JP3713326B2 - Permanent magnet material - Google Patents

Permanent magnet material Download PDF

Info

Publication number
JP3713326B2
JP3713326B2 JP10535896A JP10535896A JP3713326B2 JP 3713326 B2 JP3713326 B2 JP 3713326B2 JP 10535896 A JP10535896 A JP 10535896A JP 10535896 A JP10535896 A JP 10535896A JP 3713326 B2 JP3713326 B2 JP 3713326B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet material
phase
atomic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10535896A
Other languages
Japanese (ja)
Other versions
JPH09293606A (en
Inventor
新哉 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10535896A priority Critical patent/JP3713326B2/en
Publication of JPH09293606A publication Critical patent/JPH09293606A/en
Application granted granted Critical
Publication of JP3713326B2 publication Critical patent/JP3713326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器、特にモータ等に有用な永久磁石材料に関する。
【0002】
【従来の技術】
従来、高性能希土類永久磁石としては、SmCo5 またはSm2 Co17のようなSm−Co系磁石、Nd2 Fe141 金属間化合物をベースとしたNd−Fe−B系磁石などが知られおり、量産化が進められている。これらの磁石には、Sm、Ndのような希土類元素が用いられている。希土類元素は、これらの金属間化合物に大きな磁気異方性をもたらし、磁性材料に大きな保磁力を付与するのに有用である。しかしながら、希土類元素は高価な元素であり、永久磁石のコストを増大させる要因になっている。
【0003】
一方、希土類元素を含まない磁石材料としては、Mn−Ga系材料が知られている。Mn−Gaの二元系においては、MnとGaの原子比が3:1の近傍でAl3 Ti型結晶構造を持つ相が生成され、この相を主相とする材料において10kOeを超える大きな保磁力が得られることが報告されている(H.Niidaet al.,40th Annual Conference of Mabnetsm and magnetic Matelials abstract,p.347)。しかしながら、この磁石材料はMnをベースとしているため飽和磁化が50emu/gと小さく、良好な磁石特性が得られないという問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、Al3 Ti相を主相とし、優れた磁石性能を有するMn−Ga系の永久磁石材料を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明に係わる永久磁石材料は、一般式
Mn1-xxyGa1-y1-zz (I)
(ただし、TはFe,CoおよびNiから選ばれる少なくとも1つの元素、AはN,C,HおよびBの群から選ばれる少なくとも1つの元素、
x、yおよびzは、
0.0909≦x≦0.5、
0.6≦y≦0.8、
0.0001≦z≦0.2
を示す)にて表されるAl3Ti型結晶構造を持つ相を主相とすることを特徴とするものである。ここで、主相とは化合物中の各結晶相および非結晶相のうちで最大の体積占有率を有する相を意味するものである。
【0006】
前記T元素は、その20原子%以下の範囲内でTi、V、Cr、Cu、Zr、Hf、Sc、Nb、Mo、W、Si、AlおよびGeの群から選ばれる少なくとも1つの元素で置換されることを許容する。
【0007】
【発明の実施の形態】
本発明に係わる永久磁石材料は、一般式[Mn1-xxyGa1-y1-zz (I)にて表され、Al3Ti型結晶構造を持つ相を主相とするものである。ただし、TはFe,CoおよびNiから選ばれる少なくとも1つの元素、AはN,C,HおよびBの群から選ばれる少なくとも1つの元素、x、yおよびzは0.0909≦x≦0.5、0.6≦y≦0.8、0.0001≦z≦0.2を示す。
【0008】
以下、本発明の永久磁石材料を構成する各成分ついて詳細に説明する。
(1)Mn
