JP2018060931A - Method for producing r-t-b based magnet - Google Patents

Method for producing r-t-b based magnet Download PDF

Info

Publication number
JP2018060931A
JP2018060931A JP2016197944A JP2016197944A JP2018060931A JP 2018060931 A JP2018060931 A JP 2018060931A JP 2016197944 A JP2016197944 A JP 2016197944A JP 2016197944 A JP2016197944 A JP 2016197944A JP 2018060931 A JP2018060931 A JP 2018060931A
Authority
JP
Japan
Prior art keywords
alloy
mass
less
magnet
bulk body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016197944A
Other languages
Japanese (ja)
Other versions
JP6691667B2 (en
Inventor
宣介 野澤
Sensuke Nozawa
宣介 野澤
西内 武司
Takeshi Nishiuchi
武司 西内
恭孝 重本
Yasutaka Shigemoto
恭孝 重本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016197944A priority Critical patent/JP6691667B2/en
Publication of JP2018060931A publication Critical patent/JP2018060931A/en
Application granted granted Critical
Publication of JP6691667B2 publication Critical patent/JP6691667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing R-T-B based magnets having high Band high H, while reducing the content of heavy rare earth elements.SOLUTION: R3-T2-B-Cu-M2 based magnets having a molar ratio of [T2]/[B] of more than 14.0 can be obtained by a method which includes the steps of: preparing an R1-T1-B-Cu-M1 based alloy bulk body having a molar ratio of [T1]/[B] of 14.0 or less; preparing an R2-Ga-Fe-A based alloy; bringing at least a part of the R2-Ga-Fe-A based alloy into contact with at least a part of the surface of the R1-T1-B-Cu-M1 based alloy bulk body and performing a first heat treatment at a temperature of 700°C or above and 950°C or below; and subjecting the R1-T1-B-Cu-M1 based alloy bulk body having been subjected to the first heat treatment to a second heat treatment at a temperature of 450°C or above and 600°C or below.SELECTED DRAWING: Figure 1

Description

本発明は、R−T−B系磁石の製造方法に関する。   The present invention relates to a method for manufacturing an R-T-B magnet.

R−T−B系磁石(Rは希土類元素のうちの少なくとも一種である。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。   R-T-B magnets (R is at least one of rare earth elements. T is at least one of transition metal elements and must contain Fe. B is boron) are the highest among permanent magnets. It is known as a high-performance magnet, and is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R−T−B系磁石は主としてR14B化合物からなる主相とこの主相の粒界部分に位置する粒界相(以下、単に「粒界」という場合がある)とから構成されている。R14B化合物は高い磁化を持つ強磁性相でありR−T−B系磁石の特性の根幹をなしている。 An R-T-B magnet is composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase (hereinafter sometimes simply referred to as “grain boundary”) located at the grain boundary portion of the main phase. ing. The R 2 T 14 B compound is a ferromagnetic phase having high magnetization and forms the basis of the characteristics of the R-T-B magnet.

R−T−B系磁石は、高温で保磁力HcJ(以下、単に「保磁力」又は「HcJ」という場合がある)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR−T−B系磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 The R-T-B magnet has a problem that irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter sometimes simply referred to as “coercive force” or “H cJ ”) decreases at a high temperature. Therefore, in the R-T-B magnet which is used in particular for an electric vehicle motor, having a high H cJ even at high temperatures, that is, required to have a higher H cJ at room temperature.

R−T−B系磁石において、R14B化合物中のRに含まれる軽希土類元素(主としてNd及び/又はPr)の一部を重希土類元素(主としてDy及び/又はTb)で置換すると、HcJが向上することが知られている。重希土類元素の置換量の増加に伴いHcJは向上する。 When a part of the light rare earth element (mainly Nd and / or Pr) contained in R in the R 2 T 14 B compound is replaced with a heavy rare earth element (mainly Dy and / or Tb) in the R-T-B system magnet. HcJ is known to improve. As the substitution amount of heavy rare earth elements increases, H cJ improves.

しかし、R14B化合物中の軽希土類元素を重希土類元素で置換するとR−T−B系磁石のHcJが向上する一方、残留磁束密度Br(以下、単に「Br」という場合がある)が低下する。また、重希土類元素、特にDyなどは資源存在量が少ないうえ産出地が限定されているなどの理由から供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、ユーザーから重希土類元素をできるだけ使用することなくHcJを向上させることが求められている。 However, when the light rare earth element in the R 2 T 14 B compound is replaced with the heavy rare earth element, the H cJ of the R-T-B magnet is improved, while the residual magnetic flux density B r (hereinafter simply referred to as “B r ”). Is reduced). In addition, heavy rare earth elements, especially Dy, have a problem that their supply is not stable and the price fluctuates greatly because of their low resource abundance and limited production area. Therefore, in recent years, it has been demanded by users to improve H cJ without using heavy rare earth elements as much as possible.

特許文献1には、Dyの含有量を低減しつつ保磁力を高めたR−T−B系希土類焼結磁石が開示されている。この焼結磁石の組成は、一般に用いられてきたR−T−B系合金に比べてB量が相対的に少ない特定の範囲に限定され、かつ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有している。その結果、粒界にR17相が生成され、このR17相から粒界に形成される遷移金属リッチ相(R13M)の体積比率が増加することにより、HcJが向上する。 Patent Document 1 discloses an RTB-based rare earth sintered magnet having an increased coercive force while reducing the Dy content. The composition of the sintered magnet is limited to a specific range in which the amount of B is relatively smaller than that of a generally used RTB-based alloy, and is selected from Al, Ga, and Cu. It contains more than seed metal element M. As a result, R 2 T 17 phase is produced in the grain boundary, by the volume ratio of the R 2 T 17 transition metal-rich phase formed in the grain boundary from phase (R 6 T 13 M) increases, H cJ Will improve.

特許文献2には、希土類磁石の組成の焼結体に異方性を与えるための熱間加工を加えて得られる成型体を、希土類元素を含む低融点合金融液に接触させる工程を含む希土類磁石の製造方法が記載されている。特許文献1には具体的な実施例として、成型体に低融点合金融液としてNdCu合金、NdGa合金、NdFe合金を用いて、580℃、1時間で浸漬し、接触させて熱処理することが開示されている。   Patent Document 2 discloses a rare earth including a step of bringing a molded body obtained by subjecting a sintered body having a composition of a rare earth magnet to hot working for imparting anisotropy to a low melting point liquid containing a rare earth element. A method for manufacturing a magnet is described. Patent Document 1 discloses, as a specific example, using a NdCu alloy, NdGa alloy, or NdFe alloy as a low melting point liquid for a molded body, immersing it at 580 ° C. for 1 hour, and subjecting it to heat treatment. Has been.

国際公開第2013/008756号International Publication No. 2013/008756 国際公開第2012/036294号International Publication No. 2012/036294

特許文献1及び特許文献2に記載されている方法は、重希土類元素の含有量を低減しつつR−T−B系磁石を高保磁力化できる点で注目に値する。しかし、近年、電気自動車用モータ等の用途において更に高いHcJを有するR−T−B系磁石が求められている。 The methods described in Patent Document 1 and Patent Document 2 are remarkable in that the R-T-B magnet can be made high in coercive force while reducing the content of heavy rare earth elements. However, in recent years, there has been a demand for RTB -based magnets having higher HcJ in applications such as motors for electric vehicles.

本開示の実施形態は、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR−T−B系磁石(本開示のR3−T2−B−M2系磁石に相当)の製造方法を提供する。 Embodiments of the present disclosure, while reducing the content of heavy rare earth elements, (equivalent to R3-T2-B-M2 based magnet of the present disclosure) R-T-B-based magnet having a high B r and a high H cJ A manufacturing method is provided.

本開示の限定的ではない例示的なR3−T2−B−M2系磁石の製造方法は、
以下の要件(1)〜(6)を満たすR1−T1−B−M1系合金バルク体磁石を準備する工程と、
(1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1−T1−B−M1系合金バルク体全体の27mass%以上35mass%以下である。
(2)T1はFe又はFeとX1であり、X1はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(3)[T1]/[B]のmol比が13.0以上14.0以下である。
(4)M1はGa及びCuの少なくとも一方であり、R1−T1−B−M1系合金バルク体全体の0mass%以上1mass%以下である。
(5)不可避的不純物を含んでも良い。
(6)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
以下の要件(7)〜(12)を満たすR2−Cu−Ga−Fe−A系合金を準備する工程と、
(7)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2−Cu−Ga−Fe−A系合金全体の35mass%以上91mass%以下である。
(8)CuはR2−Cu−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。
(9)GaはR2−Cu−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。
(10)FeはR2−Cu−Ga−Fe−A系合金全体の4mass%以上40mass%以下である。
(11)AはAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、Agから選択される一種以上であり、R2−Cu−Ga−Fe−A系合金全体の0mass%以上1mass%以下である。
(12)不可避的不純物を含んでも良い。
前記R1−T1−B−M1系合金バルク体の表面の少なくとも一部に、前記R2−Cu−Ga−Fe−A系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上950℃以下の温度で第一の熱処理を実施する工程と、
前記第一の熱処理が実施されたR1−T1−B−M1系合金バルク体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、
を含む、以下の要件(13)〜(18)を満たすR3−T2−B−M2系磁石の製造方法。
(13)R3は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R3−T2−B−M2系磁石全体の27mass%以上35mass%以下である。
(14)T2はFe又はFeとX2であり、X2はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(15)[T2]/[B]のmol比が14.0超である。
(16)M2はGa及びCuであり、R3−T2−B−M2系磁石全体の0.1mass%以上3mass%以下である。
(17)不可避的不純物を含んでいても良い。
(18)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
A non-limiting exemplary method for producing a R3-T2-B-M2 based magnet of the present disclosure includes:
A step of preparing an R1-T1-B-M1-based alloy bulk magnet that satisfies the following requirements (1) to (6);
(1) R1 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire bulk of the R1-T1-B-M1 alloy.
(2) T1 is Fe or Fe and X1, and X1 is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(3) The molar ratio of [T1] / [B] is 13.0 or more and 14.0 or less.
(4) M1 is at least one of Ga and Cu, and is 0 mass% or more and 1 mass% or less of the entire R1-T1-B-M1 alloy bulk body.
(5) Inevitable impurities may be included.
(6) The R 2 T 14 B phase as the main phase has an average crystal grain size of 1 μm or less and magnetic anisotropy.
Preparing an R2-Cu-Ga-Fe-A-based alloy that satisfies the following requirements (7) to (12);
(7) R2 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and is 35 mass% or more and 91 mass% or less of the entire R2-Cu-Ga-Fe-A alloy.
(8) Cu is 2.5 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A-based alloy.
(9) Ga is 2.5 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A-based alloy.
(10) Fe is 4 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A alloy.
(11) A is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, Mo, and Ag, and R2-Cu-Ga-Fe-A It is 0 mass% or more and 1 mass% or less of the whole system alloy.
(12) Inevitable impurities may be included.
At least a part of the R2-Cu-Ga-Fe-A alloy is brought into contact with at least a part of the surface of the bulk of the R1-T1-B-M1 alloy, and 700 ° C in a vacuum or an inert gas atmosphere. Performing a first heat treatment at a temperature of 950 ° C. or lower;
Performing a second heat treatment on the R1-T1-B-M1-based alloy bulk body subjected to the first heat treatment at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere; ,
The manufacturing method of the R3-T2-B-M2 type | system | group magnet which satisfy | fills the following requirements (13)-(18) including this.
(13) R3 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire R3-T2-B-M2 magnet.
(14) T2 is Fe or Fe and X2, and X2 is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(15) The molar ratio [T2] / [B] is more than 14.0.
(16) M2 is Ga and Cu, and is not less than 0.1 mass% and not more than 3 mass% of the entire R3-T2-B-M2 magnet.
(17) Inevitable impurities may be included.
(18) The average crystal grain size of the R 2 T 14 B phase, which is the main phase, is 1 μm or less and has magnetic anisotropy.

ある実施形態において、前記R2−Cu−Ga−Fe−A系合金は重希土類元素を含有していない。   In one embodiment, the R2-Cu-Ga-Fe-A-based alloy does not contain a heavy rare earth element.

ある実施形態において、前記R2−Cu−Ga−Fe−A系合金中のR2の50mass%以上がPrである。   In one embodiment, 50 mass% or more of R2 in the R2-Cu-Ga-Fe-A-based alloy is Pr.

ある実施形態において、前記R1−T1−B−M1系合金バルク体の重希土類元素は1mass%以下である。   In one embodiment, the heavy rare earth element of the R1-T1-B-M1 alloy bulk body is 1 mass% or less.

ある実施形態において、前記R1−T1−B−M1系合金バルク体を準備する工程は、R14B相を主体とする平均粒子径1μm以上10μm以下の粉末を磁界中成形した後、HDDR処理し、その後、加熱圧縮したものである。 In one embodiment, the step of preparing the R1-T1-B-M1-based alloy bulk body includes forming a powder mainly having an R 2 T 14 B phase and having an average particle diameter of 1 μm to 10 μm in a magnetic field, and then HDDR. It is processed and then heated and compressed.

ある実施形態において、前記R1−T1−B−M1系合金バルク体を準備する工程は、R14B相を主体とする平均粒子径20μm以上の合金をHDDR処理した後、得られた粉末を磁界中成形し、その後、加熱圧縮したものである。 In one embodiment, the step of preparing the R1-T1-B-M1-based alloy bulk body is obtained by subjecting an alloy mainly composed of R 2 T 14 B phase and having an average particle diameter of 20 μm or more to HDDR treatment. Was molded in a magnetic field and then heated and compressed.

ある実施形態において、前記R1−T1−B−M1系合金バルク体を準備する工程は、超急冷法によって作製された合金を熱間加工したものである。   In one embodiment, the step of preparing the R1-T1-B-M1 alloy bulk body is a hot working of an alloy manufactured by a rapid quenching method.

本開示の実施形態によると、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR−T−B系磁石(本開示のR3−T2−B−M2系磁石に相当)の製造方法を提供することができる。 According to embodiments of the present disclosure, while reducing the content of heavy rare earth elements, corresponding to R3-T2-B-M2 based magnet of the R-T-B magnet (present disclosure having a high B r and a high H cJ ) Manufacturing method can be provided.

本開示によるR3−T2−B−M2系磁石の製造方法における工程の例を示すフローチャートである。It is a flowchart which shows the example of the process in the manufacturing method of the R3-T2-B-M2 type | system | group magnet by this indication. R3−T2−B−M2系磁石の主相と粒界相を示す模式図である。It is a schematic diagram which shows the main phase and grain boundary phase of a R3-T2-B-M2 type | system | group magnet. 図2Aの破線矩形領域内を更に拡大した模式図である。It is the schematic diagram which expanded further the inside of the broken-line rectangular area of FIG. 2A. 熱処理工程におけるR1−T1−B−M1系合金バルク体とR2−Ga−Fe−A系合金との配置形態を模式的に示す説明図である。It is explanatory drawing which shows typically the arrangement | positioning form of the R1-T1-B-M1 type | system | group bulk body and R2-Ga-Fe-A type alloy in a heat treatment process. 加熱圧縮により緻密化したり、熱間加工を行うための装置の構成例を示す図である。It is a figure which shows the structural example of the apparatus for densifying by heat compression or performing hot processing.

本開示によるR3−T2−B−M2系磁石の製造方法は、図1に示す様に、R1−T1−B−M1系合金バルク体を準備する工程S10と、R2−Cu−Ga−Fe−A系合金を準備する工程S20とを含む。R1−T1−B−M1系合金バルク体を準備する工程S10と、R2−Cu−Ga−Fe−A系合金を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR1−T1−B−M1系合金バルク体及びR2−Cu−Ga−Fe−A系合金を用いてもよい。   As shown in FIG. 1, the manufacturing method of the R3-T2-B-M2 magnet according to the present disclosure includes the step S10 of preparing an R1-T1-B-M1 alloy bulk body, and the R2-Cu-Ga-Fe- And a step S20 of preparing an A-based alloy. The order of the step S10 for preparing the R1-T1-B-M1-based alloy bulk body and the step S20 for preparing the R2-Cu-Ga-Fe-A-based alloy is arbitrary, and each was manufactured at a different place. An R1-T1-B-M1 alloy bulk body and an R2-Cu-Ga-Fe-A alloy may be used.

本開示において、第二の熱処理前及び第ニの熱処理中のR3−T2−B−M2系磁石をR1−T1−B−M1系合金バルク体と称し、第二の熱処理後のR3−T2−B−M2系磁石を単にR3−T2−B−M2系磁石と称する。   In the present disclosure, the R3-T2-B-M2-based magnet before the second heat treatment and during the second heat treatment is referred to as an R1-T1-B-M1-based alloy bulk body, and R3-T2- after the second heat treatment. The B-M2 magnet is simply referred to as an R3-T2-B-M2 magnet.

R1−T1−B−M1系合金バルク体は、以下の要件(1)〜(6)を満たす。
(1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1−T1−B−M1系合金バルク体全体の27mass%以上35mass%以下である。
(2)T1はFe又はFeとX1であり、X1はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(3)[T1]/[B]のmol比が13.0以上14.0以下である。
(4)M1はGa及びCuの少なくとも一方であり、R1−T1−B−M1系合金バルク体全体の0mass%以上1mass%以下である。
(5)不可避的不純物を含んでも良い。
なお、本開示においては、M1が0mass%の場合であってもR1−T1−B−M1系合金バルク体と称することとする。
(6)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
前記(3)[T1]/[B]のmol比が14.0以下であるということは、Bの含有量がR14B化合物の化学量論組成比よりも多い(又は同じ)、すなわち、主相(R14B化合物)形成に使われるT1量に対して相対的にB量が多い(又は同じ)ことを意味している。尚、[T1]は質量%で示すT1で規定された各元素(例えばFe)の含有量をその元素(例えばFe)の原子量で除したものであり、[B]は質量%で示すBの含有量をBの原子量で除したものである。
The R1-T1-B-M1-based alloy bulk body satisfies the following requirements (1) to (6).
(1) R1 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire bulk of the R1-T1-B-M1 alloy.
(2) T1 is Fe or Fe and X1, and X1 is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(3) The molar ratio of [T1] / [B] is 13.0 or more and 14.0 or less.
(4) M1 is at least one of Ga and Cu, and is 0 mass% or more and 1 mass% or less of the entire R1-T1-B-M1 alloy bulk body.
(5) Inevitable impurities may be included.
In the present disclosure, even if M1 is 0 mass%, it is referred to as an R1-T1-B-M1 alloy bulk body.
(6) The R 2 T 14 B phase as the main phase has an average crystal grain size of 1 μm or less and magnetic anisotropy.
(3) The molar ratio of [T1] / [B] is 14.0 or less means that the B content is greater than (or the same as) the stoichiometric composition ratio of the R 2 T 14 B compound. That is, it means that the B amount is relatively large (or the same) as the T1 amount used for forming the main phase (R 2 T 14 B compound). In addition, [T1] is obtained by dividing the content of each element (for example, Fe) defined by T1 represented by mass% by the atomic weight of the element (for example, Fe), and [B] is the content of B represented by mass%. The content is divided by the atomic weight of B.

