JPH0616445B2 - Permanent magnet material and manufacturing method thereof - Google Patents

Permanent magnet material and manufacturing method thereof

Info

Publication number
JPH0616445B2
JPH0616445B2 JP61029350A JP2935086A JPH0616445B2 JP H0616445 B2 JPH0616445 B2 JP H0616445B2 JP 61029350 A JP61029350 A JP 61029350A JP 2935086 A JP2935086 A JP 2935086A JP H0616445 B2 JPH0616445 B2 JP H0616445B2
Authority
JP
Japan
Prior art keywords
atom
layer
permanent magnet
thin film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61029350A
Other languages
Japanese (ja)
Other versions
JPS62188745A (en
Inventor
哲 広沢
節夫 藤村
真人 佐川
日登志 山本
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP61029350A priority Critical patent/JPH0616445B2/en
Publication of JPS62188745A publication Critical patent/JPS62188745A/en
Publication of JPH0616445B2 publication Critical patent/JPH0616445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Description

【発明の詳細な説明】 利用産業分野 この発明は、焼結永久磁石表面の研削加工等に伴なう磁
気特性の劣化を防止し、かつ磁気特性の経年変化を防止
したFe−B−R系永久磁石に係り、特に、厚みが1.0mm
以下の高性能永久磁石材料及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to an Fe-BR system in which deterioration of magnetic properties due to grinding of a surface of a sintered permanent magnet or the like is prevented and deterioration of magnetic properties over time is prevented. Permanent magnet, especially 1.0mm thickness
The following relates to a high-performance permanent magnet material and a method for manufacturing the same.

背景技術 現在、高磁気特性でかつ安価な永久磁石材料が求めら
れ、さらに資源的に豊富で、今後の安定供給が可能な組
成元素からなる永久磁石材料が切望されており、本出願
人は先に、高価なSmやCoを含有しない新しい高性能永久
磁石としてFe−B−R系(RはYを含む希土類元素のう
ち少なくとも1種)永久磁石を提案した(特開昭59-460
08号、特開昭59-64733号、特開昭59-89401号、特開昭59
-132104号)。この永久磁石は、RとしてNdやPrを中心
とする資源的に豊富な軽希土類を用い、Feを主成分とし
て20MGOe以上の極めて高いエネルギー積を示す、すぐ
れた永久磁石である。
BACKGROUND ART At present, there is a demand for a permanent magnet material that has high magnetic properties and is inexpensive, and there is a strong demand for a permanent magnet material that is rich in resources and that can be stably supplied in the future with a composition element. In addition, as a new high-performance permanent magnet containing no expensive Sm or Co, an Fe-BR type permanent magnet (R is at least one of rare earth elements including Y) is proposed (Japanese Patent Laid-Open No. 59-460).
08, JP 59-64733, JP 59-89401, JP 59
-132104). This permanent magnet is an excellent permanent magnet that uses a resource-rich light rare earth such as Nd or Pr as R and has an extremely high energy product of 20 MGOe or more with Fe as a main component.

最近、磁気回路の高性能化,小形化に伴ない、Fe−B−
R系永久磁石材料が益々注目され、さらに、厚みが1.0m
m以下の小物あるいは薄物用Fe−B−R系永久磁石材料
が要望されてきた。
Recently, as the performance and size of magnetic circuits have increased, Fe-B-
R-based permanent magnet materials are attracting more and more attention, and the thickness is 1.0 m.
There has been a demand for Fe-BR type permanent magnet materials for small or thin objects having a size of m or less.

かかる用途の永久磁石材料を製造するには、成形焼結し
た小物あるいは極薄物の焼結磁石体を、その表面の凹凸
や歪みを除去するため、あるいは表面酸化層を除去する
ため、さらには磁気回路に組込むために、磁石体の全面
あるいは所要表面を切削加工する必要がある。
In order to manufacture a permanent magnet material for such an application, a molded or sintered small or ultra-thin sintered magnet body is used to remove surface irregularities or distortion, or to remove a surface oxide layer, In order to be incorporated in a circuit, it is necessary to cut the entire surface or required surface of the magnet body.

しかしながら、かかるFe−B−R系永久磁石材料(15.5
Nd 7.5B77Fe)を研削加工すると、例えば、厚み20mmよ
り、1mm以下の製品厚みに加工すると、第1図〜第3図
の曲線bに示す如く、各磁気特性が劣化する問題があっ
た。
However, such Fe-BR permanent magnet materials (15.5
When Nd 7.5B77Fe) is ground, for example, when it is processed to have a product thickness of 20 mm to 1 mm or less, there is a problem that each magnetic property is deteriorated as shown by the curve b in FIGS. 1 to 3.

