JP2705985B2 - MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM - Google Patents

MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM

Info

Publication number
JP2705985B2
JP2705985B2 JP1229238A JP22923889A JP2705985B2 JP 2705985 B2 JP2705985 B2 JP 2705985B2 JP 1229238 A JP1229238 A JP 1229238A JP 22923889 A JP22923889 A JP 22923889A JP 2705985 B2 JP2705985 B2 JP 2705985B2
Authority
JP
Japan
Prior art keywords
component
magnet
magnetic
alloy
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1229238A
Other languages
Japanese (ja)
Other versions
JPH0316102A (en
Inventor
伸嘉 今岡
久理真 小林
恭彦 入山
昭信 須藤
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Publication of JPH0316102A publication Critical patent/JPH0316102A/en
Application granted granted Critical
Publication of JP2705985B2 publication Critical patent/JP2705985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類(R)−鉄(Fe)−窒素(N)−水素
(H)−M成分系組成を有する磁性材料に関し、特に永
久磁石材料として好適な磁性材料およびそれから成る磁
石ならびにその製造方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a magnetic material having a rare earth (R) -iron (Fe) -nitrogen (N) -hydrogen (H) -M component composition, and more particularly to a permanent magnet. The present invention relates to a magnetic material suitable as a material, a magnet made of the same, and a method for manufacturing the same.

[従来の技術] 永久磁石材料は小型モーター、アクチュエーター材料
などとして家庭電化製品、音響製品、自動車部品に利用
される一方、医療機器用大型磁石として使用されるなど
エレクトロニクスの種々の分野で広い用途がある。磁石
材料はどのような利用法においても小型化、軽量化がそ
の進展方向であり、現在もSm−Co系磁石からより高い磁
気特性を有するNd−Fe−B系磁石へと大きく変換中であ
る。
[Prior art] Permanent magnet materials are used for home appliances, audio products and automobile parts as small motors and actuator materials, while they are widely used in various fields of electronics such as large magnets for medical equipment. is there. Regarding magnet materials, miniaturization and weight reduction are the direction of progress in any usage, and even now Sm-Co-based magnets are being converted to Nd-Fe-B-based magnets with higher magnetic properties. .

ここにいう磁気特性とは材料の飽和磁化(4πIs)、
残留磁束密度(Br)、固有保磁力(iHc)、磁気異方性
エネルギー、多角比(Br/4πIs)、最大エネルギー積
[(BH)max]、キュリー温度、熱減磁率を言う。
The magnetic characteristics here are the saturation magnetization (4πIs) of the material,
Residual magnetic flux density (Br), intrinsic coercive force (iHc), magnetic anisotropy energy, polygon ratio (Br / 4πIs), maximum energy product [(BH) max ], Curie temperature, thermal demagnetization rate.

ところで、Sm−Co系はその原料価格もさることなが
ら、Smの供給量自体に限界があり、現状でも生産量がほ
ぼ飽和状態に達しており、このこともNd−Fe−B系への
転換をさらに押し進める原因にもなっている。
By the way, the Sm-Co system has a limit in the supply amount of Sm itself, besides the raw material price, and even now, the production amount is almost saturated, and this is also the conversion to the Nd-Fe-B system. It is also the cause of pushing further.

このNd−Fe−B系磁石(例えば特開昭59−46008号公
報)にこれまでにない高い磁気特性を有し、かつ、Sm−
Co系に比較して原料供給が安定し安価であるという大き
な長所がある。しかし、一方で温度特性が劣り、キュリ
ー点が低く、かつ耐食性は劣悪であり、大きな短所とな
っている。
This Nd-Fe-B-based magnet (for example, Japanese Patent Application Laid-Open No. 59-46008) has unprecedentedly high magnetic properties,
There is a great advantage that the raw material supply is stable and inexpensive compared to the Co system. However, on the other hand, the temperature characteristics are poor, the Curie point is low, and the corrosion resistance is poor, which is a major disadvantage.

この点を改良するためにFeをCoで一部置換する方法
(例えば特開昭59−132104号公報)やNdの一部を重希土
類元素に置換する方法も提案されている(例えば特開昭
60−34005号公報)。
In order to improve this point, a method of partially replacing Fe with Co (for example, JP-A-59-132104) and a method of partially replacing Nd with heavy rare-earth elements have been proposed (for example, JP-A-59-132104).
No. 60-34005).

しかしながら、いずれも本質的な解決には到らず、現
状では結局コーティングやメッキなどの処理により、耐
食性の向上を図ることが実用化の必須条件となってい
る。このため、実用特性は低下し、Nd−Fe−B系の本来
の高磁気特性は引き出しきれていない。
However, none of these solutions has essentially solved the problem. At present, it is an essential condition for practical use to improve the corrosion resistance by coating or plating. For this reason, the practical characteristics are lowered, and the original high magnetic characteristics of the Nd—Fe—B system cannot be fully extracted.

すなわち、Sm−Co系、Nd−Fe−B系とも優れた磁石材
料ではありながら実用上は多くの問題をかかえており、
さらに新規な磁石材料の出現がのぞまれている。
In other words, although both Sm-Co and Nd-Fe-B are excellent magnet materials, they have many practical problems.
The emergence of new magnetic materials is also desired.

また、従来のSm−Co系、Nd−Fe−B系焼結磁石では、
いずれの場合も焼結後の熱処理によって強磁性粒子境界
部分に粒子内部と組成の異なる相が分離する。いわゆる
2相分離型の微構造を形成する。これは粒子内部、すな
わち磁性領域間の相互作用を弱め、それによって逆に磁
気特性は向上する。
Further, in the conventional Sm-Co based, Nd-Fe-B based sintered magnet,
In any case, a phase having a composition different from that of the inside of the particles is separated at the boundary of the ferromagnetic particles by the heat treatment after sintering. A so-called two-phase separation type microstructure is formed. This weakens the interaction inside the grains, i.e. between the magnetic domains, which in turn improves the magnetic properties.

Nd−Fe−B系ではこの熱処理工程なしでは保磁力、磁
気異方性が発現し難いことも知られている。
It is also known that a coercive force and a magnetic anisotropy are hardly developed in the Nd-Fe-B system without this heat treatment step.

一方、新しい希土類系磁性材料として、R−Fe−N系
磁性材料が提案されている(例えば、欧州特許公開3690
97号参照)。この材料は、2−17組成を有する菱面体晶
あるいは六方晶の結晶構造を有しており、磁化、異方性
磁界、キュリー点が高く、前述のSm−Co系やNd−Fe−B
系磁性材料の欠点を補う磁性材料として期待される。し
かし、この材料は、各種磁石材料に応用する際、保磁
力、角形比などの磁気特性、及びその安定性が充分であ
るといい難い。
On the other hand, as a new rare earth magnetic material, an R—Fe—N magnetic material has been proposed (for example, European Patent Publication 3690).
No. 97). This material has a rhombohedral or hexagonal crystal structure having a 2-17 composition, has a high magnetization, an anisotropic magnetic field, and a high Curie point, and has the above-mentioned Sm-Co and Nd-Fe-B
This is expected as a magnetic material that compensates for the drawbacks of magnetic materials. However, when this material is applied to various magnet materials, it is difficult to say that its magnetic properties such as coercive force and squareness and its stability are sufficient.

R−Fe−N組成を有する材料としては、特開昭60−13
1949に開示されており、また、これにM成分を加えR−
Fe−M−N系とした材料としては、特開昭60−144906、
特開昭60−144907、特開昭62−136551、特開昭62−1771
61、特開昭62−269303などに開示されている。さらにR
−Fe−M−N−H組成の材料としては、特開昭61−9551
(M=Pd,Ge,Ag,C,B)に開示されている。
As a material having an R-Fe-N composition, JP-A-60-13
1949, and added thereto an M component to add R-
As the Fe-M-N-based material, JP-A-60-144906,
JP-A-60-144907, JP-A-62-136551, JP-A-62-1771
61, and JP-A-62-269303. Further R
As a material having a composition of -Fe-M-N-H, JP-A-61-9551
(M = Pd, Ge, Ag, C, B).

しかしながら、前述の各公報に開示されたR−Fe−N
(−M−H)系材料では、各成分元素の含有量を特定し
ているだけであって、その結晶構造や微構造は特定され
ていない。また、前記公報の開示によれば、これらの磁
性材料は、各成分元素とこれらの窒化物とを溶融、焼結
するか、強磁性を有する結晶構造を保ち得ない高温度
(700〜1100℃)で熱処理することにより製造されるた
め、実際には窒化鉄、α−鉄、窒化希土類、M、及びM
の窒化物を多く含有するものであり、2−17構造である
相は存在しない。
However, the R-Fe-N disclosed in each of the aforementioned publications
In the (-MH) -based material, only the content of each component element is specified, but the crystal structure or microstructure is not specified. Further, according to the disclosure of the above publication, these magnetic materials are prepared by melting and sintering each component element and their nitride, or at a high temperature (700 to 1100 ° C.) at which a ferromagnetic crystal structure cannot be maintained. ), So that iron nitride, α-iron, rare earth nitride, M, and M
And a phase having a 2-17 structure does not exist.

従って、保磁力を初めとする磁気特性は、改善される
よりむしろ、劣化することが多かった。
Therefore, magnetic properties such as coercive force often deteriorate rather than improve.

[発明が解決しようとする課題] 本発明は先願の希土類−鉄−窒素−水素系新規磁気異
方性材料にM成分を加えることで、バルク磁石とくに焼
結磁石ならびにボンド磁石としての高い特性を引き出す
ことを検討し、磁性材料を構成する各元素の含有量を特
定するのみならず、結晶構造として2−17構造を特定
し、さらに好ましくは微構造として2相分離型を特定す
ることにより、高い保磁力と角形比を有する希土類−鉄
−窒素−水素−M成分系磁性材料とその製造方法を提供
しようとするものである。
[Problems to be Solved by the Invention] The present invention provides a rare earth-iron-nitrogen-hydrogen based novel magnetic anisotropic material of the prior application by adding an M component to provide high properties as a bulk magnet, particularly a sintered magnet and a bonded magnet. Not only specify the content of each element constituting the magnetic material, but also specify the 2-17 structure as the crystal structure, and more preferably specify the two-phase separation type as the microstructure. It is an object of the present invention to provide a rare earth-iron-nitrogen-hydrogen-M component magnetic material having a high coercive force and a high squareness ratio and a method for producing the same.

[課題を解決するための手段] 磁性材料RαFe(100−α−β−γ−δ)βγ
δにおいて、Mを含有しない組成においては熱処理、
雰囲気処理を行っても、Sm−Co、Nd−Fe−B系で見られ
るような2相分離型の微構造を有する磁性材料を調製す
ることは難しい。従って、焼結磁石のようなバルクとし
て、高い磁気特性を引き出すことが難しい。
[Means for Solving the Problems] Magnetic Material R α Fe (100-α-β-γ-δ) N β H γ
In M δ , heat treatment is performed for a composition containing no M,
Even if the atmosphere treatment is performed, it is difficult to prepare a magnetic material having a two-phase separation type microstructure as seen in Sm-Co and Nd-Fe-B systems. Therefore, it is difficult to obtain high magnetic properties as a bulk such as a sintered magnet.