R2−Cu−Ga−Fe−A系合金は、以下の要件(7)〜(12)を満たす。
(7)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2−Cu−Ga−Fe−A系合金全体の35mass%以上91mass%以下である。
(8)CuはR2−Cu−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。
(9)GaはR2−Cu−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。
(10)FeはR2−Cu−Ga−Fe−A系合金全体の4mass%以上40mass%以下である。
(11)AはAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、Agから選択される一種以上であり、R2−Cu−Ga−Fe−A系合金全体の0mass%以上1mass%以下である。
(12)不可避的不純物を含んでも良い。
なお、本開示においては、Aが0mass%の場合であってもR2−Cu−Ga−Fe−A系合金と称することとする。
The R2-Cu-Ga-Fe-A-based alloy satisfies the following requirements (7) to (12).
(7) R2 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and is 35 mass% or more and 91 mass% or less of the entire R2-Cu-Ga-Fe-A alloy.
(8) Cu is 2.5 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A-based alloy.
(9) Ga is 2.5 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A-based alloy.
(10) Fe is 4 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A alloy.
(11) A is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, Mo, and Ag, and R2-Cu-Ga-Fe-A It is 0 mass% or more and 1 mass% or less of the whole system alloy.
(12) Inevitable impurities may be included.
In the present disclosure, even if A is 0 mass%, it is referred to as an R2-Cu-Ga-Fe-A-based alloy.

R3−T2−B−M2系磁石(第二の熱処理後のR3−T2−B−M2系磁石)は、以下の要件(13)〜(18)を満たす。
(13)R3は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R3−T2−B−M2系磁石全体の27mass%以上35mass%以下である。
(14)T2はFe又はFeとX2であり、X2はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(15)[T2]/[B]のmol比が14.0超である。
(16)M2はGa及びCuであり、R3−T2−B−M2系磁石全体の0.1mass%以上3mass%以下である。
(17)不可避的不純物を含んでいても良い。
(18)主相であるR14B相の平均結晶粒径が1μm以下であり磁気的異方性を有する。
前記(14)[T2]/[B]のmol比が14.0超であるということは、Bの含有量がR14B化合物の化学量論組成比よりも少ない、すなわち、主相(R14B化合物)形成に使われるT2量に対して相対的にB量が少ないことを意味している。尚、[T2]は質量%で示すT2で規定された各元素(例えばFe)の含有量をその元素(例えばFe)の原子量で除したものであり、[B]は質量%で示すBの含有量をBの原子量で除したものである。
The R3-T2-B-M2 system magnet (R3-T2-B-M2 system magnet after the second heat treatment) satisfies the following requirements (13) to (18).
(13) R3 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire R3-T2-B-M2 magnet.
(14) T2 is Fe or Fe and X2, and X2 is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(15) The molar ratio [T2] / [B] is more than 14.0.
(16) M2 is Ga and Cu, and is not less than 0.1 mass% and not more than 3 mass% of the entire R3-T2-B-M2 magnet.
(17) Inevitable impurities may be included.
(18) The average crystal grain size of the main phase R 2 T 14 B phase is 1 μm or less and has magnetic anisotropy.
The molar ratio of (14) [T2] / [B] being more than 14.0 means that the B content is less than the stoichiometric composition ratio of the R 2 T 14 B compound, that is, the main phase (R 2 T 14 B compound) This means that the amount of B is relatively small with respect to the amount of T2 used for formation. In addition, [T2] is obtained by dividing the content of each element (for example, Fe) specified by T2 expressed by mass% by the atomic weight of the element (for example, Fe), and [B] is the value of B expressed by mass%. The content is divided by the atomic weight of B.

本開示によるR3−T2−B−M2系磁石の製造方法は、主相(R14B化合物)形成に使われるT量に対して化学量論比で相対的にB量が多い(又は同じ、すなわち、[T1]/[B]のmol比が14.0以下である)R1−T1−B−M1系合金バルク体の表面の少なくとも一部にR2−Cu−Ga−Fe−A系合金を接触させ、図1に示す様に、真空又は不活性ガス雰囲気中、700℃以上950℃以下の温度で第一の熱処理を実施する工程S30と、この第一の熱処理が実施されたR1−T1−B−M1系合金バルク体に対して真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程S40を行うことで、主相形成に使われるT量に対して相対的にB量が少ないR3−T2−B−M2系磁石を作製する。第一の熱処理を実施する工程S30と、第二の熱処理を実施する工程S40との間に他の工程、例えば冷却工程や合金バルク体表面に残存しているR2−Cu−Ga−Fe−A系合金を除去する工程などが実行され得る。 The manufacturing method of the R3-T2-B-M2 magnet according to the present disclosure has a relatively large B amount in a stoichiometric ratio with respect to the T amount used for forming the main phase (R 2 T 14 B compound) (or The same, that is, the molar ratio of [T1] / [B] is 14.0 or less) The R2-Cu-Ga-Fe-A system is formed on at least a part of the surface of the R1-T1-B-M1 system The alloy is brought into contact, and as shown in FIG. 1, step S30 is performed in a vacuum or an inert gas atmosphere at a temperature of 700 ° C. to 950 ° C. -T1-B-M1 alloy bulk body is used for main phase formation by performing step S40 for performing the second heat treatment at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere. R3-T2-B-M2 with less B amount relative to T amount A system magnet is produced. Between the step S30 for carrying out the first heat treatment and the step S40 for carrying out the second heat treatment, other steps such as R2-Cu-Ga-Fe-A remaining on the surface of the cooling step or the alloy bulk body. A step of removing the system alloy can be performed.

まず、R3−T2−B−M2系磁石の基本構造を説明する。
R3−T2−B−M2系磁石は、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。
図2Aは、R3−T2−B−M2系磁石の主相と粒界相を示す模式図であり、図2Bは図2Aの破線矩形領域内を更に拡大した模式図である。図2Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図2A及び図2Bに示されるように、R3−T2−B−M2系磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図2Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つ以上のR14B化合物粒子が隣接する粒界三重点14bとを含む。
主相12であるRB化合物は高い飽和磁化と異方性磁界を持つ強磁性化合物である。したがって、R3−T2−B−M2系磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。R14B化合物を形成するためのB量又はR量が化学量論比を下回ると、一般的には、粒界相14にFe相又はR17相等の磁性体が生成し、HcJが急激に低下する。
First, the basic structure of the R3-T2-B-M2 system magnet will be described.
The R3-T2-B-M2 system magnet is composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at a grain boundary portion of the main phase.
FIG. 2A is a schematic diagram showing a main phase and a grain boundary phase of the R3-T2-B-M2 system magnet, and FIG. 2B is a schematic diagram further enlarging the inside of the broken-line rectangular region of FIG. 2A. In FIG. 2A, for example, an arrow having a length of 5 μm is described as a reference length indicating the size for reference. As shown in FIGS. 2A and 2B, the R3-T2-B-M2 system magnet includes a main phase 12 mainly composed of an R 2 T 14 B compound, and a grain boundary phase 14 located at a grain boundary portion of the main phase 12. It consists of and. In addition, as shown in FIG. 2B, the grain boundary phase 14 includes a two-grain grain boundary phase 14a in which two R 2 T 14 B compound particles (grains) are adjacent, and three or more R 2 T 14 B compound particles. Includes adjacent grain boundary triple points 14b.
The R 2 T 4 B compound as the main phase 12 is a ferromagnetic compound having a high saturation magnetization and an anisotropic magnetic field. Therefore, in the R3-T2-B-M2 magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are set to the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = It may be close to 2: 14: 1). When the B amount or R amount for forming the R 2 T 14 B compound is lower than the stoichiometric ratio, generally, a magnetic material such as an Fe phase or an R 2 T 17 phase is generated in the grain boundary phase 14, H cJ decreases rapidly.

特許文献1に記載されている方法では、B量をR14B化合物の化学量論比よりも少なくし、且つ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有することで、R17相から粒界に遷移金属リッチ相(R13M)を生成させてHcJを向上させている。しかし、本発明者らは検討の結果、R−T−Ga相(R13M)は原料合金段階では生成し難くその後の熱処理時に生成され易いことがわかった。そして、特許文献1に記載されている方法の様に原料合金段階から低B組成(B量がR14B化合物の化学量論比よりも少ない組成)にすると、原料合金段階において粒界にR17相等が多く残存し、それにより最終的に得られる焼結磁石のHcJを低下させていることがわかった。そのため、高いHcJを得るためには、原料合金段階では高B組成(B量がR14B化合物の化学量論比よりも多い(又は同じ)組成)にしてR17相等の生成を抑制させる必要がある。
本発明者らは更に検討の結果、高B且つ特定の組成を有するR1−T1−B−M1系合金バルク体の表面の少なくとも一部に、R2−Cu−Ga−Fe−A系合金を接触させて特定の熱処理を実施することにより、R2−Cu−Ga−Fe−A系合金中のFeをR1−T1−B−M1系合金バルク体内部に導入し、熱処理後のR3−T2−B−M2系磁石を低B組成にする(FeをR1−T1−B−M1系合金バルク体内部に導入することで相対的にB量をR14B化合物の化学量論比よりも少なくする)ことができることを見い出した。通常Feを含む合金(例えばDyFeやTbFe)を熱処理等により磁石表面から導入させても1mass%以下程度の少量しか磁石内部に導入されないため、[T]/[B]のmol比が14.0以下の磁石を14.0超にすることは困難である。本開示におけるR3−T2−B−M2系磁石の製造方法は、特定組成のR1−T1−B−M1系合金バルク体の表面に特定組成のR2、Ga、Cu、Feを全て含む合金を接触させることで、最終的に得られるR3−T2−B−M2系磁石における[T2]/[B]のmol比が14.0超となるために必要な量のFeを磁石表面から内部に導入させることを可能とする。これにより、特許文献1に記載されている方法の様な最初(原料合金段階)から低B組成の場合と比べて、原料合金段階におけるR217相等の生成を抑制することができるため、より高いHcJを得ることができると考えられる。更に、最初(原料合金段階)から低B組成且つGa等を含有する組成(例えば特許文献1に記載されている組成)の場合、R−T−Ga相は磁石内部にほぼ均一に生成される。これに対し、本開示によるR3−T2−B−M2系磁石の製造方法は、磁石表面よりR、Ga、Cu、Feを導入させることで、最も耐熱性の要求される磁石表面付近で最も効率的にHcJを向上させることができ、その結果、Brの低下を抑えることができる。また、特許文献2は、実施例における磁石組成が不明であり、拡散合金及び熱処理条件も本開示とは異なる。
In the method described in Patent Document 1, the amount of B is less than the stoichiometric ratio of the R 2 T 14 B compound, and at least one metal element M selected from Al, Ga, and Cu is added. by containing, and thereby generates a grain boundary to the transition metal-rich phase (R 6 T 13 M) to improve the H cJ from R 2 T 17 phase. However, as a result of investigations, the present inventors have found that the R—T—Ga phase (R 6 T 13 M) is difficult to produce at the raw material alloy stage and is easily produced during the subsequent heat treatment. Then, as in the method described in Patent Document 1, when a low B composition (a composition in which the amount of B is less than the stoichiometric ratio of the R 2 T 14 B compound) is changed from the raw material alloy stage, grain boundaries are formed in the raw material alloy stage. It was found that a large amount of R 2 T 17 phase or the like remained in this, thereby reducing the HcJ of the finally obtained sintered magnet. Therefore, in order to obtain a high H cJ are high B composition in the raw material alloy stage (B amount is larger than the stoichiometric ratio of R 2 T 14 B compound (or the same) composition) to to the R 2 T 17 phase etc. It is necessary to suppress generation.
As a result of further studies, the present inventors contacted an R2-Cu-Ga-Fe-A-based alloy with at least a part of the surface of a bulk body of an R1-T1-B-M1-based alloy having a high B and a specific composition. In this way, Fe in the R2-Cu-Ga-Fe-A alloy is introduced into the R1-T1-B-M1 alloy bulk body by performing a specific heat treatment, and R3-T2-B after the heat treatment is introduced. -M2 magnet has a low B composition (relatively reducing the B content to less than the stoichiometric ratio of the R 2 T 14 B compound by introducing Fe into the bulk of the R1-T1-B-M1 alloy) I found out that I can do it. Usually, even when an alloy containing Fe (for example, DyFe or TbFe) is introduced from the magnet surface by heat treatment or the like, only a small amount of about 1 mass% or less is introduced into the magnet, so that the molar ratio [T] / [B] is 14.0. It is difficult to make the following magnets more than 14.0. In the method of manufacturing an R3-T2-B-M2 magnet in the present disclosure, an R1-T1-B-M1 alloy bulk body having a specific composition is contacted with an alloy containing all of R2, Ga, Cu, and Fe having a specific composition. As a result, the amount of Fe necessary for the [T2] / [B] molar ratio in the finally obtained R3-T2-B-M2 system magnet to exceed 14.0 is introduced from the magnet surface into the interior. It is possible to make it. Thereby, compared with the case of the low B composition from the beginning (raw material alloy stage) like the method described in Patent Document 1, the generation of R 2 T 17 phase and the like in the raw material alloy stage can be suppressed. It is believed that higher H cJ can be obtained. Furthermore, in the case of a low B composition and a composition containing Ga or the like (for example, a composition described in Patent Document 1) from the beginning (raw material alloy stage), the RT-Ga phase is generated almost uniformly inside the magnet. . On the other hand, the manufacturing method of the R3-T2-B-M2 magnet according to the present disclosure introduces R, Ga, Cu, and Fe from the magnet surface, so that it is most efficient near the magnet surface where the most heat resistance is required. manner it is possible to improve the H cJ, can be suppressed as a result, decrease in B r. Moreover, in patent document 2, the magnet composition in an Example is unknown, and a diffusion alloy and heat processing conditions are also different from this indication.

(R1−T1−B−M1系合金バルク体を準備する工程)
まず、R1−T1−B−M1系合金バルク体(以下、単に「バルク体」という場合がある)を準備する工程におけるバルク体の組成を説明する。
R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含む。更に、R1−T1−B−M1系合金バルク体のHcJを向上させるために一般的に用いられるDy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。但し、本開示は前記重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量はR1−T1−B−M1系合金バルク体の1mass%以下(R1−T1−B−M1系合金バルク体中の重希土類元素が1mass%以下)であることが好ましく、0.5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことがさらに好ましい。
(Step of preparing R1-T1-B-M1-based alloy bulk body)
First, the composition of the bulk body in the step of preparing an R1-T1-B-M1-based alloy bulk body (hereinafter simply referred to as “bulk body”) will be described.
R1 is at least one kind of rare earth elements and always contains at least one of Nd and Pr. Furthermore, you may contain a small amount of heavy rare earth elements, such as Dy, Tb, Gd, and Ho which are generally used in order to improve HcJ of an R1-T1-B-M1 type | system | group bulk body. However, the present disclosure can obtain a sufficiently high HcJ without using a large amount of the heavy rare earth element. Therefore, the content of the heavy rare earth element is 1 mass% or less of the R1-T1-B-M1 alloy bulk body (the heavy rare earth element in the R1-T1-B-M1 alloy bulk body is 1 mass% or less). Is preferably 0.5 mass% or less, more preferably not contained (substantially 0 mass%).

R1はR1−T1−B−M1系合金バルク体全体の27mass%以上35mass%以下である。R1が27mass%未満では加熱圧縮や熱間加工の過程で液相が十分に生成せず、R1−T1−B−M1系合金バルク体を十分に緻密化することが困難になる。一方、R1が35mass%を超えても本開示の効果を得ることはできるが、R1−T1−B−M1系合金バルク体の製造工程中における合金粉末が非常に活性になり、合金粉末の著しい酸化や発火などを生じたり、加熱圧縮や熱間加工の際に液相の染み出しが起こってバルク体を安定に作製することが困難になることがあるため、35mass%以下が好ましい。R1は28mass%以上33mass%以下であることがより好ましく、28.5mass%以上32mass%以下であることがさらに好ましい。   R1 is 27 mass% or more and 35 mass% or less of the entire bulk of the R1-T1-B-M1 alloy. If R1 is less than 27 mass%, a liquid phase is not sufficiently generated in the process of heat compression and hot working, and it becomes difficult to sufficiently densify the R1-T1-B-M1 alloy bulk body. On the other hand, the effect of the present disclosure can be obtained even if R1 exceeds 35 mass%, but the alloy powder becomes very active during the manufacturing process of the R1-T1-B-M1-based alloy bulk body, and the alloy powder is significantly The amount is preferably 35% by mass or less because oxidation, ignition, etc. may occur, or liquid phase oozes out during heat compression or hot working, making it difficult to stably produce a bulk body. R1 is more preferably 28 mass% or more and 33 mass% or less, and further preferably 28.5 mass% or more and 32 mass% or less.

T1はFe又はFeとX1であり、X1はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、から選択される一種以上である。すなわち、T1はFeのみであってもよいし、FeとX1からなってもよい。TがFeとX1からなる場合、T全体に対するFe量は80mass%以上であることが好ましい。T1はR1、B、M1及び不可避的不純物以外の残部を占めることが好ましい。   T1 is Fe or Fe and X1, and X1 is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo. That is, T1 may be Fe only or Fe and X1. When T consists of Fe and X1, the amount of Fe with respect to the entire T is preferably 80 mass% or more. T1 preferably occupies the remainder other than R1, B, M1 and unavoidable impurities.

前記T1とBとは、[T1]/[B]のmol比が13.0以上14.0以下となるように設定する。[T1]/[B]のmol比が13.0未満であると、最終的に得られるR3−T2−B−M2系磁石の[T2]/[B]のmol比を14.0超にすることができず、高いHcJを得ることができない恐れがある。一方、[T1]/[B]のmol比が14.0を超えると、原料段階におけるR17相等の生成を抑制することができず、高いHcJを得ることができない。[T1]/[B]のmol比が14.0以下という条件は、主相(R14B化合物)形成に使われるT量に対して相対的にB量が多い(又は同じ)ことを示している。また、BはR1−T1−B−M1系合金バルク体全体の0.9mass%以上1.1mass%未満が好ましい。 T1 and B are set so that the molar ratio of [T1] / [B] is 13.0 or more and 14.0 or less. When the molar ratio of [T1] / [B] is less than 13.0, the molar ratio of [T2] / [B] of the finally obtained R3-T2-B-M2 magnet is increased to more than 14.0. There is a possibility that high HcJ cannot be obtained. On the other hand, when the molar ratio of [T1] / [B] exceeds 14.0, generation of R 2 T 17 phase and the like in the raw material stage cannot be suppressed, and high HcJ cannot be obtained. The condition that the molar ratio of [T1] / [B] is 14.0 or less is that the amount of B is relatively large (or the same) relative to the amount of T used for forming the main phase (R 2 T 14 B compound). Is shown. Further, B is preferably 0.9 mass% or more and less than 1.1 mass% of the entire bulk of the R1-T1-B-M1 alloy.