出願人は、先に、かかる加工に伴なう磁気特性の劣化を
防止するため、磁石体の被研削加工面に、R′薄膜層
(R′は Nd、Pr、Dy、Ho、Tbのうち少なくとも
1種)を蒸着等にて形成後、熱処理して加工変質層によ
る磁気特性の劣化を改善する方法を提案(特願昭60−21
6047号)した。
In order to prevent the deterioration of the magnetic characteristics due to such processing, the applicant has previously proposed that the R'thin film layer (R 'is Nd, Pr, Dy, Ho, Tb) on the surface to be ground of the magnet body. After forming at least one) by vapor deposition etc., heat treatment is proposed to improve the deterioration of magnetic properties due to the work-affected layer (Japanese Patent Application No. 60-21).
No. 6047).

しかし、上記のR′薄膜層は、非常に酸化し易いため、
使用環境条件によっては、磁石表面のR′薄膜層が酸化
して磁気特性が再び劣化する恐れがあった。
However, since the above R'thin film layer is very easily oxidized,
Depending on the operating environment conditions, the R'thin film layer on the surface of the magnet may be oxidized and the magnetic characteristics may be deteriorated again.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、特に小物あるいは極薄物用の焼
結磁石体の切削加工に伴なう磁気特性の劣化を防止する
と共に、磁気特性の経年変化を改善した永久磁石材料及
びその製造方法を目的としている。
An object of the present invention is to prevent deterioration of magnetic properties associated with cutting of a sintered magnet body for a small or ultra-thin material, in a new permanent magnet material mainly containing rare earth, boron and iron, and The present invention is directed to a permanent magnet material having improved magnetic characteristics over time and a manufacturing method thereof.

発明の構成と効果 発明者らは、Fe−B−R系永久磁石材料の保磁力につい
て種々検討した結果、前記磁石体の保磁力の大小は、結
晶粒内よりも粒界構造の差異に基因しており、研摩され
た焼結磁石表面を、Kerr効果を用いた光学顕微鏡
で、磁区の反転機構を詳細に調べると、磁石体表面の磁
化反転が磁石体内部の保磁力の1/2以下の非常に低い磁
界で起り、焼結磁石体の加工された表面第1層の結晶群
の保磁力が低い理由は、結晶表面に高保磁力を出現する
ために必要な最適の粒界構造(以下、粒界相という)が
存在しないためであることを知見した。ここで粒界相と
は、Ndを主成分とする相が主相表面を覆い、原子尺度で
みても平坦な界面を有するものである。
As a result of various studies on the coercive force of the Fe-BR system permanent magnet material, the inventors found that the magnitude of the coercive force of the magnet body is due to the difference in the grain boundary structure rather than in the crystal grains. When the polished sintered magnet surface is examined with an optical microscope using the Kerr effect to investigate the domain reversal mechanism in detail, the magnetization reversal on the surface of the magnet body is less than 1/2 of the coercive force inside the magnet body. The reason is that the coercive force of the crystal group of the processed surface first layer of the sintered magnet body is low because it occurs in a very low magnetic field of , The grain boundary phase) does not exist. Here, the grain boundary phase is one in which a phase containing Nd as a main component covers the surface of the main phase and has a flat interface on an atomic scale.

発明者が始めて発見した高保磁力を出現させる粒界相
を、加工された焼結磁石体表面の結晶群上に、最適の厚
みでかつ特殊な立方晶系の構造を有する粒界相として設
けることは、通常の方法では容易ではないが、Ce,La,
Nd,Pr,Dy,Ho,Tbのうち少なくとも1種を主成分とす
る薄膜層を形成し、その後真空あるいは不活性雰囲気中
で特定の熱処理を施すことにより、該焼結体の被研削加
工面の保磁力の低い結晶粒からなる変質層及び格子欠陥
を、前記薄膜層と変質層との拡散反応で改質層となし、
さらに、酸化し易い前記薄膜層上に、Ti,W,Pt,Au,
Cr,Ni,Cu,Co,Al,Ta,Ag,Pbのうち少なくとも1種
からなる金属または合金層を被着することにより、Fe−
B−R系永久磁石材料の保磁力並びに減磁曲線の角型性
を改善向上させ、かつ磁気特性の経年変化を改善し得る
ことを知見し、この発明を完成したものである。
Providing the grain boundary phase, which was first discovered by the inventor, for producing a high coercive force on the processed crystal group of the sintered magnet body as a grain boundary phase having an optimum thickness and a special cubic system structure. Is not easy in the usual way, but Ce, La,
By forming a thin film layer containing at least one of Nd, Pr, Dy, Ho, and Tb as a main component, and then performing a specific heat treatment in a vacuum or an inert atmosphere, the surface to be ground of the sintered body is ground. The deteriorated layer and lattice defects composed of crystal grains having a low coercive force are formed as a modified layer by a diffusion reaction between the thin film layer and the deteriorated layer,
In addition, Ti, W, Pt, Au,
By depositing a metal or alloy layer composed of at least one of Cr, Ni, Cu, Co, Al, Ta, Ag, and Pb, Fe-
The inventors have found that the coercive force of the BR permanent magnet material and the squareness of the demagnetization curve can be improved and improved, and the secular change of the magnetic properties can be improved, and the present invention has been completed.

