JP3222482B2 - Manufacturing method of permanent magnet - Google Patents

Manufacturing method of permanent magnet

Info

Publication number
JP3222482B2
JP3222482B2 JP00267791A JP267791A JP3222482B2 JP 3222482 B2 JP3222482 B2 JP 3222482B2 JP 00267791 A JP00267791 A JP 00267791A JP 267791 A JP267791 A JP 267791A JP 3222482 B2 JP3222482 B2 JP 3222482B2
Authority
JP
Japan
Prior art keywords
permanent magnet
alloy
magnet
rare earth
curie temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00267791A
Other languages
Japanese (ja)
Other versions
JPH04241402A (en
Inventor
昭彦 津田井
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00267791A priority Critical patent/JP3222482B2/en
Publication of JPH04241402A publication Critical patent/JPH04241402A/en
Application granted granted Critical
Publication of JP3222482B2 publication Critical patent/JP3222482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】〔発明の目的〕[Object of the invention]

【0002】[0002]

【産業上の利用分野】本発明は永久磁石の製造方法に係
り、従来のSm−Co系、Nd−Fe−B系の磁石に比
較して磁気特性を低下させることなくキュリー温度の改
善を図った永久磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a permanent magnet , and to improve the Curie temperature without deteriorating magnetic properties as compared with conventional Sm-Co-based and Nd-Fe-B-based magnets. And a method for manufacturing a permanent magnet.

【0003】[0003]

【従来の技術】従来から公知で量産化されている希土類
永久磁石としてSm−Co系磁石やNd−Fe−B系磁
石などがある。これらの磁石にはSm,Nd等の希土類
元素が特性発現成分として含有されている。すなわち希
土類元素は結晶場中における4f電子の挙動に由来する
非常に大きな磁気異方性をもたらし、これにより保磁力
の増大化が図られ、高性能な磁石が実現されている。こ
のような高特性磁石は、主としてスピーカー、モータ
ー、計測器等の電気機器に使用されている。
2. Description of the Related Art Conventionally known and mass-produced rare earth permanent magnets include Sm-Co magnets and Nd-Fe-B magnets. These magnets contain a rare earth element such as Sm, Nd, etc., as a property developing component. That is, the rare earth element brings about a very large magnetic anisotropy derived from the behavior of 4f electrons in the crystal field, thereby increasing the coercive force and realizing a high-performance magnet. Such high-performance magnets are mainly used for electrical devices such as speakers, motors, and measuring instruments.

【0004】しかしながら、希土類元素は一般に非常に
高価であり、上記のような高性能磁石の低コスト化を図
るためには、希土類元素の含有量を低減させることが必
要である。
[0004] However, rare earth elements are generally very expensive, and it is necessary to reduce the content of rare earth elements in order to reduce the cost of the above-mentioned high-performance magnet.

【0005】このような希土類含有量を低減した高特性
の磁石材料として、最近ThMn12型の結晶構造を有す
る1−12系希土類鉄系金属間化合物が注目されてい
る。この金属間化合物は、従来のSm2 Co17磁石やN
2 Fe141 磁石を構成する金属間化合物と比較して
化学量論理希土類量が小さいため原料コストが安く、ま
たFeの比率が相対的に高いため、大きな飽和磁束密度
Bsと高い最大エネルギー積(BH)max を有してい
る。
[0005] As a high-performance magnet material having a reduced rare-earth content, a 1-12 rare-earth iron-based intermetallic compound having a ThMn 12 type crystal structure has recently attracted attention. This intermetallic compound can be formed by a conventional Sm 2 Co 17 magnet or N
As compared with the intermetallic compound constituting the d 2 Fe 14 B 1 magnet, the raw material cost is low due to the small amount of stoichiometric logic rare earth, and the high saturation flux density Bs and high maximum energy because the ratio of Fe is relatively high. Product (BH) max .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
1−12系希土類鉄系金属間化合物で形成した永久磁石
は、キュリー温度(Tc)が、一般に約300℃と低く
高温条件下で使用される機器やモーターや計測器のよう
に温度に対する高い磁気安定性が要求される分野におい
て適用することは困難であるという問題点があった。
However, the permanent magnet formed of the above-mentioned 1-12 rare earth iron-based intermetallic compound has a low Curie temperature (Tc) of generally about 300 ° C. and is used under high temperature conditions. There is a problem that it is difficult to apply the present invention to a field requiring high magnetic stability with respect to temperature, such as an apparatus, a motor, and a measuring instrument.