そこで、本発明では、金属元素、半金属元素、無機化
合物をR−Fe−N−H系磁性材料に加えることによっ
て、上記課題を解決したものである。すなわち本発明の
構成は、 (1)一般式RαFe(100−α−β−γ−δ)βγ
δで表わされる磁性材料であり、 Rはサマリウムを主成分とする希土類元素、 MはLi、Na、K、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、
Nb、Ta、Cr、Mo、W、Mn、Pd、Cu、Ag、Zn、B、Al、G
a、In、C、Si、Ge、Sn、Pb、Biの元素及びこれらの元
素ならびにRの酸化物、フッ化物、炭化物、窒化物、水
素化物、炭酸塩、硫酸塩、ケイ酸塩、塩化物、硝酸塩の
うち少なくとも一種、 α、β、γ、δはそれぞれモル百分率で 5≦α≦20 5≦β≦30 0.01≦γ≦10 0.1≦δ≦40 であって、かつその少なくともR、Fe及びNを含んだ相
が、実質的に2−17構造からなることを特徴とする磁性
材料、 (2)上記(1)に記載の磁性材料の成分であるFeの0.
01〜50モル%をCoで置換した組成を有することを特徴と
する磁性材料、及び (3)上記(1)または(2)に記載の磁性材料から成
り、その組織の微構造の粒子境界部に上記一般式で示し
た成分のうちMの含有量が多い相を有し、粒子中心部に
はMの含有量が少ないか、または、Mを含有しない相を
有することを特徴とする2相分離型のバルク磁石、及び (4)上記(1)または(2)に記載の磁性材料を含有
することを特徴とするボンド磁石、及び (5)上記(3)に記載のバルク磁石を含有することを
特徴とするボンド磁石であり、 (6)R、Fe、N、Hからなる磁性材料、またはFeの0.
01〜50モル%をCoで置換した材料に、M成分を添加し微
粉砕するか、微粉砕してからM成分を添加して、それを
焼結することによって、このM成分を主に粒子境界部に
拡散させ、反応させることを特徴とする上記(3)に記
載の2相分離型のバルク磁石の製造方法、及び (7)母合金合成時に、M成分を混合添加することを特
徴とする上記(1),(2)に記載の磁性材料の製造方
法、及び (8)母合金合成時に、M成分を混合添加することを特
徴とする上記(3)に記載のバルク磁石の製造方法、及
び (9)母合金合成時に、M成分を混合添加することを特
徴とする上記(4),(5)に記載のボンド磁石の製造
方法である。
Therefore, the present invention has solved the above-mentioned problem by adding a metal element, a metalloid element, and an inorganic compound to an R—Fe—N—H-based magnetic material. That is, the constitution of the present invention is as follows: (1) General formula R α Fe (100-α-β-γ-δ) N β H γ
A magnetic material represented by M δ , R is a rare earth element containing samarium as a main component, M is Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V,
Nb, Ta, Cr, Mo, W, Mn, Pd, Cu, Ag, Zn, B, Al, G
a, In, C, Si, Ge, Sn, Pb, Bi and these elements and R oxides, fluorides, carbides, nitrides, hydrides, carbonates, sulfates, silicates, chlorides , At least one of nitrates, α, β, γ, and δ are each represented by a molar percentage of 5 ≦ α ≦ 205 ≦ β ≦ 30 0.01 ≦ γ ≦ 10 0.1 ≦ δ ≦ 40, and at least R, Fe and A magnetic material characterized in that the N-containing phase substantially has a 2-17 structure; (2) 0.1% of Fe which is a component of the magnetic material described in (1) above.
A magnetic material characterized by having a composition in which 01 to 50 mol% is substituted with Co; and (3) a magnetic material according to the above (1) or (2), which has a microstructure particle boundary portion of the structure. A phase having a high content of M among the components represented by the above general formula, and a phase having a low content of M or a phase not containing M in the center of the particle. Separated bulk magnet, and (4) a bonded magnet containing the magnetic material described in (1) or (2) above, and (5) a bulk magnet described in (3) above. (6) a magnetic material composed of R, Fe, N, H, or Fe
By adding the M component to the material in which 01 to 50 mol% has been replaced by Co and pulverizing, or by pulverizing and adding the M component and sintering the M component, the (3) The method for producing a two-phase-separated bulk magnet according to (3) above, wherein the M component is mixed and added during the synthesis of the master alloy. (1) The method for producing a magnetic material according to (1) or (2), and (8) the method for producing a bulk magnet according to (3), wherein the M component is mixed and added during the synthesis of the master alloy. And (9) The method for producing a bonded magnet as described in (4) or (5) above, wherein the M component is mixed and added during the synthesis of the master alloy.

上記でいう「磁性材料」とは、一般には強磁性を示す
材料のことであるが、本願では特に、飽和磁化、残留磁
束密度、固有保磁力、磁気異方性エネルギー、角形比、
最大エネルギー積、キュリー温度、熱減磁率の各種磁気
特性に優れた、永久磁石材料として好適な磁性材料のこ
とをいう。
The “magnetic material” referred to above is generally a material exhibiting ferromagnetism, but in the present application, particularly, saturation magnetization, residual magnetic flux density, intrinsic coercive force, magnetic anisotropic energy, squareness ratio,
It refers to a magnetic material that is excellent in various magnetic properties such as maximum energy product, Curie temperature, and thermal demagnetization rate and is suitable as a permanent magnet material.

「ボンド磁石」とは、磁性材料を熱可塑性樹脂または
熱硬化性樹脂に分散し、成形した磁石のことをいう。
The “bond magnet” refers to a magnet formed by dispersing a magnetic material in a thermoplastic resin or a thermosetting resin and molding the same.

「バルク磁石」とは一般に塊状の磁石のことを指す
が、本願では特に焼結磁石に例示されるように金属相ま
たは無機物相が磁性材料粒子の境界相となり、全体とし
て塊状を成している磁石のことをいい、「ボンド磁石」
はバルク磁石に含めない。
The term "bulk magnet" generally refers to a massive magnet, but in the present application, as exemplified particularly by a sintered magnet, a metal phase or an inorganic phase becomes a boundary phase of magnetic material particles, and forms a bulk as a whole. "Bond magnet" means a magnet
Is not included in the bulk magnet.

複数の磁性材料粒子がM成分により結合されている状
態であれば、粒状などの不定形の形態であったとしても
「バルク磁石」とみなす。
If a plurality of magnetic material particles are bound by the M component, they are regarded as “bulk magnets” even if they have an irregular shape such as a granular shape.

例えば、磁性材料微粉体にM成分を添加し熱処理する
ことにより粒子間にM成分を介した結合が生じた粉体
や、一旦焼結したバルク磁石を粉砕した粉体も、2相分
離型構造を粉体内部に有してさえおれば「バルク磁石」
とみなし、このようなバルク磁石はボンド磁石用途の磁
性材料となる。
For example, a powder in which the M component is bonded to the particles by adding the M component to the magnetic material fine powder and then heat-treated, or a powder obtained by pulverizing a once sintered bulk magnet is also a two-phase separated structure. "Bulk magnet" as long as it is inside the powder
Thus, such a bulk magnet is a magnetic material for bonded magnet applications.

ここに、上記でいう、2−17構造とは、Th2Zn17型菱
面体晶あるいはTh2Ni17型六方晶をさす。例えば、文献H
andbook on the Physics and Chemistry of Rar
e−Earths,Volume 2−Alloys and Intermetallics
(North−Holland Publishing Company,1979)の6ペ
ージに希土類−鉄の2−17組成合金がTh2Zn17型菱面体
晶あるいはTh2Ni17型六方晶の結晶構造をとることが示
されているが、これらのいずれの構造をとるかは、主に
希土類の種類によって決まる。
Here, the 2-17 structure mentioned above refers to a Th 2 Zn 17 type rhombohedral or a Th 2 Ni 17 type hexagonal crystal. For example, Reference H
andbook on the Physics and Chemistry of Rar
e-Earths, Volume 2-Alloys and Intermetallics
(North-Holland Publishing Company, 1979), p. 6 shows that a rare earth-iron 2-17 composition alloy has a Th 2 Zn 17 type rhombohedral or Th 2 Ni 17 type hexagonal crystal structure. However, which of these structures is adopted depends mainly on the type of rare earth.

より実用的であるSmなどの軽希土類はTh2Zn17構造を
とるので、本発明においては2−17構造のうちTh2Zn17
構造が好ましい。
Since more light rare earth such as practical is Sm take Th 2 Zn 17 structure, Th 2 Zn 17 of 2-17 structure in the present invention
The structure is preferred.

また、M成分の混合方法としては、焼結、もしくは焼
鈍前の粉砕時に混入する方法が最も有効であり、かつこ
の添加方法によれば、焼結後の強磁性粒子境界部と内部
の2相分離型微構造を極めて効率よく、均一に作製でき
るため、焼結条件の制御、混合するM成分の種類により
種々の磁気特性を有する磁石を調製しうることが明らか
になった。
As the method of mixing the M component, the method of mixing during sintering or pulverization before annealing is most effective. According to this addition method, the ferromagnetic particle boundary after sintering and the internal two phase It has been clarified that since a separated microstructure can be produced extremely efficiently and uniformly, magnets having various magnetic properties can be prepared by controlling the sintering conditions and the type of the M component to be mixed.

なお、母合金鋳造の際M成分を添加して、2−17構造
を有する主相にM成分を共存させることもできる。
In addition, the M component can be added to the main phase having the 2-17 structure by adding the M component at the time of casting the master alloy.

すなわち、本発明の製造方法の構成は、R,FeまたはFe
+Co,N,Hからなる磁性材料の焼結前の微粉砕の時、また
は、焼結の時にM成分を添加して、焼結させることによ
って、このM成分を主に強磁性粒子境界部に拡散させる
か、若しくはさらに、反応させることを特徴とする2相
分離型のバルク磁石の製造方法、及び、母合金合成時に
M成分を混合添加させることを特徴とするR−Fe−N−
H−M磁性材料を用いたバルク磁石またはボンド磁石の
製造方法である。
That is, the structure of the production method of the present invention is R, Fe or Fe
Addition of the M component at the time of pulverization before sintering or sintering of the magnetic material composed of + Co, N, H, and sintering, the M component is mainly applied to the boundary of the ferromagnetic particles. A method for producing a two-phase separation type bulk magnet characterized by diffusing or further reacting, and R-Fe-N- characterized by mixing and adding an M component at the time of synthesizing a master alloy.
This is a method for manufacturing a bulk magnet or a bonded magnet using an HM magnetic material.

以下、前者の製造方法について詳しく述べる。 Hereinafter, the former manufacturing method will be described in detail.

本磁性材料の成分のうち、R−Fe−N−Hのみで磁性
粉体を構成した場合は粉体としては良好な磁気特性が得
られるものの、それを焼結し、熱処理を加えてもR−Fe
−N−H系ではSm−Co、Nd−Fe−B系で見られる有効な
相分離は起こらない。ところがこの系にM成分を加えた
場合、このM成分は強磁性粒子間領域に侵入し、焼結条
件に応じて主相間に分離層を設ける役割を演ずるか、も
しくはさらに主相と反応して低磁気特性領域を形成す
る。
When the magnetic powder is composed only of R-Fe-NH of the components of the present magnetic material, good magnetic properties can be obtained as the powder, but even if the powder is sintered and heat-treated, −Fe
In the -NH system, no effective phase separation observed in the Sm-Co and Nd-Fe-B systems occurs. However, when the M component is added to this system, the M component penetrates into the region between the ferromagnetic particles and plays a role of providing a separation layer between the main phases according to the sintering conditions, or further reacts with the main phase. A low magnetic characteristic region is formed.

特にM成分として、融点500℃以下の低融点元素Mlが
少なくとも一種含まれていると、低磁気特性領域を形成
するのに有効である。
In particular, when at least one low-melting element Ml having a melting point of 500 ° C. or less is contained as the M component, it is effective to form a low magnetic characteristic region.

しかし、融点500℃を越える元素Mh、または無機化合
物Miを加えた場合でも強磁性粒子間に微分散させること
で、同様な効果を得ることができる。
However, even when an element Mh having a melting point exceeding 500 ° C. or an inorganic compound Mi is added, a similar effect can be obtained by finely dispersing the ferromagnetic particles between the ferromagnetic particles.

勿論、このM成分はR−Fe−N−H−M系における熱
処理で相分離をひき起こしさえすれば有効であり、後述
する様に母合金の合成時もしくは窒化・水素化の段階で
添加する方法も有効である。
Of course, this M component is effective as long as it causes phase separation by heat treatment in the R-Fe-N-H-M system, and is added at the time of synthesis of the mother alloy or at the stage of nitriding and hydrogenating as described later. The method is also effective.

このようにR−Fe−N−H−M系磁性材料は、M成分
を含有しない場合に対して明瞭に区別でき、特に焼結磁
石において主として保磁力と角形比は顕著に向上する。
As described above, the R-Fe-NHM-based magnetic material can be clearly distinguished from the case where the M component is not contained, and particularly in a sintered magnet, the coercive force and the squareness mainly remarkably improve.

以下本発明の永久磁石材料の組成について詳細に説明
する。
Hereinafter, the composition of the permanent magnet material of the present invention will be described in detail.