M1はGa及びCuの少なくとも一方であり、M1は0mass%以上1mass%以下である。M1を含有しなくても本開示の効果を奏することができるが、特にGaを少量(0.2mass%程度)含有させた方がより高いHcJを得ることができるため好ましい。 M1 is at least one of Ga and Cu, and M1 is 0 mass% or more and 1 mass% or less. Although the effect of the present disclosure can be achieved without containing M1, it is particularly preferable to contain a small amount of Ga (about 0.2 mass%) because higher HcJ can be obtained.

さらに、R1−T1−B−M1系合金バルク体は、Ndメタル、Prメタル、ジジム合金(Nd−Pr)、電解鉄、フェロボロンなどの合金中及び製造工程中に通常含有される不可避的不純物及び少量の上記以外の元素を含んでいても良い。例えば、La、Ce、Sm、Ca、Mg、O(酸素)、N(炭素)、C(窒素)、Hf、Ta、Wなどをそれぞれ含有してもよい。   Further, the bulk body of R1-T1-B-M1 alloy includes unavoidable impurities usually contained in alloys such as Nd metal, Pr metal, didymium alloy (Nd-Pr), electrolytic iron, ferroboron, and the manufacturing process. A small amount of elements other than those described above may be included. For example, you may contain La, Ce, Sm, Ca, Mg, O (oxygen), N (carbon), C (nitrogen), Hf, Ta, W, etc., respectively.

次にR1−T1−B−M1系合金バルク体を準備する工程について説明する。本実施形態で用いられる、主相であるR14B相の結晶粒径が1μm以下でかつ磁気的な異方性を有するR1−T1−B−M1系合金バルク体を準備する工程としては公知の方法が採用できる。以下にバルク体を作製するための具体例をいくつか示す。 Next, a process for preparing an R1-T1-B-M1 alloy bulk body will be described. As a step of preparing an R1-T1-B-M1 alloy bulk body in which the crystal grain size of the R 2 T 14 B phase, which is the main phase, used in this embodiment is 1 μm or less and has magnetic anisotropy A known method can be employed. Several specific examples for producing a bulk body are shown below.

[微粉砕粉配向成形体のHDDR処理で得られた多孔質材料の加圧圧縮]
この方法は、粒径D50(粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径))が10μm程度の粉末を磁界中配向して作製した成形体にHDDR処理を行うことで、部分的に焼結されて多孔質となり、さらに加熱圧縮により緻密化することで得られる、平均結晶粒径1μm以下で磁気的異方性を有するバルク体を作製する方法である。以下に作製工程の一例を示す。
[Pressure compression of porous material obtained by HDDR treatment of finely pulverized powder alignment molded body]
In this method, a powder having a particle size D 50 (particle size D 50 is a volume median value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method) oriented around 10 μm in a magnetic field is formed. By subjecting the body to HDDR treatment, a bulk body is obtained which is partially sintered and becomes porous, and is obtained by densification by heating and compression, and has an average crystal grain size of 1 μm or less and magnetic anisotropy. It is a method to do. An example of a manufacturing process is shown below.

<原料粉末>
まず、R14B相を主体とする原料合金を作製する。原料合金の作製方法としては、例えば、ブックモールド法、遠心鋳造法、ストリップキャスト法、アトマイズ法、拡散還元法など、R−T−B系磁石の作製に用いられる公知の方法を適用することができるが、α‐Fe相の生成を抑制するという観点からは、ストリップキャスト法を採用することが好ましい。得られた原料合金は、さらに、原料合金における組織均質化などを目的として、粉砕前の原料合金に対して熱処理を施してもよい。このような熱処理は、真空または不活性雰囲気において、典型的には1000℃以上の温度で実行され得る。
<Raw material powder>
First, a raw material alloy mainly composed of the R 2 T 14 B phase is produced. As a method for producing the raw material alloy, for example, a known method used for producing an R-T-B system magnet such as a book mold method, a centrifugal casting method, a strip casting method, an atomizing method, a diffusion reduction method can be applied. However, from the viewpoint of suppressing the formation of the α-Fe phase, it is preferable to employ the strip casting method. The obtained raw material alloy may be further subjected to heat treatment on the raw material alloy before pulverization for the purpose of homogenizing the structure of the raw material alloy. Such heat treatment can be performed in a vacuum or inert atmosphere, typically at a temperature of 1000 ° C. or higher.

次に、原料合金(出発合金)を公知の方法で粉砕することにより原料粉末を作製する。本実施形態では、まず、ジョークラッシャーなどの機械的粉砕法や水素粉砕法などを用いて出発合金を粗粉砕し、大きさ50μm〜1000μm程度の粗粉砕粉を作製する。この粗粉砕粉末に対してジェットミルなどによる微粉砕を行い、粒径D50が1μm以上20μm以下、好ましくは、粒径D50が3μm以上10μm以下の原料粉末を作製する。粒径D50が1μm以下となると生産性の悪化や、酸化などの問題が顕在化してしまう。一方、粒径D50が20μm以上を超えると、その後のHDDR処理による緻密化が十分進行せず、HDDR処理工程以降のハンドリングが困難になる場合がある。 Next, a raw material powder is produced by pulverizing the raw material alloy (starting alloy) by a known method. In the present embodiment, first, the starting alloy is coarsely pulverized using a mechanical pulverization method such as a jaw crusher or a hydrogen pulverization method to produce coarsely pulverized powder having a size of about 50 μm to 1000 μm. The coarsely pulverized powder is finely pulverized by a jet mill or the like to produce a raw material powder having a particle size D 50 of 1 μm to 20 μm, and preferably a particle size D 50 of 3 μm to 10 μm. When the particle diameter D 50 is 1 μm or less, problems such as deterioration of productivity and oxidation become apparent. On the other hand, if the particle size D 50 exceeds 20 μm or more, the subsequent densification by the HDDR process does not proceed sufficiently, and handling after the HDDR process may be difficult.

<配向成形体>
次に、上記の原料粉末を用いて圧粉体(成形体)を成形する。圧粉体を成形する工程は、0.5T〜20Tの磁界中(静磁界、パルス磁界など)で10MPa〜200MPaの圧力を印加して行うことが望ましい。成形は、公知の粉末プレス装置によって行うことができる。粉末プレス装置から取り出したときの圧粉体密度(成形体密度)は、3.5Mg/m3〜5.2Mg/m3程度である。
<Oriented compact>
Next, a green compact (molded body) is formed using the raw material powder. The step of forming the green compact is desirably performed by applying a pressure of 10 MPa to 200 MPa in a magnetic field of 0.5 T to 20 T (static magnetic field, pulse magnetic field, etc.). Molding can be performed by a known powder press apparatus. The green compact density (molded body density) when taken out from the powder press apparatus is about 3.5 Mg / m 3 to 5.2 Mg / m 3 .

なお、最終的に得られるR3−T2−B−M2系磁石の磁気特性の向上などを目的として、出発合金の粉砕工程の前に、別の合金を混合したものを微粉砕し、微粉砕後に圧粉体を成形してもよい。あるいは、出発合金を微粉砕した後に、別の金属、合金および/または化合物の粉末を混合し、それらの圧粉体を作製してもよい。さらには、金属、合金および/または化合物を分散または溶解させた液を圧粉体に含浸させ、その後、溶媒を蒸発させてもよい。これらの方法を適用する場合の合金粉末の組成は、混合粉全体として前述の範囲内に入ることが望ましい。   In addition, for the purpose of improving the magnetic properties of the finally obtained R3-T2-B-M2 system magnet, before the pulverization process of the starting alloy, a mixture of another alloy is finely pulverized, and after pulverization A green compact may be formed. Alternatively, after the starting alloy is pulverized, powders of other metals, alloys and / or compounds may be mixed to produce a green compact. Furthermore, the green compact may be impregnated with a liquid in which a metal, an alloy and / or a compound is dispersed or dissolved, and then the solvent may be evaporated. The composition of the alloy powder when these methods are applied is desirably within the above-mentioned range as a whole of the mixed powder.

<HDDR処理>
次に、上記成形工程によって得られた圧粉体(成形体)に対し、HDDR処理を施す。
<HDDR processing>
Next, the HDDR process is performed on the green compact (molded body) obtained by the molding step.

HDDR処理の条件は、添加元素の種類・量などによって適宜選定され、従来のHDDR処理における処理条件を参考にして決定することができる。   The conditions for the HDDR process are appropriately selected depending on the type and amount of the additive element, and can be determined with reference to the process conditions in the conventional HDDR process.

HD反応のための昇温工程は、水素分圧10kPa以上500kPa以下の水素ガス雰囲気または水素ガスと不活性ガス(ArやHeなど)の混合雰囲気、不活性ガス雰囲気、真空中のいずれかで行う。CoやGaを含まない原料粉末の圧粉体を処理する場合は、高い主相配向度を得るために、昇温工程を不活性ガス雰囲気または真空中で行うことが望ましい。   The temperature raising step for the HD reaction is performed in a hydrogen gas atmosphere with a hydrogen partial pressure of 10 kPa or more and 500 kPa or less, or a mixed atmosphere of hydrogen gas and an inert gas (such as Ar or He), an inert gas atmosphere, or in a vacuum. . When processing a green compact of a raw material powder that does not contain Co or Ga, it is desirable to perform the temperature raising step in an inert gas atmosphere or vacuum in order to obtain a high degree of main phase orientation.

HD処理は、前記雰囲気中で、650℃以上1000℃未満で行う。HD処理時の水素分圧は20kPa以上200kPa以下がより好ましい。処理温度は700℃以上950℃以下であることがより好ましく、750℃以上920℃以下であることがさらに好ましい。HD処理に要する時間は、5分以上10時間以下であり、典型的には10分以上5時間以下の範囲に設定される。   The HD treatment is performed at 650 ° C. or higher and lower than 1000 ° C. in the atmosphere. The hydrogen partial pressure during HD processing is more preferably 20 kPa or more and 200 kPa or less. The treatment temperature is more preferably 700 ° C. or more and 950 ° C. or less, and further preferably 750 ° C. or more and 920 ° C. or less. The time required for HD processing is 5 minutes or more and 10 hours or less, and is typically set in the range of 10 minutes or more and 5 hours or less.

なお、バルク体中のTについて、Co量が合金全体の組成に対し、3mol%以下の場合は、昇温および/またはHD処理時の水素分圧を5kPa以上100kPa以下、より好ましくは、10kPa以上50kPa以下とすることで、HDDR処理における異方性の低下を抑制できる。   When T in the bulk body is 3 mol% or less with respect to the composition of the entire alloy, the hydrogen partial pressure during temperature rise and / or HD treatment is 5 kPa to 100 kPa, more preferably 10 kPa or more. By setting the pressure to 50 kPa or less, a decrease in anisotropy in the HDDR process can be suppressed.

HD処理のあと、DR処理を行う。HD処理とDR処理は同一の装置内で連続的に行うことも、別々の装置を用いて不連続的に行うこともできる。   DR processing is performed after HD processing. The HD process and the DR process can be performed continuously in the same apparatus, or can be performed discontinuously using different apparatuses.

DR処理は、真空または不活性ガス雰囲気下において650℃以上1000℃未満で行う。処理時間は、通常、5分以上10時間以下であり、典型的には10分以上、2時間以下の範囲に設定される。なお、雰囲気を段階的に制御する(例えば水素分圧を段階的に下げたり、減圧圧力を段階的に下げたりする)ことができることは言うまでもない。   The DR treatment is performed at 650 ° C. or higher and lower than 1000 ° C. in a vacuum or an inert gas atmosphere. The treatment time is usually 5 minutes or more and 10 hours or less, and is typically set in the range of 10 minutes or more and 2 hours or less. Needless to say, the atmosphere can be controlled stepwise (for example, the hydrogen partial pressure can be lowered stepwise or the reduced pressure can be lowered stepwise).

上述したHD反応前の昇温工程を含むHDDR工程の全般を通じて焼結反応が起こる。このため、圧粉体は細孔を有する多孔質材料となる。   A sintering reaction occurs throughout the HDDR process including the above-described temperature raising process before the HD reaction. For this reason, the green compact becomes a porous material having pores.

<多孔質材料の加熱圧縮処理>
上記の方法によって得られた多孔質材料にホットプレス法などの加熱圧縮処理を適用することによって、緻密化を行い、密度7.3Mg/m3以上、典型的には7.5Mg/m3以上のバルク体を作製する。多孔質材料に対する加熱圧縮は、公知の加熱圧縮技術を用いて行うことができる。例えば、ホットプレス、SPS、(spark plasma sintering)、HIP(hot isostatic press)、熱間圧延などの加熱圧縮処理を行うことが可能である。なかでも、所望の形状を得やすいホットプレスやSPSが好適に用いられ得る。本実施形態では以下の手順でホットプレスを行う。
<Heat compression treatment of porous material>
The porous material obtained by the above method is densified by applying a heat compression process such as a hot press method to a density of 7.3 Mg / m 3 or more, typically 7.5 Mg / m 3 or more. A bulk body is prepared. Heat compression for the porous material can be performed using a known heat compression technique. For example, it is possible to perform a heat compression process such as hot press, SPS, (spark plasma annealing), HIP (hot isostatic press), hot rolling. Especially, the hot press and SPS which are easy to obtain a desired shape can be used suitably. In this embodiment, hot pressing is performed according to the following procedure.

実施形態の一例を示す。本実施形態では、図4に示す構成を有するホットプレス装置を用いる。この装置は、中央に開口部を有する金型(ダイ)27と、多孔質材料を加圧するための上パンチ28aおよび下パンチ28bと、これらのパンチ28a、28bを昇降する駆動部(上ラム、下ラム)30a、30bとを備えている。   An example of embodiment is shown. In this embodiment, a hot press apparatus having the configuration shown in FIG. 4 is used. This apparatus includes a die (die) 27 having an opening in the center, an upper punch 28a and a lower punch 28b for pressurizing a porous material, and a drive unit (upper ram, elevating and lowering these punches 28a and 28b). Lower ram) 30a, 30b.

上述した方法によって作製した多孔質材料(図4では参照符号「10」を付している)を、図4に示す金型27に装填する。このとき、磁界方向(配向方向)とプレス方向とが一致するように装填を行うことが好ましい。金型27およびパンチ28a、28bは、使用する雰囲気ガス中で加熱温度および印加圧力に耐えうる材料から形成される。このような材料としては、カーボンや超硬合金(タングステンカーバイド−コバルト系など)が好ましい。なお、多孔質材料10の外形寸法を金型27の開口部寸法よりも小さく設定しておくことにより、異方性を高められる。次に、多孔質材料10を装填した金型27をホットプレス装置にセットする。ホットプレス装置は、不活性ガス雰囲気または10−1Torr以上の真空に制御することが可能なチャンバ26を備えていることが好ましい。チャンバ26内は、例えば抵抗加熱によるカーボンヒーターなどの加熱装置と、試料を加圧して圧縮するためのシリンダーとが備え付けられている。加熱装置としては、カーボンヒータの代わりにダイ27やサンプル(多孔質材料)10を高周波加熱したり、放電プラズマ焼結法(SPS)のように通電加熱する機構を有していても構わない。 A porous material (indicated by reference numeral “10” in FIG. 4) produced by the method described above is loaded into the mold 27 shown in FIG. At this time, it is preferable to perform loading so that the magnetic field direction (orientation direction) and the pressing direction coincide. The mold 27 and the punches 28a and 28b are formed of a material that can withstand the heating temperature and the applied pressure in the atmosphere gas to be used. As such a material, carbon and a cemented carbide (tungsten carbide-cobalt type etc.) are preferable. The anisotropy can be increased by setting the outer dimension of the porous material 10 smaller than the opening dimension of the mold 27. Next, the mold 27 loaded with the porous material 10 is set in a hot press apparatus. The hot press apparatus preferably includes a chamber 26 that can be controlled to an inert gas atmosphere or a vacuum of 10 −1 Torr or more. The chamber 26 is provided with a heating device such as a carbon heater by resistance heating, and a cylinder for pressurizing and compressing the sample. The heating device may have a mechanism that heats the die 27 and the sample (porous material) 10 at a high frequency instead of the carbon heater, or that is heated by current, such as a discharge plasma sintering method (SPS).

チャンバ26内を真空または不活性ガス雰囲気で満たした後、加熱装置により金型27を加熱し、金型27に装填された多孔質材料10の温度を600℃〜950℃に高める。このとき、10〜1000MPaの圧力Pで多孔質材料10を加圧する。多孔質材料10に対する加圧は、金型27の温度が設定レベルに到達してから開始することが好ましい。加圧しながら600〜950℃の温度で10分以上保持した後、冷却する。加熱圧縮によりフルデンス化された磁石が大気と接触して酸化しない程度の低い温度(100℃以下程度)まで冷却が進んだ後、本実施形態の磁石をチャンバ26から取り出す。こうして、上記の多孔質材料から本実施形態のR1−T1−B−M1系合金バルク体を得ることができる。   After filling the chamber 26 with a vacuum or an inert gas atmosphere, the mold 27 is heated by a heating device, and the temperature of the porous material 10 loaded in the mold 27 is increased to 600 ° C. to 950 ° C. At this time, the porous material 10 is pressurized with a pressure P of 10 to 1000 MPa. The pressurization to the porous material 10 is preferably started after the temperature of the mold 27 reaches a set level. While maintaining the pressure at 600 to 950 ° C. for 10 minutes or more, it is cooled. After the magnet fully condensed by heat compression is cooled to a low temperature (about 100 ° C. or less) that does not oxidize due to contact with the atmosphere, the magnet of this embodiment is taken out from the chamber 26. Thus, the R1-T1-B-M1-based alloy bulk body of the present embodiment can be obtained from the above porous material.

こうして得られたバルク体の密度は真密度の95%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織は、配向方向に平行となる断面の結晶粒の円相当径の平均が1μm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在する。   The density of the bulk body thus obtained reaches 95% or more of the true density. In addition, according to the present embodiment, the final crystal phase texture is such that the average equivalent circle diameter of crystal grains in a cross section parallel to the orientation direction is 1 μm or less, and the longest grain size b of each crystal grain is There are 50% by volume or more of crystal grains in which the ratio b / a of the shortest grain size a is less than 2.

[HDDR処理で得られた粉末の加圧圧縮]
この方法は、HDDR(水素化−不均化−脱水素−再結合)によって作製された異方性を有する原料粉末を磁界中で配向した後、ホットプレス法などの加圧圧縮処理を用いて緻密化し、バルク体を得る手法である。以下に作製工程の一例を示す。
[Pressure and compression of powder obtained by HDDR treatment]
In this method, an anisotropic raw material powder produced by HDDR (hydrogenation-disproportionation-dehydrogenation-recombination) is oriented in a magnetic field, and then a pressure compression treatment such as a hot press method is used. This is a technique for obtaining a bulk body by densification. An example of a manufacturing process is shown below.