すなわち、この発明は、 R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1種ある
いはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Y
のうち少なくとも1種からなる)12原子%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方晶相か
らなる焼結磁石体の被研削加工面に、被着したR′薄膜
層(R′はCe,La,Nd,Pr,Dy,Ho、Tbのうち少なくと
も1種)からなる改質層と、さらに、R′薄膜層の上に
被着した金属層または合金層(Ti、W、Pt、Au、Cr、N
i、Cu、Co、Al、Ta、Ag、Pbのうち少なくとも1種、但
し、Al単独の場合は除く)からなる酸化防止層を有する
ことを特徴とする永久磁石材料である。
That is, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho, Tb, or further La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y.
Of 12 to 20 atom%, 4 to 20 atom% of B, 65 to 81 atom% of Fe as a main component, and the main phase of which is a tetragonal phase. A modified layer consisting of an R'thin film layer (R 'is at least one of Ce, La, Nd, Pr, Dy, Ho and Tb) deposited on the ground surface, and further on the R'thin film layer. Metal layer or alloy layer (Ti, W, Pt, Au, Cr, N
A permanent magnet material having an antioxidation layer made of at least one of i, Cu, Co, Al, Ta, Ag, and Pb, but excluding Al alone).

さらに、前記の主相が正方晶相からなる焼結磁石体の被
研削加工面に、R′薄膜層(R′はCe,La,Nd,Pr,D
y、Ho、Tbのうち少なくとも1種)を被着し、 上記R′薄膜層被着後か、あるいは、R′薄膜層上に、
Ti,W,Pt,Au,Cr,Ni,Cu,Co,Al,Ta,Ag、Pbのう
ち少なくとも1種からなる金属層または合金層からなる
酸化防止層を被着した後、 さらに、真空あるいは不活性雰囲気中で、400℃〜900
℃,1分〜3時間の熱処理を施して、 該被研削加工面の加工変質層を改質層となし、かつ改質
層上に酸化防止層を設けたことを特徴とする永久磁石材
料の製造方法である。
Further, on the surface to be ground of the sintered magnet body whose main phase is a tetragonal phase, R ′ thin film layer (R ′ is Ce, La, Nd, Pr, D
at least one of y, Ho, and Tb), and after applying the R ′ thin film layer, or on the R ′ thin film layer,
After depositing an antioxidant layer made of a metal layer or an alloy layer made of at least one of Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, Ta, Ag, and Pb, further vacuum or 400 ℃ ~ 900 in an inert atmosphere
A permanent magnet material, characterized in that it is subjected to heat treatment at 1 ° C. for 1 minute to 3 hours to form a work-affected layer on the surface to be ground as a modified layer, and an antioxidant layer is provided on the modified layer. It is a manufacturing method.

また、この発明の永久磁石材料は、平均結晶粒径が1〜
80μmの範囲にある正方晶系の結晶構造を有する化合物
を主相とし、体積比で1%〜50%の非磁性相(酸化物相
を除く)を含むことを特徴とする。
The permanent magnet material of the present invention has an average crystal grain size of 1 to
A compound having a tetragonal crystal structure in the range of 80 μm as a main phase and a nonmagnetic phase (excluding an oxide phase) of 1% to 50% by volume is characterized.

したがって、この発明は、RとしてNdあるいはPrを中心
とする資源的に豊富な軽希土類を主に用い、Fe,B,
R,を主成分とすることにより、20MGOe以上の極めて
高いエネルギー積並びに、高残留磁束密度、高保磁力を
有し、かつ研削加工による磁気特性の劣化を防止したFe
−B−R系永久磁石材料を安価に得ることができる。
Therefore, the present invention mainly uses light rare earths rich in resources centered on Nd or Pr as R, Fe, B,
Fe containing R as the main component has an extremely high energy product of 20 MGOe or more, a high residual magnetic flux density and a high coercive force, and prevents deterioration of magnetic characteristics due to grinding.
The -BR permanent magnet material can be obtained at low cost.

すなわち、この発明により、Fe−B−R系永久磁石材料
(15.5Nd 7.5B77Fe)の研削加工において、例えば、被
研削加工面にNd薄膜層を設けて変質層を改質層にするこ
とにより、厚み20mmより1mm以下の製品厚みに加工して
も、第1図〜第3図の曲線aに示す如く、Nd薄膜層を設
けない比較例(曲線b)に対して、各磁気特性が改善さ
れ、研削加工に伴なう磁気特性の劣化を防止する効果が
ある。
That is, according to the present invention, in the grinding of the Fe-BR permanent magnet material (15.5Nd 7.5B77Fe), for example, by providing the Nd thin film layer on the surface to be ground and making the altered layer a modified layer, Even if the product is processed to have a thickness of 20 mm to 1 mm or less, the magnetic properties are improved as compared with the comparative example (curve b) in which the Nd thin film layer is not provided as shown by the curve a in FIGS. In addition, it has an effect of preventing the deterioration of the magnetic characteristics due to the grinding process.

さらに、R′薄膜層上に被着した金属あるいは合金層
は、電気化学的に貴であるため、あるいはその表面に不
動態酸化物層を形成するため、耐酸化性にすぐれかつ
R′薄膜層との結合強さもすぐれている。
Further, since the metal or alloy layer deposited on the R'thin film layer is electrochemically noble or forms a passive oxide layer on the surface thereof, it has excellent oxidation resistance and R'thin film layer. The bond strength with is also excellent.