なお、本発明中で各組成の含有率はモル百分率で表記
する。ここでいうモル百分率α、β、γ、δは、Mが単
一元素あるいは2元以上の多元元素系である場合、原子
百分率と同義であるが、Mが酸化物、窒化物などの無機
化合物を含む場合は化学式あるいは組成式の定める原子
団の原子量の総和を1モルとし、R、Fe、N、Hのそれ
ぞれ1原子を1モルとしてモル百分率を計算する。
In the present invention, the content of each composition is represented by mole percentage. The molar percentages α, β, γ, and δ here have the same meaning as atomic percentages when M is a single element or a multi-element system of two or more elements, but M is an inorganic compound such as an oxide or a nitride. Is included, the total of the atomic weights of the atomic groups determined by the chemical formula or the composition formula is defined as 1 mole, and the mole percentage is calculated with 1 atom of each of R, Fe, N, and H as 1 mole.

また、前述のように、本発明のR−Fe−N−H−M系
磁性材料では、2相分離型の微構造がその特徴の一つで
あるので微構造中の強磁性粒子境界部と、粒子内部では
組成は変動する。従って、ここでいう組成とは全微構造
の平均を言い、処理条件による微構造中での組成変動は
問わないこととする。
As described above, in the R-Fe-NHM-based magnetic material of the present invention, a two-phase separation type microstructure is one of its features. The composition varies inside the particles. Therefore, the composition here means the average of all the microstructures, and the composition variation in the microstructure due to the processing conditions does not matter.

本発明中のRは5〜20モル%の範囲にあることが必要
である。5モル%未満では保磁力が小さくなってしまう
し、20モル%を越えると残留磁束密度が小さくなってし
まうので、実用的な永久磁石にはならない。又、Rとし
てはサマリウムが好ましい。しかし、本発明の目的を達
成できる範囲内であればサマリウム以外の希土類元素が
少量混在していてもよい。
R in the present invention must be in the range of 5 to 20 mol%. If it is less than 5 mol%, the coercive force will be small, and if it exceeds 20 mol%, the residual magnetic flux density will be small, so that it will not be a practical permanent magnet. R is preferably samarium. However, a rare earth element other than samarium may be present in a small amount as long as the object of the present invention can be achieved.

また、このRは工業的生産により入手可能な純度でよ
く、望ましくは高純度の原料を用いる方がよい。
Further, R may have a purity that can be obtained by industrial production, and it is preferable to use a high-purity raw material.

Feは本磁性材料の基本組成であり、含有量が90モル%
まで有効である。また、このFe分をCo原子で置換した場
合はFeの50モル%までの置換ならば物性を損うことがな
く、組成、処理条件に応じて特異な物性値を引き出し得
る、 このCoでFeを置換することにより期待される特異な物
性値とは、主に磁気特性の温度特性のことを意味し、0.
01モル%未満の置換ではこの改良効果は殆ど見られず、
50モル%を越える置換では残留磁束密度が低下し、好ま
しくない。
Fe is the basic composition of this magnetic material, and its content is 90 mol%
Valid up to. In addition, when this Fe component is replaced by a Co atom, if it is replaced by up to 50% by mole of Fe, physical properties are not impaired, and unique physical property values can be obtained depending on the composition and processing conditions. The unique physical property value expected by substituting means mainly the temperature characteristics of magnetic characteristics,
With less than 01 mol% substitution, this improvement effect is hardly seen,
If the substitution exceeds 50 mol%, the residual magnetic flux density decreases, which is not preferable.

なお、これらR−Fe組成のみについては2−14、2−
17組成など、いくつかの構造を基本とすることが考えら
れるが、とくに2−17構造を基礎にして窒素、水素、M
を加えていくのが磁気特性の面で好ましい。
In addition, about these R-Fe composition only, 2-14, 2-
Although it is conceivable that the composition is based on several structures such as the 17 composition, nitrogen, hydrogen, M
Is preferred in terms of magnetic properties.

窒素は5〜30モル%であることが必要である。5モル
%未満、30モル%を越えると磁気異方性が小さくなり、
保磁力も減少し、永久磁石材料としての実用性はない。
とくに10〜20モル%の範囲は保磁力、磁気異方性をはじ
め諸磁気特性が高く、好ましい。
Nitrogen needs to be 5 to 30 mol%. If it is less than 5 mol% or more than 30 mol%, the magnetic anisotropy decreases,
The coercive force also decreases, and is not practical as a permanent magnet material.
Particularly, the range of 10 to 20 mol% is preferable because various magnetic properties such as coercive force and magnetic anisotropy are high.

水素については0.01〜10モル%であることが必要であ
る。これ以外の組成領域では磁気特性は全般的低下する
とともに鉄のα相が析出し易くなり、その結果、特に保
磁力が低下して好ましくない。これも特に0.02〜5モル
%の範囲が好ましい。
Hydrogen needs to be 0.01 to 10 mol%. In a composition region other than this, the magnetic properties are generally deteriorated and the α phase of iron is easily precipitated, and as a result, the coercive force is particularly lowered, which is not preferable. This is particularly preferably in the range of 0.02 to 5 mol%.

M成分としてはLi、Na、K、Mg、Ca、Sr、Ba、Ti、Z
r、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Pd、Cu、Ag、Z
n、B、Al、Ga、In、C、Si、Ge、Sn、Pb、Biの元素及
びこれらの元素ならびにRの酸化物、フッ化物、炭化
物、窒化物、水素化物、炭酸塩、硫酸塩、ケイ酸塩、塩
化物、硝酸塩のうち少なくとも1種存在していればよ
く、2種以上の共存系でも有効である。
As the M component, Li, Na, K, Mg, Ca, Sr, Ba, Ti, Z
r, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Pd, Cu, Ag, Z
n, B, Al, Ga, In, C, Si, Ge, Sn, Pb, Bi elements and these elements and R oxides, fluorides, carbides, nitrides, hydrides, carbonates, sulfates, It is sufficient that at least one of silicates, chlorides, and nitrates is present, and a coexistence system of two or more is effective.

無機化合物としては、MgO、Al2O3、CaO、ZrO2、TiO、
Ti2O3、希土類酸化物などの酸化物、AlF3、ZnF2、Ca
F2、CrF2、SnF2、PbF2、LiF、SrF2、HfF4、PdF3、AgF、
AgF2、希土類フッ化物などのフッ化物、SiC、TiC、Zr
C、WC、TaC、NbC、VC、Mg2C3、Mo2C、MoC、HfC、希土類
炭化物などの炭化物、AlN、Si3N4、Zn3N2、InN、GaN、C
a3N2、Ge3N4、CrN、Sn3N2、W2N3、TaN、TiN、NbN、VN、
Mg3N2、Mo2N、MoN、BN、HfN、希土類窒化物などの窒化
物、ZrH2、CaH2、CrH、CrH2、GeH、GeH2、LiH、水素化
ストロンチウム、水素化パラジウム、希土類水素化物な
どの水素化物、MgCO3、SrCO3、BaCO3、CaCO3、MnCO3、L
i2CO3、希土類炭酸塩などの炭酸塩、Ag2SO4、BaSO4、Sr
SO4、CaSO4、K2SO4、希土類硫酸塩などの硫酸塩、ケイ
酸ナトリウム、ケイ酸リチウム、ケイ酸カリウム、ケイ
酸ジルコニウム、ケイ酸バリウム、ケイ酸マグネシウ
ム、ケイ酸マンガン、希土類ケイ酸塩などのケイ酸塩、
NaCl、KCl、CuCl、PbCl2、BiCl2、AgCl、希土類塩化物
などの塩化物、KNO3、Al(NO3、AgNO3、希土類硝酸
塩などの硝酸塩が挙げられる。
As inorganic compounds, MgO, Al 2 O 3 , CaO, ZrO 2 , TiO,
Oxides such as Ti 2 O 3 and rare earth oxides, AlF 3 , ZnF 2 , Ca
F 2 , CrF 2 , SnF 2 , PbF 2 , LiF, SrF 2 , HfF 4 , PdF 3 , AgF,
AgF 2 , fluorides such as rare earth fluorides, SiC, TiC, Zr
C, WC, TaC, NbC, VC, Mg 2 C 3, Mo 2 C, MoC, HfC, carbides such as rare earth carbides, AlN, Si 3 N 4, Zn 3 N 2, InN, GaN, C
a 3 N 2 , Ge 3 N 4 , CrN, Sn 3 N 2 , W 2 N 3 , TaN, TiN, NbN, VN,
Mg 3 N 2 , Mo 2 N, MoN, BN, HfN, nitrides such as rare earth nitrides, ZrH 2 , CaH 2 , CrH, CrH 2 , GeH, GeH 2 , LiH, strontium hydride, palladium hydride, rare earth Hydrides such as hydrides, MgCO 3 , SrCO 3 , BaCO 3 , CaCO 3 , MnCO 3 , L
i 2 CO 3 , carbonates such as rare earth carbonates, Ag 2 SO 4 , BaSO 4 , Sr
SO 4 , CaSO 4 , K 2 SO 4 , sulfates such as rare earth sulfates, sodium silicate, lithium silicate, potassium silicate, zirconium silicate, barium silicate, magnesium silicate, manganese silicate, rare earth silicate Silicates such as salts,
NaCl, KCl, CuCl, PbCl 2 , BiCl 2 , AgCl, chlorides such as rare earth chlorides, and nitrates such as KNO 3 , Al (NO 3 ) 3 , AgNO 3 , and rare earth nitrates are exemplified.

その組成としては0.1から40モル%まで考えられる
が、30モル%以上ではいずれの金属でも磁化は減少し、
保磁力が増加する傾向が顕著になり、特殊な用途の磁気
材料となる。40モル%を越えるとこの傾向はさらに強ま
り、永久磁石としては実用的でない。0.1モル%未満で
は添加効果はほとんど見られない。
The composition can be considered from 0.1 to 40 mol%, but at 30 mol% or more, the magnetization decreases with any metal,
The tendency of the coercive force to increase becomes remarkable, and it becomes a magnetic material for special applications. If it exceeds 40 mol%, this tendency is further strengthened and is not practical as a permanent magnet. If less than 0.1 mol%, the addition effect is hardly observed.

本節のはじめに述べたように、本発明で得られる、例
えば、焼結磁石の微構造では強磁性粒子の粒界部と粒内
で明らかに異なる組成の相が存在する。特に高い磁気特
性を有する試料ではM成分が粒界部に多く、粒内では濃
度が低い。この微構造は磁石特性の発現、向上に非常に
有用である。
As described at the beginning of this section, in the microstructure of, for example, a sintered magnet obtained by the present invention, a phase having a distinctly different composition exists between a grain boundary portion of ferromagnetic particles and a grain. Particularly, in a sample having high magnetic properties, the M component is large in the grain boundary portion, and the concentration is low in the grain. This microstructure is very useful for developing and improving magnet properties.

従って、本発明の試料組成は、とくにM成分について
その濃度の低い部分が各強磁性粒子の中央部に、その濃
度の高い部分が強磁性粒子表面及び粒界部に多く存在す
る2相型の微構造の平均を意味する。
Therefore, the sample composition of the present invention has a two-phase type in which a low concentration portion of the M component is present at the center of each ferromagnetic particle, and a high concentration portion is present at the ferromagnetic particle surface and the grain boundary portion. Mean microstructure average.

M成分の種類と2相分離型のバルク磁石の微構造につ
いて、更に詳しく述べる。
The type of the M component and the microstructure of the two-phase separated bulk magnet will be described in more detail.

前述のようにM成分として放射性元素、および8族の
一部の金属元素をのぞき、非磁性でさえあれば、どの元
素及びそれらの無機化合物を添加しても、主として角形
比、保磁力向上に寄与する。しかしながら、添加M成分
の種類によって磁気特性に与える効果及びバルク磁石の
微構造は異なる。
As described above, except for the radioactive element as the M component and some of the metal elements of Group 8, any element and their inorganic compounds can be added to improve the squareness ratio and the coercive force, as long as they are nonmagnetic. Contribute. However, the effect on the magnetic properties and the microstructure of the bulk magnet differ depending on the type of the added M component.