<出発合金>
出発合金は、ブックモールド法、遠心鋳造法、ストリップキャスト法、アトマイズ法、拡散還元法などの公知の合金作製方法によって得られる。これらの方法によって作製された出発合金に対しては、マクロ偏析の解消、結晶粒の粗大化、α−Fe相の減少などを目的として、均質化熱処理を行なっても良い。均質化熱処理としては、例えば窒素以外の不活性ガス雰囲気中で1000〜1200℃、1〜48時間の処理を行う。なお、このような均質化処理により、R14B相の平均結晶粒径は約100μm以上に粗大化する。平均結晶粒径の粗大化は、HDDR処理磁粉が大きな磁気的異方性を有するためには好ましい。
<Starting alloy>
The starting alloy is obtained by a known alloy production method such as a book mold method, a centrifugal casting method, a strip casting method, an atomizing method, or a diffusion reduction method. The starting alloy produced by these methods may be subjected to homogenization heat treatment for the purpose of eliminating macro segregation, coarsening of crystal grains, reduction of α-Fe phase, and the like. As the homogenization heat treatment, for example, a treatment is performed at 1000 to 1200 ° C. for 1 to 48 hours in an inert gas atmosphere other than nitrogen. Note that the average crystal grain size of the R 2 T 14 B phase is coarsened to about 100 μm or more by such homogenization treatment. The coarsening of the average crystal grain size is preferable because the HDDR-treated magnetic powder has a large magnetic anisotropy.

<粉砕>
次に、出発合金を公知の方法で粉砕することにより、粗粉砕粉を作製する。粉砕は、例えばジョークラッシャーなどの機械的粉砕法や、水素粉砕法を用いて行うことができる。
<Crushing>
Next, coarsely pulverized powder is prepared by pulverizing the starting alloy by a known method. The pulverization can be performed using a mechanical pulverization method such as a jaw crusher or a hydrogen pulverization method.

水素粉砕法による場合は、上記の出発合金を水素雰囲気で保持することにより合金に水素を吸蔵させ、合金を脆化させればよい。出発合金は水素を吸蔵すると、自然崩壊を起こし、亀裂が生じる。このような水素粉砕は、合金インゴットを圧力容器中に入れた後、純度99.9%以上のHガスを50〜1000kPaまで導入し、次いでその状態を5分〜10時間保持することによって行うことができる。こうして、粒径1000μm以下の粗粉砕粉を得る。水素粉砕後に行う機械粉砕は、例えば、フェザーミル、ボールミル、またはパワーミルなどの粉砕機を用いて行うことができる。 In the case of the hydrogen pulverization method, the starting alloy may be held in a hydrogen atmosphere to cause the alloy to absorb hydrogen and embrittle the alloy. When the starting alloy occludes hydrogen, it spontaneously collapses and cracks occur. Such hydrogen pulverization is carried out by after placing the alloy ingot into a pressure vessel, introducing a purity of 99.9% or more of the H 2 gas to 50~1000KPa, then it retains its state 5 minutes to 10 hours be able to. In this way, coarsely pulverized powder having a particle size of 1000 μm or less is obtained. The mechanical pulverization performed after hydrogen pulverization can be performed using a pulverizer such as a feather mill, a ball mill, or a power mill.

こうして得た粗粉砕粉は、略単一の結晶方位を有する粒子から構成されており、各粒子の中では磁化容易軸が一方向にそろっている。この結果、HDDR処理によって得られる合金粉末が異方性を示すことが可能になる。本実施形態で使用する粗粉砕粉は、結晶方位が同一方向に揃ったNdFe14B型化合物相が20μm以上のサイズを有している。このことは、最終的に高い磁気特性、特に高い飽和磁束密度Bを得る上で重要である。 The coarsely pulverized powder thus obtained is composed of particles having a substantially single crystal orientation, and the magnetization easy axes are aligned in one direction in each particle. As a result, the alloy powder obtained by the HDDR process can exhibit anisotropy. In the coarsely pulverized powder used in the present embodiment, the Nd 2 Fe 14 B type compound phase having crystal orientations aligned in the same direction has a size of 20 μm or more. This is important in finally obtaining high magnetic properties, particularly high saturation magnetic flux density Br .

本実施形態における粗粉砕粉の平均粒径は、20μm未満になると、HDDR処理によって粉末を構成する粒子間の拡散凝集が過度に生じるため、HDDR処理後の解砕が困難となり、結果として高い磁気異方性を有する磁粉を得ることが困難となる。一方、平均粒径が300μmを超えると、結晶方位が同一方向に揃ったNdFe14B型化合物相のみから構成され、かつ、α−Fe相のない合金組織を得ることが困難となり、結果として、高い飽和磁束密度Bおよび保磁力HcJを両立する磁粉を得ることが困難となる。これらの理由により、粗粉砕粉の平均粒径は、20〜300μmであることが好ましく、30〜150μmであることが更に好ましい。 When the average particle size of the coarsely pulverized powder in this embodiment is less than 20 μm, diffusion aggregation between particles constituting the powder is excessively generated by the HDDR process, so that the crushing after the HDDR process becomes difficult, resulting in high magnetic properties. It becomes difficult to obtain magnetic powder having anisotropy. On the other hand, if the average grain size exceeds 300 μm, it is difficult to obtain an alloy structure composed only of Nd 2 Fe 14 B type compound phases having crystal orientations aligned in the same direction and having no α-Fe phase. as, it is difficult to obtain a magnetic powder to achieve both high saturation magnetic flux density B r and coercivity H cJ. For these reasons, the average particle size of the coarsely pulverized powder is preferably 20 to 300 μm, and more preferably 30 to 150 μm.

<HDDR処理>
次に、上記粉砕工程によって得られた粗粉砕粉に対し、HDDR処理を施す。なお、粗粉砕はHDDR処理と同じ容器内で、HD処理の前に水素を吸蔵させるなどの方法で行うこともできる。
<HDDR processing>
Next, the HDDR process is performed on the coarsely pulverized powder obtained by the pulverization step. Note that the coarse pulverization can be performed in the same container as the HDDR process by a method such as occlusion of hydrogen before the HD process.

HDDR処理の条件は、先述した多孔質バルク体へのHDDR処理と同様の方法を採用することができる。   As the conditions for the HDDR process, the same method as the HDDR process for the porous bulk material described above can be adopted.

<解砕、粉砕>
脱水素化・再結合処理(HDDR処理)が終了した後、室温まで冷却された合金粉末は、弱い凝集体を形成している場合がある。このような場合、公知の方法で解砕を行えばよい。また、最終的な目的に応じて、さらに粉砕による粒度調整を行なってもよい。粉砕方法は、公知の粉砕技術を使用することができるが、粉砕時の合金粉末の酸化を抑制するために、Arなどの不活性ガス雰囲気で粉砕を行うことが好ましい。
<Crushing and grinding>
After the dehydrogenation / recombination process (HDDR process) is completed, the alloy powder cooled to room temperature may form a weak aggregate. In such a case, crushing may be performed by a known method. Further, the particle size may be adjusted by pulverization according to the final purpose. As the pulverization method, a known pulverization technique can be used. However, in order to suppress oxidation of the alloy powder during pulverization, it is preferable to perform pulverization in an inert gas atmosphere such as Ar.

<HDDR磁粉の磁界中成形>
得られた合金粉末(HDDR粉末)を用いて圧粉体(コンパクト)を作製する。バルク体を製造するためには、磁界中でHDDR粉末をプレス成形した圧粉体を用いる。例えば、0.5T〜20T(0.4MA/m〜1.6MA/m)の磁界中(静磁界、パルス磁界など)で10MPa〜1000MPaの圧力を印加してプレス成形する。成形は、公知の粉末プレス装置によって行うことができる。粉末プレス装置から取り出したときの圧粉体密度(成形体密度)は、例えば4.5Mg/m〜6.5Mg/m(真密度を7.6Mg/mとするとその59%〜86%)程度である。このとき、圧粉体の外形寸法を、次の加熱圧縮工程で用いる装置の金型の開口部の寸法よりも数%以上小さくしておくと、加熱圧縮時に熱間塑性変形が起こることにより異方性のより高いバルク磁石を得ることができる。
<Molding of HDDR magnetic powder in magnetic field>
A green compact (compact) is produced using the obtained alloy powder (HDDR powder). In order to manufacture a bulk body, a green compact obtained by press-molding HDDR powder in a magnetic field is used. For example, press molding is performed by applying a pressure of 10 MPa to 1000 MPa in a magnetic field of 0.5 T to 20 T (0.4 MA / m to 1.6 MA / m) (static magnetic field, pulse magnetic field, etc.). Molding can be performed by a known powder press apparatus. The green density (molded body density) when taken out from the powder press machine is, for example, 4.5 Mg / m 3 to 6.5 Mg / m 3 (if the true density is 7.6 Mg / m 3 , 59% to 86% thereof) %) Degree. At this time, if the external dimensions of the green compact are set to be several percent or more smaller than the dimensions of the opening of the mold of the apparatus used in the next heating and compression step, it will change due to hot plastic deformation during heating and compression. A bulk magnet with higher isotropic properties can be obtained.

<圧粉体への加熱圧縮処理>
得られた成形体にホットプレス法などの加熱圧縮処理を適用することによって、緻密化を行い、密度7.3Mg/m以上、典型的には7.5Mg/m以上のバルク体を作製する。圧粉体に対する加熱圧縮は、先述した多孔質バルク体へのホットプレスと同様の方法を採用することができる。これにより、本実施形態のR1−T1−B−M1系合金バルク体を得ることができる。
<Heat compression treatment to green compact>
The obtained compact is densified by applying a heat compression treatment such as a hot press method to produce a bulk body having a density of 7.3 Mg / m 3 or more, typically 7.5 Mg / m 3 or more. To do. The method similar to the hot press to the porous bulk body mentioned above can be employ | adopted for the heat compression with respect to a green compact. Thereby, the R1-T1-B-M1 type alloy bulk body of this embodiment can be obtained.

こうして得られたバルク体の密度は真密度の95%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織は、配向方向に平行となる断面の結晶粒の円相当径の平均が1μm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在する。   The density of the bulk body thus obtained reaches 95% or more of the true density. In addition, according to the present embodiment, the final crystal phase texture is such that the average equivalent circle diameter of crystal grains in a cross section parallel to the orientation direction is 1 μm or less, and the longest grain size b of each crystal grain is There are 50% by volume or more of crystal grains in which the ratio b / a of the shortest grain size a is less than 2.

[超急冷合金の熱間加工]
この方法は液体超急冷法などで作製された、主相の磁化容易方向がランダムなナノ結晶で構成される等方性合金に熱間加工を施すことにより、磁気的異方性を有するバルク体を作製する方法である。熱間加工の方法としては、超急冷合金をそのまま熱間圧延するなどの方法も活用できるが、超急冷合金を粉砕し、ホットプレスなどの加熱圧縮処理で一旦緻密化した後、さらに、高温で応力を付与して変形させる手法を採用すると、磁気的異方性を有するバルク体が容易に作製できるため、好適である。以下具体的な作製手順の一例を示す。
[Hot working of ultra-quenched alloy]
This method is a bulk material that has magnetic anisotropy by hot working an isotropic alloy made of nanocrystals with a random easy-direction of main phase produced by a liquid ultra-quenching method. It is a method of producing. As a hot working method, a method such as hot rolling an ultra-quenched alloy as it is can be used, but after the ultra-quenched alloy is pulverized and once densified by a heat compression process such as a hot press, it is further heated at a high temperature. Employing a method of applying stress and deforming is preferable because a bulk body having magnetic anisotropy can be easily produced. An example of a specific manufacturing procedure is shown below.

<超急冷合金の作製>
まず、液体超急冷法で磁気的に等方性である合金を作製する。液体超急冷法としては、単ロール超急冷法、双ロール超急冷法、ガスアトマイズ法など、公知の方法を用いることができるが、これらの中で高速回転する銅製などの急冷ロール上に溶解した合金を供給して急冷する、単ロール急冷法が特に好適に用いられる。急冷ロールの典型的なロール周速度は、10m/秒以上50m/秒以下である。得られた合金中の典型的な平均結晶粒径は0.1μm以下で、主相の結晶方位はランダムである。作製条件によっては合金の一部または全部が非晶質の場合もあるが、その場合は合金に熱処理を施す場合もある。なお、市販の超急冷合金を購入して用いてもよいことは言うまでもない。
<Preparation of ultra-quenched alloy>
First, an alloy that is magnetically isotropic is prepared by a liquid ultra-quenching method. As the liquid ultra-quenching method, known methods such as a single roll ultra-quenching method, a twin roll ultra-quenching method, and a gas atomization method can be used. Among these, an alloy dissolved on a quenching roll made of copper or the like that rotates at high speed. In particular, a single roll quenching method in which is used to quench by cooling is preferably used. A typical roll peripheral speed of the quench roll is 10 m / second or more and 50 m / second or less. The typical average grain size in the obtained alloy is 0.1 μm or less, and the crystal orientation of the main phase is random. Depending on the production conditions, some or all of the alloy may be amorphous. In that case, the alloy may be subjected to heat treatment. Needless to say, a commercially available ultra-quenched alloy may be purchased and used.

<超急冷合金の緻密化>
得られた薄帯をパワーミルやピンミルなどの公知の方法で粉砕し、フレーク状の合金粉末を得た後、ホットプレス法などの加熱圧縮処理を適用することによって、緻密化を行い、密度7.3Mg/m以上、典型的には7.5Mg/m以上のバルク体を作製する。加熱圧縮は、公知の加熱圧縮技術を用いて行うことができる。例えば、ホットプレス、SPS、(spark plasma sintering)、HIP(hot isostatic press)、熱間圧延などの加熱圧縮処理を行うことが可能である。なかでも、所望の形状を得やすいホットプレスやSPSが好適に用いられる。なお、加熱圧縮処理の前に、10MPa〜2000MPaの圧力を印加してプレス成形する冷間成形により、合金粉末の圧粉体を作製し、それを加熱圧縮することもできる。
<Dense densification of ultra-quenched alloy>
The obtained ribbon is pulverized by a known method such as a power mill or a pin mill to obtain a flaky alloy powder, and then densified by applying a heat compression treatment such as a hot press method to obtain a density of 7. 3 mg / m 3 or more, typically produce a 7.5 mg / m 3 or more bulk. Heat compression can be performed using a known heat compression technique. For example, it is possible to perform a heat compression process such as hot press, SPS, (spark plasma annealing), HIP (hot isostatic press), hot rolling. Among these, a hot press or SPS that can easily obtain a desired shape is preferably used. In addition, the green compact of alloy powder can be produced by the cold forming which press-forms by applying the pressure of 10 MPa-2000 MPa before a heat compression process, and it can also heat-compress.

加熱圧縮条件は、成分組成などに応じて適宜設定されるが、処理温度は、600℃以上950℃以下が好ましく、700℃以上900℃以下がより好ましい。また加熱圧縮時の圧力は10MPa以上1000MPa以下が好ましい。また、加熱圧縮における保持時間は、1分以上1時間以内が好ましいが、密度が十分向上する時間内であればできるだけ短時間であることが生産性の観点から好ましい。加熱圧縮時の雰囲気は、真空又は不活性雰囲気が好ましい。   The heat compression condition is appropriately set according to the component composition and the like, but the treatment temperature is preferably 600 ° C. or more and 950 ° C. or less, more preferably 700 ° C. or more and 900 ° C. or less. The pressure during heating and compression is preferably 10 MPa or more and 1000 MPa or less. Further, the holding time in the heat compression is preferably 1 minute or longer and within 1 hour, but is preferably as short as possible from the viewpoint of productivity as long as the density is sufficiently improved. The atmosphere during heating and compression is preferably a vacuum or an inert atmosphere.

<熱間加工>
緻密化された加熱圧縮成形体を熱間加工して塑性変形させる。熱間加工方法は、目的に応じて公知の方法を採用することができるが、熱間押出し加工(後方押出し加工及び前方押出し加工を含む)や熱間据え込み加工が好適に用いられ、生産性の観点から、熱間押出し加工が特に好適である。
<Hot processing>
The densified heat compression molded body is hot-worked and plastically deformed. As the hot working method, a known method can be adopted depending on the purpose, but hot extrusion processing (including backward extrusion processing and forward extrusion processing) and hot upsetting processing are preferably used for productivity. From this point of view, hot extrusion is particularly suitable.

熱間加工条件は、成分組成などに応じて適宜設定されるが、加工温度は、700℃以上950℃以下が好ましく、750℃以上900℃以下がより好ましい。一般的に歪速度が配向度に影響を与えることが知られていることから、歪速度が所望の範囲になるように、加工圧力を設定することが好ましい。加工時の雰囲気は、真空または不活性雰囲気が好ましい。   The hot working conditions are appropriately set according to the component composition, but the working temperature is preferably 700 ° C. or higher and 950 ° C. or lower, and more preferably 750 ° C. or higher and 900 ° C. or lower. Since it is known that the strain rate generally affects the degree of orientation, it is preferable to set the processing pressure so that the strain rate is in a desired range. The atmosphere during processing is preferably a vacuum or an inert atmosphere.

こうして得られたバルク体の密度は真密度の95%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織は、配向方向に平行となる断面の結晶粒の円相当径の平均が1μm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2以上である結晶粒が全結晶粒の50体積%以上存在する。   The density of the bulk body thus obtained reaches 95% or more of the true density. In addition, according to the present embodiment, the final crystal phase texture is such that the average equivalent circle diameter of crystal grains in a cross section parallel to the orientation direction is 1 μm or less, and the longest grain size b of each crystal grain is There are 50% by volume or more of crystal grains having a ratio b / a of the shortest grain size a of 2 or more.

[サブミクロンサイズに粉砕した合金の焼結]
上記に示した方法の他に、HDDR法で作製した微細結晶の合金に水素粉砕法と微粉砕を用いて作製した、サブミクロンサイズの合金粉末を磁界中成形、焼結を行うことにより、主相であるR14B相の結晶粒径が1μm未満で磁気的異方性を有するバルク体を作製する方法を適用することもできる。HDDRや水素粉砕法、焼結などの条件は公知のものを適用すればよい。
[Sintering of alloys ground to submicron size]
In addition to the above-mentioned methods, the sub-micron-sized alloy powder produced by hydrogen pulverization and fine pulverization is applied to the fine crystal alloy produced by the HDDR method. A method of producing a bulk body having a magnetic anisotropy in which the crystal grain size of the phase R 2 T 14 B phase is less than 1 μm can also be applied. The conditions such as HDDR, hydrogen pulverization method, sintering, etc. may be applied.

