粉砕助剤とは比重が大きく異なるが、流動層中及び渦流中では比重の違いに殆ど関係なく良好に粉砕及び混合が行なわれ、特に流動層中では比重の違いは殆ど問題とならないからである。 After the coarse pulverization step 2, a fine pulverization step 3 is performed. The fine pulverization step 3 is performed using, for example, an airflow pulverizer. The conditions for fine pulverization may be appropriately set according to the airflow pulverizer to be used, and the raw material alloy powder is finely pulverized until the average particle size becomes about 1 to 10 μm, for example, 3 to 6 μm. A jet mill or the like is suitable as the airflow pulverizer. A jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, accelerates powder particles by this high-speed gas flow, and collides powder particles with each other. Or, it is a method of crushing by generating a collision with a collision plate or a container wall. Jet mills are generally classified into jet mills that use fluidized beds, jet mills that use vortex flow, jet mills that use impingement plates, and the like. Among these jet mills, a jet mill using a fluidized bed and a jet mill using a vortex are preferable, and a jet mill using a fluidized bed is particularly preferable. For example, although the specific gravity of the raw material alloy powder and the grinding aid differ greatly, in the fluidized bed and in the vortex, the grinding and mixing are performed well regardless of the difference in specific gravity, and the difference in specific gravity is particularly problematic in the fluidized bed. It is because it does not become.
微粉砕工程3の後、磁場中成形工程4において、原料合金微粉を磁場中にて成形する。具体的には、微粉砕工程3にて得られた原料合金微粉を電磁石を配置した金型内に充填し、磁場印加によって結晶軸を配向させた状態で磁場中成形する。磁場中成形は、成形圧力と磁界方向が平行な縦磁場成形、成形圧力と磁界方向が直交する横磁場成形のいずれであってもよい。さらに、磁界印加手段として、パルス電源と空芯コイルも採用することができる。この磁場中成形は、例えば700〜1300kA/mの磁場中で、100〜200MPa前後の圧力で行えばよい。 After the pulverizing step 3, in the forming step 4 in the magnetic field, the raw material alloy fine powder is formed in the magnetic field. Specifically, the raw material alloy fine powder obtained in the fine pulverization step 3 is filled in a mold in which an electromagnet is arranged, and is molded in a magnetic field with a crystal axis oriented by applying a magnetic field. The forming in the magnetic field may be either a vertical magnetic field forming in which the forming pressure and the magnetic field direction are parallel, or a horizontal magnetic field forming in which the forming pressure and the magnetic field direction are orthogonal to each other. Further, a pulse power source and an air-core coil can be employed as the magnetic field applying means. The forming in the magnetic field may be performed at a pressure of about 100 to 200 MPa in a magnetic field of 700 to 1300 kA / m, for example.
次に焼結工程5において、焼結を実施する。すなわち、原料合金微粉を磁場中成形後、成形体を真空または不活性ガス雰囲気中で焼結する。
Next, in the
本発明では、この焼結工程5において、成形体の焼結を高周波誘導加熱により行う。図2は、高周波誘導加熱の原理を示すものである。例えば、高周波電源11に接続されたコイル12の中に導電体13が置かれた場合、コイル12に交流電流が流れると、導電体13には交流磁界が生じ、その磁界により電流(渦電流)Iが流れる。これを電磁誘導作用と呼んでいる。このとき流れる渦電流と導電体13の電気抵抗によりジュール熱が発生し、導電体13が加熱される。高周波誘導加熱の場合、輻射熱による抵抗加熱と異なり、成形体を構成する原料合金微粉が直接加熱され、短時間での昇温、降温が実現される。
In the present invention, in the
高周波誘電加熱自体は、例えば特開2000−328104号公報や特開平6−247772号公報等にも開示されるように周知の技術であるが、希土類焼結磁石の焼結に適用された例は無く、本発明が初めてである。本発明では、これまで適用されたことのない希土類焼結磁石の焼結工程に、前記高周波誘導加熱を適用することで、結晶粒の焼結時の成長の抑制と、焼結反応の促進による高密度化を達成している。 The high-frequency dielectric heating itself is a well-known technique as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-328104 and Japanese Patent Application Laid-Open No. 6-247772, but examples applied to sintering of rare earth sintered magnets are as follows. The present invention is the first. In the present invention, by applying the high-frequency induction heating to the sintering process of the rare earth sintered magnet that has not been applied so far, it is possible to suppress growth during the sintering of the crystal grains and promote the sintering reaction. High density is achieved.