M成分としてZn、Ga、Sn、In、Pb、Biなどのような低
融点元素Mlを加えた場合、焼結時にMlの融点以上の温度
で熱処理することにより強磁性粒子の粒界部にMlが容易
に拡散し、磁気特性の高い2層分離型のバルク磁石を得
ることができる。
When a low-melting element Ml such as Zn, Ga, Sn, In, Pb, or Bi is added as an M component, heat treatment is performed at a temperature equal to or higher than the melting point of Ml at the time of sintering, so that Ml is added to the grain boundaries of the ferromagnetic particles. Are easily diffused, and a two-layer separated bulk magnet having high magnetic properties can be obtained.

さらに、Zn、Ga、Snなどのように鉄と多くの化合物を
形成する物質を中心に添加した場合と、In、Pb、Biなど
のように鉄主体の組成で安定な化合物を形成し難い物質
を中心に添加した場合では添加の効果は異なる。しか
し、いずれの場合でも焼結等の処理条件の最適化により
永久磁石材料と称し得る特性を付与することができる。
In addition, substances that form many compounds with iron, such as Zn, Ga, Sn, etc., and substances that are difficult to form stable compounds with a composition mainly composed of iron, such as In, Pb, Bi, etc. The effect of the addition is different when mainly added. However, in any case, characteristics that can be called a permanent magnet material can be imparted by optimizing processing conditions such as sintering.

In−Ga、Ga−Zn、Sn−Znなどの低融点元素同志の2種
以上の合金あるいは混合物を用いた場合、多くは融点が
変化するために、より低温で処理しても高い磁気特性を
付与できる場合がある。さらに、非晶点組成のLa−Cu合
金のような高融点金属同志の組み合わせでも融点が低下
するため、Mlと同様に扱う事が可能な場合がある。ま
た、In−Znのように常温で相分離する多元系でもM成分
として添加可能であるが、添加量比による磁気特性変化
は上記多元系と異なり、特異的な挙動を示す場合がある
ので、焼結条件の最適化には注意を要する。
When two or more alloys or mixtures of low-melting elements such as In-Ga, Ga-Zn, and Sn-Zn are used, the melting point changes in many cases. In some cases, it can be granted. Further, even in the case of a combination of high melting point metals such as an La-Cu alloy having an amorphous point composition, the melting point is lowered, so that it may be possible to treat the same as Ml. In addition, a multi-component system such as In-Zn, which separates phases at room temperature, can be added as an M component.However, a change in magnetic properties depending on the addition amount ratio is different from that of the multi-component system, and may exhibit a specific behavior. Care must be taken in optimizing the sintering conditions.

M成分として高融点元素Mhおよび無機化合物Miを添加
する場合は、強磁性体粒子の粒界に微分散させることに
より、2相分離型の微構造を有するバルク磁石を得るこ
とができ、主として角形比、保磁力向上に寄与する。と
くに、MhおよびMiの添加系においてTa、Nb、Sm、Cr、
V、W、C、Ge、Al、Ce、Zr、Ti、Mo、Si、Hf、Sm
2O3、MgO、Al2O3、AlF3、ZnF2、SiC、TiC、AlN、Si
3N4、Zn3N2、SrCO3,BaSO4、Li2SiO3、NaClなどをM成分
として用いると、高い角形比ならびに保磁力を付与する
ことができる。微粉砕又は微粉調整可能で安定なSi、Mg
O、Al2O3、Si3N4、SiC、TiCなどのMhならびにMi成分は
強磁性体粒子の粒界に微分散し易いため特に有効で、高
い磁気特性を与える。又、Cu、Mo、Pd、ZrH2、Ag2SO4
Mg2SiO4、MgCO3、KNO3などのMhならびにMiは高い残留磁
束密度を付与せしめる。
When the high-melting element Mh and the inorganic compound Mi are added as the M component, a bulk magnet having a two-phase separation type microstructure can be obtained by finely dispersing them at the grain boundaries of the ferromagnetic particles. It contributes to improving the ratio and coercive force. In particular, Ta, Nb, Sm, Cr,
V, W, C, Ge, Al, Ce, Zr, Ti, Mo, Si, Hf, Sm
2 O 3 , MgO, Al 2 O 3 , AlF 3 , ZnF 2 , SiC, TiC, AlN, Si
When 3 N 4 , Zn 3 N 2 , SrCO 3 , BaSO 4 , Li 2 SiO 3 , NaCl, or the like is used as the M component, a high squareness ratio and a coercive force can be provided. Stable Si, Mg with fine grinding or fine powder adjustment
Mh and Mi components such as O, Al 2 O 3 , Si 3 N 4 , SiC, and TiC are particularly effective because they easily disperse finely at the grain boundaries of ferromagnetic particles, and provide high magnetic properties. Also, Cu, Mo, Pd, ZrH 2 , Ag 2 SO 4 ,
Mh and Mi such as Mg 2 SiO 4 , MgCO 3 and KNO 3 give high residual magnetic flux densities.

これら、高融点元素Mh、無機化合物Miは2種以上の組
み合わせも可能である。
These high melting element Mh and inorganic compound Mi can be used in combination of two or more.

さらに、低融点元素Mlに高融点元素Mhまたは、および
無機化合物Miの組み合わせは特に有効である。Zr−Zn、
Sm−Zn、Cu−Zn、Si−Zn、Ge−Zn、Hf−InなどのMl−Mh
系、MgO−Zn、AlF3−Zn、TiC−Zn、Si3N4−Zn、Ag2SO4
−InなどのMi−Ml系、さらにMl−Mh−Mi系などの多元系
をM成分として用いると、強磁性粒子の粒界部にM成分
の分散性が良好な2相分離型の微構造を有する高磁気特
性の焼結磁石が得られる。
Further, a combination of the low melting element Ml with the high melting element Mh or the inorganic compound Mi is particularly effective. Zr-Zn,
Ml-Mh such as Sm-Zn, Cu-Zn, Si-Zn, Ge-Zn, Hf-In
System, MgO-Zn, AlF 3 -Zn , TiC-Zn, Si 3 N 4 -Zn, Ag 2 SO 4
When a multi-component system such as a Mi-Ml system such as -In or an Ml-Mh-Mi system is used as the M component, a two-phase-separated microstructure in which the dispersibility of the M component is good at the grain boundaries of the ferromagnetic particles. Thus, a sintered magnet having high magnetic properties having the following characteristics can be obtained.

高融点元素Mhにおいても、Mlと同様にAl、Zr、Si、T
a、Tiなどのような鉄と多くの化合物または固溶体を形
成する物質を中心に加えた場合と、Cuなどのように鉄主
体の組成で安定な化合物を形成し難い物質を中心に加え
た場合で添加の効果は異なる。しかし、いずれの場合で
も焼結等の処理条件の最適化により永久磁石と称し得る
特性を付与することができる。
In the high melting point element Mh, Al, Zr, Si, T
a, When mainly adding substances that form many compounds or solid solutions with iron, such as Ti, and when mainly adding substances, such as Cu, which are difficult to form stable compounds with an iron-based composition The effect of addition is different. However, in any case, characteristics that can be called a permanent magnet can be imparted by optimizing processing conditions such as sintering.

酸素を含む無機化合物Miのうち分解し易く、強磁性相
を強く酸化するものは、焼結等の熱処理条件によって添
加効果のない場合がある。しかし、強磁性粒子表面を薄
い酸化膜で覆うような程度の酸化が生じる場合は、この
限りではない。
Among the inorganic compounds Mi containing oxygen, those which are easily decomposed and strongly oxidize the ferromagnetic phase may have no effect of addition depending on heat treatment conditions such as sintering. However, this does not apply to the case where oxidation occurs to such an extent that the surface of the ferromagnetic particles is covered with a thin oxide film.

また、結晶水を含む無機化合物Miのうち、焼結等の熱
処理時に結晶水と同時に酸素を放出するものは強磁性粒
子を酸化し、磁気特性低下の原因となるので好ましくな
い。
Further, among the inorganic compounds Mi containing water of crystallization, those that release oxygen simultaneously with the water of crystallization during heat treatment such as sintering are not preferable because they oxidize the ferromagnetic particles and cause deterioration of magnetic properties.

強磁性粒子の表面酸化は5重量%を越えなければ、磁
気特性に大きな影響を及ぼさないが、高い残留磁束密度
を達成するためには、好ましくは3重量%以下にするこ
とが必要である。
If the surface oxidation of the ferromagnetic particles does not exceed 5% by weight, there is no significant effect on the magnetic properties, but in order to achieve a high residual magnetic flux density, it is necessary that the content is preferably 3% by weight or less.

なお添加成分として、R単独、R−Fe、R−M、R−
Fe−M、更にRの無機化合物、Feの無機化合物、及びそ
れらとMの混合系を添加することもできる。又上記Feを
Co又はFe−Coに置き換えた添加系も可能である。
As additional components, R alone, R-Fe, RM, R-
Fe-M, an inorganic compound of R, an inorganic compound of Fe, and a mixed system of these and M can also be added. Also replace the above Fe
Addition systems replaced with Co or Fe-Co are also possible.

特に強磁性相と親和性が大きい、R組成100〜30モル
%のR−Fe合金または各種組成のR−ZnなどのR−M多
元系、R−Fe−Zn合金などのR−Fe−M多元系をM成分
として、製造工程の各段階で加えることは有効である。
In particular, R-Fe alloys having a high affinity for ferromagnetic phases, such as R-Fe alloys having an R composition of 100 to 30 mol% or R-Zn of various compositions, and R-Fe-M such as R-Fe-Zn alloys. It is effective to add a multi-component system as an M component at each stage of the production process.

製造方法 次に本発明の磁性材料の製造方法について説明をする
が、特にこれに限定はしない。
Manufacturing Method Next, a method for manufacturing the magnetic material of the present invention will be described, but the present invention is not particularly limited thereto.

この製造方法のフローチャートを第1図に示す。すな
わち、 (1)母合金の合成では希土類−鉄系合金を合成する
が、この段階でM成分を添加することも可能である。こ
の場合、窒化粉砕後の磁性粉体の磁束密度が低下する傾
向にあるが、主に角形比と保磁力が向上する。(2)粗
粉砕、(3)窒化、水素化で本発明の磁気材料粉体を作
製し得る。ただし、ここまでの段階でM成分を含有させ
ず、次の(4)微粉砕ではじめて添加する方法もあり、
この方法においては、分解性、昇華性の高いM成分を添
加することが可能となり、とくに有効である。
FIG. 1 shows a flowchart of this manufacturing method. That is, (1) In the synthesis of the master alloy, a rare earth-iron alloy is synthesized, but at this stage, the M component can be added. In this case, although the magnetic flux density of the magnetic powder after nitriding pulverization tends to decrease, mainly the squareness ratio and the coercive force are improved. The magnetic material powder of the present invention can be produced by (2) coarse pulverization, (3) nitriding and hydrogenation. However, there is also a method in which the M component is not contained at the stage so far and is added only in the next (4) pulverization,
In this method, it is possible to add an M component having high decomposability and sublimation, which is particularly effective.

磁場配向、成形を経て、(5)焼結ではじめて焼結磁
石が作製できる。さらに、着磁を行い、永久磁石のプロ
セスを完結する。また(4)工程の後得られた磁性粉を
用いてボンド磁石を製造することもできる。
After the magnetic field orientation and molding, a sintered magnet can be produced only by (5) sintering. Further, magnetization is performed to complete the permanent magnet process. A bonded magnet can also be manufactured using the magnetic powder obtained after the step (4).

以下に各プロセスについて詳細に述べる。 The following describes each process in detail.

(1)母合金の合成 原料合金は高周波炉、アーク溶解炉によっても、又液
体超急冷法によっても作製できる。R−Fe原料合金の組
成はRが5〜25モル%、Feが75〜95モル%の範囲にある
ことが好ましい。R−Fe原料合金におけるRが5モル%
未満では合金中にα−Fe相が多く存在し、高保磁力が得
られない。また、R−Fe原料合金におけるRが25モル%
を越えると高い残留磁束密度が得られない。以上の説明
は、R−Fe原料合金におけるRの組成についての説明で
ある。R−Fe−N−H−M磁性材料におけるRの組成範
囲はすでに説明したように5〜20モル%としなくてはな
らない。M成分もこの段階で同時に合金中に添加するこ
とが可能である。
(1) Synthesis of mother alloy The raw material alloy can be produced by a high-frequency furnace or an arc melting furnace, or by a liquid quenching method. The composition of the R—Fe raw material alloy is preferably such that R is in the range of 5 to 25 mol% and Fe is in the range of 75 to 95 mol%. R in the R-Fe raw material alloy is 5 mol%
If it is less than the above, a large amount of α-Fe phase exists in the alloy, and a high coercive force cannot be obtained. Further, R in the R—Fe raw material alloy is 25 mol%.
If it exceeds, a high residual magnetic flux density cannot be obtained. The above description is about the composition of R in the R—Fe raw material alloy. The composition range of R in the R—Fe—N—H—M magnetic material must be 5 to 20 mol% as described above. The M component can also be added to the alloy at this stage at the same time.