【0007】本発明は上記の問題点を解決するためにな
されたものであり、磁気異方性を低下させることなくキ
ュリー温度の改善を図った永久磁石を提供することを目
的とする。〔発明の構成〕
The present invention has been made to solve the above problems, and an object of the present invention is to provide a permanent magnet in which the Curie temperature is improved without lowering the magnetic anisotropy. [Configuration of the invention]

【0008】[0008]

【課題を解決するための手段と作用】本発明者らは、高
価な希土類元素の使用量を極力抑制し、1−12系化合
物が有する磁気異方性を損うことなく、キュリー温度を
高めるべく鋭意研究を継続した結果、窒素および炭素の
少なくとも一方を所定量含有し、Th−Mn12型の結晶
構造を有する正方晶の希土類鉄系化合物を主相とする永
久磁石を形成したときに、キュリー温度を大幅に高める
ことが可能となるという知見を得て本願発明を完成し
た。
SUMMARY OF THE INVENTION The present inventors have minimized the use of expensive rare earth elements and raised the Curie temperature without impairing the magnetic anisotropy of the 1-12 compound. As a result of intensive research, when a permanent magnet containing a predetermined amount of at least one of nitrogen and carbon and having a main phase of a tetragonal rare earth iron-based compound having a Th-Mn 12 type crystal structure was formed, The inventors have found that it is possible to greatly increase the Curie temperature, and have completed the present invention.

【0009】すなわち本発明に係る永久磁石の製造方法
は組成式RFe100−x−y−z(式中R
はYを含む希土類元素から選択された少なくとも1種の
元素、MはSi,Cr,V,Mo,W,Ti,Zr、H
f及びAlから選択された少なくとも1種の元素、Aは
N及びCから選択された少なくとも1種の元素であり、
原子%でxが4〜20%、yが20%以下、zが0.0
01〜16%である)で示され、主相がTh・Mn12
型結晶構造を有する磁石合金粉末を400〜1000℃
の温度条件下でホットプレスを行い一体化焼結すること
によりキュリー温度が370℃以上であり保磁力(iH
c)が8KOe以上の永久磁石とすることを特徴とす
る。
[0009] That is the manufacturing method <br/> permanent magnet according to the present invention the composition formula R x M y A z Fe 100 -x-y-z ( wherein R
Is at least one element selected from rare earth elements including Y, M is Si, Cr, V, Mo, W, Ti, Zr, H
at least one element selected from f and Al, A is at least one element selected from N and C,
X is 4 to 20% in atomic%, y is 20% or less, and z is 0.0
And the main phase is Th · Mn 12.
400-1000 ° C. for magnet alloy powder having type crystal structure
By performing hot pressing and integrally sintering under the above temperature conditions, the Curie temperature is 370 ° C. or higher and the coercive force (iH
c) is a permanent magnet of 8 KOe or more.

【0010】本発明に係る永久磁石において、組成を上
記のように限定した理由は下記の通りである。
The reasons for limiting the composition of the permanent magnet according to the present invention as described above are as follows.

【0011】前記Rとしては、La,Ce,Pr,N
d,Sm,Eu,Gd,Td,Dy,Ho,Er,T
m,Yb,Luの希土類元素およびYが挙げられ、これ
らの1種または2種以上の混合物が使用される。Rはい
ずれも材料に磁気異方性をもたらし、高い保磁力を付与
するために4〜20原子%の範囲で添加される。
The R is La, Ce, Pr, N
d, Sm, Eu, Gd, Td, Dy, Ho, Er, T
Rare earth elements of m, Yb, and Lu and Y are mentioned, and one or a mixture of two or more of them is used. R brings about magnetic anisotropy to the material, and is added in the range of 4 to 20 atomic% in order to give high coercive force.

【0012】Rの添加量が4原子%未満の場合にはα−
Fe等が大量に析出し保磁力(iHc)が大幅に低下し
てしまう。一方、Rの添加量が20原子%を超える場合
には、飽和磁束密度(Bs)が大幅に低下してしまうと
ともに、高価な希土類元素を多量に使用することにな
り、製造コストの上昇を招来し、不利になってしまう。
When the added amount of R is less than 4 atomic%, α-
A large amount of Fe or the like precipitates and the coercive force (iHc) is greatly reduced. On the other hand, when the addition amount of R exceeds 20 atomic%, the saturation magnetic flux density (Bs) is greatly reduced, and a large amount of expensive rare earth element is used, which leads to an increase in manufacturing cost. And it becomes disadvantageous.