前記焼結工程5において、原料合金微粉を成形した成形体を高周波誘導加熱により焼結する場合、原料合金微粉に含まれる酸素量に留意する必要がある。例えばNdFeB系合金は、極めて酸化され易く、酸素雰囲気を制御して粉砕を行っても、通常は酸素量が2500ppmを越えるレベルとなる。原料合金微粉の酸素量が多いと、圧粉体である成形体の粒子自体、あるいは粒子間の電気抵抗が高くなり、高周波誘導加熱の利点が失われてしまうことになる。例えば、原料合金微粉において発生する熱は、原料合金粉末に流れる渦電流をI、電気抵抗をRとしたときに、I2Rに比例し、流れる電流値が大きいことが有利である。原料合金微粉に含まれる酸素量が多すぎると、原料合金微粉の電気抵抗が高くなり、渦電流の電流値が減少する。このような場合、誘導加熱が円滑に行われず、例えば昇温に長時間を要することになる。
In the
したがって、本発明においては、原料合金微粉に含まれる酸素量を、2500ppm以下に抑えることが好ましい。原料合金微粉に含まれる酸素量を抑えるには、例えば、前記微粉砕工程3において、ジェットミルによる粉砕時の酸素量の増加を抑制する必要がある。そのためには、例えばジェットミルで粉砕する際に、不活性ガス雰囲気中で行い、その条件を厳しく管理することが必要である。また、微粉砕工程3に限らず、粗粉砕工程2等、全ての焼結前迄の工程における雰囲気中の酸素量管理を厳しくし、前記酸素量とすることが要求される。 Therefore, in the present invention, it is preferable to suppress the amount of oxygen contained in the raw material alloy fine powder to 2500 ppm or less. In order to suppress the amount of oxygen contained in the raw material alloy fine powder, for example, in the fine pulverization step 3, it is necessary to suppress an increase in the amount of oxygen during pulverization by a jet mill. For that purpose, for example, when pulverizing with a jet mill, it is necessary to carry out in an inert gas atmosphere and to strictly control the conditions. Further, not only the fine pulverization step 3 but also the coarse pulverization step 2 and the like, it is required to strictly control the oxygen amount in the atmosphere in all the steps up to sintering.
高周波誘導加熱による焼結条件は、焼結する成形体の大きさ、原料合金微粉の大きさ等に応じて適宜設定すればよい。焼結条件を適正なものとすることにより、結晶粒の粒成長の抑制と、焼結反応の促進による高密度化を実現することができる。ここで、焼結条件の一つの指標として、焼結前の原料合金微粉の平均粒径rと焼結後の焼結体の結晶粒径Rの比率R/r(粒成長比率)を挙げることができる。具体的には、この比率R/rが1.7以下となるように焼結条件を設定すれば良い。前記比率R/rが1.7を越えるということは、粒成長が進んでいることを意味し、希土類焼結磁石の保磁力が低下するおそれがある。なお、焼結前の原料合金微粉の平均粒径rと焼結後の焼結体の結晶粒径Rは、同じ単位を持つものであり、例えば、本発明の実施例においては、r、Rともに単位はμmである。 The sintering conditions by high frequency induction heating may be appropriately set according to the size of the compact to be sintered, the size of the raw material alloy fine powder, and the like. By making the sintering conditions appropriate, it is possible to suppress grain growth of the crystal grains and increase the density by promoting the sintering reaction. Here, as one index of the sintering conditions, the ratio R / r (grain growth ratio) of the average particle diameter r of the raw material alloy fine powder before sintering and the crystal grain diameter R of the sintered body after sintering is mentioned. Can do. Specifically, the sintering conditions may be set so that the ratio R / r is 1.7 or less. If the ratio R / r exceeds 1.7, it means that grain growth is progressing and the coercive force of the rare earth sintered magnet may be reduced. The average particle diameter r of the raw material alloy fine powder before sintering and the crystal grain diameter R of the sintered body after sintering have the same unit. For example, in the embodiments of the present invention, r, R In both cases, the unit is μm.