高周波炉及びアーク溶解炉を用いた場合、溶融状態か
ら合金が凝固する際にFeが析出し易く、このことは磁気
特性、とくに保磁力の低下をひきおこす。そこでFe単体
での相を消失させ、合金の組成の均一化および結晶性の
向上を目的として焼鈍を行うことが有効である。この焼
鈍は800℃〜1300℃で行う場合に効果が顕著である。こ
の方法で作製した合金は液体超急冷法などと比較して結
晶性が良好であり、高い残留磁束密度を有している。
When a high-frequency furnace and an arc melting furnace are used, Fe is easily precipitated when the alloy solidifies from a molten state, which causes a decrease in magnetic properties, particularly, coercive force. Therefore, it is effective to perform annealing for the purpose of eliminating the phase of Fe alone and making the composition of the alloy uniform and improving the crystallinity. The effect is remarkable when this annealing is performed at 800 ° C. to 1300 ° C. The alloy produced by this method has good crystallinity and a high residual magnetic flux density as compared with a liquid quenching method or the like.

液体超急冷法、ロール回転法などの合金作製法でも、
目的組成の合金を作製できる。しかも、これらの方法に
より作製液体超急冷法、ロール回転法などの合金作製法
でも、目的組成の合金を作製できる。しかも、これらの
方法により作製した合金の結晶粒は微細であり、条件に
よってはサブミクロンの粒子も調製できる。ただし、冷
却速度が大きい場合には合金の非晶質化が起こり、窒
化、水素化後にも残留磁束密度、保磁力が他の方法ほど
上昇しない。この場合にも焼鈍等の後処理が必要であ
る。
Even with alloy manufacturing methods such as liquid quenching method and roll rotation method,
An alloy having a desired composition can be produced. In addition, an alloy having a desired composition can be produced by an alloy producing method such as a liquid quenching method and a roll rotation method by these methods. In addition, the crystal grains of the alloy produced by these methods are fine, and submicron particles can be prepared depending on the conditions. However, when the cooling rate is high, the alloy becomes amorphous, and the residual magnetic flux density and the coercive force do not increase as much as other methods even after nitriding or hydrogenating. Also in this case, post-treatment such as annealing is necessary.

(2)粗粉砕 この段階の粉砕はジョークラッシャー、スタンプミル
のような粗粉のみを調製するような方法でもよいし、ボ
ールミル、ジェットミルによっても条件次第で可能であ
る。しかし、この粉砕は次の段階における窒化、水素化
を均一に行わしめるためのものであり、その条件とあわ
せて十分な反応性を有し、かつ酸化が顕著に進行しない
粉体状態に調製することが重要である。
(2) Coarse pulverization The pulverization at this stage may be a method of preparing only coarse powder such as a jaw crusher or a stamp mill, or a ball mill or a jet mill, depending on conditions. However, this pulverization is for uniformly performing nitriding and hydrogenation in the next stage, and has sufficient reactivity in accordance with the conditions, and is prepared in a powder state in which oxidation does not remarkably progress. This is very important.

M成分の混合についてはこの粉砕時に行うことも可能
である。
The mixing of the M component can be performed at the time of this pulverization.

(3)窒化、水素化 粉砕された原料母合金中に窒素及び水素を化合もしく
は含浸させる方法としては原料合金粉末をアンモニアガ
ス或いはアンモニアガスを含む還元性の混合ガス中で加
圧あるいは加熱処理する方法が有効である。合金中に含
まれる窒素及び水素量はアンモニアガス含有混合ガスの
混合成分比、及び加熱温度、加圧力、処理時間によって
制御し得る。
(3) Nitriding and hydrogenation As a method for compounding or impregnating nitrogen and hydrogen in the pulverized raw material mother alloy, the raw material alloy powder is pressurized or heated in an ammonia gas or a reducing mixed gas containing an ammonia gas. The method is effective. The amounts of nitrogen and hydrogen contained in the alloy can be controlled by the mixed component ratio of the mixed gas containing ammonia gas, the heating temperature, the pressure, and the processing time.

混合ガスとしては水素、ヘリウム、ネオン、窒素及び
アルゴンのいずれか、もしくは2種以上とアンモニアガ
スを混合したガスが有効である。混合比は処理条件との
関連で変化させ得るが、アンモニアガス分圧としては、
とくに0.02〜0.75atmが有効であり、処理温度は200〜65
0℃の範囲が好ましい。低温では侵入速度が小さく、650
℃を越える高温では鉄の窒化物が生成し、磁気特性は低
下する。加圧処理では10atm程度の加圧でも窒素、水素
の含有量を変化させ得る。
As the mixed gas, any one of hydrogen, helium, neon, nitrogen, and argon, or a mixture of two or more of them and ammonia gas is effective. The mixing ratio can be changed in relation to the processing conditions, but as the ammonia gas partial pressure,
Especially 0.02-0.75atm is effective, processing temperature is 200-65
A range of 0 ° C. is preferred. The penetration rate is low at low temperatures, 650
At a high temperature exceeding ℃, iron nitrides are formed and the magnetic properties are degraded. In the pressure treatment, the contents of nitrogen and hydrogen can be changed even with a pressure of about 10 atm.

この窒化、水素化の工程で注意すべき点は酸化であ
り、雰囲気中に多量の酸素が存在していると磁気特性は
低下する。従って、でき得る限り酸素分圧を低下させる
方がのぞましい。
A point to be noted in the nitridation and hydrogenation steps is oxidation. When a large amount of oxygen is present in the atmosphere, the magnetic characteristics are deteriorated. Therefore, it is desirable to lower the oxygen partial pressure as much as possible.

アンモニアガス以外のガスを窒化、水素化雰囲気の主
成分とすると、反応効率は著しく低下する。しかし、た
とえば水素ガスと窒素ガスの混合ガスを用い長時間反応
を行うと窒素及び水素の導入は可能である。
When a gas other than ammonia gas is used as a main component in the nitriding or hydrogenating atmosphere, the reaction efficiency is significantly reduced. However, if a long-term reaction is performed using a mixed gas of hydrogen gas and nitrogen gas, nitrogen and hydrogen can be introduced.

(4)微粉砕 R−Fe−N−H−M系磁性材料においてMの添加が最
も顕著な効果を示すのは、窒化、水素化に続く、この段
階でM成分を添加混合し、焼結する方法である。
(4) Finely pulverized In the R-Fe-NHM-based magnetic material, the most remarkable effect of the addition of M is that, after nitriding and hydrogenation, the M component is added and mixed at this stage and sintered. How to

添加量は0.1モル%程度の少量から40モル%までそれ
ぞれ量に応じた添加効果が見られる。とくに2モル%〜
20モル%の範囲はM成分が磁気特性とくに焼結体の(B
H)max値を向上させるのに有効である。0.1〜2モル%
の範囲では残留磁束密度の低下が小さく保磁力は原料粉
体を少し上まわる程度である。
The amount of addition can be seen from the small amount of about 0.1 mol% to 40 mol%, and the addition effect according to each amount can be seen. Especially 2 mol% ~
In the range of 20 mol%, the M component has magnetic properties, especially (B
H) Effective for improving the max value. 0.1 to 2 mol%
In the range, the decrease in the residual magnetic flux density is small and the coercive force is slightly higher than that of the raw material powder.

一方、20モル%〜30モル%程度では保磁力、角形性に
比較的優れた磁石が得られるが残留磁束密度は低くな
る。30〜40モル%では保磁力が極めて大きくなるが磁化
は小さく、特殊な磁石材料である。40モル%を越えると
実用的ではない。
On the other hand, at about 20 mol% to 30 mol%, a magnet having relatively excellent coercive force and squareness can be obtained, but the residual magnetic flux density becomes low. At 30 to 40 mol%, the coercive force becomes extremely large, but the magnetization is small, and it is a special magnet material. If it exceeds 40 mol%, it is not practical.

微粉砕方法としてはボールミルで混合、粉砕すること
が最も有効であるが、カッターミル、ジェットミルなど
の方法で混合、粉砕することも可能である。しかし、ど
の粉砕法によっても、微粉砕前後で微粉体の水素量が変
化する場合があり、この水素量を本発明で規定する組成
の範囲内に制御することが必要である。また、この際、
混合粉砕条件は最終的な磁石物性に顕著な影響を与え
る。すなわち、この段階で磁性粉体はM成分と混合する
と同時に粒子径、形態も変化するため、成分Mが拡散し
た後の微構造はこの段階の処理条件の影響を受けるため
である。微粉砕後の平均粒径は数μm〜10μm程度がの
ぞましく、サブミクロンに達すると、焼結時にM成分と
の反応があまりに容易に起こったりして、焼結後の磁気
特性はあまり向上しない。また、サブミクロン粒子では
酸化も容易におこり、取扱いも難しくなる。
Mixing and pulverizing with a ball mill is most effective as a fine pulverizing method, but mixing and pulverizing with a method such as a cutter mill and a jet mill are also possible. However, the amount of hydrogen in the fine powder may change before and after pulverization by any of the pulverization methods, and it is necessary to control the amount of hydrogen within the range of the composition specified in the present invention. At this time,
The mixing and grinding conditions have a significant effect on the final magnet properties. That is, at this stage, the magnetic powder mixes with the M component, and at the same time, the particle diameter and morphology change. Therefore, the microstructure after the component M is diffused is affected by the processing conditions at this stage. The average particle size after pulverization is preferably about several μm to 10 μm, and when it reaches submicron, the reaction with the M component occurs too easily during sintering, and the magnetic properties after sintering are not so high. Does not improve. In addition, submicron particles are easily oxidized and difficult to handle.

一方、粒子径が数十μmになると、各粒子内に多数の
磁区が集合しているため、M成分の添加効果は小さくな
り保磁力が焼結によって顕著には向上しなくなる。
On the other hand, when the particle diameter is several tens of μm, since a large number of magnetic domains are aggregated in each particle, the effect of adding the M component is reduced, and the coercive force is not significantly improved by sintering.

なお、次の焼結プロセスを行わず、単なる熱処理のみ
を行った場合でも、磁気特性は大きく変化させることが
できる。従って例えばボンド磁石等への応用はこの段階
後の熱処理を経過した粉体を用いて行うことができる。
It should be noted that the magnetic properties can be greatly changed even when only a simple heat treatment is performed without performing the next sintering process. Therefore, for example, application to a bonded magnet or the like can be performed using powder that has undergone heat treatment after this stage.

(5)焼結 焼結は他の焼結磁石と同様、材料の充填密度を上げ、
残留磁束密度を高めたり、材料の機械的強度を上げる目
的で行う。その方法は一般の磁気異方性磁石と同様に、
外部磁場中で磁性粉を磁場配向させプレス体に成型した
後、熱処理すればよい。
(5) Sintering Sintering, like other sintered magnets, increases the packing density of the material,
This is performed for the purpose of increasing the residual magnetic flux density and increasing the mechanical strength of the material. The method is similar to a general magnetic anisotropic magnet,
The heat treatment may be performed after the magnetic powder is magnetically oriented in an external magnetic field and formed into a pressed body.

具体的な焼結法としては通常の常圧焼結、ホットプレ
ス、HIPなどが挙げられるが、ここでは磁気特性を向上
させ、かつ、HIP法など大型の装置を必要としないホッ
トプレス法、とくに雰囲気ホットプレスについて述べ
る。
Specific examples of the sintering method include ordinary atmospheric sintering, hot pressing, and HIP.Here, a hot pressing method that improves magnetic properties and does not require a large device such as the HIP method, Atmospheric hot press is described.