(R2−Cu−Ga−Fe−A系合金を準備する工程)
まず、R2−Cu−Ga−Fe−A系合金を準備する工程におけるR2−Cu−Ga−Fe−A系合金の組成を説明する。以下に説明する特定の範囲でR、Ga、Cu、Feを全て含有することにより、後述する第一の熱処理を実施する工程においてR2−Cu−Ga−Fe−A系合金中のFeをR1−T1−B−M1系合金バルク体内部に導入することができる。
R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含む。R2の50%以上がPrであることが好ましい。より高いHcJを得ることができるからである。ここで「R2の50%以上がPrである」とは、例えばR2−Cu−Ga−Fe−A系合金中におけるR2が50mass%である場合、25mass%以上がPrであることを言う。さらに好ましくは、R2はPrのみ(不可避的不純物は含む)である。さらに高いHcJを得ることができるからである。また、Dy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。但し、本開示は前記重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量はR2−Cu−Ga−Fe−A系合金全体の10mass%以下(R2−Cu−Ga−Fe−A系合金中の重希土類元素が10mass%以下)であることが好ましく、5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことがさらに好ましい。R2−Cu−Ga−Fe−A系合金のRに前記重希土類元素を含有する場合も、R2の50mass%以上がPrであることが好ましく、重希土類元素を除いたR2がPrのみ(不可避的不純物は含む)であることがより好ましい。
(Step of preparing an R2-Cu-Ga-Fe-A-based alloy)
First, the composition of the R2-Cu-Ga-Fe-A-based alloy in the step of preparing the R2-Cu-Ga-Fe-A-based alloy will be described. By containing all of R, Ga, Cu, and Fe within a specific range described below, Fe in the R2-Cu-Ga-Fe-A-based alloy is R1- It can be introduced inside the T1-B-M1 alloy bulk body.
R2 is at least one kind of rare earth elements and always contains at least one of Nd and Pr. It is preferable that 50% or more of R2 is Pr. This is because a higher H cJ can be obtained. Here, "50% or more of R2 is Pr" means that, for example, when R2 in an R2-Cu-Ga-Fe-A-based alloy is 50 mass%, 25 mass% or more is Pr. More preferably, R2 is only Pr (including inevitable impurities). This is because even higher H cJ can be obtained. Moreover, you may contain a small amount of heavy rare earth elements, such as Dy, Tb, Gd, and Ho. However, the present disclosure can obtain a sufficiently high HcJ without using a large amount of the heavy rare earth element. Therefore, the content of the heavy rare earth element is 10 mass% or less of the entire R2-Cu-Ga-Fe-A alloy (the heavy rare earth element in the R2-Cu-Ga-Fe-A alloy is 10 mass% or less). It is preferably 5 mass% or less, more preferably not contained (substantially 0 mass%). Even when the heavy rare earth element is contained in R of the R2-Cu-Ga-Fe-A alloy, it is preferable that 50 mass% or more of R2 is Pr, and R2 excluding the heavy rare earth element is only Pr (inevitable) More preferably, the impurities are included.

R2はR2−Cu−Ga−Fe−A系合金全体の35mass%以上91mass%以下である。R2が35mass%未満では後述する第一の熱処理で拡散が十分に進行せず、最終的に得られるR3−T2−B−M2系磁石の[T2]/[B]のmol比を14.0超にすることができず、高いHcJを得ることができない恐れがある。一方、R2が91mass%を超えても本開示の効果を得ることはできるが、R2−Cu−Ga−Fe−A系合金の製造工程中における合金粉末が非常に活性になり、合金粉末の著しい酸化や発火などを生じることがあるため、91mass%以下が好ましい。R2は50mass%以上91mass%以下であることがより好ましく、60mass%以上85mass%以下であることがさらに好ましい。より高いHcJを得ることができるからである。 R2 is 35 mass% or more and 91 mass% or less of the whole R2-Cu-Ga-Fe-A type alloy. When R2 is less than 35 mass%, diffusion does not proceed sufficiently in the first heat treatment described later, and the molar ratio of [T2] / [B] of the finally obtained R3-T2-B-M2 magnet is 14.0. There is a possibility that high HcJ cannot be obtained. On the other hand, even if R2 exceeds 91 mass%, the effect of the present disclosure can be obtained. However, the alloy powder in the manufacturing process of the R2-Cu-Ga-Fe-A alloy becomes very active, and the alloy powder is notable. 91 mass% or less is preferable because oxidation or ignition may occur. R2 is more preferably not less than 50 mass% and not more than 91 mass%, and further preferably not less than 60 mass% and not more than 85 mass%. This is because a higher H cJ can be obtained.

Cuは、R2−Cu−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。Cuが2.5mass%未満では、後述する第1の熱処理を実施する工程においてR2−Cu−Ga−Fe−A系合金中のGa及びFeがR1−T1−B−M1系合金バルク体の内部に導入され難くなる。これにより、R−T−Ga相の生成量が少なすぎたり、最終的に得られるR3−T2−B−M2系磁石の[T2]/[B]のmol比を14.0超とすることができず、高いHcJを得ることができない。一方、Cuが40mass%以上であると、粒界におけるGaの存在比率が低下する為、R−T−Ga相の生成量が少なすぎて高いHcJを得ることができない恐れがある。Cuは4mass%以上30mass%以下であることがより好ましく、4mass%以上20mass%以下であることがさらに好ましい。より高いHcJを得ることができるからである。 Cu is 2.5 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A-based alloy. If Cu is less than 2.5 mass%, Ga and Fe in the R2-Cu-Ga-Fe-A-based alloy are contained in the bulk of the R1-T1-B-M1-based alloy in the step of performing the first heat treatment described later. It becomes difficult to be introduced. As a result, the amount of R—T—Ga phase produced is too small, or the finally obtained R3-T2-B-M2 magnet has a [T2] / [B] molar ratio of more than 14.0. Cannot be obtained, and high HcJ cannot be obtained. On the other hand, if the Cu content is 40 mass% or more, the abundance ratio of Ga at the grain boundary decreases, so that the amount of R—T—Ga phase produced is so small that high HcJ may not be obtained. Cu is more preferably 4 mass% or more and 30 mass% or less, and further preferably 4 mass% or more and 20 mass% or less. This is because a higher H cJ can be obtained.

Gaは、R2−Cu−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。Gaが2.5mass%未満では、後述する第1の熱処理を実施する工程においてR2−Cu−Ga−Fe−A系合金中のFeがR1−T1−B−M1系合金バルク体の内部に導入され難くなる。これにより、最終的に得られるR3−T2−B−M2系磁石の[T2]/[B]のmol比を14.0超とすることができず、高いHcJを得ることができない。一方、Gaが40mass%以上であると、Bが大幅に低下する恐れがある。Gaは4mass%以上30mass%以下であることがより好ましく、4mass%以上20mass%以下であることがさらに好ましい。より高いHcJを得ることができるからである。 Ga is 2.5 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A-based alloy. If Ga is less than 2.5 mass%, Fe in the R2-Cu-Ga-Fe-A-based alloy is introduced into the bulk of the R1-T1-B-M1-based alloy in the step of performing the first heat treatment described later. It becomes difficult to be done. Thereby, the [T2] / [B] molar ratio of the finally obtained R3-T2-B-M2 magnet cannot be made higher than 14.0, and high HcJ cannot be obtained. On the other hand, if Ga is greater than or equal to 40 mass%, there is a possibility that B r is greatly reduced. Ga is more preferably 4 mass% or more and 30 mass% or less, and further preferably 4 mass% or more and 20 mass% or less. This is because a higher H cJ can be obtained.

Feは、R2−Cu−Ga−Fe−A系合金全体の4mass%以上40mass%以下である。Feが4mass%未満では、後述する第1の熱処理を実施する工程においてR2−Cu−Ga−Fe−A系合金中のFeのR1−T1−B−M1系合金バルク体への導入量が少なすぎるため、最終的に得られるR3−T2−B−M2系磁石の[T2]/[B]のmol比を14.0超とすることができず、高いHcJを得ることができない。一方、Feが40mass%以上であると、後述する第一の熱処理で拡散が十分に進行せず、[T2]/[B]のmol比を14.0超にすることができず、高いHcJを得ることができない恐れがある。Feは4mass%以上30mass%以下であることがより好ましく、4mass%以上25mass%以下であることがさらに好ましい。より高いHcJを得ることができるからである。 Fe is 4 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A-based alloy. When Fe is less than 4 mass%, the amount of Fe introduced into the R1-T1-B-M1 alloy bulk body in the R2-Cu-Ga-Fe-A alloy is small in the step of performing the first heat treatment described later. For this reason, the [T2] / [B] molar ratio of the finally obtained R3-T2-B-M2 magnet cannot be more than 14.0, and high HcJ cannot be obtained. On the other hand, if Fe is 40 mass% or more, diffusion does not proceed sufficiently in the first heat treatment described later, and the [T2] / [B] molar ratio cannot exceed 14.0. There is a possibility that cJ cannot be obtained. Fe is more preferably 4 mass% or more and 30 mass% or less, and further preferably 4 mass% or more and 25 mass% or less. This is because a higher H cJ can be obtained.

Aは、Al、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、Agから選択される一種以上であり、R2−Ga−Fe−A系合金全体の0mass%以上1mass%以下である。Aは1mass%以下含有しても構わないが、より高いHcJを得るためには、Aは含有しない(すなわち0mass%)ことが好ましい。 A is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, Mo, and Ag, and the total R2-Ga-Fe-A alloy It is 0 mass% or more and 1 mass% or less. A may be contained in an amount of 1 mass% or less, but in order to obtain a higher HcJ , it is preferable not to contain A (that is, 0 mass%).

さらに、R2−Cu−Ga−Fe−A系合金は、Ndメタル、Prメタル、ジジム合金(Nd−Pr)、電解鉄などの合金中及び製造工程中に通常含有される不可避的不純物及び少量の上記以外の元素を含んでいても良い。例えば、La、Ce、Sm、Ca、Mg、O(酸素)、N(炭素)、C(窒素)、Hf、Ta、Wなどをそれぞれ含有してもよい。   Further, the R2-Cu-Ga-Fe-A-based alloy is composed of Nd metal, Pr metal, didymium alloy (Nd-Pr), electrolytic iron and other inevitable impurities and a small amount of impurities normally contained in the manufacturing process. It may contain elements other than the above. For example, you may contain La, Ce, Sm, Ca, Mg, O (oxygen), N (carbon), C (nitrogen), Hf, Ta, W, etc., respectively.

次にR2−Cu−Ga−Fe−A系合金を準備する工程について説明する。R2−Cu−Ga−Fe−A系合金は、Nd−Fe−B系磁石に代表される一般的な製造方法において採用されている原料合金の作製方法、例えば、金型鋳造法やストリップキャスト法や単ロール超急冷法(メルトスピニング法)やアトマイズ法などを用いて準備することができる。また、R2−Cu−Ga−Fe−A系合金は、前記によって得られた合金をピンミルなどの公知の粉砕手段によって粉砕されたものであってもよい。   Next, the process for preparing the R2-Cu-Ga-Fe-A alloy will be described. The R2-Cu-Ga-Fe-A-based alloy is a raw material alloy manufacturing method employed in a general manufacturing method represented by an Nd-Fe-B-based magnet, for example, a die casting method or a strip casting method. Or a single roll super rapid cooling method (melt spinning method) or an atomizing method. The R2-Cu-Ga-Fe-A-based alloy may be one obtained by pulverizing the alloy obtained as described above by a known pulverizing means such as a pin mill.

(第一の熱処理を実施する工程)
前記によって準備したR1−T1−B−M1系合金バルク体の表面の少なくとも一部に、前記R2−Cu−Ga−Fe−A系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上950℃以下の温度で熱処理をする。本開示においてこの熱処理を第一の熱処理という。これにより、R2−Cu−Ga−Fe−A系合金からGaやFeを含む液相が生成し、その液相がR1−T1−B−M1系合金バルク体の粒界を経由してバルク体表面から内部に拡散導入される。第一の熱処理温度が700℃以下であると、GaやFeを含む液相量が少なすぎて後述する第二の熱処理を実施する工程により生成されるR−T−Ga相の生成量が少なくなったり、最終的に得られるR3−T2−B−M2系磁石の[T2]/[B]のmol比を14.0超とすることができず、高いHcJを得ることが出来ない。一方、950℃を超えると主相であるR14B相が過剰に結晶粒成長してHcJが低下する恐れがある。熱処理温度は、750℃以上900℃以下が好ましい。より高いHcJを得ることが出来るからである。なお、熱処理時間はR1−T1−B−M1系合金バルク体やR2−Cu−Ga−Fe−A系合金の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下がさらに好ましい。
(Step of performing the first heat treatment)
At least a part of the R2-Cu-Ga-Fe-A alloy is brought into contact with at least a part of the surface of the bulk of the R1-T1-B-M1 alloy prepared as described above, and in a vacuum or an inert gas atmosphere And heat treatment at a temperature of 700 ° C. or higher and 950 ° C. or lower. In the present disclosure, this heat treatment is referred to as a first heat treatment. Thereby, a liquid phase containing Ga and Fe is generated from the R2-Cu-Ga-Fe-A-based alloy, and the liquid phase passes through the grain boundary of the R1-T1-B-M1-based alloy bulk body to form a bulk body. Diffusion is introduced from the surface to the inside. When the first heat treatment temperature is 700 ° C. or lower, the amount of the liquid phase containing Ga and Fe is too small, and the amount of R—T—Ga phase produced by the step of performing the second heat treatment described later is small. In other words , the molar ratio of [T2] / [B] of the finally obtained R3-T2-B-M2 magnet cannot be more than 14.0, and high HcJ cannot be obtained. On the other hand, if it exceeds 950 ° C., the R 2 T 14 B phase, which is the main phase, may grow excessively and the H cJ may decrease. The heat treatment temperature is preferably 750 ° C. or higher and 900 ° C. or lower. This is because a higher H cJ can be obtained. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-B-M1-based alloy bulk body and the R2-Cu-Ga-Fe-A-based alloy, the heat treatment temperature, and the like. Is preferably 10 minutes to 15 hours, and more preferably 30 minutes to 10 hours.

第一の熱処理は、R1−T1−B−M1系合金バルク体表面に、任意形状のR2−Cu−Ga−Fe−A系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R1−T1−B−M1系合金バルク体表面をR2−Cu−Ga−Fe−A系合金の粉末層で覆い、第一の熱処理を行うことができる。例えば、R2−Cu−Ga−Fe−A系合金を分散媒中に分散させたスラリーをR1−T1−B−M1系合金バルク体表面に塗布した後、分散媒を蒸発させてR2−Cu−Ga−Fe−A系合金とR1−T1−B−M1系合金バルク体とを接触させてもよい。また、後述する実験例に示す様に、R2−Cu−Ga−Fe−A系合金は、R1−T1−B−M1系合金バルク体の配向方向に対して垂直な表面に接触させるように配置することが好ましい。なお、分散媒として、アルコール(エタノール等)、アルデヒド及びケトンを例示できる。また、第一の熱処理が実施されたR3−T2−B−M2系磁石に対して切断や切削など公知の機械加工を行ってもよい。   The first heat treatment can be performed using a known heat treatment apparatus by placing an R2-Cu-Ga-Fe-A alloy having an arbitrary shape on the surface of the R1-T1-B-M1 alloy bulk body. For example, the R1-T1-B-M1 alloy bulk body surface can be covered with a powder layer of R2-Cu-Ga-Fe-A alloy, and the first heat treatment can be performed. For example, after applying a slurry in which an R2-Cu-Ga-Fe-A-based alloy is dispersed in a dispersion medium to the surface of an R1-T1-B-M1 alloy bulk body, the dispersion medium is evaporated and R2-Cu- You may make a Ga-Fe-A type alloy and a R1-T1-B-M1 type | system | group bulk body contact. Further, as shown in the experimental examples described later, the R2-Cu-Ga-Fe-A-based alloy is disposed so as to be in contact with the surface perpendicular to the orientation direction of the R1-T1-B-M1-based alloy bulk body. It is preferable to do. In addition, alcohol (ethanol etc.), an aldehyde, and a ketone can be illustrated as a dispersion medium. Moreover, you may perform well-known machining, such as a cutting | disconnection and cutting, with respect to the R3-T2-B-M2 type | system | group magnet in which 1st heat processing was implemented.

(第二の熱処理を実施する工程)
第一の熱処理が実施されたR1−T1−B−M1系合金バルク体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で熱処理を行う。本開示においてこの熱処理を第二の熱処理という。第二の熱処理を行うことにより、磁石内部の少なくとも一部にR−T−Ga相、典型的にはR13Z相(ZはCu及び/又はGaを必ず含む)を生成させる。これにより、GaやCuを含む厚い二粒子粒界が得られ、高いHcJを得ることができる。第二の熱処理の温度が450℃未満及び600℃超の場合は、R−T−Ga相の生成量が少なすぎて、高いHcJを得ることができない恐れがある。熱処理温度は、480℃以上560℃以下が好ましい。より高いHcJを得ることが出来る。なお、熱処理時間はR1−T1−B−M1系合金バルク体の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下がさらに好ましい。
(Step of performing the second heat treatment)
The R1-T1-B-M1 alloy bulk body subjected to the first heat treatment is subjected to heat treatment at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere. In the present disclosure, this heat treatment is referred to as a second heat treatment. By performing the second heat treatment, an R—T—Ga phase, typically an R 6 T 13 Z phase (Z necessarily contains Cu and / or Ga) is generated in at least a part of the inside of the magnet. Thereby, a thick two-grain grain boundary containing Ga and Cu can be obtained, and high HcJ can be obtained. When the temperature of the second heat treatment is less than 450 ° C. and more than 600 ° C., the amount of R—T—Ga phase generated is so small that high H cJ may not be obtained. The heat treatment temperature is preferably 480 ° C. or higher and 560 ° C. or lower. Higher H cJ can be obtained. In addition, although heat processing time sets an appropriate value with the composition of a R1-T1-B-M1 type alloy bulk body, a dimension, heat processing temperature, etc., 5 minutes or more and 20 hours or less are preferable, and 10 minutes or more and 15 hours or less are more preferable. More preferably, it is 30 minutes or more and 10 hours or less.

なお、前記のR13Z相(R13Z化合物)において、Rは希土類元素のうち少なくとも一種でありPr及びNdの少なくとも一方を必ず含み、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。R13Z化合物は代表的にはNdFe13Ga化合物である。また、R13Z化合物はLaCo11Ga型結晶構造を有する。R13Z化合物はその状態によってはR13−δ1+δ化合物になっている場合がある。なお、R3−T2−B−M2系磁石中に比較的多くのCu、Al及びSiが含有される場合、R13−δ(Ga1−a−b−cCuaAlbSic1+δになっている場合がある。 In the above R 6 T 13 Z phase (R 6 T 13 Z compound), R is at least one of rare earth elements and must contain at least one of Pr and Nd, and T is at least one of transition metal elements. Yes Fe is always included. The R 6 T 13 Z compound is typically an Nd 6 Fe 13 Ga compound. The R 6 T 13 Z compound has a La 6 Co 11 Ga 3 type crystal structure. The R 6 T 13 Z compound may be an R 6 T 13-δ Z 1 + δ compound depending on the state. In the case where a relatively large number of Cu, Al and Si are contained in the R3-T2-B-M2-based magnet, R 6 T 13-δ ( Ga 1-a-b-c Cu a Al b Si c) It may be 1 + δ .