焼結後、時効工程6において、得られた焼結体に時効処理を施すことが好ましい。この時効処理は、得られる希土類焼結磁石の保磁力Hcjを制御する上で重要な工程であり、例えば不活性ガス雰囲気中あるいは真空中で時効処理を施す。時効処理としては、2段時効処理が好ましく、1段目の時効処理工程では、800℃前後の温度で1〜3時間保持する。次いで、室温〜200℃の範囲内にまで急冷する第1急冷工程を設ける。2段目の時効処理工程では、550℃前後の温度で1〜3時間保持する。次いで、室温まで急冷する第2急冷工程を設ける。600℃近傍の熱処理で保磁力Hcjが大きく増加するため、時効処理を一段で行う場合には、600℃近傍の時効処理を施すとよい。 After sintering, in the aging step 6, it is preferable to subject the obtained sintered body to an aging treatment. This aging treatment is an important step in controlling the coercive force Hcj of the obtained rare earth sintered magnet. For example, the aging treatment is performed in an inert gas atmosphere or in a vacuum. As the aging treatment, a two-stage aging treatment is preferable, and in the first aging treatment step, the temperature is maintained at a temperature of about 800 ° C. for 1 to 3 hours. Next, a first quenching step is provided for quenching to room temperature to 200 ° C. In the second stage aging treatment step, the temperature is maintained at about 550 ° C. for 1 to 3 hours. Next, a second quenching step for quenching to room temperature is provided. Since the coercive force Hcj is greatly increased by heat treatment at around 600 ° C., when aging treatment is performed in a single stage, it is advisable to perform aging treatment at around 600 ° C.
前記時効工程6の後、加工工程7及び表面処理工程8を行う。加工工程7は、所望の形状に機械的に成形する工程である。表面処理工程8は、得られた希土類焼結磁石の酸化を抑えるために行う工程であり、例えばメッキ被膜や樹脂被膜を希土類焼結磁石の表面に形成する。
After the aging step 6, a processing step 7 and a
次に、本発明の具体的な実施例について、実験結果を基に説明する。 Next, specific examples of the present invention will be described based on experimental results.
希土類焼結磁石の作製
原料となる金属あるいは合金を所定の組成となるように配合し、アルミナ坩堝中で高周波溶解により溶製された合金を、ストリップキャスト法により1mm以下の厚さの薄板状合金とした。
A metal or alloy used as a raw material for producing a rare earth sintered magnet is blended so as to have a predetermined composition, and an alloy melted by high frequency melting in an alumina crucible is a thin plate alloy having a thickness of 1 mm or less by a strip casting method. It was.
薄板状合金は、十分に排気された炉内において、室温付近で水素を吸蔵させて脆化させ、そのまま昇温させ、Arフロー若しくは排気によって脱水素を行った。脆化した薄板合金を、窒素雰囲気中で機械的粉砕により数百μmまで粗粉砕し、さらに窒素気流中のジェットミルにより、平均粒径4μmまで微粉砕した。 The thin plate-like alloy was dehydrogenated by Ar flow or evacuation in a fully evacuated furnace by occlusion and embrittlement of hydrogen at around room temperature, followed by heating. The embrittled thin plate alloy was coarsely pulverized to several hundred μm by mechanical pulverization in a nitrogen atmosphere, and further finely pulverized to a mean particle size of 4 μm by a jet mill in a nitrogen stream.
粉砕した原料合金微粉を、酸素を遮断したまま成形工程に供した。成形工程では、磁場成形機を用い、磁界によって得られた原料合金微粉の粒子の結晶方向が配向された圧粉体(成形体)を得た。この成形工程においても、雰囲気中の酸素の量は厳しく制御し、500ppm以下とした。また、サンプル形状(成形体の形状)は、20mm(磁界方向)×15mm×13mm(圧縮方向)とした。 The pulverized raw material alloy fine powder was subjected to a forming process while oxygen was blocked. In the forming step, a green compact (formed product) in which the crystal directions of the particles of the raw material alloy fine powder obtained by the magnetic field were aligned was obtained using a magnetic field forming machine. Also in this molding process, the amount of oxygen in the atmosphere was strictly controlled to 500 ppm or less. The sample shape (shape of the molded body) was 20 mm (magnetic field direction) × 15 mm × 13 mm (compression direction).