【0013】M元素としてはSi,Cr,V,Mo,
W,Ti,Zr,HfおよびAlから選択される1種ま
たは2種以上の混合物が使用される。本来希土類元素R
およびFeのみでは安定した結晶構造は形成し得ない
が、上記M元素を20原子%以下の範囲で添加すること
により、安定したThMn12型の結晶構造を有する希土
類鉄系の正方晶化合物を形成することができる。なお、
M元素は微量の添加で、上記の効果を現わすものである
が、0.1原子%以上が好ましい。
As the M element, Si, Cr, V, Mo,
One or a mixture of two or more selected from W, Ti, Zr, Hf and Al is used. Rare earth element R
And Fe alone cannot form a stable crystal structure, but by adding the above-mentioned M element within a range of 20 atomic% or less, a rare-earth iron-based tetragonal compound having a stable ThMn 12 type crystal structure can be formed. can do. In addition,
The element M exhibits the above-mentioned effects when added in a small amount, but is preferably 0.1 atomic% or more.

【0014】M元素の添加量が20原子%を超えると、
飽和磁束密度(Bs)が大幅に低下してしまうため、M
元素の添加量は20原子%以下に設定される。
When the addition amount of the element M exceeds 20 atomic%,
Since the saturation magnetic flux density (Bs) is greatly reduced, M
The addition amount of the element is set to 20 atom% or less.

【0015】またCおよびNの少なくとも一方から成る
A元素はキュリー温度(Tc)の向上に有効な元素であ
る。すなわちCおよびNはFeのバンド構造に変調を与
え、特にd電子の磁気分極の増加およびd電子スピン間
の交換相互作用をもたらし、究極的にキュリー温度(T
c)の増加に有効である。しかしながら16原子%を超
える固溶が困難であり、それ以上の過量の添加は結晶構
造の不安定化を招くため、16原子%を超える添加は不
適である。一方、0.001原子%以下では、キュリー
温度(Tc)の改善効果が顕著ではないため、A元素の
添加量は0.001〜16原子%の範囲に設定される。
The element A comprising at least one of C and N is an element effective for improving the Curie temperature (Tc). That is, C and N modulate the band structure of Fe, in particular, increase the magnetic polarization of d electrons and cause exchange interaction between d electron spins, and ultimately the Curie temperature (T
It is effective for increasing c). However, it is difficult to form a solid solution exceeding 16 atomic%, and an excessive addition causes instability of the crystal structure. Therefore, an addition exceeding 16 atomic% is not suitable. On the other hand, when the content is 0.001 at% or less, the effect of improving the Curie temperature (Tc) is not remarkable, so the addition amount of the element A is set in the range of 0.001 to 16 at%.

【0016】またFeの一部をFe以外のCo−Ni等
の遷移金属で置換することにより、磁石のキュリー温度
をさらに改善し、また保磁力を増大させることができ
る。しかしながら、50原子%以上の鉄を置換すると、
飽和磁束密度等の磁気特性の低下が顕著となるため、そ
の置換量は原子分率でFeの50%以下とすることが望
ましい。また高価なCoの使用量を可及的に抑制するた
めにも、置換量は上記範囲内とすることが好ましい。
By substituting a part of Fe with a transition metal other than Fe, such as Co-Ni, the Curie temperature of the magnet can be further improved and the coercive force can be increased. However, if more than 50 atomic percent of iron is replaced,
Since the magnetic properties such as the saturation magnetic flux density are remarkably reduced, the substitution amount is desirably 50% or less of Fe in atomic fraction. In order to minimize the amount of expensive Co used, the amount of substitution is preferably within the above range.

【0017】次に本発明に係る永久磁石の製造方法につ
いて説明する。
Next, a method for manufacturing a permanent magnet according to the present invention will be described.

【0018】まず、A元素としてCを単独に添加する場
合、所定量のFe,R,M,A元素をアーク溶解等の方
法で溶解し、さらに鋳造して所定組成を有する合金を調
製する。
First, when C is solely added as the A element, a predetermined amount of the Fe, R, M, and A elements is melted by a method such as arc melting or the like, and then cast to prepare an alloy having a predetermined composition.