Mnは、Al3 Ti型結晶構造を安定化させると共に、主相の飽和磁化を向上させる働きを有する。Mnは、A元素を含まない磁石材料系では大きな磁化を示さないが、磁石材料中にA元素を含ませることにより磁化を増大させることが可能になる。
【0009】
(2)T元素
T元素は、Fe、CoおよびNiから選ばれる少なくとも1つの元素であり、種としてAl3 Ti型結晶構造におけるMnのサイトを置換し、磁石材料の磁化を増大させる働きを有する。ただし、Mnに対する置換量が50原子%を超えると磁化を低下させる恐れがある。
【0010】
前記yの値が0.6≦y≦0.8の範囲でAl3 Ti型結晶構造を安定化させる。より好ましいyの値は、0.67≦y≦0.74である。
前記T元素は、その20原子%以下の範囲内でTi、V、Cr、Cu、Zr、Hf、Sc、Nb、Mo、W、Si、AlおよびGeの群から選ばれる少なくとも1つの元素(以下、M元素と称す)で置換されること許容する。T元素の一部を前記M元素で置換することにより永久磁石材料の保磁力を増大させることが可能になる。ただし、前記M元素の置換量が20原子%を超えると飽和磁化の低下を招く恐れがある。より好ましい前記M元素の置換量は5原子%以下、さらに好ましいくは前記M元素の置換量は2原子%以下である。
【0011】
(3)Ga
Gaは、Al3Ti型結晶構造を安定化させる働きを有する。
(4)A元素
A元素は、N,C,HおよびBの群から選ばれる少なくとも1つの元素であり、主としてAl3Ti型結晶構造のインタースティシャル位置に依存し、A元素を含まない場合と比較して結晶格子を拡大させたり、電子構造を変化させたりして、諸相の飽和磁化を向上させる働きを有する。前記A元素の配合量であるzを0.0001原子%未満にするとその配合効果を十分に達成できず、一方前記zが0.2原子%を越えると、Al3Ti相の生成が困難になる。より好ましいzの値は0.0001≦≦0.1である。
【0012】
本発明に係わる永久磁石材料は、酸化物等の不可避的不純物を含有することを許容する。
本発明に係わる永久磁石材料は、例えば以下の(a)〜(c)の方法により製造される。
【0013】
(a)所定量のMn、T元素、Ga、、A元素(H、Nを除く)および必要に応じて前記T元素の一部を置換するM元素を含む原料をアーク溶解または高周波溶解を行った後、必要に応じて800〜1200℃の温度で0.1〜300時間、不活性ガス雰囲気中や真空中で均質化熱処理を施すことにより永久磁石材料を製造する。ここで、均質化熱処理は必ずしも必要な処理ではないが、前記Al3 Ti相を安定化する上で実施することが好ましい。
【0014】
(b)所定量のMn、T元素、Ga、、A元素(H、Nを除く)および必要に応じて前記T元素の一部を置換するM元素を含む原料をアーク溶解または高周波溶解により合金溶湯を調製した後、超急冷法により永久磁石材料を製造する。超急冷法としては、例えば前記合金溶湯を高速で回転する単ロールまたは双ロールに噴射することにより急冷する単ロール法または双ロール法が一般的に採用される。前記超急冷法は、その他に前記合金溶湯を回転ディスク上に噴射して急冷する回転ディスク法、前記合金溶湯をHeのような不活性ガス中に噴射して急冷するガスアトマイズ法等が採用される。このような超急冷法は、金属組織を微細化するなどにより永久磁石材料の磁石特性、特に保磁力等を向上させるのに有用である。ただし、超急冷法において急冷速度を速くし過ぎると、非平衡状態、例えばアモルファス相の生成が著しくなり、前述したAl3 Ti相の割合が低下して磁石特性を劣化させるため、所定の相が得られるように急冷速度を設定することが望ましい。
【0015】
(c)所定量のMn、T元素、Ga、、A元素(H、Nを除く)および必要に応じて前記T元素の一部を置換するM元素の各元素粉末を含む混合体に機械的エネルギーを付与して合金化させるメカニカルアロイイング法またはメカニカルグラインディング法により永久磁石材料を製造する。これらの方法は、前記混合体を固相反応させることにより合金化する方法である。前記固相反応を起こさせる具体的な方法としては、例えば遊星ボールミル、回転式ボールミル、アトライタ、振動ボールミル、スクリュー式ボールミル等に前記混合体を投入し、前記各粉末に機械的な衝撃を与える方法が採用される。
【0016】
なお、前記(b)の急冷工程、前記(c)の固相反応工程はAr、He等の不活性ガス雰囲気中で行うことが好ましい。このような雰囲気で急冷または固相反応を行うことによって、酸化による磁気特性の劣化を防止することができる。また、前記(b)、(c)の方法で得られた永久磁石材料に必要に応じて不活性ガス雰囲気中や真空中で、300〜1000℃の温度で0.1〜10時間熱処理を施してもよい。このような熱処理を施すことによりAl3 Ti相の割合を増大させたり、また保磁力等の磁気特性を向上させることが可能になる。
【0017】
また、一般式(I)で著され永久磁石材料において、A元素として特にNを配合する場合の製造方法の一例を以下に説明する。