さらに、酸素を遮断したまま、成形体を焼結装置に移行し、脱バインダ処理の後、焼結を行った。焼結の後、時効処理を行った。時効処理は、2段時効処理とし、1段目は900℃、1時間、2段目は530℃、1時間とした。 Furthermore, the molded body was transferred to a sintering apparatus with oxygen blocked, and sintered after debinding. After sintering, an aging treatment was performed. The aging treatment was a two-stage aging treatment, and the first stage was 900 ° C. for 1 hour, and the second stage was 530 ° C. for 1 hour.
評価
作製した各希土類焼結磁石について、保磁力及び結晶粒径を測定した。保磁力の測定は、B−Hトレーサーを用いて行った。結晶粒径は、表面を研磨後、偏光顕微鏡で写真を撮影し、平均粒径を求めた。
The coercive force and crystal grain size were measured for each rare earth sintered magnet evaluated . The coercive force was measured using a BH tracer. The crystal grain size was determined by taking a photograph with a polarizing microscope after polishing the surface and determining the average grain size.
高周波誘導加熱と抵抗加熱の比較検討
先ず、表1に示す組成及び条件で、焼結工程を高周波誘導加熱により行い、試料1を作製した。使用した誘導加熱装置の概略構成を図3に示す。誘導加熱装置は、真空チャンバ21内に載置台22を有し、この上に載置した成形体23を高周波誘導加熱する。成形体23の周囲には、断熱材24で覆われたコイル25が設置され、コイル25はRF発振器26に接続されている。真空チャンバ21には、真空にするためのロータリーポンプ27、バルブ28、及び真空ゲージ29が設けられている。使用した誘導加熱装置は、2MHz、4kWの高周波発振機である。
Comparative study of high-frequency induction heating and resistance heating First, the sintering process was performed by high-frequency induction heating under the composition and conditions shown in Table 1 to prepare Sample 1. A schematic configuration of the induction heating apparatus used is shown in FIG. The induction heating apparatus has a mounting table 22 in a
焼結に際しては、先に作製された成形体を、真空雰囲気(10-4Pa以下)に調整された高周波誘導炉内(前記真空チャンバ21内)に配置し、真空度を確認した後、室温から200〜400℃程度に温度を上昇させ、脱バインダ処理を行った。その後、所定の焼結温度に保持し、焼結を行った。 In sintering, the formed body is placed in a high-frequency induction furnace (in the vacuum chamber 21) adjusted to a vacuum atmosphere (10 −4 Pa or less), and after confirming the degree of vacuum, The temperature was raised to about 200 to 400 ° C. to remove the binder. Thereafter, the sintering was performed while maintaining a predetermined sintering temperature.
また、比較のため、抵抗加熱により焼結を行い、試料2,3を作製した。各試料における焼結時の加熱方法、組成、原料合金微粉の酸素量(成形用粉体の酸素量)、原料合金微粉の平均粒径(微粉砕粒径)、焼結条件を表1に示す。なお、焼結条件における温度の測定は、成形体の表面を基準としている。 For comparison, Samples 2 and 3 were manufactured by sintering by resistance heating. Table 1 shows the heating method, composition, oxygen amount of the raw material alloy fine powder (oxygen amount of the forming powder), the average particle size (fine pulverized particle size) of the raw material alloy powder, and sintering conditions in each sample. . In addition, the measurement of the temperature in sintering conditions is based on the surface of the molded body.
また、作製した試料1〜3の焼結体結晶粒径、原料合金微粉の平均粒径rと焼結後の焼結体の結晶粒径Rの比率R/r(粒成長比率)、焼結体酸素量、保磁力、焼結体密度を表2に示す。 Moreover, the ratio R / r (grain growth ratio) of the sintered body crystal grain diameter of the produced samples 1 to 3, the average grain diameter r of the raw material alloy fine powder and the crystal grain diameter R of the sintered body after sintering, sintering Table 2 shows the amount of body oxygen, coercive force, and sintered body density.