本磁性粉体は金属合金を窒化、水素化して得られるの
で、構造中にN及びHを焼結後も所定量、維持しなけれ
ば目的の磁気特性を得ることはできない。従って、550
℃から650℃の温度領域ではアンモニアガス、水素ガス
又は窒素ガスを含有する混合ガス中で焼成する必要があ
る。先に述べたように、とくにNH3−H2混合ガスは構造
中のN、H量を制御するために有効である。ただし、55
0℃以下の温度領域で焼結を行う場合は、上記の雰囲気
ガスに加えて、アルゴン、ヘリウムなどの不活性ガス雰
囲気中、真空中で焼成しても構造中のN、H量を制御す
ることが可能である。また、650℃以上の温度では雰囲
気によらず分解が進行し、α−Fe相が析出し、N、H量
も当初量から相当量変化する。従って、650℃以下で焼
結することが望ましく、かつ、ホットプレスの圧力につ
いてはダイス材質にもよるが10ton/cm2前後で十分であ
る。
Since the present magnetic powder is obtained by nitriding and hydrogenating a metal alloy, the desired magnetic properties cannot be obtained unless a predetermined amount of N and H is maintained in the structure after sintering. Therefore, 550
In the temperature range of from ℃ to 650 ℃, it is necessary to fire in a mixed gas containing ammonia gas, hydrogen gas or nitrogen gas. As described above, the NH 3 —H 2 mixed gas is particularly effective for controlling the amounts of N and H in the structure. However, 55
When sintering is performed in a temperature range of 0 ° C. or less, the amount of N and H in the structure is controlled by firing in a vacuum in an atmosphere of an inert gas such as argon or helium in addition to the above atmosphere gases. It is possible. At a temperature of 650 ° C. or higher, decomposition proceeds regardless of the atmosphere, an α-Fe phase precipitates, and the amounts of N and H change considerably from the initial amounts. Therefore, sintering at 650 ° C. or less is desirable, and the pressure of the hot press depends on the material of the die, but around 10 ton / cm 2 is sufficient.

条件の詳細はM成分として何を用いるかに大きく依存
する。例えば、420℃付近に融点を有するZnでは、この
温度前後から、Znの粒界への拡散は顕著になるが、この
拡散のみでは保磁力、角形比は大きく向上しない。ただ
し、30モル%以上のように多量に添加した場合は保磁力
は増大するが残留磁束密度は低下し、最終的な(BH)
max値は上昇しない。
The details of the condition largely depend on what is used as the M component. For example, in Zn having a melting point around 420 ° C., the diffusion of Zn to the grain boundary becomes remarkable from around this temperature, but the coercive force and the squareness ratio are not significantly improved by this diffusion alone. However, when added in a large amount such as 30 mol% or more, the coercive force increases but the residual magnetic flux density decreases, and the final (BH)
The max value does not increase.

ところが温度をさらに上昇させると粒子境界部分に新
たな反応相も生成し、その生成量の最適化により(BH)
max値は著しく向上する。
However, when the temperature was further increased, a new reaction phase was also formed at the particle boundary, and optimization of the amount produced resulted in (BH)
The max value is significantly improved.

この2相分離型微構造の生成を確認するために行った
EPMA(Electron Probe Micro−Analysis)観察結果を
第2図に示す。試料としてSm2Fe17N4.00.5M(M=Zn
20モル%添加)組成で、Mを添加剤として熱処理の直前
に添加混合したものを用いた。熱処理は440℃まで約10
℃/minで加熱し、到達後ただちに冷却した。すなわち、
焼結の最初期段階である。
This was performed to confirm the formation of this two-phase separated microstructure.
FIG. 2 shows the results of EPMA (Electron Probe Micro-Analysis) observation. As a sample, Sm 2 Fe 17 N 4.0 H 0.5 M (M = Zn
(Molecule added 20 mol%), and M was used as an additive and added and mixed immediately before heat treatment. Heat treatment up to 440 ° C about 10
Heated at ° C / min and cooled immediately upon reaching. That is,
This is the earliest stage of sintering.

(a)は通常のSEM像、(b)はコンポ像であり、白
く見える部分がSm1Fe3などのSmリッチな組成の相ではあ
るが、ほとんどの領域が均一で、これは分析結果からSm
2Fe17組成と同定できる。一方(c)、(d)はそれぞ
れFeとZnの特性X線像であり、白い斑点がそれぞれの元
素の存在に対応している。
(A) is a normal SEM image, (b) is a component image, and the white portion is a phase having a Sm-rich composition such as Sm 1 Fe 3 , but most of the regions are uniform. Sm
It can be identified as 2 Fe 17 composition. On the other hand, (c) and (d) are characteristic X-ray images of Fe and Zn, respectively, and white spots correspond to the presence of each element.

以上の結果から添加剤としての低融点元素Znが粒子境
界にすばやく拡散し、熱処理で反応相を形成して行くこ
とが磁気特性と合わせた考察から結論できる。
From the above results, it can be concluded from the consideration together with the magnetic characteristics that the low-melting element Zn as an additive quickly diffuses to the grain boundaries and forms a reaction phase by heat treatment.

すなわち、本発明に言うMの添加効果と、その拡散に
よる2相分離型微構造の形式が確認できる。
That is, the effect of adding M according to the present invention and the form of the two-phase separation type microstructure due to the diffusion can be confirmed.

なお、本写真(第2図)の試料では他の実施例よりも
多少粗粒を用いている。
The sample of this photograph (FIG. 2) uses coarser grains than those of the other examples.

焼結磁石およびボンド磁石の着磁は、通常用いられる
方法、例えば、静磁場を発生する電磁石、パルス磁場を
発生するコンデンサー着磁器などによって行われる。十
分着磁を行わしめるための、磁場強度は、好ましくは15
kOe以上、さらに好ましくは30kOe以上である。
Magnetization of the sintered magnet and the bond magnet is performed by a commonly used method, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulsed magnetic field, or the like. The magnetic field strength for sufficient magnetization is preferably 15
It is kOe or more, more preferably 30 kOe or more.

以上に例示した方法により、本発明の永久磁石材料を
作製することができる。
According to the method exemplified above, the permanent magnet material of the present invention can be manufactured.

ところで、材料の結晶性の完全さと磁気特性には密接
な関わりがあるといえる。本発明の材料の場合結晶性が
完全な程、すなわち、原子配列の乱れが少ない、あるい
は結晶中に欠陥が少ない程、残留磁束密度および磁気異
方性が良好である。そこで、本材料の結晶性を上げれ
ば、磁気特性を更に高めることができる。結晶性を上げ
るための具体的手段としては焼鈍がよい。焼鈍は第1図
中に示すように本材料製造工程中のどこで行っても効果
がある。
By the way, it can be said that perfection of the crystallinity of the material and magnetic properties are closely related. In the case of the material of the present invention, the residual magnetic flux density and the magnetic anisotropy are better as the crystallinity is perfect, that is, the disorder in the atomic arrangement is smaller or the number of defects in the crystal is smaller. Therefore, if the crystallinity of the material is increased, the magnetic properties can be further improved. Annealing is preferred as a specific means for increasing crystallinity. Annealing is effective no matter where in the material manufacturing process as shown in FIG.

焼鈍の温度および雰囲気は種々選択することができ
る。本発明の希土類−鉄−窒素−水素−M成分系材料の
焼鈍温度は、100〜650℃で行うことが好ましい。100℃
以下では焼鈍の効果が現れにくく、650℃以上では材料
中の窒素および水素の揮散が起りやすくなる。焼鈍雰囲
気は非酸化性雰囲気なら何でもよいが、特に水素、アル
ゴン、窒素、およびアンモニアを含む雰囲気ガス中また
は真空中で効果が大きい。また、300℃以下の低温で焼
鈍を行う場合、大気中などの酸化性雰囲気でも効果があ
る。
The temperature and atmosphere of annealing can be variously selected. The annealing temperature of the rare earth-iron-nitrogen-hydrogen-M component material of the present invention is preferably 100 to 650 ° C. 100 ℃
Below, the effect of annealing is difficult to appear, and at 650 ° C. or higher, volatilization of nitrogen and hydrogen in the material is likely to occur. The annealing atmosphere may be any non-oxidizing atmosphere, and is particularly effective in an atmosphere gas containing hydrogen, argon, nitrogen, and ammonia or in a vacuum. Further, when annealing is performed at a low temperature of 300 ° C. or less, the effect is obtained even in an oxidizing atmosphere such as the air.

原料合金の焼鈍、すなわち本発明において、窒素およ
び水素を導入する前に焼鈍を行う場合、焼鈍温度は500
〜1300℃で行うのが好ましい。このときの雰囲気はアル
ゴン等の不活性雰囲気や水素中または真空中で行うこと
が好ましい。
Annealing of the raw material alloy, that is, in the present invention, when performing annealing before introducing nitrogen and hydrogen, the annealing temperature is 500
It is preferably carried out at 1300 ° C. The atmosphere at this time is preferably performed in an inert atmosphere such as argon, in hydrogen, or in a vacuum.

焼鈍以外に結晶性を上げる方法としては、R−Fe系原
料合金に水素を吸蔵させた後、得られたR−Fe−H合金
の微粉砕を行い、そして、R−Fe−Hに窒素・水素侵入
処理を施す方法やR−Fe系原料合金への水素吸蔵−脱着
を繰り返すことにより合金が粉化することを利用して微
粉砕した後に、合金中に窒素および水素を侵入させる方
法が挙げられる。
As a method of increasing the crystallinity other than annealing, hydrogen is occluded in the R-Fe-based raw material alloy, and then the obtained R-Fe-H alloy is finely pulverized. A method of performing a hydrogen intrusion treatment or a method of injecting nitrogen and hydrogen into the alloy after pulverizing by utilizing the fact that the alloy is pulverized by repeating hydrogen storage and desorption to the R-Fe-based raw material alloy is mentioned. Can be

前者において、水素を吸蔵せしめる方法としては、比
較的低温において、H2ガスまたはH2ガスを含む還元性混
合ガス(例えば、H2とN2の混合ガス、H2とArの混合ガス
あるいはH2とHeの混合ガスなど)の加圧下で行なう方法
や、加熱した水素ガス流中または水素ガスを含む還元性
混合ガス流中において行なうことができる。
In the former, as a method of absorbing hydrogen, at a relatively low temperature, a reducing gas mixture containing H 2 gas or H 2 gas (for example, a mixed gas of H 2 and N 2, a mixed gas of H 2 and Ar, 2 and He), or in a heated hydrogen gas stream or a reducing gas mixture containing hydrogen gas.

後者において水素の吸蔵−脱着を繰り返す方法として
例えばR−Fe系合金をH2雰囲気中におき、温度の昇降を
繰り返すことで水素の吸蔵−脱着を繰り返すことができ
る。
Occlusion of hydrogen in the latter - Place a method of repeating the desorption example R-Fe-based alloy in an H 2 atmosphere, the hydrogen storage by repeated raising and lowering of the temperature - can be repeated desorption.

上記方法により良好な結晶性を有する微粉末を得るこ
とができる理由は明らかではないが、その1つとして水
素が結晶格子間に侵入することにより、粉砕に必要なエ
ネルギーが小さくてすみ、その結果、結晶の受ける損傷
も小さくなるためではないかと考えられる。また、水素
吸蔵−脱着のくり返しによる粉砕の場合は、機械的な衝
撃を結晶が受けないので、結晶性が乱されないものと考
えられる。
Although it is not clear why fine powder having good crystallinity can be obtained by the above method, one of the reasons is that hydrogen penetrates between crystal lattices, so that energy required for pulverization can be reduced, and as a result, It is considered that the damage to the crystal is reduced. Also, in the case of pulverization by repeated hydrogen absorption and desorption, the crystal is not likely to be disturbed because the crystal is not subjected to mechanical shock.

[実施例] 以下、実施例により本発明をさらに詳細に説明するが
本発明はこれらの例によってなんら限定されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

実施例1 純度99.9%のSmおよび純度99.9%のFeを用いてアルゴ
ン雰囲気中高周波炉で溶解混合し、次いで溶湯を鋳型中
に流し込んで冷却し、さらにアルゴン雰囲気中において
1250℃3時間焼鈍することにより、モル百分率がSm10.5
%およびFe89.5%からなるSm2Fe17組成の結晶構造を有
する合金を調製した。
Example 1 Melting and mixing were performed in a high-frequency furnace in an argon atmosphere using Sm having a purity of 99.9% and Fe having a purity of 99.9%, and then the molten metal was poured into a mold, cooled, and further cooled in an argon atmosphere.
By annealing at 1250 ° C. for 3 hours, the mole percentage becomes Sm10.5
% And an alloy having a crystal structure of Sm 2 Fe 17 composition of 89.5% Fe.