前記(a)〜(c)の方法で得られた永久磁石性材料(Nを含まず)をボールミル、ブラウンミル、スタンプミル等によって平均粒径が数μm〜数100μmに粉砕し、この合金粉末を0.1kPa〜10MPaの窒素ガス雰囲気中、200〜700℃の温度下で0.1〜100時間熱処理(窒化処理)することにより目的の永久磁石材料を製造する。ただし、前記(c)の方法で得られた材料は粉末状態であるため、前記ボールミル等による粉末工程を省力することができる。
【0018】
前記窒化処理時の雰囲気は、窒素ガスに代えてアンモニア等の窒素化合物ガスを用いてもよい。
前記窒化処理の前工程として0.1kPa〜10MPaの水素ガス雰囲気中にて100〜700℃の温度下で熱処理を行うか、または窒素ガスに水素を混合したガスを用いることにより高効率の窒化を行うことが可能になる。また、前記窒化処理において窒素以外の他のガスを混合することを許容する。ただし、酸素を混合する場合には熱処理中の酸化物生成による磁気特性の劣化を避けるために、酸素分圧を2kPa以下にすることが望ましい。
【0019】
本発明に係わる永久磁石材料は、永久磁石の素材として好適である。以下に、本発明に係わる永久磁石材料から永久磁石を製造する方法を説明する。なお、永久磁石を製造する場合、通常、永久磁石材料を平均粒径が数μm〜数100μmに粉砕した合金粉末を使用する。ただし、前述した永久磁石材料の製造において既に粉砕が行われている場合にはこれを省略することが可能である。
【0020】
(1)本発明の永久磁石材料の粉末をエポキシ樹脂、ナイロン系などの樹脂と混合した後、成形することによりボンド磁石を製造する。前記樹脂としてエポキシ樹脂系の熱硬化性樹脂を用いる場合には、圧縮成形の後に100〜200℃の温度でキュア処理を施すことが望ましい。前記樹脂としてナイロン系の熱可塑性樹脂を用いる場合には、射出成形法を採用することが望ましい。また、圧縮成形ボンド磁石を製造する場合には、加圧時に磁場を印加して結晶方位を揃えることにより、高磁束密度を有する永久磁石を製造することが可能になる。
【0021】
(2)本発明の永久磁石材料の粉末を低融点金属または低融点合金と混合した後、成形することによりメタルボンド磁石を製造する。前記低融点金属としては、例えばAl、Pb、Sn、Zn、Mgなどを、前記低融点合金としては前記金属からなる合金等を用いることができる。このメタルボンドの製造においても、磁場を印加して結晶方位を揃えることにより、高磁束密度を有する永久磁石を製造することが可能になる。
【0022】
(3)本発明の永久磁石材料の粉末をホットプレスまたは熱間静水圧プレス(HIP)により高密度の成形体(圧粉体)として一体化することにより永久磁石を製造する。前記加圧時に磁場を印加して結晶方位を揃えることにより高磁束密度を有する永久磁石を製造できる。また、前記加圧後に573〜973Kの温度下で加圧しながら塑性変形加工を施すことにより磁化容易軸方向にに磁気的な配向がなされた永久磁石を製造することが可能になる。
【0023】
以上説明したように、本発明は大きな保磁力が得られるMn3 Ga近傍組成の材料に前記A元素(N、C、HおよびBから選ばれる少なくとも1つの元素)を添加することにより保磁力を損なうことなく、Mnの磁化を向上させ、ひいては飽和磁化を向上させた永久磁石材料を得ることができる。前記A元素の添加による飽和磁化の増大の主たる原因は、結晶格子の拡大である。結晶格子間にA元素を侵入させると、Mn原子間の距離が増大し、これに起因してMn1原子当たりの磁気モーメントが増大することが確認された。したがって、A元素を含まない永久磁石材料に比較して残留磁化、最大エネルギー積が改善され、実用的な永久磁石材料を提供することができる。
【0024】
【実施例】
以下、本発明の実施例を詳細に説明する。
(実施例1)
まず、高純度のMn、Fe、Gaの原料をAr雰囲気中で高周波溶解してインゴットを調製した。得られたインゴットの組成は、Fe7原子し%、Ga28原子%、残部がMnであった。つづいて、インゴットをボールミルを用いて平均粒径25μmに粉砕した後、10気圧の窒素ガス雰囲気中、450℃の温度下で80時間熱処理を施して永久磁石材料を作った。この永久磁石材料の組成は、Fe6 Ga268 Mnbal であった。また、前記永久磁石材料はX回折にて主相がAl3 Ti型構造であることが確認された。
【0025】
次いで、前記永久磁石材料を平均粒径5μmまで微粉砕し、エポキシ樹脂を2重量%添加、混合した後、1600kA/mの磁場中にて配向させながら、1200MPaの圧力で圧縮成形した。この後、150℃で2.5時間キュア処理を施すことによりボンド磁石を製造した。
【0026】
得られたボンド磁石の室温における磁石特性を測定した。その結果、残留磁束密度は6.2kG、保磁力は8.5kOe、最大エネルギー積は7.5MGOeであった。
【0027】
(実施例2)
まず、高純度のMn、Fe、Co、Zr、Ga、Cの原料をAr雰囲気中で高周波溶解して合金溶湯とし、この合金溶湯を周速が30m/sで回転する銅製の単ロールの表面を噴射する超急冷法により急冷薄帯を作製した。この急冷薄帯の組成は、Fe5原子%、Co2原子%、Zr2原子%、Ti1原子%、Ga29原子%、C0.1原子%、残部がMnであった。つづいて、前記急冷薄帯を石英管に真空封入し、650℃で15分間熱処理を施した。ひきつづき、熱処理材をボールミルを用いて平均粒径20μmに粉砕した後、10気圧の窒素ガス雰囲気中、430℃の温度下で15時間熱処理を施して永久磁石材料を作った。この永久磁石材料の組成は、Fe4.6 Co1.8 Zr1.8 Ti0.9 Ga26.70.18 Mnbal であった。また、前記永久磁石材料はX回折にて主相がAl3 Ti型構造であることが確認された。