この発明において、焼結磁石体の被研削加工表面に、
R′(R′はCe,La,Nd,Pr,Dy,Ho,Tbのうち少なく
とも1種)からなる薄膜層及びTi,W,Pt,Au,Cr,N
i,Cu,Co,Al,Ta,Ag,Pbのうち少なくとも1種から
なる金属層または合金層からなる酸化防止層を被着させ
るには、真空蒸着、イオンスパッタリング、イオンプレ
ーティング、イオン蒸着薄膜形成法(IVD)、プラズマ
蒸着薄膜形成法(EVD)等の薄膜形成方法が適宜選定利
用できる。
In the present invention, the surface to be ground of the sintered magnet body,
R '(R' is at least one of Ce, La, Nd, Pr, Dy, Ho and Tb) and Ti, W, Pt, Au, Cr, N
Vacuum deposition, ion sputtering, ion plating, ion deposition thin film can be used for depositing an antioxidant layer made of a metal layer or an alloy layer made of at least one of i, Cu, Co, Al, Ta, Ag and Pb. A thin film forming method such as a forming method (IVD) or a plasma deposition thin film forming method (EVD) can be appropriately selected and used.

また、薄膜層の厚みは、0.1μm〜30μmが好ましく、
薄膜層厚みが、0.1μm未満では、均一な被膜が形成さ
れず、また熱処理中に薄膜層の希土類金属が酸化消失す
るため好ましくなく、また、厚みが30μmを越えると、
蒸着時に長時間を要してコスト高を招来し、かつ膜厚の
増大に伴なつて磁気回路に不要のギャップを形成するこ
とになって不利であり、表面層の改質効果も飽和するた
め好ましくない。
The thickness of the thin film layer is preferably 0.1 μm to 30 μm,
When the thickness of the thin film layer is less than 0.1 μm, it is not preferable because a uniform film is not formed and the rare earth metal of the thin film layer is oxidized and lost during the heat treatment, and when the thickness exceeds 30 μm,
This is disadvantageous in that it requires a long time during vapor deposition, resulting in high cost, and that an unnecessary gap is formed in the magnetic circuit as the film thickness increases, and the effect of modifying the surface layer is saturated. Not preferable.

上記薄膜層上に形成する金属または合金層の厚みは、0.
1μm未満では、均一な被膜形成が困難であり、磁気特
性の経年変化の改善効果がなく、また、30μmを越える
と、蒸着等に長時間を要し、かつ膜厚の増大に伴なって
磁気回路に不要のギャップを形成するため好ましくな
い。
The thickness of the metal or alloy layer formed on the thin film layer is 0.
If it is less than 1 μm, it is difficult to form a uniform film, and there is no effect of improving the secular change of magnetic properties. If it exceeds 30 μm, it takes a long time for vapor deposition and the magnetic property increases as the film thickness increases. It is not preferable because it forms an unnecessary gap in the circuit.

また、この発明において、厚み0.1μm〜30μmのCe,L
a,Nd,Pr,Dy,Ho,Tbのうち少なくとも1種を主成分
とする薄膜層を形成した後、あるいは上記金属または合
金層からなる酸化防止層を被着した後、真空あるいは不
活性雰囲気中で熱処理を施すが、熱処理条件は、真空あ
るいは不活性雰囲気中,400℃〜900℃,1分〜3時間の
熱処理を、少なくとも1回施す必要があり、熱処理によ
り前記薄膜層と変質層との拡散反応で改質層となる。し
かし、400℃未満では、界面での拡散反応が不十分で、
上記効果が得られず、また、900℃を越えると通常の工
業的方法で得られる真空度では薄膜層が酸化しやすく、
磁気特性改善効果がなくなるため好ましくなく、加熱時
間も1分未満では、界面での拡散反応が不十分で、磁気
特性の改善効果が少なく、また、3時間を越えると、薄
膜層の酸化により磁気特性の改善効果が得られないため
好ましくない。
Further, in the present invention, Ce, L having a thickness of 0.1 μm to 30 μm
After forming a thin film layer containing at least one of a, Nd, Pr, Dy, Ho, and Tb as a main component, or after depositing an antioxidant layer made of the above metal or alloy layer, a vacuum or an inert atmosphere is provided. The heat treatment is carried out in a vacuum or in an inert atmosphere, and it is necessary to perform heat treatment at 400 ° C. to 900 ° C. for 1 minute to 3 hours at least once. The diffusion reaction results in a modified layer. However, below 400 ° C, the diffusion reaction at the interface is insufficient,
The above effect cannot be obtained, and when the temperature exceeds 900 ° C., the thin film layer is easily oxidized by the vacuum degree obtained by a usual industrial method,
If the heating time is less than 1 minute, the diffusion reaction at the interface is insufficient and the effect of improving the magnetic characteristics is small, and if it exceeds 3 hours, the thin film layer is oxidized due to oxidation. It is not preferable because the effect of improving the characteristics cannot be obtained.