【0019】一方A元素としてNを単独に添加する場合
またはNおよびCを複合的に添加する場合には、まずN
成分を除いた成分から成る合金を上記の方法により調製
した後に、調製した合金を、粒径1mm以下、好ましくは
0.5mm以下となるように粉砕する。その後、粉砕物を
20〜1500TorrのN2 雰囲気下において300〜1
000℃で加熱処理して粉砕物にN2 を吸蔵せしめて所
定組成の合金を製造する。この場合、必要に応じてN2
を吸蔵処理する前に、溶解合金を500〜1000℃で
熱処理し、溶体化しておいてもよい。
On the other hand, when N alone is added as the A element or N and C are added in a complex manner, first N
After preparing an alloy composed of components excluding the components by the above-described method, the prepared alloy is pulverized so as to have a particle size of 1 mm or less, preferably 0.5 mm or less. Thereafter, the pulverized material is placed in an N 2 atmosphere of 20 to 1500 Torr for 300 to 1
A heat treatment is performed at 000 ° C. to occlude N 2 in the pulverized material to produce an alloy having a predetermined composition. In this case, if necessary, N 2
Before the occlusion treatment, the molten alloy may be heat-treated at 500 to 1000 ° C. to form a solution.

【0020】次にこうして得た合金を、平均粒径が1〜
50μmまで微粉砕した後に、得られた原料粉末を所定
の金型に充填し、400〜1000℃の温度条件下でホ
ットプレスを行ない、一体化焼結する。このとき原料粉
末を予め磁場配向させることにより、より異方性が高い
永久磁石が得られる。また、得られた焼結体を熱間加工
して異方性を発現させることも可能である。なお上記ホ
ットプレス処理は、一旦合金内に吸蔵されたN成分の散
逸を防止するために、N2 ガス雰囲気中で実施すること
が望ましいが、N成分を含有しない合金系においては、
Arガスなどの不活性ガス中または真空中で実施しても
差支えない。
Next, the alloy obtained in this manner was used,
After finely pulverizing to 50 μm, the obtained raw material powder is filled in a predetermined mold, and hot pressed under a temperature condition of 400 to 1000 ° C. to perform integrated sintering. At this time, by pre-orienting the raw material powder in a magnetic field, a permanent magnet having higher anisotropy can be obtained. It is also possible to hot-work the obtained sintered body to express anisotropy. Note that the hot press treatment is desirably performed in an N 2 gas atmosphere in order to prevent the N component once absorbed in the alloy from dissipating. However, in an alloy containing no N component,
It may be carried out in an inert gas such as Ar gas or in a vacuum.

【0021】さらにホットプレス処理して得られた焼結
体を、温度300〜900℃で0.1〜5時間熱処理す
ることにより保磁力の増加を図ることができる。
The coercive force can be increased by subjecting the sintered body obtained by hot pressing to a heat treatment at a temperature of 300 to 900 ° C. for 0.1 to 5 hours.

【0022】本発明に係る永久磁石は上記のように所定
の組成物を溶解、鋳造、粉砕、焼結熱処理して製造され
る他に、原料の混合粉末を相互に固相反応させて合金化
する方法によっても製造することが可能であり、以下に
その製造方法について説明する。
The permanent magnet according to the present invention is produced by melting, casting, pulverizing, and sintering a predetermined composition as described above. It is also possible to manufacture by the method described below, and the manufacturing method will be described below.

【0023】まずA元素としてCを単独に添加する場合
には、所定量のR,Fe,M,A成分を含有する粉末の
混合体を固相反応させて合金化する。固相反応を起こす
方法としては、例えば遊星ボールミル、回転式ボールミ
ル、アトライタ、振動ボールミル、スクリュー式ボール
ミル等に原料混合体を投入し、粉末粒子を機械的に合金
化するメカニカルアロイング法などが採用できる。
First, when C is solely added as the element A, a mixture of powders containing predetermined amounts of R, Fe, M, and A components is alloyed by a solid-phase reaction. As a method of causing a solid-phase reaction, for example, a mechanical alloying method in which a raw material mixture is charged into a planetary ball mill, a rotary ball mill, an attritor, a vibrating ball mill, a screw ball mill, and the like, and the powder particles are mechanically alloyed is employed. it can.

【0024】このメカニカルアロイング法によれば原料
粉末粒子が薄片状に粉砕され、その薄片が相互に面接触
した部位で異種原子が相互に拡散することにより、原料
混合体が均質に一体化される。
According to this mechanical alloying method, the raw material powder particles are pulverized into flakes, and heterogeneous atoms are mutually diffused at portions where the flakes are in surface contact with each other, whereby the raw material mixture is homogeneously integrated. You.