【0028】
次いで、前記永久磁石材料の粉末にエポキシ樹脂を2重量%添加、混合した後、1200MPaの圧力で圧縮成形した。この後、150℃で2.5時間キュア処理を施すことによりボンド磁石を製造した。
【0029】
得られたボンド磁石の室温における磁石特性を測定した。その結果、残留磁束密度は5.1kG、保磁力は8.8kOe、最大エネルギー積は5.3MGOeであった。
【0030】
(比較例1)
実施例1で作製したインゴットを窒化処理せずにそのまま平均粒径5μmまで微粉砕し、この後、実施例1と同様な方法によりボンド磁石を製造した。
【0031】
得られたボンド磁石の室温における磁石特性を測定した。その結果、残留磁束密度は1.8kG、保磁力は7.3kOe、最大エネルギー積は0.6MGOeであった。
【0032】
【発明の効果】
以上詳述したように、本発明によれば優れた磁気特性を有すると共に希土類元素を含まない安価な永久磁石材料を提供できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet material useful for electrical equipment, particularly motors and the like.
[0002]
[Prior art]
Conventionally, as high performance rare earth permanent magnets, Sm-Co magnets such as SmCo 5 or Sm 2 Co 17 , Nd—Fe—B magnets based on Nd 2 Fe 14 B 1 intermetallic compounds, and the like are known. Therefore, mass production is being promoted. These magnets use rare earth elements such as Sm and Nd. Rare earth elements are useful for providing a large magnetic anisotropy to these intermetallic compounds and imparting a large coercive force to the magnetic material. However, rare earth elements are expensive elements and are a factor that increases the cost of permanent magnets.
[0003]
On the other hand, a Mn—Ga-based material is known as a magnet material that does not contain a rare earth element. In the binary system of Mn—Ga, a phase having an Al 3 Ti type crystal structure is generated in the vicinity of an atomic ratio of Mn to Ga of 3: 1, and a material having this phase as a main phase has a large retention exceeding 10 kOe. It has been reported that magnetic force can be obtained (H. Niida et al., 40th Annual Conference of Mabnetsm and magnetic Materials abstract, p. 347). However, since this magnet material is based on Mn, the saturation magnetization is as small as 50 emu / g, and there is a problem that good magnet characteristics cannot be obtained.
[0004]
[Problems to be solved by the invention]
The present invention intends to provide a Mn—Ga based permanent magnet material having an Al 3 Ti phase as a main phase and having excellent magnet performance.