(R3−T2−B−M2系磁石)
前記第二の熱処理を実施する工程後のR3−T2−B−M2系磁石の組成について説明する。
尚、R3−T2−B−M2系磁石におけるR3及びT2については、上述したR1−T1−B−M1系合金バルク体のR1及びT1と同じ組成であるため、説明を省略する。
前記T2とBとは、[T2]/[B]のmol比が14.0超となるように設定する。[T2]/[B]のmol比が14.0超にすることにより高いHcJを得ることができる。この条件は、主相(R14B化合物)形成に使われるT量に対して相対的にB量が少ないことを示している。また、BはR3−T2−B−M2系磁石全体の0.8mass%以上1.0mass%未満が好ましい。Bが0.8mass%未満であると、Brの大幅な低下を招く恐れがあるため好ましくない。一方、Bが1.0mass%以上であると[T2]/[B]のmol比を14.0超にできず高いHcJを得ることができない。Bは0.81mass%以上0.95mass%以下であることがより好ましく、0.82mass%以上0.93mass%以下であることがさらに好ましい。M2はGa及びCuであり、M2は0.1mass%以上3mass%以下である。M2が0.1mass%未満であると高いHcJが得られない恐れがあり、3mass%を超えるとBが低下する恐れがある。T2はR3、B、M2及び不可避的不純物以外の残部を占めることが好ましい。
(R3-T2-B-M2 magnet)
The composition of the R3-T2-B-M2-based magnet after the step of performing the second heat treatment will be described.
In addition, about R3 and T2 in a R3-T2-B-M2 type | system | group magnet, since it is the same composition as R1 and T1 of the R1-T1-B-M1 type alloy bulk body mentioned above, description is abbreviate | omitted.
T2 and B are set so that the molar ratio of [T2] / [B] is more than 14.0. High HcJ can be obtained when the molar ratio of [T2] / [B] is more than 14.0. This condition indicates that the B amount is relatively small with respect to the T amount used for forming the main phase (R 2 T 14 B compound). Further, B is preferably 0.8 mass% or more and less than 1.0 mass% of the entire R3-T2-B-M2 magnet. B is less than 0.8 mass%, undesirably can lead to significant reduction in B r. On the other hand, if B is 1.0 mass% or more, the molar ratio of [T2] / [B] cannot be made higher than 14.0, and high HcJ cannot be obtained. B is more preferably 0.81 mass% or more and 0.95 mass% or less, and further preferably 0.82 mass% or more and 0.93 mass% or less. M2 is Ga and Cu, and M2 is 0.1 mass% or more and 3 mass% or less. M2 is there may not be obtained is the high H cJ less than 0.1mass%, there is a possibility that B r decreases exceeds 3 mass%. T2 preferably occupies the remainder other than R3, B, M2 and unavoidable impurities.

さらに、R3−T2−B−M2系磁石は、Ndメタル、Prメタル、ジジム合金(Nd−Pr)、電解鉄、フェロボロンなどの合金中及び製造工程中に通常含有される不可避的不純物及び少量の上記以外の元素を含んでいても良い。例えば、La、Ce、Sm、Ca、Mg、O(酸素)、N(炭素)、C(窒素)、Hf、Ta、Wなどをそれぞれ含有してもよい。   Further, the R3-T2-B-M2 magnet is composed of Nd metal, Pr metal, didymium alloy (Nd-Pr), electrolytic iron, ferroboron and other inevitable impurities and a small amount usually contained in the manufacturing process. It may contain elements other than the above. For example, you may contain La, Ce, Sm, Ca, Mg, O (oxygen), N (carbon), C (nitrogen), Hf, Ta, W, etc., respectively.

前記の第二の熱処理を実施する工程によって得られたR3−T2−B−M2系磁石は、切断や切削など公知の機械加工を行ったり、耐食性を付与するためのめっきなど、公知の表面処理を行うことができる。   The R3-T2-B-M2 magnet obtained by the step of performing the second heat treatment is a known surface treatment such as a known machining process such as cutting or cutting, or a plating for imparting corrosion resistance. It can be performed.

本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。   The present disclosure will be described in more detail by way of examples, but the present disclosure is not limited thereto.

実験例1
[R1−T1−B−M1系合金バルク体(バルク体)を準備する工程]
バルク体がおよそ表1の符号1−Aから1−Dに示す組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 1
[Step of preparing R1-T1-B-M1-based alloy bulk body (bulk body)]
Each element was weighed and cast by a strip casting method so that the bulk body had a composition represented by reference numerals 1-A to 1-D in Table 1, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. Obtained. The obtained flaky raw material alloy was pulverized with hydrogen, heated to 550 ° C. in a vacuum and then cooled to obtain a coarsely pulverized powder. Next, after adding and mixing 0.04 mass% of zinc stearate as a lubricant with respect to 100 mass% of the coarsely pulverized powder, the resulting coarsely pulverized powder is mixed with nitrogen using an airflow pulverizer (jet mill device). dry milled in an air stream, the particle size D 50 was obtained finely pulverized powder of 4μm (the alloy powder). The particle diameter D 50 is the volume center value obtained by the laser diffraction method by air flow dispersion method (volume-based median diameter).

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体の密度は4.1〜4.3Mg/m3であった。 To the finely pulverized powder, zinc stearate as a lubricant was added and mixed in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and then molded in a magnetic field to obtain a molded body. In addition, what was called a perpendicular magnetic field shaping | molding apparatus (transverse magnetic field shaping | molding apparatus) with which the magnetic field application direction and the pressurization direction orthogonally crossed was used for the shaping | molding apparatus. The density of the obtained molded body was 4.1 to 4.3 Mg / m 3 .

得られた成形体に対して、HDDR処理を行った。具体的には、圧粉体を100kPa(大気圧)のアルゴン流気中で880℃まで加熱し、その後、雰囲気を100kPa(大気圧)の水素流気に切り替えた後、880℃、2時間保持して水素化・不均化反応を行った。その後、温度を保持したまま、5.3kPaに減圧したアルゴン流気中で1時間保持し、脱水素、再結合反応を行った後、大気圧アルゴン流気中で室温まで冷却した。HDDR処理後の成形体は、密度(寸法及び質量から計算)が7.0Mg/m3以下であった。その後、成形体を図4に示すホットプレス装置を用いて加熱圧縮を行い高密度化した。具体的には、HDDR処理後のサンプルを研削加工した後、カーボン製のダイス内にセットし、このダイスをホットプレス装置内にセットして、真空中において700℃の条件下、50MPaの圧力で圧縮した。ホットプレスで得られたバルク体の密度は7.5Mg/m3以上であった。また、配向方向に平行な断面の走査電子顕微鏡観察(SEM観察)から求められた平均結晶粒径(円相当径)はいずれのサンプルも200nm以上800nm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在することを確認した。得られたバルク体の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、バルク体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表1における「[T1]/[B]」は、T1を構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(c)と、Bの分析値(mass%)をBの原子量で除したもの(d)との比(c/d)である。以下の全ての表も同様である。なお、表1の各組成および酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他表についても同様である。 The obtained molded body was subjected to HDDR treatment. Specifically, the green compact is heated to 880 ° C. in an argon flow of 100 kPa (atmospheric pressure), and then the atmosphere is switched to a hydrogen flow of 100 kPa (atmospheric pressure), and then held at 880 ° C. for 2 hours. Then, hydrogenation / disproportionation reaction was performed. Thereafter, while maintaining the temperature, the mixture was held in an argon flow reduced to 5.3 kPa for 1 hour, subjected to dehydrogenation and recombination reaction, and then cooled to room temperature in an atmospheric argon flow. The molded body after the HDDR treatment had a density (calculated from dimensions and mass) of 7.0 Mg / m 3 or less. Thereafter, the compact was heat compressed using the hot press apparatus shown in FIG. Specifically, after the HDDR-treated sample is ground, the sample is set in a carbon die, and the die is set in a hot press apparatus. Compressed. The density of the bulk body obtained by hot pressing was 7.5 Mg / m 3 or more. In addition, the average crystal grain size (equivalent circle diameter) obtained by scanning electron microscope observation (SEM observation) of a cross section parallel to the orientation direction is 200 nm or more and 800 nm or less for any sample, and the longest grain size of each crystal grain. It was confirmed that the crystal grains having a ratio b / a of b to the shortest grain size a of less than 2 existed by 50% by volume or more of all crystal grains. Table 1 shows the results of the components of the obtained bulk body. In addition, each component in Table 1 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). In addition, as a result of measuring the oxygen amount of the bulk body by the gas melting-infrared absorption method, it was confirmed that all were around 0.5 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%. “[T1] / [B]” in Table 1 is obtained by dividing the analysis value (mass%) by the atomic weight of each element (here, Fe, Al, Si, Mn) constituting T1. It is the ratio (c / d) between the sum of those values (c) and the analysis value (mass%) of B divided by the atomic weight of B (d). The same applies to all the tables below. In addition, even if each composition of Table 1, oxygen amount, and carbon amount are totaled, it does not become 100 mass%. This is because the analysis method differs depending on each component as described above. The same applies to other tables.

Figure 2018060931
Figure 2018060931

[R2−Cu−Ga−Fe−A系合金を準備する工程]
R2−Cu−Ga−Fe−A系合金がおよそ表2の符号1−aに示す組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させ、R2−Cu−Ga−Fe−A系合金を準備した。得られたR2−Cu−Ga−Fe−A系合金の組成を表2に示す。尚、表2における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing R2-Cu-Ga-Fe-A-based alloy]
Each element was weighed and the raw materials were dissolved so that the R2-Cu-Ga-Fe-A-based alloy had a composition indicated by reference numeral 1-a in Table 2, and a single-roll ultra-quenching method (melt spinning method) ) To obtain a ribbon or flaky alloy. The obtained alloy was pulverized in an argon atmosphere using a mortar, and then passed through a sieve having an opening of 425 μm to prepare an R 2 -Cu—Ga—Fe—A alloy. Table 2 shows the composition of the obtained R2-Cu-Ga-Fe-A-based alloy. In addition, each component in Table 2 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES).

Figure 2018060931
Figure 2018060931

[第一の熱処理を実施する工程]
表1の符号1−Aから1−DのR1−T1−B−M1系合金バルク体を切断、切削加工し、4.4mm×10.0mm×11.0mmの直方体(10.0mm×11.0mmの面が配向方向と垂直な面)とした。次に、図3に示すように、ニオブ箔により作製した処理容器3中に、主に磁石素材の配向方向(図中の矢印方向)と垂直な面がR2−Cu−Ga−Fe−A系合金と接触するように、表2に示す符号1−aのR2−Cu−Ga−Fe−A系合金を、符号1−Aから1−DのR1−T1−B−M1系合金バルク体のそれぞれの上下に配置した。次に、管状流気炉を用いて、200Paに制御した減圧アルゴン中で、表3の第一の熱処理に示す温度及び時間で前記R2−Cu−Ga−Fe−A合金及び前記R1−T1−B−M1系合金バルク体を加熱して第一の熱処理を実施した後、冷却した。
[Step of performing first heat treatment]
The R1-T1-B-M1-based alloy bulk bodies 1-A to 1-D in Table 1 were cut and machined to form a rectangular parallelepiped (10.0 mm × 11.11 mm) of 4.4 mm × 10.0 mm × 11.0 mm. The 0 mm plane was a plane perpendicular to the orientation direction). Next, as shown in FIG. 3, in the processing container 3 made of niobium foil, the surface perpendicular to the orientation direction of the magnet material (the arrow direction in the figure) is R2-Cu-Ga-Fe-A series. The R2-Cu-Ga-Fe-A-based alloy of 1-a shown in Table 2 is contacted with the R1-T1-B-M1-based alloy bulk body of 1-A to 1-D so as to come into contact with the alloy. Arranged above and below each. Next, in a reduced pressure argon controlled to 200 Pa using a tubular air furnace, the R2-Cu-Ga-Fe-A alloy and the R1-T1- The B-M1 alloy bulk body was heated and subjected to the first heat treatment, and then cooled.

[第二の熱処理を実施する工程]
第二の熱処理を、管状流気炉を用いて200Paに制御した減圧アルゴン中で、表3の第二の熱処理に示す温度及び時間で、第一の熱処理が実施されたR1−T1−B−M1系合金バルク体に対して実施した後、冷却した。熱処理後の各サンプルに対して各サンプルを切断、切削加工し、4.0mm×4.0mm×4.0mmの立方体状のサンプル(R3−T2−B−M2系磁石)を得た。尚、第一の熱処理を実施する工程におけるR2−Cu−Ga−Fe−A合金及びR1−T1−B−M1系合金バルク体の加熱温度、並びに、第二の熱処理を実施する工程におけるR1−T1−B−M1系合金バルク体の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Step of performing second heat treatment]
R1-T1-B- in which the first heat treatment was carried out at a temperature and time shown in the second heat treatment of Table 3 in reduced pressure argon controlled to 200 Pa using a tubular air-flow furnace. It cooled, after implementing with respect to a M1 type alloy bulk body. Each sample was cut and cut with respect to each sample after the heat treatment to obtain a 4.0 mm × 4.0 mm × 4.0 mm cubic sample (R3-T2-B-M2 magnet). In addition, the heating temperature of the R2-Cu-Ga-Fe-A alloy and the R1-T1-B-M1-based alloy bulk body in the step of performing the first heat treatment, and the R1- in the step of performing the second heat treatment. The heating temperature of the T1-B-M1-based alloy bulk was measured by attaching a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表3に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表4に示す。表4における「[T2]/[B]」は、T2を構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(c)と、Bの分析値(mass%)をBの原子量で除したもの(d)との比(c/d)である。以下の全ての表も同様である。表3の通り、R1−T1−B−M1系合金バルク体における[T1]/[B]のmol比を13.0以上14.0以下とし、且つ、第二の熱処理が実施されたR3−T2−B−M2系磁石(表4)における[T2]/[B]のmol比が14.0超である本発明例はいずれも高いB及び高いHcJが得られていることがわかる。これに対し、第二の熱処理が実施されたR3−T2−B−M2系磁石における[T2]/[B]のmol比が14.0以下であるサンプルNo.1−1は高いHcJが得られなかった。さらに、第二の熱処理が実施されたR3−T2−B−M2系磁石における[T2]/[B]のmol比が14超であっても、R1−T1−B−M1系合金バルク体における[T1]/[B]のmol比が本開示の範囲外であるサンプルNo.1−4([T1]/[B]のmol比が14.3)はBが大幅に低下している。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. Table 3 shows the measurement results. Table 4 shows the results obtained by measuring the components of the sample using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). “[T2] / [B]” in Table 4 is obtained by dividing the analytical value (mass%) by the atomic weight of each element (here, Fe, Al, Si, Mn) constituting T2. It is the ratio (c / d) between the sum of those values (c) and the analysis value (mass%) of B divided by the atomic weight of B (d). The same applies to all the tables below. As shown in Table 3, the molar ratio of [T1] / [B] in the R1-T1-B-M1-based alloy bulk body was set to 13.0 or more and 14.0 or less, and R3- was subjected to the second heat treatment. in T2-B-M2 magnet (Table 4) [T2] / mol ratio of [B] it can be seen that the obtained 14.0 than in a present invention example both high B r and a high H cJ . On the other hand, the sample No. 2 having a [T2] / [B] molar ratio of 14.0 or less in the R3-T2-B-M2 magnet subjected to the second heat treatment was used. 1-1 did not obtain high HcJ . Furthermore, even if the [T2] / [B] molar ratio in the R3-T2-B-M2 magnet subjected to the second heat treatment is more than 14, the R1-T1-B-M1 alloy bulk body Sample No. with a mol ratio of [T1] / [B] outside the scope of the present disclosure. In 1-4 ([T1] / [B] molar ratio is 14.3), Br is significantly reduced.

Figure 2018060931
Figure 2018060931

Figure 2018060931
Figure 2018060931

実験例2
[R1−T1−B−M1系合金バルク体を準備する工程]
バルク体がおよそ表5の符号2−A及び2−Bに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR1−T1−B−M1系合金バルク体を作製した。
得られたR1−T1−B−M1系合金バルク体の密度は7.5Mg/m 以上であった。得られたR1−T1−B−M1系合金バルク体の成分の結果を表5に示す。表5における各成分は実験例1と同じ方法で測定した。なお、R1−T1−B−M1系合金バルク体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental example 2
[Step of preparing R1-T1-B-M1-based alloy bulk body]
An R1-T1-B-M1-based alloy bulk body is produced in the same manner as in Experimental Example 1 except that each element is weighed so that the bulk body has a composition indicated by reference numerals 2-A and 2-B in Table 5. did.
The density of the obtained R1-T1-B-M1 alloy bulk body was 7.5 Mg / m 3 or more. Table 5 shows the results of the components of the obtained R1-T1-B-M1 alloy bulk body. Each component in Table 5 was measured by the same method as in Experimental Example 1. In addition, as a result of measuring the oxygen amount of the R1-T1-B-M1 alloy bulk body by a gas melting-infrared absorption method, it was confirmed that all were around 0.5 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2018060931
Figure 2018060931

[R2−Cu−Ga−Fe−A系合金を準備する工程]
R2−Cu−Ga−Fe−A系合金がおよそ表6の符号2−aから2−gに示す組成となるように各元素を秤量する以外は、実験例1と同じ方法でR2−Cu−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Cu−Ga−Fe−A系合金の組成を表6に示す。
[Step of preparing R2-Cu-Ga-Fe-A-based alloy]
R2-Cu- is the same as in Experimental Example 1 except that each element is weighed so that the R2-Cu-Ga-Fe-A-based alloy has a composition indicated by reference numerals 2-a to 2-g in Table 6. A Ga—Fe—A alloy was prepared. Table 6 shows the composition of the R2-Cu-Ga-Fe-A alloy measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES).

Figure 2018060931
Figure 2018060931

[第一の熱処理を実施する工程]
表7の第一の熱処理に示す温度及び時間でR2−Cu−Ga−Fe−A系合金及びR1−T1−B−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
Except that the bulk of the R2-Cu-Ga-Fe-A alloy and R1-T1-B-M1 alloy were heated at the temperature and time shown in the first heat treatment of Table 7, the same method as in Experimental Example 1 was used. One heat treatment was performed.

[第二の熱処理を実施する工程]
表7の第二の熱処理に示す温度及び時間でR1−T1−B−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法で加工しR3−T2−B−M2系磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was carried out in the same manner as in Experimental Example 1, except that the R1-T1-B-M1-based alloy bulk body was heated at the temperature and time shown in the second heat treatment of Table 7. Each sample after the heat treatment was processed in the same manner as in Experimental Example 1 to obtain an R3-T2-B-M2 magnet.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表7に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表8に示す。表7の通り、R2−Cu−Ga−Fe−A系合金のFe量が4mass%以上40mass%以下である本発明例は高いB及び高いHcJが得られていることがわかる。また、表8の通り、R2−Cu−Ga−Fe−A系合金のFe量が本開示の範囲外であると、最終的に得られるR3−T2−B−M2系磁石における[T2]/[B]のmol比を14.0超とすることができず(表8中の比較例)、高いHcJを得ることができなかった。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. Table 7 shows the measurement results. Table 8 shows the results obtained by measuring the components of the sample using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). As Table 7, the present invention examples of the Fe content is less than 4 mass% or more 40 mass% of the R2-Cu-Ga-Fe- A alloy it can be seen that the high B r and a high H cJ are achieved. In addition, as shown in Table 8, when the Fe amount of the R2-Cu-Ga-Fe-A-based alloy is out of the scope of the present disclosure, [T2] / The molar ratio of [B] could not exceed 14.0 (Comparative Example in Table 8), and high HcJ could not be obtained.