これら表から明らかなように、粒成長が抑えられて高い保磁力を有するとともに、高い密度を有する希土類焼結磁石を得るには、焼結を誘導加熱で行うことが有利であることがわかる。抵抗加熱による試料2では、焼結時間が長いため、密度は高くなっているが、粒成長が進んで保磁力が低くなっている。抵抗加熱による試料3では、焼結時間を短くしたため、粒成長による保磁力の低下はある程度抑えられているが、焼結反応が不十分で、密度が著しく低下している。 As is apparent from these tables, it is found that it is advantageous to perform the sintering by induction heating in order to obtain a rare earth sintered magnet having a high coercive force with suppressed grain growth and a high density. In the sample 2 by resistance heating, since the sintering time is long, the density is high, but the grain growth proceeds and the coercive force is low. In the sample 3 by resistance heating, since the sintering time was shortened, the decrease in coercive force due to grain growth was suppressed to some extent, but the sintering reaction was insufficient and the density was significantly reduced.
酸素量に関する検討
先の試料1に準じ、使用する原料合金微粉の酸素量を変えて高周波誘導加熱による焼結を試みた。各試料における焼結時の加熱方法、組成、原料合金微粉の酸素量(成形用粉体の酸素量)、原料合金微粉の平均粒径(微粉砕粒径)、焼結条件を表3に示す。
According to the sample 1 for the examination on the oxygen content, sintering was attempted by high frequency induction heating while changing the oxygen content of the raw material alloy fine powder to be used. Table 3 shows the heating method, composition, oxygen content of raw material alloy fine powder (oxygen content of molding powder), average particle size (fine pulverized particle size) of raw material alloy powder, and sintering conditions for each sample. .
また、作製した試料4〜9の焼結体結晶粒径、原料合金微粉の平均粒径rと焼結後の焼結体の結晶粒径Rの比率R/r(粒成長比率)、焼結体酸素量、保磁力、焼結体密度を表4に示す。 Moreover, the ratio R / r (grain growth ratio) of the sintered body crystal grain size of the produced samples 4 to 9, the average grain size r of the raw material alloy fine powder and the crystal grain size R of the sintered body after sintering, sintering Table 4 shows the amount of body oxygen, coercive force, and sintered body density.
酸素量7000ppmの試料4では、誘導加熱では昇温せず、焼結を行うことができなかった。また、酸素量5000ppmの試料では、焼結体に変形が生じていた。得られた試料の保磁力を考慮すると、酸素量は、原料合金微粉及び焼結体において2500ppmであることが好ましいことがわかる。この範囲であれば、粒成長比率が1.7を下回っており、良好な焼結が行われていると言える。 In sample 4 having an oxygen content of 7000 ppm, the temperature was not increased by induction heating, and sintering could not be performed. Further, in the sample having an oxygen amount of 5000 ppm, the sintered body was deformed. Considering the coercive force of the obtained sample, it can be seen that the oxygen content is preferably 2500 ppm in the raw material alloy fine powder and the sintered body. If it is this range, it can be said that the grain growth ratio is less than 1.7 and good sintering is performed.
1 合金化工程、2 粗粉砕工程、3 微粉砕工程、4 磁場中成形工程、5 焼結工程、6 時効工程、7 加工工程、8 表面処理工程、11 交流電源、12 コイル、13 導電体、21 真空チャンバ、22 載置台、23 成形体、24 断熱材、25 コイル、26 RF発振器、27 ロータリーポンプ、28 バルブ、29 真空ゲージ 1 alloying process, 2 coarse grinding process, 3 fine grinding process, 4 magnetic field forming process, 5 sintering process, 6 aging process, 7 machining process, 8 surface treatment process, 11 AC power supply, 12 coil, 13 conductor, 21 Vacuum chamber, 22 Mounting table, 23 Molded body, 24 Heat insulation material, 25 Coil, 26 RF oscillator, 27 Rotary pump, 28 Valve, 29 Vacuum gauge
Claims (3)
酸素含有量が2500ppm以下であり、
焼結前の原料合金微粉の平均粒径rと焼結後の焼結体の結晶粒径Rの比率R/rが1.7以下であることを特徴とする希土類焼結磁石。 A molded body obtained by molding a raw material alloy fine powder containing a rare earth element, a transition metal element and boron is sintered by high frequency induction heating ,
The oxygen content is 2500 ppm or less,
A rare earth sintered magnet, wherein the ratio R / r of the average particle diameter r of the raw material alloy fine powder before sintering and the crystal grain diameter R of the sintered body after sintering is 1.7 or less .