[0005]
[Means for Solving the Problems]
Permanent magnet material of the present invention have the general formula [(Mn 1-x T x ) y Ga 1-y] 1-z A z (I)
(Wherein T is at least one element selected from Fe, Co and Ni, A is at least one element selected from the group of N, C, H and B,
x, y and z are
0.0909 ≦ x ≦ 0.5,
0.6 ≦ y ≦ 0.8,
0.0001 ≦ z ≦ 0.2
The main phase is a phase having an Al 3 Ti type crystal structure represented by Here, the main phase means a phase having the largest volume occupancy among each crystalline phase and non-crystalline phase in the compound.
[0006]
The T element is replaced with at least one element selected from the group consisting of Ti, V, Cr, Cu, Zr, Hf, Sc, Nb, Mo, W, Si, Al, and Ge within the range of 20 atomic% or less. Allow to be done.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Permanent magnet material of the present invention are represented by the general formula [(Mn 1-x T x ) y Ga 1-y] 1-z A z (I), a main phase having Al 3 Ti-type crystal structure It is something to be phased. Where T is at least one element selected from Fe, Co and Ni, A is at least one element selected from the group of N, C, H and B, and x, y and z are 0.0909 ≦ x ≦ 0. 5, 0.6 ≦ y ≦ 0.8, 0.0001 ≦ z ≦ 0.2.
[0008]
Hereafter, each component which comprises the permanent magnet material of this invention is demonstrated in detail.
(1) Mn
Mn has a function of stabilizing the Al 3 Ti crystal structure and improving the saturation magnetization of the main phase. Mn does not exhibit large magnetization in a magnet material system that does not contain an A element, but it is possible to increase magnetization by including the A element in the magnet material.
[0009]
(2) T element T element is at least one element selected from Fe, Co, and Ni, and serves as a seed to replace the Mn site in the Al 3 Ti crystal structure and increase the magnetization of the magnet material. . However, if the substitution amount with respect to Mn exceeds 50 atomic%, the magnetization may be lowered.
[0010]
The Al 3 Ti type crystal structure is stabilized when the value of y is in the range of 0.6 ≦ y ≦ 0.8. A more preferable value of y is 0.67 ≦ y ≦ 0.74.
The T element is at least one element selected from the group consisting of Ti, V, Cr, Cu, Zr, Hf, Sc, Nb, Mo, W, Si, Al, and Ge within the range of 20 atomic% or less (hereinafter referred to as “T element”). , Referred to as M element). By replacing a part of the T element with the M element, it becomes possible to increase the coercive force of the permanent magnet material. However, if the substitution amount of the M element exceeds 20 atomic%, the saturation magnetization may be lowered. More preferably, the substitution amount of the M element is 5 atomic% or less, more preferably, the substitution amount of the M element is 2 atomic% or less.
[0011]
(3) Ga
Ga has a function of stabilizing the Al 3 Ti crystal structure.
(4) A element A element is at least one element selected from the group of N, C, H, and B, and depends mainly on the interstitial position of the Al 3 Ti type crystal structure, and does not contain the A element Compared with, the crystal lattice is expanded or the electronic structure is changed to improve the saturation magnetization of various phases. If z, which is the blending amount of the element A, is less than 0.0001 atomic% , the blending effect cannot be sufficiently achieved. On the other hand, if z exceeds 0.2 atomic%, it is difficult to produce an Al 3 Ti phase. Become. A more preferable value of z is 0.0001 ≦ z ≦ 0.1.
[0012]
The permanent magnet material according to the present invention is allowed to contain inevitable impurities such as oxides.
The permanent magnet material according to the present invention is manufactured, for example, by the following methods (a) to (c).
[0013]
(A) Arc melting or high-frequency melting is performed on a raw material containing a predetermined amount of Mn, T element, Ga, A element (excluding H and N) and M element that replaces part of the T element as necessary. Then, a permanent magnet material is manufactured by performing a homogenization heat treatment in an inert gas atmosphere or in a vacuum at a temperature of 800 to 1200 ° C. for 0.1 to 300 hours as necessary. Here, the homogenization heat treatment is not necessarily a necessary treatment, but is preferably carried out for stabilizing the Al 3 Ti phase.