【0025】またA成分としてNを含有させる場合には
上記の固相反応を、N2 ガス雰囲気中で行ない、原料混
合体中にN2 ガスを吸蔵させることによって所定の組成
を有する合金粉末を調製することができる。
When N is contained as the component A, the above solid phase reaction is carried out in an N 2 gas atmosphere, and the N 2 gas is absorbed in the raw material mixture to form an alloy powder having a predetermined composition. Can be prepared.

【0026】[0026]

【0027】上記の固相反応によって調製した合金粉末
はホットプレス処理を行う。このホットプレスを行う場
成分の散逸を防止するためにNガス雰囲気で行
うことが望ましい。同様にN成分を含有させない合金系
については、他の不活性ガス中または真空中で処理する
ことが可能である。
Alloy powder prepared by the above solid-phase reaction
Performs hot pressing. Place to do this hot press
It is desirable to perform in an N 2 gas atmosphere in order to prevent the combined N 2 component from dissipating. Similarly, alloys containing no N component can be treated in other inert gases or in vacuum.

【0028】このような熱処理の代りにホットプレス処
理を行なうことによって固相反応により得た合金をより
強固に一体化することができる。
By performing hot pressing instead of such heat treatment, the alloy obtained by the solid phase reaction can be more firmly integrated.

【0029】さらに、永久磁石の磁気特性をさらに改善
するために、ホットプレス処理にて形成した焼結体をさ
らに前記温度で熱処理してもよい。また焼結体に圧力を
加えて塑性加工を施すことにより磁気的配向をより高め
ることができる。
Further, in order to further improve the magnetic properties of the permanent magnet, the sintered body formed by hot pressing may be further heat-treated at the above-mentioned temperature. Further, the magnetic orientation can be further enhanced by applying plasticity to the sintered body by applying pressure.

【0030】上記2種類の製造方法以外にも、液体急冷
法によって所定組成の合金粉末を調製し、得られた粉末
を焼結して一体化して永久磁石とすることも可能であ
る。この場合、液体急冷法により、特に高い保磁力を有
する合金粉末が得られ、磁気特性が優れた永久磁石とす
ることが可能である。
In addition to the above two manufacturing methods, an alloy powder having a predetermined composition can be prepared by a liquid quenching method, and the obtained powder can be sintered and integrated to form a permanent magnet. In this case, an alloy powder having particularly high coercive force can be obtained by the liquid quenching method, and a permanent magnet having excellent magnetic properties can be obtained.

【0031】なお、上記熱処理後の合金からボンド磁石
を製造するには、粉末状の合金をエポキシ樹脂、ナイロ
ン系などの樹脂と混合した後、成型する方法が採用され
る。成型法としては、樹脂がエポキシ系の熱硬化性樹脂
である場合、圧縮成形後、100〜200℃の温度でキ
ュア処理を施し、ナイロン系の熱可塑性樹脂の場合、射
出成型を用いればよい。
In order to manufacture a bonded magnet from the heat-treated alloy, a method is used in which a powdery alloy is mixed with an epoxy resin, a nylon resin, or the like, and then molded. As a molding method, when the resin is an epoxy-based thermosetting resin, after compression molding, a curing treatment is performed at a temperature of 100 to 200 ° C., and when the resin is a nylon-based thermoplastic resin, injection molding may be used.

【0032】本発明に係る永久磁石は、正方晶の安定な
ThMn12型結晶構造を有する化合物相を主体としてお
り、特にNおよびCの少なくとも一方を添加しているた
め、キュリー温度(Tc)が高く、従来の2元系または
3元系の化合物と比べて、極めて優れた磁気特性を発揮
する。
The permanent magnet according to the present invention is mainly composed of a compound phase having a stable tetragonal ThMn 12 type crystal structure. In particular, since at least one of N and C is added, the Curie temperature (Tc) is reduced. Higher than the conventional binary or ternary compounds, they exhibit extremely excellent magnetic properties.

【0033】[0033]

【実施例】次に本発明を以下の実施例に基づいてより具
体的に説明する。
Next, the present invention will be described more specifically based on the following examples.