この合金を窒素雰囲気中、ジョークラッシャーで粉砕
した後、さらにコーヒーミルによって平均粒径100μm
にまで粗粉砕した。
After crushing this alloy in a nitrogen atmosphere with a jaw crusher, the average particle size is furthermore 100 μm by a coffee mill.
To coarsely pulverized.

得られた合金粉末を管状炉中に入れ、450℃におい
て、アンモニアガス0.4atmおよび水素ガス0.6atmの混合
ガス流を該管状炉中に流して、30分間該合金粉末中に窒
素と水素を侵入せしめた。
The obtained alloy powder is placed in a tubular furnace, and at 450 ° C., a mixed gas flow of ammonia gas 0.4 atm and hydrogen gas 0.6 atm is flowed into the tubular furnace, and nitrogen and hydrogen enter the alloy powder for 30 minutes. I was sorry.

続いて上記雰囲気中で室温まで徐冷することによりSm
8.5Fe72.417.02.1組成の合金粉末を得た。この結晶
構造は、主としてTh2Zn17型の菱面体晶構造であった。
Subsequently, Sm was gradually cooled to room temperature in the above atmosphere.
An alloy powder having a composition of 8.5 Fe 72.4 N 17.0 H 2.1 was obtained. This crystal structure was mainly a rhombohedral structure of Th 2 Zn 17 type.

この合金粉末にZnを10モル%添加し、振動ボールミル
を1時間施し平均粒径7μmの微粉体を得た。
10 mol% of Zn was added to the alloy powder, and a vibration ball mill was applied for 1 hour to obtain a fine powder having an average particle diameter of 7 μm.

この粉体を1軸磁場プレスを用いて1ton/cm2、15kOe
の条件で5×10×2mmの板状に磁場成形し、これをアン
モニアガス0.2atmおよび水素ガス0.8atmの混合ガス流
中、470℃で2時間焼結した。ただし、焼結時12ton/cm2
の圧力を加え続けた。
This powder is 1ton / cm 2 , 15kOe using a uniaxial magnetic field press.
The magnetic field was formed into a plate of 5 × 10 × 2 mm under the conditions described above, and this was sintered at 470 ° C. for 2 hours in a mixed gas flow of ammonia gas 0.2 atm and hydrogen gas 0.8 atm. However, at the time of sintering 12 ton / cm 2
Pressure was continued to be applied.

このようにして得た板状焼結体を約60kOeのパルス磁
場で着磁し、Sm7.8Fe65.915.50.8Zn10.0組成の焼結
磁石を得た。この結晶構造は、主としてTh2Zn17型の菱
面体晶構造であった。
The plate-like sintered body thus obtained was magnetized with a pulse magnetic field of about 60 kOe to obtain a sintered magnet having a composition of Sm 7.8 Fe 65.9 N 15.5 H 0.8 Zn 10.0 . This crystal structure was mainly a rhombohedral structure of Th 2 Zn 17 type.

この焼結磁石の残留磁束密度(Br)は9.2kG、保磁力
(iHc)は6.8kOe、(BH)maxは15.3MGOe、角形比(Br/4
πIs)は0.914であった。
The residual magnetic flux density (Br) of this sintered magnet is 9.2 kG, coercive force (iHc) is 6.8 kOe, (BH) max is 15.3 MGOe, squareness ratio (Br / 4
πIs) was 0.914.

実施例2 実施例1と同様な手順で、Sm2Fe17母合金を作製し、
これをNH3−H2混合ガス中で窒化、水素化してSm2Fe17Nx
Hy(x、yは第3図中に表示)組成の窒化水素化物を調
製して、これに10モル%のZnを添加して振動ボールミル
を施し粉体を得た。
Example 2 In the same procedure as in Example 1, a Sm 2 Fe 17 mother alloy was prepared.
This is nitrided and hydrogenated in an NH 3 -H 2 mixed gas to form Sm 2 Fe 17 N x
A hydrogen nitride having a composition of H y (x and y are shown in FIG. 3) was prepared, and 10 mol% of Zn was added thereto and subjected to a vibration ball mill to obtain a powder.

この粉体を1軸磁場プレスを用いて1ton/cm2、15kOe
の条件で、5×10×2mm程度の板状に磁場成形し、これ
をNH3:H2=20:80の混合ガス流中、470℃で2時間焼結し
た。ただし、焼結磁10ton/cm2の圧力を加え続けた。
This powder is 1ton / cm 2 , 15kOe using a uniaxial magnetic field press.
The magnetic field was formed into a plate of about 5 × 10 × 2 mm under the conditions described above, and this was sintered at 470 ° C. for 2 hours in a mixed gas flow of NH 3 : H 2 = 20: 80. However, a pressure of 10 ton / cm 2 of the sintered magnet was continuously applied.

この結果第3図に示したように窒素、水素量が磁気特
性と強い相関を示すことが明らかになった。(BH)max
値が最も高い領域はSm2Fe17NxHyMz組成でxは約4.0、y
は約0.5である。なおこの図に示した実験ではzはx、
yにつれて変化する。
As a result, as shown in FIG. 3, it became clear that the amounts of nitrogen and hydrogen showed a strong correlation with the magnetic properties. (BH) max
The region with the highest value is the Sm 2 Fe 17 N x H y M z composition, x is about 4.0, y
Is about 0.5. In the experiment shown in this figure, z is x,
It changes with y.

窒素、水素量が変動してもx=3.0〜5.0、y=0.01〜
1.0の範囲では比較的高い磁気特性が得られる。このこ
とは組成以外にも原料粉体や焼結体の結晶化度、組成の
均一性なとが(BH)max値に影響することと相関してい
る。
X = 3.0-5.0, y = 0.01- even if the amount of nitrogen and hydrogen fluctuates
In the range of 1.0, relatively high magnetic properties can be obtained. This is correlated with the fact that the crystallinity of the raw material powder and the sintered body and the uniformity of the composition other than the composition affect the (BH) max value.

実施例3〜6 Sm2Fe17N4.00.5磁性粉体にZnを10モル%添加混合
し、振動ボールミルで約1時間粉砕した。
Examples 3 to 6 10 mol% of Zn was added to and mixed with Sm 2 Fe 17 N 4.0 H 0.5 magnetic powder, and the mixture was pulverized with a vibration ball mill for about 1 hour.

この粉体を1軸磁場プレスで1ton/cm2、15kOeの条件
で10×5×2mmの板状に成形した。これを650℃、10ton/
cm2でNH3(20)−H2(80)の雰囲気ガス中でホットプレ
スした。
This powder was formed into a plate of 10 × 5 × 2 mm under the conditions of 1 ton / cm 2 and 15 kOe by a uniaxial magnetic field press. 650 ℃, 10ton /
Hot pressing was performed in an atmosphere gas of NH 3 (20) -H 2 (80) at cm 2 .

第1表に示したのは、焼結前の粉体の磁気特性と、そ
の焼結時間を1、2、4時間とした場合の焼結磁石の磁
気特性である。
Table 1 shows the magnetic properties of the powder before sintering and the magnetic properties of the sintered magnet when the sintering time was 1, 2, or 4 hours.

上記のようにSm2Fe17N4.00.5Zn2.2組成の磁性粉体
でもホットプレス条件により種々の磁気特性を有する焼
結磁石が得られる。
As described above, sintered magnets having various magnetic properties can be obtained by the hot pressing condition even with the magnetic powder having the composition of Sm 2 Fe 17 N 4.0 H 0.5 Zn 2.2 .

実施例7〜8 低融点元素を含有することは、明らかに特性値を向上
させるが、その向上の機構の解明も重要である。とく
に、本発明の焼結磁石の微構造として、粒界部分の非磁
性相の特性を確認する必要がある。
Examples 7 to 8 Including a low-melting element clearly improves the characteristic value, but it is also important to clarify the mechanism of the improvement. In particular, as the microstructure of the sintered magnet of the present invention, it is necessary to confirm the characteristics of the nonmagnetic phase at the grain boundary.

Sm2Fe17N4.50.5Mの磁性粉体中のMとして、Znを30
及び40モル%添加し、ボールミルで30分間混合し、1ton
/cm2、15kOeで磁場プレス成形した。これらを465℃、NH
3(35)−H2(65)の雰囲気中で1時間焼成した。
As M in the magnetic powder of Sm 2 Fe 17 N 4.5 H 0.5 M, Zn is 30
And 40 mol%, and mixed with a ball mill for 30 minutes, 1 ton
Magnetic field press molding was performed at 15 kOe / cm 2 . These at 465 ° C, NH
And calcined 1 hour in an atmosphere of 3 (35) -H 2 (65 ).

その結果は以下の第2表に示すとおりである。 The results are as shown in Table 2 below.

この結果はZnなどの非磁性相が粒子間に大量に存在す
ると、保磁力が大きく増大することを示している。すな
わち、30モル%のZn添加で5kOeであった保磁力は40モル
%では8kOeに達している。一方、飽和磁化は減少し、お
およそ磁性粉体の体積分率にある定数を乗じた値になっ
ている。
This result indicates that when a large amount of a nonmagnetic phase such as Zn is present between the particles, the coercive force is greatly increased. That is, the coercive force, which was 5 kOe when Zn was added at 30 mol%, reached 8 kOe at 40 mol%. On the other hand, the saturation magnetization decreases and is approximately a value obtained by multiplying the volume fraction of the magnetic powder by a certain constant.

比較例1 純度99.9%のCeおよび純度99.9%のFeを用いてアルゴ
ン雰囲気下水冷銅ボート中でアーク溶融することにより
Ce11.3モル%、Fe88.7モル%組成の合金を作製した。得
られた合金をアルゴン雰囲気下で950℃72時間焼鈍し
た。次いで窒素雰囲気下においてジョークラッシャーで
粉砕した後、さらにコーヒーミルによって平均粒径30μ
mにまで粗粉砕した。
Comparative Example 1 By arc-melting in a water-cooled copper boat under an argon atmosphere using Ce with a purity of 99.9% and Fe with a purity of 99.9%
An alloy having a composition of Ce 11.3 mol% and Fe 88.7 mol% was prepared. The obtained alloy was annealed at 950 ° C. for 72 hours under an argon atmosphere. Next, after pulverizing with a jaw crusher under a nitrogen atmosphere, the average particle size is further 30 μm with a coffee mill.
m.

得られた合金粉末を管状炉中に入れ、420℃におい
て、アンモニアガス0.4atmおよび水素ガス0.6atmの混合
ガス流を該管状炉中に流して、1時間該合金粉末中に窒
素と水素を侵入せしめた。
The obtained alloy powder is placed in a tubular furnace, and at 420 ° C., a mixed gas flow of ammonia gas 0.4 atm and hydrogen gas 0.6 atm is flowed into the tubular furnace, and nitrogen and hydrogen enter the alloy powder for 1 hour. I was sorry.

続いて上記雰囲気中で室温まで徐冷することによりCe
9.0Fe70.620.20.2の組成の合金粉末を得た。これを
圧力弁および圧力ゲージを備えたオートクレーブに封入
し、次いで内部を真空に引いた後水素とアンモニアの混
合ガスを導入して内部圧を4.4atmにした。
Subsequently, Ce is gradually cooled to room temperature in the above atmosphere.
An alloy powder having a composition of 9.0 Fe 70.6 N 20.2 H 0.2 was obtained. This was sealed in an autoclave equipped with a pressure valve and a pressure gauge, and then the inside was evacuated, and then a mixed gas of hydrogen and ammonia was introduced to adjust the internal pressure to 4.4 atm.

この時のアンモニアガスの分圧は1.8atmである。次に
加熱炉によりオートクレーブを加熱し、465℃で30分間
該合金を処理した。続いて上記雰囲気中で室温まで徐冷
することにより、Ce9.3Fe73.014.92.8組成の合金粉
末を得た。
At this time, the partial pressure of the ammonia gas is 1.8 atm. Next, the autoclave was heated by a heating furnace, and the alloy was treated at 465 ° C. for 30 minutes. Then gradually cooled to room temperature in the atmosphere to obtain an alloy powder of Ce 9.3 Fe 73.0 N 14.9 H 2.8 composition.