前記原料合金微粉に含まれる酸素量を2500ppm以下とし、
焼結前の原料合金微粉の平均粒径rと焼結後の焼結体の結晶粒径Rの比率R/rが1.7以下となるように高周波誘導加熱による焼結を行うことを特徴とする希土類焼結磁石の製造方法。 Sintering a compact formed from a raw material alloy fine powder containing a rare earth element, a transition metal element and boron, when producing a rare earth sintered magnet,
The amount of oxygen contained in the raw material alloy fine powder is 2500 ppm or less,
Sintering is performed by high frequency induction heating so that the ratio R / r of the average grain size r of the raw material alloy fine powder before sintering and the crystal grain size R of the sintered body after sintering is 1.7 or less. A method for producing a rare earth sintered magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003382936A JP4484024B2 (en) | 2003-11-12 | 2003-11-12 | Rare earth sintered magnet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003382936A JP4484024B2 (en) | 2003-11-12 | 2003-11-12 | Rare earth sintered magnet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005150253A JP2005150253A (en) | 2005-06-09 |
JP4484024B2 true JP4484024B2 (en) | 2010-06-16 |
Family
ID=34691853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003382936A Expired - Lifetime JP4484024B2 (en) | 2003-11-12 | 2003-11-12 | Rare earth sintered magnet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4484024B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102264932B (en) * | 2008-12-26 | 2013-12-04 | 昭和电工株式会社 | Alloy material for r-t-b system rare earth permanent magnet, method for producing r-t-b system rare earth permanent magnet, and motor |
-
2003
- 2003-11-12 JP JP2003382936A patent/JP4484024B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005150253A (en) | 2005-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754232B2 (en) | Manufacturing method of high coercive force NdFeB magnet | |
EP2797086B1 (en) | R-T-B Rare earth sintered magnet and method of manufacturing the same | |
JP2013216965A (en) | Alloy for r-t-b-based rare earth sintered magnet, method for manufacturing the same, alloy material for the same, r-t-b-based rare earth sintered magnet, method for manufacturing the same, and motor | |
JP6500907B2 (en) | Method of manufacturing RTB based sintered magnet | |
JP6536816B2 (en) | RTB based sintered magnet and motor | |
WO2010113371A1 (en) | Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor | |
WO2018181594A1 (en) | Permanent magnet and rotary machine | |
JP2016017203A (en) | Production method for r-t-b-based rear earth sintered magnetic alloy and production method for r-t-b-based rear earth sintered magnet | |
JP4433282B2 (en) | Rare earth magnet manufacturing method and manufacturing apparatus | |
TW201831706A (en) | R-Fe-B sintered magnet and production method therefor | |
JP6691666B2 (en) | Method for manufacturing RTB magnet | |
JP5743458B2 (en) | Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor | |
JP2013115156A (en) | Method of manufacturing r-t-b-based permanent magnet | |
JP2012195392A (en) | Method of manufacturing r-t-b permanent magnet | |
JP6468435B2 (en) | R-T-B sintered magnet | |
JP7167484B2 (en) | Cast alloy flakes for RTB rare earth sintered magnets | |
JP2005197299A (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP4415374B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP4415681B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP2005197301A (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP4484024B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP4415683B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP2018060931A (en) | Method for producing r-t-b based magnet | |
JP4484025B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP2005288493A (en) | Method and apparatus for producing alloy strip, and method for producing alloy powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090717 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4484024 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100316 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140402 Year of fee payment: 4 |