【0034】実施例1〜3、比較例1〜3 実施例1〜3として高純度のSm,Ti,Si,Fe粉
末を表1に示す組成に調合して高周波溶解炉で溶解後、
鋳型に注入して各インゴットを調製した。次に各インゴ
ットをジェットミルによって平均粒径150〜200μ
mの大きさに粉砕した。次に得られた各合金粉末につい
て750TorrのN2 ガス雰囲気中で温度500℃で1時
間の熱処理を行なった。さらに各合金粉末を平均粒径3
μmまで微粉砕し、20KOeの磁場において配向させ
て圧粉体を形成し、さらに各圧粉体を温度800℃、6
00TorrのN2 ガス雰囲気中でホットプレス処理を行な
った。得られた各ホットプレス焼結体を温度600℃で
1時間600TorrN2 ガス雰囲気中で熱処理して処理後
の焼結体の残留磁束密度(Br)、保磁力(iHc)、
および最大エネルギー積(BH)max およびキュリー温
度(Tc)を測定して、表1に示す結果を得た。
Examples 1 to 3 and Comparative Examples 1 to 3 As Examples 1 to 3, high-purity Sm, Ti, Si, and Fe powders were prepared in the composition shown in Table 1 and melted in a high-frequency melting furnace.
Each ingot was prepared by pouring into a mold. Next, each of the ingots is averaged in a particle size of 150 to 200 μm by a jet mill.
m. Next, each of the obtained alloy powders was subjected to a heat treatment at a temperature of 500 ° C. for 1 hour in a 750 Torr N 2 gas atmosphere. Further, each alloy powder was added with an average particle size of 3
μm, and oriented in a magnetic field of 20 KOe to form a green compact.
Hot pressing was performed in a N 2 gas atmosphere of 00 Torr. Each of the obtained hot-pressed sintered bodies is heat-treated at a temperature of 600 ° C. for 1 hour in a 600 Torr N 2 gas atmosphere, and the residual magnetic flux density (Br), coercive force (iHc),
The maximum energy product (BH) max and the Curie temperature (Tc) were measured, and the results shown in Table 1 were obtained.

【0035】一方、比較例1〜3として、実施例1〜3
で調製したインゴットを使用しN成分を吸蔵させない状
態で同様に磁石素体を調製し、その磁気特性を測定し
た。すなわち、実施例1〜3で使用した各インゴットを
平均粒径3μmまで微粉砕し、得られた各粉末を20K
Oeの磁場で配向させて圧粉体とした後に、800℃で
400TorrのArガス雰囲気下でホットプレス処理を行
なった。次に得られた各焼結体を600℃で400Torr
Arガス雰囲気下で1時間熱処理を施した後に、磁気特
性を測定したところ下記表1に示す結果を得た。
On the other hand, as Comparative Examples 1 to 3, Examples 1 to 3
Using the ingot prepared in the above, magnet bodies were similarly prepared in a state where the N component was not occluded, and their magnetic properties were measured. That is, each ingot used in Examples 1 to 3 was finely pulverized to an average particle size of 3 μm, and each obtained powder was
After being oriented by an Oe magnetic field to obtain a green compact, hot pressing was performed at 800 ° C. in an Ar gas atmosphere of 400 Torr. Next, each of the obtained sintered bodies is subjected to 400 Torr at 600 ° C.
After performing a heat treatment for 1 hour in an Ar gas atmosphere, the magnetic properties were measured. The results shown in Table 1 below were obtained.

【0036】〔以下余白〕[Margin below]

【0037】[0037]

【表1】 [Table 1]

【0038】表1に示す結果から明らかなように実施例
1〜3によれば、磁石を構成する希土類鉄系正方晶化合
物がNによって安定化されるため、比較例1〜3と比較
して磁気特性が優れ、特にキュリー温度(Tc)が大幅
に改善されることが判明した。
As is clear from the results shown in Table 1, according to Examples 1 to 3, since the rare earth iron-based tetragonal compound constituting the magnet is stabilized by N, it is compared with Comparative Examples 1 to 3. It has been found that the magnetic properties are excellent, and the Curie temperature (Tc) is particularly greatly improved.

【0039】なお実施例1〜3および比較例1〜3で調
製した磁石素体の結晶構造をX線回析法により測定した
ところ、いずれもThMn12型の結晶構造が存在してい
ることが確認された。
When the crystal structures of the magnet bodies prepared in Examples 1 to 3 and Comparative Examples 1 to 3 were measured by an X-ray diffraction method, it was found that all of them had a ThMn 12 type crystal structure. confirmed.