[0014]
(B) Alloying a raw material containing a predetermined amount of Mn, T element, Ga, A element (excluding H and N) and M element replacing part of the T element as required by arc melting or high frequency melting After preparing the molten metal, a permanent magnet material is manufactured by a rapid quenching method. As the ultra rapid cooling method, for example, a single roll method or a twin roll method in which the molten alloy is rapidly cooled by spraying the molten alloy onto a single roll or a twin roll rotating at high speed is generally employed. In addition to the ultra-rapid cooling method, a rotating disk method in which the molten alloy is jetted onto a rotating disk and rapidly cooled, a gas atomizing method in which the molten alloy is injected into an inert gas such as He, and the like are employed. . Such a rapid quenching method is useful for improving the magnetic properties of the permanent magnet material, particularly the coercive force, etc. by refining the metal structure. However, if the quenching rate is too high in the ultra-quenching method, the non-equilibrium state, for example, the formation of an amorphous phase becomes remarkable, and the ratio of the Al 3 Ti phase described above decreases to deteriorate the magnet characteristics. It is desirable to set the quenching rate so that it can be obtained.
[0015]
(C) Mechanically mixed into a mixture containing a predetermined amount of Mn, T element, Ga, A element (excluding H and N) and, if necessary, each elemental powder of M element replacing part of the T element A permanent magnet material is manufactured by a mechanical alloying method or a mechanical grinding method in which energy is applied and alloyed. These methods are methods of alloying by subjecting the mixture to a solid phase reaction. As a specific method for causing the solid phase reaction, for example, a method in which the mixture is put into a planetary ball mill, a rotary ball mill, an attritor, a vibration ball mill, a screw ball mill, or the like, and mechanical impact is applied to each powder. Is adopted.
[0016]
The rapid cooling step (b) and the solid phase reaction step (c) are preferably performed in an inert gas atmosphere such as Ar or He. By performing rapid cooling or solid phase reaction in such an atmosphere, it is possible to prevent deterioration of magnetic properties due to oxidation. In addition, the permanent magnet material obtained by the methods (b) and (c) is subjected to heat treatment at a temperature of 300 to 1000 ° C. for 0.1 to 10 hours in an inert gas atmosphere or in a vacuum as necessary. May be. By performing such a heat treatment, it becomes possible to increase the proportion of the Al 3 Ti phase and improve the magnetic properties such as coercive force.
[0017]
Further, an example of a manufacturing method in the case where N is particularly blended as the A element in the permanent magnet material written by the general formula (I) will be described below.
The permanent magnetic material (not including N) obtained by the above methods (a) to (c) is pulverized to an average particle size of several μm to several hundred μm by a ball mill, brown mill, stamp mill, etc. Is subjected to heat treatment (nitriding treatment) at a temperature of 200 to 700 ° C. for 0.1 to 100 hours in a nitrogen gas atmosphere of 0.1 kPa to 10 MPa to produce a desired permanent magnet material. However, since the material obtained by the method (c) is in a powder state, the powder process by the ball mill or the like can be saved.
[0018]
The atmosphere during the nitriding treatment may use nitrogen compound gas such as ammonia instead of nitrogen gas.
As a pre-process of the nitriding treatment, heat treatment is performed at a temperature of 100 to 700 ° C. in a hydrogen gas atmosphere of 0.1 kPa to 10 MPa, or highly efficient nitriding is performed by using a gas in which hydrogen is mixed with nitrogen gas. It becomes possible to do. Further, it is allowed to mix other gases than nitrogen in the nitriding treatment. However, when oxygen is mixed, it is desirable to set the oxygen partial pressure to 2 kPa or less in order to avoid deterioration of magnetic characteristics due to oxide formation during heat treatment.
[0019]
The permanent magnet material according to the present invention is suitable as a material for the permanent magnet. Below, the method to manufacture a permanent magnet from the permanent magnet material concerning this invention is demonstrated. When producing a permanent magnet, an alloy powder obtained by pulverizing a permanent magnet material to an average particle size of several μm to several hundred μm is usually used. However, if the pulverization has already been performed in the production of the permanent magnet material described above, this can be omitted.
[0020]
(1) A permanent magnet material powder of the present invention is mixed with an epoxy resin, a nylon resin or the like, and then molded to produce a bonded magnet. When an epoxy resin-based thermosetting resin is used as the resin, it is desirable to perform a curing treatment at a temperature of 100 to 200 ° C. after the compression molding. When using a nylon-based thermoplastic resin as the resin, it is desirable to adopt an injection molding method. In the case of manufacturing a compression-molded bonded magnet, it is possible to manufacture a permanent magnet having a high magnetic flux density by applying a magnetic field during pressurization to align the crystal orientation.