Figure 2018060931
Figure 2018060931

Figure 2018060931
Figure 2018060931

実験例3
[R1−T1−B−M1系合金バルク体を準備する工程]
R1−T1−B−M1系合金バルク体がおよそ表9の符号3−Aから3−Cに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR1−T1−B−M1系合金バルク体を作製した。
得られたR1−T1−B−M1系合金バルク体の密度は7.5Mg/m 以上であった。得られたR1−T1−B−M1系合金バルク体の成分の結果を表9に示す。表9における各成分は実験例1と同じ方法で測定した。なお、R1−T1−B−M1系合金バルク体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental example 3
[Step of preparing R1-T1-B-M1-based alloy bulk body]
The R1-T1-B1-M1-based alloy bulk body was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the bulky body of the R1-T1-B-M1 alloy had a composition represented by reference numerals 3-A to 3-C in Table 9. A B-M1 alloy bulk body was produced.
The density of the obtained R1-T1-B-M1 alloy bulk body was 7.5 Mg / m 3 or more. Table 9 shows the results of the components of the obtained R1-T1-B-M1 alloy bulk body. Each component in Table 9 was measured by the same method as in Experimental Example 1. In addition, as a result of measuring the oxygen amount of the R1-T1-B-M1 alloy bulk body by a gas melting-infrared absorption method, it was confirmed that all were around 0.5 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2018060931
Figure 2018060931

[R2−Cu−Ga−Fe−A系合金を準備する工程]
R2−Cu−Ga−Fe−A系合金がおよそ表10の符号3−a〜3−pに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Cu−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Cu−Ga−Fe−A系合金の組成を表10に示す。
[Step of preparing R2-Cu-Ga-Fe-A-based alloy]
R2-Cu- is produced in the same manner as in Experimental Example 1 except that each element is weighed so that the R2-Cu-Ga-Fe-A-based alloy has a composition represented by reference numerals 3-a to 3-p in Table 10. A Ga—Fe—A alloy was prepared. Table 10 shows the composition of the R2-Cu-Ga-Fe-A alloy measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES).

Figure 2018060931
Figure 2018060931

[第一の熱処理を実施する工程]
表11の第一の熱処理に示す温度及び時間でR2−Cu−Ga−Fe−A合金及びR1−T1−B−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
The first method was the same as in Experimental Example 1 except that the R2-Cu-Ga-Fe-A alloy and the R1-T1-B-M1-based alloy bulk body were heated at the temperature and time shown in the first heat treatment of Table 11. The heat treatment was performed.

[第二の熱処理を実施する工程]
表11の第二の熱処理に示す温度及び時間でR1−T1−B−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。尚、サンプル3−17及び3−18は、第二の熱処理を実施しなかった。熱処理後の各サンプルを実験例1と同じ方法で加工しR3−T2−B−M2系磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was performed in the same manner as in Experimental Example 1 except that the R1-T1-B-M1 alloy bulk body was heated at the temperature and time shown in the second heat treatment of Table 11. Samples 3-17 and 3-18 were not subjected to the second heat treatment. Each sample after the heat treatment was processed in the same manner as in Experimental Example 1 to obtain an R3-T2-B-M2 magnet.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表11に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表12に示す。表11の通り、R2−Cu−Ga−Fe−A系合金のR2量が35mass%以上91mass%以下、Cu量及びGa量が2.5mass%以上40mass%以下である本発明例は高いB及び高いHcJが得られていることがわかる。また、表12の通り、R2−Cu−Ga−Fe−A合金におけるR2、Cu、Gaのいずれかが本開示の範囲外であると、最終的に得られるR3−T2−B−M2系磁石における[T2]/[B]のmol比を14.0超とすることができず(表12中の比較例)、高いHcJを得ることができない。このように、R2、Cu、Ga(及び実施例2に示す様にFe)の含有量が本開示の範囲内にあることにより、[T2]/[B]のmol比が14.0超となるFeの必要量を磁石表面から内部に導入させることが可能となる。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. Table 11 shows the measurement results. Table 12 shows the results of measuring the components of the sample using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). As Table 11, R2 of R2-Cu-Ga-Fe- A based alloy less 35 mass% or more 91mass%, the present invention example Cu content and Ga content is less than 2.5 mass% or more 40 mass% higher B r It can also be seen that high H cJ is obtained. In addition, as shown in Table 12, when any of R2, Cu, and Ga in the R2-Cu-Ga-Fe-A alloy is out of the scope of the present disclosure, the finally obtained R3-T2-B-M2-based magnet The [T2] / [B] molar ratio in the sample cannot be more than 14.0 (comparative example in Table 12), and high HcJ cannot be obtained. Thus, when the content of R2, Cu, Ga (and Fe as shown in Example 2) is within the scope of the present disclosure, the molar ratio of [T2] / [B] exceeds 14.0. It becomes possible to introduce the necessary amount of Fe to be introduced into the inside from the magnet surface.

Figure 2018060931
Figure 2018060931

Figure 2018060931
Figure 2018060931

実験例4
[R1−T1−B−M1系合金バルク体を準備する工程]
R1−T1−B−M1系合金バルク体がおよそ表13の符号4−Aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR1−T1−B−M1系合金バルク体を作製した。
得られたR1−T1−B−M1系合金バルク体の密度は7.5Mg/m 以上であった。得られたR1−T1−B−M1系合金バルク体の成分の結果を表13に示す。表13における各成分は実験例1と同じ方法で測定した。なお、R1−T1−B−M1系合金バルク体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental Example 4
[Step of preparing R1-T1-B-M1-based alloy bulk body]
The R1-T1-B-M1 system is the same as in Experimental Example 1 except that each element is weighed so that the R1-T1-B-M1 system bulk alloy has a composition indicated by 4-A in Table 13. An alloy bulk body was produced.
The density of the obtained R1-T1-B-M1 alloy bulk body was 7.5 Mg / m 3 or more. Table 13 shows the results of the components of the obtained R1-T1-B-M1-based alloy bulk body. Each component in Table 13 was measured by the same method as in Experimental Example 1. In addition, as a result of measuring the oxygen amount of the R1-T1-B-M1 alloy bulk body by a gas melting-infrared absorption method, it was confirmed that all were around 0.5 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2018060931
Figure 2018060931

[R2−Cu−Ga−Fe−A系合金を準備する工程]
R2−Cu−Ga−Fe−A系合金がおよそ表14の符号4−aに示組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Cu−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Cu−Ga−Fe−A系合金の組成を表14に示す。
[Step of preparing R2-Cu-Ga-Fe-A-based alloy]
The R2-Cu-Ga-Fe-A-R-Cu-Ga-Fe-A-based alloy was R2-Cu-Ga-Fe- in the same manner as in Experimental Example 1 except that each element was weighed so that the composition indicated by symbol 4-a in Table 14 was obtained. An A-based alloy was prepared. Table 14 shows the composition of the R2-Cu-Ga-Fe-A alloy measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES).

Figure 2018060931
Figure 2018060931

[第一の熱処理を実施する工程]
表15の第一の熱処理に示す温度及び時間でR2−Cu−Ga−Fe−A合金及びR1−T1−B−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
The first method was the same as in Experimental Example 1 except that the R2-Cu-Ga-Fe-A alloy and the R1-T1-B-M1 alloy bulk body were heated at the temperature and time shown in the first heat treatment of Table 15. The heat treatment was performed.

[第二の熱処理を実施する工程]
表15の第二の熱処理に示す温度及び時間でR1−T1−B−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法で加工しR3−T2−B−M2系磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was performed in the same manner as in Experimental Example 1 except that the R1-T1-B-M1 alloy bulk body was heated at the temperature and time shown in the second heat treatment of Table 15. Each sample after the heat treatment was processed in the same manner as in Experimental Example 1 to obtain an R3-T2-B-M2 magnet.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表15に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表16に示す。表15の通り、本開示の第一の熱処理温度(700℃以上950℃以下)及び第二の熱処理温度(450℃以上600℃以下)である本発明例は、高いB及び高いHcJが得られていることがわかる。また、表16の通り、第一の熱処理温度又は第二の熱処理温度が本開示の範囲外である比較例は、最終的に得られるR3−T2−B−M2系磁石における[T2]/[B]のmol比を14.0超とすることができず(表16中の比較例)、高いHcJを得ることができなかった。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. Table 15 shows the measurement results. Table 16 shows the results of measuring the components of the sample using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). As Table 15, the present invention embodiment the first heat treatment temperature (700 ° C. or higher 950 ° C. or less) and a second heat-treatment temperature (450 ° C. or higher 600 ° C. or less) of the present disclosure, a high B r and a high H cJ It turns out that it is obtained. Further, as shown in Table 16, the comparative example in which the first heat treatment temperature or the second heat treatment temperature is outside the scope of the present disclosure is [T2] / [in the finally obtained R3-T2-B-M2 magnet. The molar ratio of B] could not exceed 14.0 (Comparative Example in Table 16), and high HcJ could not be obtained.

Figure 2018060931
Figure 2018060931

Figure 2018060931
Figure 2018060931

実験例5
[R1−T1−B−M1系合金バルク体(バルク体)を準備する工程]
R1−T1−B−M1系合金バルク体がおよそ表17の符号5−Aに示す組成となるように、各元素を秤量しブックモールド法により鋳造し、厚み10〜20mmのブロック状の原料合金を得た。得られた原料合金を減圧アルゴン雰囲気中で1120℃×20時間の熱処理を行った後、冷却した。その後、絶対圧250kPaの加圧水素雰囲気で2時間保持することにより、合金に水素を吸蔵させた後、真空引きを行って水素を極力除去した。その後、500μmのメッシュにて解砕することで、粉末を得た。
Experimental Example 5
[Step of preparing R1-T1-B-M1-based alloy bulk body (bulk body)]
Each element was weighed and cast by the book mold method so that the R1-T1-B-M1-based alloy bulk body had a composition indicated by reference numeral 5-A in Table 17, and a block-shaped raw material alloy having a thickness of 10 to 20 mm. Got. The obtained raw material alloy was heat-treated at 1120 ° C. for 20 hours in a reduced-pressure argon atmosphere, and then cooled. Thereafter, the alloy was occluded with hydrogen by holding it in a pressurized hydrogen atmosphere at an absolute pressure of 250 kPa for 2 hours, and then evacuated to remove hydrogen as much as possible. Then, powder was obtained by crushing with a 500-micrometer mesh.

得られた粉末に対して、HDDR処理を行った。具体的には、粉末を100kPa(大気圧)のアルゴン流気中で890℃まで加熱し、その後、雰囲気を100kPa(大気圧)の水素流気に切り替えた後、890℃で2時間保持して水素化・不均化反応を行った。温度を保持したまま、5.3kPaに減圧したアルゴン流気中で1時間保持し、脱水素、再結合反応を行った後、大気圧アルゴン流気中で室温まで冷却した。HDDR処理により、粉末が若干凝集していたため、目開き500μmのメッシュで解砕した。   The HDDR process was performed with respect to the obtained powder. Specifically, the powder was heated to 890 ° C. in an argon stream of 100 kPa (atmospheric pressure), and then the atmosphere was switched to a hydrogen stream of 100 kPa (atmospheric pressure) and then held at 890 ° C. for 2 hours. Hydrogenation and disproportionation reactions were performed. While maintaining the temperature, it was kept for 1 hour in an argon flow reduced to 5.3 kPa, and after dehydrogenation and recombination reaction, it was cooled to room temperature in an atmospheric pressure argon flow. Since the powder was slightly agglomerated by the HDDR treatment, it was crushed with a mesh having an opening of 500 μm.

その後、粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と垂直方向に60MPaの圧力を印加して圧粉体を作製した。得られた圧粉体をホットプレス装置の金型に充填し、その後金型をホットプレス装置内に設置して、1×10−2Pa以下の真空中で200MPaの圧力を印加しながら、高周波加熱により金型を800℃まで加熱した。保持温度までの昇温時間は60秒とした。その後、800℃で2分間保持し加熱圧縮処理を行い、保持時間経過の10秒前にプレス圧力を解除し、保持時間経過後直ちにチャンバ内にヘリウムガスを導入して冷却して、実験に必要な数のバルク体を作製した。ホットプレスで得られたR1−T1−B−M1系合金バルク体の密度は7.5Mg/m3以上であった。また、配向方向に平行な断面の走査電子顕微鏡観察(SEM観察)から求められた平均結晶粒径(円相当径)はいずれのサンプルも200nm以上800nm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在することを確認した。得られた磁石素材の成分の結果を表17に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 Thereafter, the powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 60 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The obtained green compact is filled into a mold of a hot press apparatus, and then the mold is placed in the hot press apparatus, and a high frequency is applied while applying a pressure of 200 MPa in a vacuum of 1 × 10 −2 Pa or less. The mold was heated to 800 ° C. by heating. The temperature raising time to the holding temperature was 60 seconds. Then, hold at 800 ° C. for 2 minutes to perform heat compression treatment, release the press pressure 10 seconds before the lapse of holding time, introduce helium gas into the chamber and cool immediately after the holding time has passed, necessary for experiment A large number of bulk bodies were produced. The density of the R1-T1-B-M1 alloy bulk body obtained by hot pressing was 7.5 Mg / m 3 or more. In addition, the average crystal grain size (equivalent circle diameter) obtained by scanning electron microscope observation (SEM observation) of a cross section parallel to the orientation direction is 200 nm or more and 800 nm or less for any sample, and the longest grain size of each crystal grain. It was confirmed that the crystal grains having a ratio b / a of b to the shortest grain size a of less than 2 existed by 50% by volume or more of all crystal grains. Table 17 shows the results of the components of the obtained magnet material. In addition, each component in Table 1 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.5 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2018060931
Figure 2018060931

[R2−Cu−Ga−Fe−A系合金を準備する工程]
R2−Cu−Ga−Fe−A系合金がおよそ表18の符号5−aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Cu−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Cu−Ga−Fe−A系合金の組成を表18に示す。
[Step of preparing R2-Cu-Ga-Fe-A-based alloy]
The R2-Cu-Ga-Fe-A-R-Cu-Ga-Fe-A alloy was R2-Cu-Ga-Fe- in the same manner as in Experimental Example 1 except that each element was weighed so that the composition indicated by reference numeral 5-a in Table 18 was obtained. An A-based alloy was prepared. Table 18 shows the composition of the R2-Cu-Ga-Fe-A alloy measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES).

Figure 2018060931
Figure 2018060931

[第一の熱処理を実施する工程]
表19の第一の熱処理に示す温度及び時間でR2−Cu−Ga−Fe−A合金及びR1−T1−B−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of performing first heat treatment]
The first method was the same as in Experimental Example 1 except that the R2-Cu-Ga-Fe-A alloy and the R1-T1-B-M1 alloy bulk body were heated at the temperature and time shown in the first heat treatment of Table 19. The heat treatment was performed.

[第二の熱処理を実施する工程]
表19の第二の熱処理に示す温度及び時間でR1−T1−B−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法加工しR3−T2−B−M2系磁石を得た。
[Step of performing second heat treatment]
The second heat treatment was carried out in the same manner as in Experimental Example 1, except that the R1-T1-B-M1-based alloy bulk body was heated at the temperature and time indicated in the second heat treatment of Table 19. Each sample after the heat treatment was processed in the same manner as in Experimental Example 1 to obtain an R3-T2-B-M2 magnet.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表19に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表20に示す。表19の通り、平均粒子径20μm以上の合金をHDDR処理した後、得られた粉末を磁界中成形し、その後、加熱圧縮を行って得られたR1−T1−B−M1系合金バルク体を用いても高いHcJが得られていることがわかる。
[sample test]
The obtained sample was measured B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 19. Table 20 shows the results obtained by measuring the components of the sample using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). As shown in Table 19, after subjecting an alloy having an average particle size of 20 μm or more to HDDR, the obtained powder was molded in a magnetic field, and then subjected to heat compression to obtain an R1-T1-B-M1-based alloy bulk body. It can be seen that even when used, high HcJ was obtained.

Figure 2018060931
Figure 2018060931

Figure 2018060931
Figure 2018060931

実験例6
[R1−T1−B−M1系合金バルク体(バルク体)を準備する工程]
R1−T1−B−M1系合金バルク体がおよそ表21の符号6−Aに示す組成となるように、各元素を秤量しブックモールド法により鋳造し、厚み10〜20mmのブロック状の原料合金を得た。得られたブロック状の原料合金を単ロール超急冷法を用いて超急冷合金を作製した。具体的には周速度20m/秒で回転する純銅製のロール上に、石英管中で高周波溶解した原料合金を噴射することで厚さ20〜50μmのリボン状の合金を得た。得られた合金を乳鉢中で粉砕し、150μm以下の粉末を回収した。
Experimental Example 6
[Step of preparing R1-T1-B-M1-based alloy bulk body (bulk body)]
Each element was weighed and cast by a book mold method so that the R1-T1-B-M1-based alloy bulk body had a composition indicated by reference numeral 6-A in Table 21, and a block-shaped raw material alloy having a thickness of 10 to 20 mm. Got. An ultra-quenched alloy was produced from the obtained block-shaped raw material alloy using a single roll ultra-quenching method. Specifically, a ribbon-like alloy having a thickness of 20 to 50 μm was obtained by spraying a raw alloy melted at high frequency in a quartz tube onto a pure copper roll rotating at a peripheral speed of 20 m / sec. The obtained alloy was pulverized in a mortar, and a powder of 150 μm or less was recovered.

得られた粉末を直径6mmの金型に挿入し、室温、200MPaの圧力で圧縮して成形体を作製した。成形体の高さは約8mmで、密度は約5.6Mg/m3であった。 The obtained powder was inserted into a 6 mm diameter mold and compressed at room temperature and a pressure of 200 MPa to produce a molded body. The height of the molded body was about 8 mm, and the density was about 5.6 Mg / m 3 .

その後、得られた成形体をホットプレス装置の金型(内径6mm)に充填し、その後金型をホットプレス装置内に設置して、1×10-2Pa以下の真空中で50MPaの圧力を印加しながら、高周波加熱により金型を750℃まで加熱した。保持温度までの昇温時間は60秒とした。その後、750℃で5分間保持して加熱圧縮処理を行い、保持時間経過の10秒前にプレス圧力を解除し、保持時間経過後直ちにチャンバ内にヘリウムガスを導入して冷却した。密度は7.5Mg/m3以上まで向上した。 Thereafter, the obtained compact is filled into a hot press die (inner diameter 6 mm), and then the die is placed in the hot press device, and a pressure of 50 MPa is applied in a vacuum of 1 × 10 −2 Pa or less. While applying, the mold was heated to 750 ° C. by high frequency heating. The temperature raising time to the holding temperature was 60 seconds. After that, heat compression treatment was performed by holding at 750 ° C. for 5 minutes, the press pressure was released 10 seconds before the lapse of the holding time, and helium gas was introduced into the chamber and cooled immediately after the lapse of the holding time. The density was improved to 7.5 Mg / m 3 or more.