【0040】実施例4〜9 実施例4〜6として、平均粒径が0.5mmの希土類粉
末、平均粒径が5〜40μmの範囲にあるFe,Mo,
Si,Ti,C粉末をそれぞれ表2に示す組成に調合し
て原料混合体を調製し、得られた各原料混合体をボール
ミルに投入し、Arガス雰囲気中で60時間粉砕混合処
理して各原料粉末をメカニカルアロイによって合金化し
た。
Examples 4 to 9 As Examples 4 to 6, rare earth powders having an average particle size of 0.5 mm, Fe, Mo, and the like having an average particle size in the range of 5 to 40 μm.
Each of the Si, Ti, and C powders was prepared to have the composition shown in Table 2 to prepare a raw material mixture. Each of the obtained raw material mixtures was put into a ball mill, and pulverized and mixed in an Ar gas atmosphere for 60 hours. The raw material powder was alloyed with a mechanical alloy.

【0041】次に得られた各合金粉末を成型金型に充填
し、Arガス雰囲気中で800℃でホットプレス処理し
て磁石素体を形成した。得られた各磁石素体の磁気特性
を実施例1〜3と同様に測定して表2に示す結果を得
た。
Next, each of the obtained alloy powders was filled in a molding die, and hot pressed at 800 ° C. in an Ar gas atmosphere to form a magnet body. The magnetic properties of each of the obtained magnet bodies were measured in the same manner as in Examples 1 to 3, and the results shown in Table 2 were obtained.

【0042】また実施例7〜9として各元素粉末を表2
に示す組成に調合して原料混合体を調製し、得られた各
原料混合体をボールミルに投入し、760TorrのN2
ス雰囲気下で180時間粉砕混合処理して各原料粉末に
2 ガスを吸蔵させながら、メカニカルアロイによって
合金化した。
The powders of the respective elements are shown in Table 2 as Examples 7 to 9.
Formulated into compositions shown in raw material mixture was prepared, obtained and put into the raw material mixture in a ball mill, a N 2 gas was 180 hours pulverized and mixed under N 2 gas atmosphere of 760Torr to each raw material powder While occluded, alloyed with a mechanical alloy.

【0043】次に得られた各合金粉末を成型金型に充填
し、600TorrのN2 ガス雰囲気中で800℃でホット
プレス処理して磁石素体を形成した。そして得られた各
磁石素体の磁気特性を実施例4〜6と同様に測定して下
記表2に示す結果を得た。
Next, each of the obtained alloy powders was filled in a molding die, and hot pressed at 800 ° C. in an N 2 gas atmosphere of 600 Torr to form a magnet body. The magnetic properties of the obtained magnet bodies were measured in the same manner as in Examples 4 to 6, and the results shown in Table 2 below were obtained.

【0044】[0044]

【表2】 [Table 2]

【0045】表2に示す結果から明らかなように、実施
例4〜6においては結晶組成を安定化させキュリー温度
を高めるCが添加され、また実施例7〜9においてはC
およびNが複合的に添加されているため、いずれも磁気
特性が優れ、キュリー温度(Tc)が高い磁石が得られ
ている。
As is clear from the results shown in Table 2, C was added in Examples 4 to 6 to stabilize the crystal composition and increase the Curie temperature, and in Examples 7 to 9, C was added.
Since N and N are added in combination, a magnet having excellent magnetic properties and a high Curie temperature (Tc) is obtained.

【0046】[0046]

【発明の効果】以上説明の通り、本発明によれば、Nお
よびCの少なくとも一方を含む安定したThMn12型結
晶構造を有する希土類鉄系正方晶化合物を主相として形
成しているため、磁気特性を損うことなく、キュリー温
度が高い永久磁石を提供することができる。
As described above, according to the present invention, since a rare earth iron-based tetragonal compound having a stable ThMn 12 type crystal structure containing at least one of N and C is formed as a main phase, the magnetic properties are improved. A permanent magnet having a high Curie temperature can be provided without deteriorating characteristics.