また、前記熱処理は、少なくとも1回施すことにより、
所要の効果を得ることができるが、必要に応じて多段熱
処理とするものもよい。
In addition, by performing the heat treatment at least once,
Although the desired effect can be obtained, a multi-step heat treatment may be performed if necessary.

永久磁石材料の成分限定理由 この発明の永久磁石材料に用いる希土類元素Rは、組成
の12原子%〜20原子%を占めるが、Nd,Pr,Dy,Ho,Tb
のうち少なくとも1種、あるいはさらに、La,Ce,Sm,
Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なくとも1種を含
むものが好ましい。
Reasons for Limiting Components of Permanent Magnet Material The rare earth element R used in the permanent magnet material of the present invention occupies 12 atom% to 20 atom% of the composition, but Nd, Pr, Dy, Ho, Tb
At least one of these, or even La, Ce, Sm,
Those containing at least one of Gd, Er, Eu, Tm, Yb, Lu and Y are preferable.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミッシュメタル,ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, one type of R is usually sufficient, but it is practically 2
Mixtures of more than one species (Misch metal, didymium, etc.) can be used for reasons of availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

Rは、新規な上記系永久磁石材料における、必須元素で
あって、12原子%未満では、結晶構造がα−鉄と同一構
造の立方晶組織が析出するため、高磁気特性、特に高保
持力が得られず、20原子%を越えると、Rリッチな非磁
性相が多くなり、残留磁束密度(Br)が低下して、すぐれ
た特性の永久磁石が得られない。よって、希土類元素
は、12原子%〜20原子%の範囲とする。
R is an essential element in the novel permanent magnet material, and if it is less than 12 atomic%, a cubic crystal structure having the same crystal structure as α-iron precipitates, so that high magnetic properties, particularly high coercive force are obtained. If it exceeds 20 atom%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element content is in the range of 12 atom% to 20 atom%.

Bは、この発明による永久磁石材料における、必須元素
であって、4原子%未満では、菱面体構造が主相とな
り、高い保磁力(iHc)は得られず、20原子%を越える
と、Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは、4原子%〜20原子%の範囲とする。
B is an essential element in the permanent magnet material according to the present invention. If it is less than 4 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained. Rich non-magnetic phase increases and residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is in the range of 4 atom% to 20 atom%.

Feは、新規な上記系永久磁石において、必須元素であ
り、65原子%未満では残留磁束密度Brが低下し、81原
子%を越えると、高い保磁力が得られないので、Feは
65原子%〜81原子%の含有とする。
Fe is an essential element in the above new permanent magnets, and the residual magnetic flux density Br decreases if it is less than 65 atom%, and a high coercive force cannot be obtained if it exceeds 81 atom%.
The content is 65 atom% to 81 atom%.

また、この発明による永久磁石材料において、Feの一部
をCoで置換することは、得られる磁石の磁気特性を損う
ことなく、温度特性を改善することができるが、Co置換
量がFeの20%を越えると、逆に磁気特性が劣化するた
め、好ましくない。Coの原子比率がFeとCoの合計量の5
%〜15%の場合は、(Br)は置換しない場合に比較して増
加するため、高磁束密度を得るためには好ましい。
Further, in the permanent magnet material according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. If it exceeds 20%, on the contrary, the magnetic properties deteriorate, which is not preferable. The atomic ratio of Co is 5 of the total amount of Fe and Co.
% To 15%, the amount of (Br) increases as compared with the case without substitution, so that it is preferable to obtain a high magnetic flux density.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。
Further, at least one of the following additional elements is RB-
It can be added to the Fe-based permanent magnet because it is effective in improving the coercive force and squareness of the demagnetization curve, improving the manufacturability, and lowering the cost.

9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV 、8.5原子%以下のCr、 8.0原子%以下のMn、5.0原子%以下のBi、 9.5原子%以下のNb、9.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7 原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 9.0原子%以下のNi、9.0原子%以下のSi、 1.1原子%以下のZn、5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。
9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.5 atomic% or less Nb, 9.5 Ta less than atomic%, Mo less than 9.5 atomic%, W less than 9.5 atomic%, Sb less than 2.5 atomic%, Ge less than 7 atomic%, Sn less than 3.5 atomic%, Zr less than 5.5 atomic%, 9.0 atomic % Or less Ni, 9.0 atom% or less Si, 1.1 atom% or less Zn, and 5.5 atom% or less Hf, at least one kind is added, but when two or more kinds are contained, the maximum content is By containing at most atomic% of the additive element having the maximum value,
It is possible to increase the coercive force of the permanent magnet.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
The fact that the main phase of the crystal phase is a tetragonal crystal is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be magnetically anisotropic magnet obtained by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field.

この発明による永久磁石は、保磁力iHc≧4kOe、残留
磁束密度Br>4kG、を示し、最大エネルギー積(BH)max
は、好ましい組成範囲では、(BH)max≧20MGOeを示し、
最大値は25MGOe以上に達する。
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 4 kOe and a residual magnetic flux density Br> 4 kG, and has a maximum energy product (BH) max.
Shows a (BH) max ≧ 20MGOe in a preferable composition range,
The maximum value reaches 25MGOe or more.