その後、ホットプレスで得られた成形体に熱間加工を施した。具体的には、ホットプレス体(ホットブレスで得られた成形体)(直径6mm)を内径10mmの金型の中央部に設置し、その後金型をホットプレス装置内に設置して、1×10−2Pa以下の真空中で高周波加熱により金型を800℃まで加熱した。保持温度までの昇温時間は60秒とした。その後、50MPaの圧力を印加しながらパンチの変位の変化がほぼゼロになるまで保持し、保持時間経過の10秒前にプレス圧力を解除し、保持時間経過後直ちにチャンバ内にヘリウムガスを導入して冷却してR1−T1−B−M1系合金バルク体6−Aを得た。熱間加工で得られたバルク体の密度は7.5Mg/m3以上であった。また、配向方向に平行な断面の走査電子顕微鏡観察(SEM観察)から求められた平均結晶粒径(円相当径)はいずれのサンプルも200nm以上800nm以下であり、個々の結晶粒の最長粒径bと最短粒径aの比b/aが2以上である結晶粒が全結晶粒の50体積%以上存在することを確認した。得られた磁石素材の成分の結果を表21に示す。なお、表21における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.5mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 Thereafter, the formed body obtained by hot pressing was hot-worked. Specifically, a hot press body (molded body obtained by hot breathing) (diameter 6 mm) is installed in the center of a mold having an inner diameter of 10 mm, and then the mold is installed in a hot press apparatus. The mold was heated to 800 ° C. by high-frequency heating in a vacuum of 10 −2 Pa or less. The temperature raising time to the holding temperature was 60 seconds. After that, while applying a pressure of 50 MPa, hold the punch until the change in displacement of the punch becomes almost zero, release the pressing pressure 10 seconds before the holding time elapses, and introduce helium gas into the chamber immediately after the holding time elapses. And cooled to obtain an R1-T1-B-M1-based alloy bulk body 6-A. The density of the bulk body obtained by hot working was 7.5 Mg / m 3 or more. In addition, the average crystal grain size (equivalent circle diameter) obtained by scanning electron microscope observation (SEM observation) of a cross section parallel to the orientation direction is 200 nm or more and 800 nm or less for any sample, and the longest grain size of each crystal grain. It was confirmed that the crystal grains having a ratio b / a of b to the shortest grain size a of 2 or more existed by 50% by volume or more of all crystal grains. Table 21 shows the results of the components of the obtained magnet material. In addition, each component in Table 21 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.5 mass%. Further, C (carbon content) was measured using a gas analyzer based on a combustion-infrared absorption method, and as a result, it was confirmed that it was around 0.1 mass%.

Figure 2018060931
Figure 2018060931

[R2−Cu−Ga−Fe−A系合金を準備する工程]
R2−Cu−Ga−Fe−A系合金がおよそ表22の符号6−aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2−Cu−Ga−Fe−A系合金を準備した。高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定したR2−Cu−Ga−Fe−A系合金の組成を表22に示す。
[Step of preparing R2-Cu-Ga-Fe-A-based alloy]
The R2-Cu-Ga-Fe-A-R-Cu-Ga-Fe-A alloy was R2-Cu-Ga-Fe- in the same manner as in Experimental Example 1 except that each element was weighed so that the composition indicated by reference numeral 6-a in Table 22 was obtained. An A-based alloy was prepared. Table 22 shows the composition of the R2-Cu-Ga-Fe-A alloy measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES).

Figure 2018060931
Figure 2018060931

[第一の熱処理を実施する工程]
R1−T1−B−M1系合金バルク体を切断、切削加工し、1.4mm×8.0mm×8.0mmの直方体(8.0mm×8.0mmの面が配向方向と垂直な面)とした。その後、このR1−T1−B−M1系合金バルク体の配向方向に垂直な面(二面)に、R−Fe−B−M系合金バルク体の100質量部(100mass%)に対して、R2−Cu−Ga−Fe−A系合金を0.4質量部(0.4mass%)散布し、その後、管状流気炉を用いて、50Paに制御した減圧アルゴン中で、表23の第一の熱処理に示す温度及び時間でR2−Cu−Ga−Fe−A合金及びR1−T1−B−M1系合金バルク体を加熱した。
[Step of performing first heat treatment]
Cutting and cutting the R1-T1-B-M1-based alloy bulk body, and a 1.4 mm × 8.0 mm × 8.0 mm rectangular parallelepiped (a surface of 8.0 mm × 8.0 mm perpendicular to the orientation direction) did. Then, with respect to 100 parts by mass (100 mass%) of the R-Fe-BM alloy bulk body on the plane (two faces) perpendicular to the orientation direction of the R1-T1-B-M1 alloy bulk body, The R2-Cu-Ga-Fe-A-based alloy was dispersed in an amount of 0.4 parts by mass (0.4 mass%), and then, in a reduced pressure argon controlled to 50 Pa using a tubular flow furnace, the first in Table 23 The R2-Cu-Ga-Fe-A alloy and the R1-T1-B-M1-based alloy bulk body were heated at the temperature and time shown in the heat treatment.

[第二の熱処理を実施する工程]
表23の第二の熱処理に示す温度及び時間でR1−T1−B−M1系合金バルク体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを。熱処理後の各サンプルの表面近傍に存在するR2−Cu−Ga−Fe−A系合金の濃化部を除去するため、表面研削盤を用いてR2−Cu−Ga−Fe−A系合金を散布した面を0.2mmずつ切削加工し、1.0mm×8.0mm×8.0mmの平板状のサンプル(R3−T2−B−M2系磁石)を得た。
[Step of performing second heat treatment]
The second heat treatment was carried out in the same manner as in Experimental Example 1, except that the R1-T1-B-M1-based alloy bulk body was heated at the temperature and time indicated in the second heat treatment of Table 23. Each sample after heat treatment. In order to remove the concentrated portion of the R2-Cu-Ga-Fe-A-based alloy existing in the vicinity of the surface of each sample after the heat treatment, the R2-Cu-Ga-Fe-A-based alloy is dispersed using a surface grinder. The obtained surfaces were cut by 0.2 mm each to obtain a flat plate sample (R3-T2-B-M2 magnet) of 1.0 mm × 8.0 mm × 8.0 mm.

[サンプル評価]
得られたサンプルを4枚重ねて、B−Hトレーサによって各試料のB及びHcJを測定した。測定結果を表23に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表24に示す。表23の通り、超急冷法によって作製された合金を作製し、その後、熱間加工を行うことで作製されたR1−T1−B−M1系合金バルク体を用いても、高いHcJが得られていることがわかる。また、表24の通り、高いHcJが得られているサンプルは[T2]/[B]のmol比が14.0超となっていることがわかる。
[sample test]
The resulting sample piled four to measure the B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 23. Table 24 shows the results obtained by measuring the components of the sample using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). As shown in Table 23, a high H cJ can be obtained even by using an R1-T1-B-M1 alloy bulk body produced by producing an alloy produced by the ultra-quenching method and then performing hot working. You can see that In addition, as shown in Table 24, it can be seen that the sample having high HcJ has a molar ratio of [T2] / [B] exceeding 14.0.

Figure 2018060931
Figure 2018060931

Figure 2018060931
Figure 2018060931

本開示により得られたR3−T2−B−M2系磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに好適に利用することができる。   R3-T2-B-M2 magnets obtained by the present disclosure include various motors such as hard disk drive voice coil motors (VCM), electric vehicle (EV, HV, PHV, etc.) motors, industrial equipment motors, etc. It can be suitably used for home appliances and the like.

1 R1−T1−B−M1系合金バルク体
2 R2−Cu−Ga−Fe−A系合金
3 処理容器
DESCRIPTION OF SYMBOLS 1 R1-T1-B-M1 type alloy bulk body 2 R2-Cu-Ga-Fe-A type alloy 3 Processing container

Claims (7)

以下の要件(1)〜(6)を満たすR1−T1−B−M1系合金バルク体を準備する工程と、
(1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1−T1−B−M1系合金バルク体全体の27mass%以上35mass%以下である。
(2)T1はFe又はFeとX1であり、X1はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(3)[T1]/[B]のmol比が13.0以上14.0以下である。
(4)M1はGa及びCuの少なくとも一方であり、R1−T1−B−M1系合金バルク体全体の0mass%以上1mass%以下である。
(5)不可避的不純物を含んでも良い。
(6)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
以下の要件(7)〜(12)を満たすR2−Cu−Ga−Fe−A系合金を準備する工程と、
(7)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2−Cu−Ga−Fe−A系合金全体の35mass%以上91mass%以下である。
(8)CuはR2−Cu−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。
(9)GaはR2−Cu−Ga−Fe−A系合金全体の2.5mass%以上40mass%以下である。
(10)FeはR2−Cu−Ga−Fe−A系合金全体の4mass%以上40mass%以下である。
(11)AはAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Mo、Agから選択される一種以上であり、R2−Ga−Fe−A系合金全体の0mass%以上1mass%以下である。
(12)不可避的不純物を含んでも良い。
前記R1−T1−B−M1系合金バルク体の表面の少なくとも一部に、前記R2−Cu−Ga−Fe−A系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上950℃以下の温度で第一の熱処理を実施する工程と、
前記第一の熱処理が実施されたR1−T1−B−M1系合金バルク体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、
を含む、以下の要件(13)〜(18)を満たすR3−T2−B−M2系磁石の製造方法。
(13)R3は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R3−T2−B−M2系磁石全体の27mass%以上35mass%以下である。
(14)T2はFe又はFeとX2であり、X2はAl、Si、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、Zr、Nb、Moから選択される一種以上である。
(15)[T2]/[B]のmol比が14.0超である。
(16)M2はGa及びCuであり、R3−T2−B−M2系磁石全体の0.1mass%以上3mass%以下である。
(17)不可避的不純物を含んでいても良い。
(18)主相であるR14B相の平均結晶粒径が1μm以下で磁気的異方性を有する。
Preparing an R1-T1-B-M1 alloy bulk body that satisfies the following requirements (1) to (6);
(1) R1 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire bulk of the R1-T1-B-M1 alloy.
(2) T1 is Fe or Fe and X1, and X1 is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(3) The molar ratio of [T1] / [B] is 13.0 or more and 14.0 or less.
(4) M1 is at least one of Ga and Cu, and is 0 mass% or more and 1 mass% or less of the entire R1-T1-B-M1 alloy bulk body.
(5) Inevitable impurities may be included.
(6) The R 2 T 14 B phase as the main phase has an average crystal grain size of 1 μm or less and magnetic anisotropy.
Preparing an R2-Cu-Ga-Fe-A-based alloy that satisfies the following requirements (7) to (12);
(7) R2 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and is 35 mass% or more and 91 mass% or less of the entire R2-Cu-Ga-Fe-A alloy.
(8) Cu is 2.5 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A-based alloy.
(9) Ga is 2.5 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A-based alloy.
(10) Fe is 4 mass% or more and 40 mass% or less of the entire R2-Cu-Ga-Fe-A alloy.
(11) A is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, Mo, and Ag, and an R2-Ga-Fe-A alloy It is 0 mass% or more and 1 mass% or less of the whole.
(12) Inevitable impurities may be included.
At least a part of the R2-Cu-Ga-Fe-A alloy is brought into contact with at least a part of the surface of the bulk of the R1-T1-B-M1 alloy, and 700 ° C in a vacuum or an inert gas atmosphere. Performing a first heat treatment at a temperature of 950 ° C. or lower;
Performing a second heat treatment on the R1-T1-B-M1-based alloy bulk body subjected to the first heat treatment at a temperature of 450 ° C. or higher and 600 ° C. or lower in a vacuum or an inert gas atmosphere; ,
The manufacturing method of the R3-T2-B-M2 type | system | group magnet which satisfy | fills the following requirements (13)-(18) including this.
(13) R3 is at least one of rare earth elements, and always includes at least one of Nd and Pr, and is 27 mass% or more and 35 mass% or less of the entire R3-T2-B-M2 magnet.
(14) T2 is Fe or Fe and X2, and X2 is at least one selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, Zr, Nb, and Mo.
(15) The molar ratio [T2] / [B] is more than 14.0.
(16) M2 is Ga and Cu, and is not less than 0.1 mass% and not more than 3 mass% of the entire R3-T2-B-M2 magnet.
(17) Inevitable impurities may be included.
(18) The average crystal grain size of the R 2 T 14 B phase, which is the main phase, is 1 μm or less and has magnetic anisotropy.
前記R2−Cu−Ga−Fe−A系合金は重希土類元素を含有していない請求項1に記載のR3−T2−B−M2系磁石の製造方法。   The method for producing an R3-T2-B-M2 magnet according to claim 1, wherein the R2-Cu-Ga-Fe-A alloy does not contain a heavy rare earth element. 前記R2−Cu−Ga−Fe−A系合金中のR2の50mass%以上がPrである請求項1又は2に記載のR3−T2−B−M2系磁石の製造方法。   The method for producing an R3-T2-B-M2 magnet according to claim 1, wherein 50 mass% or more of R2 in the R2-Cu-Ga-Fe-A alloy is Pr. 前記R3−T2−B−M2系磁石中の重希土類元素は1mass%以下である請求項1から3のいずれかに記載のR3−T2−B−M2系磁石の製造方法。   The method for producing an R3-T2-B-M2 magnet according to any one of claims 1 to 3, wherein a heavy rare earth element in the R3-T2-B-M2 magnet is 1 mass% or less. 前記R1−T1−B−M1系合金バルク体を準備する工程は、R14B相を主体とする平均粒子径1μm以上10μm以下の粉末を磁界中成形した後、HDDR処理し、その後、加熱圧縮を行うことを含む、請求項1から4のいずれかに記載のR3−T2−B−M2系磁石の製造方法。 The step of preparing the R1-T1-B-M1-based alloy bulk body includes forming an powder having an average particle diameter of 1 μm or more and 10 μm or less mainly composed of the R 2 T 14 B phase in a magnetic field, then subjecting it to HDDR, The manufacturing method of the R3-T2-B-M2 system magnet in any one of Claim 1 to 4 including performing heat compression. 前記R1−T1−B−M1系合金バルク体を準備する工程は、R14B相を主体とする平均粒子径20μm以上の合金をHDDR処理した後、得られた粉末を磁界中成形し、その後、加熱圧縮を行うことを含む、請求項1から4のいずれかに記載のR3−T2−B−M2系磁石の製造方法。 The step of preparing the R1-T1-B-M1 alloy bulk body includes HDDR treatment of an alloy having an average particle diameter of 20 μm or more mainly composed of the R 2 T 14 B phase, and then molding the obtained powder in a magnetic field. Then, the manufacturing method of the R3-T2-B-M2 type | system | group magnet in any one of Claim 1 to 4 including performing heat compression after that. 前記R1−T1−B−M1系合金バルク体を準備する工程は、超急冷法によって作製された合金を作製し、その後、熱間加工を行うことを含む、請求項1から4のいずれかに記載のR3−T2−B−M2系磁石の製造方法。
The step of preparing the R1-T1-B-M1-based alloy bulk body includes producing an alloy produced by an ultra-quenching method and then performing hot working. The manufacturing method of R3-T2-B-M2 type | system | group magnet of description.
JP2016197944A 2016-10-06 2016-10-06 Method for manufacturing RTB magnet Active JP6691667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197944A JP6691667B2 (en) 2016-10-06 2016-10-06 Method for manufacturing RTB magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197944A JP6691667B2 (en) 2016-10-06 2016-10-06 Method for manufacturing RTB magnet

Publications (2)

Publication Number Publication Date
JP2018060931A true JP2018060931A (en) 2018-04-12
JP6691667B2 JP6691667B2 (en) 2020-05-13

Family

ID=61910043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197944A Active JP6691667B2 (en) 2016-10-06 2016-10-06 Method for manufacturing RTB magnet

Country Status (1)

Country Link
JP (1) JP6691667B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066626A (en) * 2021-03-26 2021-07-02 福建省长汀金龙稀土有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
JP2021130840A (en) * 2020-02-19 2021-09-09 株式会社豊田中央研究所 Rare-earth magnet powder and method for producing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264115A (en) * 2002-03-11 2003-09-19 Hitachi Powdered Metals Co Ltd Manufacturing method for bulk magnet containing rare earth
JP2007287875A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
JP2011210879A (en) * 2010-03-29 2011-10-20 Hitachi Metals Ltd Method for manufacturing rare-earth magnet
WO2012099186A1 (en) * 2011-01-19 2012-07-26 日立金属株式会社 Method of producing r-t-b sintered magnet
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2013207134A (en) * 2012-03-29 2013-10-07 Hitachi Metals Ltd Bulk rh diffusion source
JP2014225623A (en) * 2013-04-22 2014-12-04 昭和電工株式会社 Rare earth-transition metal-boron based rare earth sintered magnet, and method for manufacturing the same
WO2015020181A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b-based sintered magnet and motor
WO2015020183A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b type sintered magnet, and motor
JP2015220335A (en) * 2014-05-16 2015-12-07 住友電気工業株式会社 Rare earth magnet, and method for manufacturing rare earth magnet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264115A (en) * 2002-03-11 2003-09-19 Hitachi Powdered Metals Co Ltd Manufacturing method for bulk magnet containing rare earth
JP2007287875A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
JP2011210879A (en) * 2010-03-29 2011-10-20 Hitachi Metals Ltd Method for manufacturing rare-earth magnet
WO2012099186A1 (en) * 2011-01-19 2012-07-26 日立金属株式会社 Method of producing r-t-b sintered magnet
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2013207134A (en) * 2012-03-29 2013-10-07 Hitachi Metals Ltd Bulk rh diffusion source
JP2014225623A (en) * 2013-04-22 2014-12-04 昭和電工株式会社 Rare earth-transition metal-boron based rare earth sintered magnet, and method for manufacturing the same
WO2015020181A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b-based sintered magnet and motor
WO2015020183A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b type sintered magnet, and motor
JP2015220335A (en) * 2014-05-16 2015-12-07 住友電気工業株式会社 Rare earth magnet, and method for manufacturing rare earth magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021130840A (en) * 2020-02-19 2021-09-09 株式会社豊田中央研究所 Rare-earth magnet powder and method for producing the same
JP7255514B2 (en) 2020-02-19 2023-04-11 株式会社豊田中央研究所 Method for producing rare earth magnet powder
CN113066626A (en) * 2021-03-26 2021-07-02 福建省长汀金龙稀土有限公司 R-T-B series permanent magnetic material and preparation method and application thereof

Also Published As

Publication number Publication date
JP6691667B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
CN107871582B (en) R-Fe-B sintered magnet
JP4873008B2 (en) R-Fe-B porous magnet and method for producing the same
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
JP6614084B2 (en) Method for producing R-Fe-B sintered magnet
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP6471669B2 (en) Manufacturing method of RTB-based magnet
JP6221233B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JP2009123968A (en) POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
WO2018101239A1 (en) R-fe-b sintered magnet and production method therefor
JP6051922B2 (en) Method for producing RTB-based sintered magnet
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
CN111655891B (en) Permanent magnet
JP6198103B2 (en) Manufacturing method of RTB-based permanent magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP2013115156A (en) Method of manufacturing r-t-b-based permanent magnet
JP2012195392A (en) Method of manufacturing r-t-b permanent magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP2010251740A (en) Method of manufacturing rare-earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6691667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350