フロントページの続き (56)参考文献 特開 昭63−273302(JP,A) 特開 昭62−136550(JP,A) 特開 平5−65603(JP,A) J.Less−Common Me t.,136(1988),p.207〜 IEEE Trans.Mag.,M ag−23(1987),pp.3101〜 (58)調査した分野(Int.Cl.7,DB名) H01F 1/08 H01F 1/04 C22C 38/00 Continuation of front page (56) References JP-A-63-273302 (JP, A) JP-A-62-136550 (JP, A) JP-A-5-65603 (JP, A) Less-Common Met. 136 (1988), p. 207-IEEE Trans. Mag. , Mag-23 (1987), pp. 3101-(58) Fields investigated (Int. Cl. 7 , DB name) H01F 1/08 H01F 1/04 C22C 38/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式RFe
100−x−y−z(式中RはYを含む希土類元素から
選択された少なくとも1種の元素、MはSi,Cr,
V,Mo,W,Ti,Zr,HfおよびAlから選択さ
れた少なくとも1種の元素、AはNおよびCから選択さ
れた少なくとも1種の元素であり、原子%でxが4〜2
0%、yが20%以下、zが0.001〜16%であ
る)で示され、主相がTh・Mn12型結晶構造を有す
る磁石合金粉末を400〜1000℃の温度条件下でホ
ットプレスを行い一体化焼結することによりキュリー温
度が370℃以上であり保磁力(iHc)が8KOe以
上の永久磁石とすることを特徴とする永久磁石の製造方
法。
1. A composition formula R x M y A z Fe
100-xyz (wherein R is at least one element selected from rare earth elements including Y, M is Si, Cr,
At least one element selected from V, Mo, W, Ti, Zr, Hf and Al, A is at least one element selected from N and C, and x is 4 to 2 in atomic%.
0%, y is 20% or less, and z is 0.001 to 16%), and the main phase has a Th.Mn 12- type crystal structure. A method for producing a permanent magnet, wherein a permanent magnet having a Curie temperature of 370 ° C. or more and a coercive force (iHc) of 8 KOe or more is obtained by pressing and integrally sintering.
JP00267791A 1991-01-14 1991-01-14 Manufacturing method of permanent magnet Expired - Lifetime JP3222482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00267791A JP3222482B2 (en) 1991-01-14 1991-01-14 Manufacturing method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00267791A JP3222482B2 (en) 1991-01-14 1991-01-14 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPH04241402A JPH04241402A (en) 1992-08-28
JP3222482B2 true JP3222482B2 (en) 2001-10-29

Family

ID=11535938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00267791A Expired - Lifetime JP3222482B2 (en) 1991-01-14 1991-01-14 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP3222482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490325B2 (en) * 2016-08-24 2019-11-26 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100994A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
JPH06100993A (en) * 1992-09-21 1994-04-12 Fuji Elelctrochem Co Ltd Permanent magnet material
US5403407A (en) * 1993-04-08 1995-04-04 University Of Delaware Permanent magnets made from iron alloys
US5750044A (en) * 1994-07-12 1998-05-12 Tdk Corporation Magnet and bonded magnet
JP2011003662A (en) * 2009-06-17 2011-01-06 Toyota Motor Corp Permanent magnet and method of manufacturing the same
DE102012207308A1 (en) * 2012-05-02 2013-11-07 Robert Bosch Gmbh Magnetic material, its use and process for its preparation
CN107785140A (en) * 2016-08-24 2018-03-09 株式会社东芝 Ferromagnetic material, permanent magnet, electric rotating machine and vehicle
JP7095310B2 (en) * 2018-02-28 2022-07-05 大同特殊鋼株式会社 Sm-Fe-N magnet material and Sm-Fe-N bond magnet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE Trans.Mag.,Mag−23(1987),pp.3101〜
J.Less−Common Met.,136(1988),p.207〜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490325B2 (en) * 2016-08-24 2019-11-26 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle

Also Published As

Publication number Publication date
JPH04241402A (en) 1992-08-28

Similar Documents

Publication Publication Date Title
JPH0531807B2 (en)
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP3222482B2 (en) Manufacturing method of permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP3135665B2 (en) Magnetic materials and bonded magnets
JPH0518242B2 (en)
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPS61195954A (en) Permanent magnet alloy
JP3247508B2 (en) permanent magnet
JPH045740B2 (en)
JP3779404B2 (en) Permanent magnet materials, bonded magnets and motors
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
JPH0461042B2 (en)
JP3178848B2 (en) Manufacturing method of permanent magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP3053187B2 (en) Manufacturing method of permanent magnet
JPH045739B2 (en)
JP3386552B2 (en) Magnetic material
JPH068488B2 (en) Permanent magnet alloy
JPH07118815A (en) Hard magnetic material and permanent magnet
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JPS62213102A (en) Manufacture of rare-earth permanent magnet
JP3795694B2 (en) Magnetic materials and bonded magnets
JPS62291903A (en) Permanent magnet and manufacture of the same
JP3713326B2 (en) Permanent magnet material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10