[0021]
(2) A metal bond magnet is manufactured by mixing the powder of the permanent magnet material of the present invention with a low melting point metal or a low melting point alloy and then molding the mixture. As the low melting point metal, for example, Al, Pb, Sn, Zn, Mg or the like can be used, and as the low melting point alloy, an alloy made of the metal or the like can be used. Also in the manufacture of this metal bond, it is possible to manufacture a permanent magnet having a high magnetic flux density by applying a magnetic field to align the crystal orientation.
[0022]
(3) A permanent magnet is produced by integrating the permanent magnet material powder of the present invention as a high-density molded body (green compact) by hot pressing or hot isostatic pressing (HIP). A permanent magnet having a high magnetic flux density can be manufactured by applying a magnetic field during the pressurization to align the crystal orientation. Further, by performing plastic deformation while pressing at a temperature of 573 to 973 K after the pressurization, it becomes possible to manufacture a permanent magnet that is magnetically oriented in the direction of the easy magnetization axis.
[0023]
As described above, the present invention provides a coercive force by adding the element A (at least one element selected from N, C, H, and B) to a material having a composition near Mn 3 Ga that provides a large coercive force. A permanent magnet material with improved Mn magnetization and thus improved saturation magnetization can be obtained without loss. The main cause of the increase in saturation magnetization due to the addition of the element A is expansion of the crystal lattice. It was confirmed that when the A element was intruded between the crystal lattices, the distance between Mn atoms increased, and as a result, the magnetic moment per Mn atom increased. Therefore, the remanent magnetization and the maximum energy product are improved as compared with the permanent magnet material containing no element A, and a practical permanent magnet material can be provided.
[0024]
【Example】
Hereinafter, embodiments of the present invention will be described in detail.
(Example 1)
First, high purity Mn, Fe, and Ga raw materials were melted at high frequency in an Ar atmosphere to prepare an ingot. The composition of the obtained ingot was 7 atom% Fe, 28 atom% Ga, and the balance was Mn. Subsequently, the ingot was pulverized to an average particle size of 25 μm using a ball mill, and then subjected to heat treatment in a nitrogen gas atmosphere of 10 atm at a temperature of 450 ° C. for 80 hours to produce a permanent magnet material. The composition of this permanent magnet material was Fe 6 Ga 26 N 8 Mn bal . Further, it was confirmed by X diffraction that the main phase of the permanent magnet material had an Al 3 Ti type structure.
[0025]
Next, the permanent magnet material was finely pulverized to an average particle size of 5 μm, and 2 wt% of epoxy resin was added and mixed, followed by compression molding at a pressure of 1200 MPa while being oriented in a magnetic field of 1600 kA / m. Then, the bonded magnet was manufactured by performing a curing process at 150 degreeC for 2.5 hours.
[0026]
The magnet properties at room temperature of the obtained bonded magnet were measured. As a result, the residual magnetic flux density was 6.2 kG, the coercive force was 8.5 kOe, and the maximum energy product was 7.5 MGOe.
[0027]
(Example 2)
First, high purity Mn, Fe, Co, Zr, Ga, and C raw materials are melted at a high frequency in an Ar atmosphere to form a molten alloy, and the surface of a copper single roll rotating at a peripheral speed of 30 m / s. Quenched ribbons were prepared by the ultra-quenching method of spraying water. The composition of the quenched ribbon was 5 atomic% Fe, 2 atomic% Co, 2 atomic% Zr, 1 atomic% Ti, 29 atomic% Ga, 0.1 atomic% C, and the balance was Mn. Subsequently, the quenched ribbon was sealed in a quartz tube and heat treated at 650 ° C. for 15 minutes. Subsequently, the heat-treated material was pulverized to an average particle size of 20 μm using a ball mill, and then subjected to heat treatment at a temperature of 430 ° C. for 15 hours in a nitrogen gas atmosphere of 10 atm to produce a permanent magnet material. The composition of this permanent magnet material was Fe 4.6 Co 1.8 Zr 1.8 Ti 0.9 Ga 26.7 C 0.1 N 8 Mn bal . Further, it was confirmed by X diffraction that the main phase of the permanent magnet material had an Al 3 Ti type structure.
[0028]
Next, 2% by weight of an epoxy resin was added to and mixed with the powder of the permanent magnet material, followed by compression molding at a pressure of 1200 MPa. Then, the bonded magnet was manufactured by performing a curing process at 150 degreeC for 2.5 hours.
[0029]
The magnet properties at room temperature of the obtained bonded magnet were measured. As a result, the residual magnetic flux density was 5.1 kG, the coercive force was 8.8 kOe, and the maximum energy product was 5.3 MGOe.