また、この発明の永久磁石材料のRの主成分がその50%
以上をNd及びPrを主とする軽希土類金属が占める場合
で、R12原子%〜15原子%、B6原子%〜9原子%、Fe
78原子%〜80原子%、の組成範囲のとき、(BH)max 35
MGOe以上のすぐれた磁気特性を示し、特に軽希土類金属
がNdの場合には、その最大値が42MGOe以上に達する。
Further, the main component of R in the permanent magnet material of the present invention is 50%
When the above is a case where a light rare earth metal mainly composed of Nd and Pr is occupied, R12 atom% to 15 atom%, B6 atom% to 9 atom%, Fe
In the composition range of 78 atom% to 80 atom%, (BH) max 35
It shows excellent magnetic properties above MGOe, and its maximum value reaches 42 MGOe or above, especially when the light rare earth metal is Nd.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、フェロボロン合
金、純度99.7%以上のNd,Dyを使用し、これらを配合後
に高周波溶解し、その後水冷銅鋳型に鋳造し、13.5Nd 7
B 1.5Dy78Feなる組成の鋳塊を得た。
Examples Example 1 As starting materials, electrolytic iron having a purity of 99.9%, ferroboron alloy, and Nd and Dy having a purity of 99.7% or more were used, and these were mixed and then high-frequency melted.
An ingot having a composition of B 1.5 Dy78Fe was obtained.

その後このインゴットを、H2ガス吸蔵により脆化させた
のち、スタンプミルにより粗粉砕し、次にボールミルに
より微粉砕し、平均粒度3.0μmの微粉末を得た。
Thereafter, this ingot was embrittled by occluding H 2 gas, coarsely pulverized by a stamp mill, and then finely pulverized by a ball mill to obtain fine powder having an average particle size of 3.0 μm.

この微粉末を金型に挿入し、20kOeの磁界中で配向し、
磁界に垂直方向に、1.5t/cm2の圧力で成形した。
Insert this fine powder into the mold, orient in a magnetic field of 20 kOe,
It was molded in a direction perpendicular to the magnetic field at a pressure of 1.5 t / cm 2 .

得られた成形体を、1100℃,1時間,Ar雰囲気中、の条
件で焼結し、長さ20mm×幅10mm×厚み10mm寸法の焼結体
を得た。
The obtained molded body was sintered under the conditions of 1100 ° C. for 1 hour in an Ar atmosphere to obtain a sintered body having a size of length 20 mm × width 10 mm × thickness 10 mm.

そして焼結体より、磁石の配向方向に垂直な方向を面内
に含むように、長さ3mm×幅4mm×厚み0.1mm寸法の試
験片に切出し、さらに同方向に研摩して、厚みを減少さ
せて、鏡面を有する100μm厚みの薄板試験片を得た。
Then, cut out from the sintered body into a test piece measuring 3 mm in length × 4 mm in width × 0.1 mm in thickness so that the direction perpendicular to the magnet orientation direction is included in the plane, and further polish in the same direction to reduce the thickness. Then, a thin plate test piece having a mirror surface and a thickness of 100 μm was obtained.

次に、Nd金属を陰極ターゲット材として、下記条件のス
パッタリングを施し、試験片両面に約3μm厚みのNd薄
膜層を被着させた。
Next, using Nd metal as a cathode target material, sputtering was performed under the following conditions to deposit an Nd thin film layer having a thickness of about 3 μm on both surfaces of the test piece.

その後、3×10-6Torr真空中で、630℃,1時間の熱処
理を施した。
Then, heat treatment was performed at 630 ° C. for 1 hour in a vacuum of 3 × 10 -6 Torr.

さらに、同一のスパッタ条件で、第1表に示す金属を1
μm厚みにスパッタした。
Furthermore, under the same sputtering conditions, the metals shown in Table 1
It was sputtered to a thickness of μm.

また、上記の薄板試験片にNd薄膜層を設け、金属層を設
けることなく直ちに同条件の熱処理を施した比較永久磁
石(比較例15)を作製した。
Further, a comparative permanent magnet (Comparative Example 15) was prepared by providing the thin plate test piece with an Nd thin film layer and immediately performing heat treatment under the same conditions without providing a metal layer.

得られた各永久磁石材料のBr,iHc,BHc,Hc
及び(BH)max値を振動試料型磁力計(VSM)を用いて開回路
で測定し、さらに、室温,空気中で10000 時間放置する
不可逆減磁率で評価する減磁率を測定した。これらの測
定結果を第1表に示す。
Br, iHc, BHc, Hc of each obtained permanent magnet material
The (BH) max value was measured in an open circuit using a vibrating sample magnetometer (VSM), and the demagnetization rate evaluated by the irreversible demagnetization rate of standing for 10,000 hours in air at room temperature was measured. The results of these measurements are shown in Table 1.