[0030]
(Comparative Example 1)
The ingot produced in Example 1 was pulverized as it was to an average particle size of 5 μm without being subjected to nitriding treatment, and then a bonded magnet was produced by the same method as in Example 1.
[0031]
The magnet properties at room temperature of the obtained bonded magnet were measured. As a result, the residual magnetic flux density was 1.8 kG, the coercive force was 7.3 kOe, and the maximum energy product was 0.6 MGOe.
[0032]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide an inexpensive permanent magnet material that has excellent magnetic properties and does not contain a rare earth element.

Claims (2)

一般式
Mn1-xxyGa1-y1-zz (I)
(ただし、TはFe,CoおよびNiから選ばれる少なくとも1つの元素、AはN,C,HおよびBの群から選ばれる少なくとも1つの元素、
x、yおよびzは、
0.0909≦x≦0.5、
0.6≦y≦0.8、
0.0001≦z≦0.2
を示す)にて表されるAl3Ti型結晶構造を持つ相を主相とすることを特徴とする永久磁石材料。
Formula [(Mn 1-x T x ) y Ga 1-y] 1-z A z (I)
(Wherein T is at least one element selected from Fe, Co and Ni, A is at least one element selected from the group of N, C, H and B,
x, y and z are
0.0909 ≦ x ≦ 0.5,
0.6 ≦ y ≦ 0.8,
0.0001 ≦ z ≦ 0.2
A permanent magnet material characterized in that the main phase is a phase having an Al 3 Ti type crystal structure represented by:
前記T元素は、その20原子%以下の範囲内でTi,V,Cr,Cu,Zr,Hf,Sc,Nb,Mo,W,Si,AlおよびGeの群から選ばれる少なくとも1つの元素で置換されることを特徴とする請求項1記載の永久磁石材料。  The element T is replaced with at least one element selected from the group consisting of Ti, V, Cr, Cu, Zr, Hf, Sc, Nb, Mo, W, Si, Al, and Ge within the range of 20 atomic% or less. The permanent magnet material according to claim 1, wherein:
JP10535896A 1996-04-25 1996-04-25 Permanent magnet material Expired - Lifetime JP3713326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10535896A JP3713326B2 (en) 1996-04-25 1996-04-25 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10535896A JP3713326B2 (en) 1996-04-25 1996-04-25 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPH09293606A JPH09293606A (en) 1997-11-11
JP3713326B2 true JP3713326B2 (en) 2005-11-09

Family

ID=14405512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10535896A Expired - Lifetime JP3713326B2 (en) 1996-04-25 1996-04-25 Permanent magnet material

Country Status (1)

Country Link
JP (1) JP3713326B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376840B2 (en) * 2014-05-23 2018-08-22 学校法人千葉工業大学 Permanent magnet material and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09293606A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
JP3171558B2 (en) Magnetic materials and bonded magnets
WO2010058555A1 (en) Permanent magnet and method for manufacturing same, and motor and generator employing same
US6290782B1 (en) Magnetic material and manufacturing method thereof, and bonded magnet using the same
US7344605B2 (en) Exchange spring magnet powder and a method of producing the same
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
US5658396A (en) Magnetic material
JP2001189206A (en) Permanent magnet
US5549766A (en) Magnetic material
JP4314244B2 (en) Magnetic material powder manufacturing method and bonded magnet manufacturing method
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
US6406559B2 (en) Magnetic material and manufacturing method thereof, and bonded magnet using the same
JP3455557B2 (en) Magnetic material
JP3219865B2 (en) Magnetic materials, permanent magnets and bonded magnets
JPH08191006A (en) Magnetic material
JP3135665B2 (en) Magnetic materials and bonded magnets
JP3222482B2 (en) Manufacturing method of permanent magnet
JP3247508B2 (en) permanent magnet
JP3779404B2 (en) Permanent magnet materials, bonded magnets and motors
JP3768553B2 (en) Hard magnetic material and permanent magnet
JP3713326B2 (en) Permanent magnet material
JP3504735B2 (en) Method for producing RTMN based anisotropic bonded magnet
JP3469496B2 (en) Manufacturing method of magnet material
JP3386552B2 (en) Magnetic material
JP3779338B2 (en) Method for producing magnetic material powder and method for producing bonded magnet
JP3795694B2 (en) Magnetic materials and bonded magnets

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

EXPY Cancellation because of completion of term