なお、第1表における比較例13は、研摩加工したまま
の試験片、比較例14は大型素材のバルク特性である。
In addition, Comparative Example 13 in Table 1 is a test piece as-polished, and Comparative Example 14 is a bulk property of a large material.

<スパッタ条件> 到達真空度;2×10-6Torr 高周波スパッタリング時のAr圧力 ;0.2×10-3Torr〜1×10-3Torr入力電力;150W
(初スパッタ時及び本スパッタ時) 70W(逆スパッタ時) スパッタ時間;初スパッタ 30分 逆スパッタ 30分 本スパッタ 3時間 実施例2 実施例1と同一条件で製造,加工した13.5Nd 7B 1.5Dy7
8Feの組成を有する磁石焼結体試験片に、実施例1のス
パッタ条件でNd層を3μm厚みで被着し、さらに、実施
例1の熱処理を施した薄型磁石に、第2表に示す組成の
合金層を同条件でスパッタし、得られた各永久磁石材料
のBr,iHc,BHc,Hc及び(BH)max値を、振動
試料型磁力計(VSM)を用いて開回路で測定し、さら
に、室温,空気中で10000 時間放置する不可逆減磁率で
評価する減磁率を測定した。これらの測定結果を第2表
に示す。
<Sputtering Conditions> Ultimate vacuum; 2 × at 10 -6 Torr RF sputtering Ar pressure; 0.2 × 10 -3 Torr~1 × 10 -3 Torr input power; 150 W
(At the time of initial sputtering and at the time of main sputtering) 70W (at the time of reverse sputtering) Sputtering time: 30 minutes for the first sputtering 30 minutes for the reverse sputtering 3 hours for the main sputtering Example 2 13.5Nd 7B 1.5Dy7 manufactured and processed under the same conditions as in Example 1
A magnet sintered body test piece having a composition of 8Fe was coated with an Nd layer having a thickness of 3 μm under the sputtering conditions of Example 1, and the heat-treated thin magnet of Example 1 was used. Sputtered the alloy layer under the same conditions and measured the Br, iHc, BHc, Hc and (BH) max values of the obtained permanent magnet materials in an open circuit using a vibrating sample magnetometer (VSM), Furthermore, the demagnetization rate evaluated by the irreversible demagnetization rate, which was left for 10,000 hours in air at room temperature, was measured. The results of these measurements are shown in Table 2.

なお、合金層形成のためのターゲット材は、複合型であ
り、組成はその面積比で表示してある。
The target material for forming the alloy layer is a composite type, and the composition is shown by the area ratio.

【図面の簡単な説明】[Brief description of drawings]

第1図は永久磁石試験片厚みとBrとの関係を示すグラ
フである。第2図は永久磁石材料試験片厚みとiHcと
の関係を示すグラフである。第3図は永久磁石材料試験
片厚みと(BH)maxとの関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the thickness of a permanent magnet test piece and Br. FIG. 2 is a graph showing the relationship between the thickness of a permanent magnet material test piece and iHc. FIG. 3 is a graph showing the relationship between the thickness of a permanent magnet material test piece and (BH) max.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 日登志 大阪府三島郡島本町江川2−15−17 住友 特殊金属株式会社山崎製作所内 (72)発明者 松浦 裕 大阪府三島郡島本町江川2−15−17 住友 特殊金属株式会社山崎製作所内 (56)参考文献 特開 昭60−54406(JP,A) 特開 昭61−281850(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Yamamoto 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Yutaka Matsuura 2 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture -15-17 Sumitomo Special Metals Co., Ltd. Yamazaki Works (56) References JP-A-60-54406 (JP, A) JP-A-61-281850 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd、Pr、Dy、Ho、Tbのうち少なく
とも1種あるいはさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種からなる)12原子
%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方晶相か
らなる焼結磁石体の被研削加工面に、被着したR′薄膜
層(R′はCe、La、Nd、Pr、Dy、Ho、Tbのうち少なくと
も1種)からなる改質層と、さらに、R′薄膜層の上に
被着した金属層または合金層(Ti、W、Pt、Au、Cr、N
i、Cu、Co、Al、Ta、Ag、Pbのうち少なくとも1種、但
し、Al単独の場合は除く)からなる酸化防止層を有する
ことを特徴とする永久磁石材料
1. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further La, Ce, Sm, Gd, Er, Eu, T
(At least one of m, Yb, Lu, and Y) 12 atom% to 20 atom%, B4 atom% to 20 atom%, Fe65 atom% to 81 atom% as main components, and the main phase from the tetragonal phase On the surface to be ground of the sintered magnet body consisting of R ', a modified layer composed of an R'thin film layer (R' is at least one of Ce, La, Nd, Pr, Dy, Ho and Tb), and , R ', a metal layer or an alloy layer (Ti, W, Pt, Au, Cr, N) deposited on the thin film layer.
i, Cu, Co, Al, Ta, Ag, Pb, at least one kind, except for Al alone).
【請求項2】R(RはNd、Pr、Dy、Ho、Tbのうち少なく
とも1種あるいはさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種からなる)12原子
%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方晶相か
らなる焼結磁石体を研削加工後、 被研削加工面に、R′薄膜層(R′はCe、La、Nd、Pr、
Dy、Ho、Tbのうち少なくとも1種)を被着し、 上記R′薄膜層被着後か、あるいは、R′薄膜層上に、
Ti、W、Pt、Au、Cr、Ni、Cu、Co、Al、Ta、Ag、Pbのう
ち少なくとも1種からなる金属層または合金属からなる
酸化防止層を被着した後、さらに、真空あるいは不活性
雰囲気中で、 400℃〜900℃、1分〜3時間の熱処理を施して、被研削
加工面の加工変質層を改質層となし、かつ改質層上に酸
化防止層を形成したことを特徴とする永久磁石材料の製
造方法。
2. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further La, Ce, Sm, Gd, Er, Eu, T
(At least one of m, Yb, Lu, and Y) 12 atom% to 20 atom%, B4 atom% to 20 atom%, Fe65 atom% to 81 atom% as main components, and the main phase from the tetragonal phase After grinding the sintered magnet body, the R'thin film layer (R 'is Ce, La, Nd, Pr,
At least one of Dy, Ho, and Tb), and after applying the R ′ thin film layer, or on the R ′ thin film layer,
After depositing a metal layer made of at least one of Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, Ta, Ag, and Pb or an antioxidant layer made of a compound metal, further vacuum or Heat treatment was performed in an inert atmosphere at 400 ° C. to 900 ° C. for 1 minute to 3 hours to form a work-affected layer on the surface to be ground as a modified layer and to form an antioxidant layer on the modified layer. A method for producing a permanent magnet material, comprising:
JP61029350A 1986-02-13 1986-02-13 Permanent magnet material and manufacturing method thereof Expired - Lifetime JPH0616445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61029350A JPH0616445B2 (en) 1986-02-13 1986-02-13 Permanent magnet material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029350A JPH0616445B2 (en) 1986-02-13 1986-02-13 Permanent magnet material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62188745A JPS62188745A (en) 1987-08-18
JPH0616445B2 true JPH0616445B2 (en) 1994-03-02

Family

ID=12273767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029350A Expired - Lifetime JPH0616445B2 (en) 1986-02-13 1986-02-13 Permanent magnet material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0616445B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285859A (en) * 2004-03-26 2005-10-13 Tdk Corp Rare-earth magnet and its manufacturing method
JP4577486B2 (en) * 2004-03-31 2010-11-10 Tdk株式会社 Rare earth magnet and method for producing rare earth magnet
WO2007077809A1 (en) * 2005-12-28 2007-07-12 Hitachi Metals, Ltd. Rare earth magnet and method for producing same
CN103295713B (en) * 2006-01-31 2016-08-10 日立金属株式会社 R-Fe-B rare-earth sintered magnet
JP4656323B2 (en) * 2006-04-14 2011-03-23 信越化学工業株式会社 Method for producing rare earth permanent magnet material
WO2015121915A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Rare earth permanent magnet and production method for rare earth permanent magnet
SE542606C2 (en) * 2014-03-31 2020-06-16 Jfe Steel Corp Method for producing atomized metal powder
JP6294533B1 (en) * 2017-04-03 2018-03-14 住友電気工業株式会社 Manufacturing method of iron boride material and iron boride thin film material
CN110088353B (en) * 2018-12-29 2021-01-15 三环瓦克华(北京)磁性器件有限公司 Composite coating, coating equipment and coating method
CN110993307B (en) * 2019-12-23 2021-10-29 南昌航空大学 Method for improving coercive force and thermal stability of sintered neodymium-iron-boron magnet
CN111292951B (en) * 2020-02-28 2022-03-22 安徽大地熊新材料股份有限公司 Method for improving coercive force of sintered neodymium-iron-boron magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic
JPS61281850A (en) * 1985-06-07 1986-12-12 Sumitomo Special Metals Co Ltd Permanent magnet material

Also Published As

Publication number Publication date
JPS62188745A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
JP5206834B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JPH0663086B2 (en) Permanent magnet material and manufacturing method thereof
JPH0742553B2 (en) Permanent magnet material and manufacturing method thereof
EP0197712B1 (en) Rare earth-iron-boron-based permanent magnet
JP4702549B2 (en) Rare earth permanent magnet
JPH0510806B2 (en)
JPH0510807B2 (en)
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
EP0323125A1 (en) Rare earth permanent magnet
JPH0561345B2 (en)
JPS61159708A (en) Permanent magnet
JPH0569282B2 (en)
JPH0445573B2 (en)
JPH11214219A (en) Thin film magnet and its manufacture
JPH0560241B2 (en)
JP2779794B2 (en) Manufacturing method of rare earth permanent magnet
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH068488B2 (en) Permanent magnet alloy
JPS61281850A (en) Permanent magnet material
JPH0624163B2 (en) permanent magnet
JPH0536494B2 (en)
JP2724391B2 (en) Corrosion resistant permanent magnet
JP2001217109A (en) Magnet composition and bonded magnet using the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term