この合金粉末にZnを20モル%添加し、振動ボールミル
を8時間施し平均粒径1μmの微粉体を得た。
20 mol% of Zn was added to this alloy powder, and a vibrating ball mill was applied for 8 hours to obtain a fine powder having an average particle diameter of 1 μm.

この粉体を実施例1と同様にして磁場成形し、次いで
焼結を行い、着磁してCe7.5Fe59.012.01.5Zn20.0
成の焼結磁石を得た。
The powder in the same manner as in Example 1 and the magnetic field shaping, then subjected to sintering to obtain a sintered magnet of Ce 7.5 Fe 59.0 N 12.0 H 1.5 Zn 20.0 composition magnetized.

この焼結磁石の残留磁束密度(Br)は3.0kG、保磁力
(iHc)は0.9kOe、(BH)maxは0.5MGOeであった。
The residual magnetic flux density (Br) of this sintered magnet was 3.0 kG, the coercive force (iHc) was 0.9 kOe, and (BH) max was 0.5 MGOe.

比較例2 直径25cm、幅2cmの銅ロールを回転させ、溶湯をロー
ルに吹きつけることにより、液体の超急冷凝固を行う装
置を使用して、Nd10.7モル%、Pr3.5モル%、Fe85.7モ
ル%及びCe、La、Smを微量に含む組成の原料合金を作製
した。急冷前の溶解は石英ノズル内にNd50.7モル%、Pr
16.6モル%、Ce0.17モル%、La0.06モル%、Sm0.02モル
%、Fe32.45モル%の組成を有するジジムと純度99.9%F
eを充填しアルゴン雰囲気中で高周波溶解法によった。
噴射ガス圧は1kg/cm2、ロールのノズルの間隔は1mm、ロ
ールの回転速度は3000r.p.mとした。得られたジジム−
鉄薄片試料を約30μmまで粉砕後、実施例1と同様にし
て窒素化水素化を行い、Nd7.8Pr2.6Fe62.222.35.1
組成の合金粉末を得た。
Comparative Example 2 A copper roll having a diameter of 25 cm and a width of 2 cm was rotated, and a molten metal was sprayed on the roll to use a device for ultra-quick solidification of a liquid to obtain 10.7 mol% of Nd, 3.5 mol% of Pr, and Fe85 mol%. A raw material alloy having a composition containing 0.7 mol% and trace amounts of Ce, La, and Sm was produced. Before quenching, dissolve Nd50.7mol%, Pr
Didymium having a composition of 16.6 mol%, Ce0.17 mol%, La0.06 mol%, Sm0.02 mol%, Fe32.45 mol% and purity 99.9% F
e was filled and subjected to a high frequency melting method in an argon atmosphere.
The injection gas pressure was 1 kg / cm 2 , the interval between the roll nozzles was 1 mm, and the rotation speed of the roll was 3000 rpm. The obtained dymium-
After crushing the iron flake sample to about 30 μm, it was subjected to nitrogen hydride in the same manner as in Example 1, and Nd 7.8 Pr 2.6 Fe 62.2 N 22.3 H 5.1
An alloy powder having the composition was obtained.

この合金粉末にZn15モル%添加し、振動ボールミルを
3時間施し、平均粒径2μmの微粉体を得た。
15 mol% of Zn was added to this alloy powder and subjected to a vibration ball mill for 3 hours to obtain a fine powder having an average particle size of 2 μm.

これを実施例1と同様にして磁場配向し、次いで焼結
した後、着磁してNd6.6Pr2.2Fe53.119.04.1Zn15.0
組成の焼結磁石を得た。
This was oriented in a magnetic field in the same manner as in Example 1, then sintered, magnetized, and Nd 6.6 Pr 2.2 Fe 53.1 N 19.0 H 4.1 Zn 15.0
A sintered magnet having the composition was obtained.

この焼結磁石の残留磁束密度(Br)は3.6kG、保磁力
(iHc)は1.2kOe、(BH)maxは0.8MGOeであった。
The residual magnetic flux density (Br) of this sintered magnet was 3.6 kG, the coercive force (iHc) was 1.2 kOe, and (BH) max was 0.8 MGOe.

実施例9 純度99.9%のSm、純度99.99%のCo、および純度99.9
%のFeを用いて、モル百分率がSm10.5%、Co9.0%およ
びFe80.5%からなる合金をアルゴン雰囲気下水冷銅ボー
ト中でアーク溶融することにより調製した。得られた合
金はアルゴン雰囲気下において900℃で24時間焼鈍し
た。得られた合金を窒素雰囲気中ジョークラッシャーで
粗粉砕した後、さらにコーヒーミルによって平均粒径10
0μmにまで粉砕した。
Example 9 99.9% pure Sm, 99.99% pure Co, and 99.9% pure
% Alloy containing 10.5% of Sm, 9.0% of Co and 80.5% of Fe by arc melting in a water-cooled copper boat under an argon atmosphere. The obtained alloy was annealed at 900 ° C. for 24 hours in an argon atmosphere. The resulting alloy was coarsely pulverized with a jaw crusher in a nitrogen atmosphere, and then further averaged with a coffee mill to an average particle size of 10.
Milled to 0 μm.

得られた粉末を管状炉中においてアンモニアガスの分
圧が0.67atmおよび水素ガスの分圧が0.33atmの混合ガス
流を流して反応温度470℃、反応時間60分間の条件で窒
素と水素を吸収させた。続いて、上記雰囲気中で室温ま
で徐冷することにより、Sm8.3Fe63.3Co7.117.93.4
なる組成の粉末を得た。
The resulting powder is passed through a mixed gas stream with a partial pressure of ammonia gas of 0.67 atm and a partial pressure of hydrogen gas of 0.33 atm in a tube furnace to absorb nitrogen and hydrogen at a reaction temperature of 470 ° C and a reaction time of 60 minutes. I let it. Subsequently, by slowly cooling to room temperature in the above atmosphere, Sm 8.3 Fe 63.3 Co 7.1 N 17.9 H 3.4
A powder having the following composition was obtained.

この合金粉末にZnを10モル%添加し、振動ボールミル
を2時間施し平均粒径4.6μmの微粉体を得た。
10 mol% of Zn was added to this alloy powder, and a vibration ball mill was applied for 2 hours to obtain a fine powder having an average particle diameter of 4.6 μm.

この粉体を実施例1と同様にして磁場成形し、次いで
焼結を行い、着磁してSm7.6Fe58.3Co6.516.51.1Zn
10.0組成の焼結磁石を得た。
This powder was magnetically molded in the same manner as in Example 1, then sintered, magnetized and Sm 7.6 Fe 58.3 Co 6.5 N 16.5 H 1.1 Zn
A 10.0 composition sintered magnet was obtained.

この焼結磁石の残留磁束密度(Br)は9.7kG、保磁力
(iHc)は5.8kOe、(BH)maxは13.2MGOe、角形比(Br/4
πIs)は0.908であった。
The residual magnetic flux density (Br) of this sintered magnet is 9.7 kG, coercive force (iHc) is 5.8 kOe, (BH) max is 13.2 MGOe, squareness ratio (Br / 4
πIs) was 0.908.

実施例10〜19及び比較例3 実施例1で得たSm8.5Fe72.417.02.1磁性粉体に第
3表に示す低融点添加剤Ml(融点500℃以下)を10モル
%添加混合し、振動ボールミルで約1時間粉砕した。こ
の微粉体を実施例1と同様に1軸磁場プレスで1ton/c
m2、15kOeの条件で10×5×2mmの板状に成形した。これ
を470℃、10ton/cm2でアンモニアガス0.2atmおよび水素
ガス0.8atmの混合ガス雰囲気中で、2時間ホットプレス
し、焼結磁石を得た。これらの磁石の残留磁束密度[Br
(kG)]、保磁力[iHc(kOe)]、(BH)max(MGO
e)、角形比(Br/4πIs)を第3表に示す。
Examples 10 to 19 and Comparative Example 3 To the Sm 8.5 Fe 72.4 N 17.0 H 2.1 magnetic powder obtained in Example 1, 10 mol% of a low melting point additive Ml (melting point of 500 ° C. or less) shown in Table 3 was added and mixed. And about 1 hour in a vibrating ball mill. This fine powder was subjected to 1 ton / c by a uniaxial magnetic field press as in Example 1.
It was formed into a 10 × 5 × 2 mm plate under the conditions of m 2 and 15 kOe. This was hot-pressed at 470 ° C. and 10 ton / cm 2 in a mixed gas atmosphere of ammonia gas 0.2 atm and hydrogen gas 0.8 atm for 2 hours to obtain a sintered magnet. The residual magnetic flux density of these magnets [Br
(KG)], coercive force [iHc (kOe)], (BH) max (MGO
e) and the squareness ratio (Br / 4πIs) are shown in Table 3.

実施例20〜37および比較例4 実施例1で得たSm8.5Fe72.417.02.1磁性粉体に第
4表に示す高融点添加剤Mhあるいは無機化合物Miを第4
表に示す量だけ添加混合し、振動ボールミルで約1時間
粉砕した。この微粉体を実施例10〜19と同様にして磁場
成形し、次いで焼結し、着磁して焼結磁石を得た。
Examples 20 to 37 and Comparative Example 4 The Sm 8.5 Fe 72.4 N 17.0 H 2.1 magnetic powder obtained in Example 1 was mixed with the high melting point additive Mh or the inorganic compound Mi shown in Table 4
The mixture was added and mixed in the amounts shown in the table, and pulverized by a vibration ball mill for about 1 hour. This fine powder was magnetically molded in the same manner as in Examples 10 to 19, then sintered and magnetized to obtain a sintered magnet.

これらの磁石の残留磁束密度[Br(kG)]、保磁力
[iHc(kOe)]、(BH)max(MGOe)、角形比(Br/4πI
s)を第4表に示す。
The residual magnetic flux density [Br (kG)], coercive force [iHc (kOe)], (BH) max (MGOe), squareness ratio (Br / 4πI) of these magnets
s) is shown in Table 4.

これらの磁石の残留磁束密度[Br(kG)]、保磁力
[iHc(kOe)]、(BH)max(MGOe)、角形比(Br/4πI
s)を第4表に示す。
The residual magnetic flux density [Br (kG)], coercive force [iHc (kOe)], (BH) max (MGOe), squareness ratio (Br / 4πI) of these magnets
s) is shown in Table 4.

実施例38〜63および比較例5 実施例1で得たSm8.5Fe72.417.02.1磁性粉体に第
5表に示す添加剤MhおよびMl、MiおよびMlを第5表に示
す量添加混合し、振動ボールミルで約1時間粉砕した。
この微粉体を実施例10〜19と同様にして磁場成形し次い
で焼結し、着磁して焼結磁石を得た。これらの残留磁束
密度[Br(kG)]、保磁力[iHc(kOe)]、(BH)max
(MGOe)、角形比(Br/4πIs)を第5表に示す。
Examples 38 to 63 and Comparative Example 5 Additives Mh and Ml, Mi and Ml shown in Table 5 were added to the Sm 8.5 Fe 72.4 N 17.0 H 2.1 magnetic powder obtained in Example 1 in the amounts shown in Table 5 and mixed. Then, the mixture was pulverized with a vibration ball mill for about 1 hour.
This fine powder was magnetically molded in the same manner as in Examples 10 to 19, sintered, and magnetized to obtain a sintered magnet. These residual magnetic flux densities [Br (kG)], coercive forces [iHc (kOe)], (BH) max
Table 5 shows (MGOe) and the squareness ratio (Br / 4πIs).

実施例64〜71及び比較例6 純度99.9%のSmおよび純度99.9%のFeを用いてアルゴ
ン雰囲気中高周波炉で溶解混合し、次いで溶湯を鋳型中
に流し込んで冷却し、さらにアルゴン雰囲気中において
1100℃、6時間焼鈍することにより、モル百分率がSm1
0.5%およびFe89.5%からなる合金を調製した。
Examples 64-71 and Comparative Example 6 Melting and mixing were performed in a high-frequency furnace in an argon atmosphere using Sm having a purity of 99.9% and Fe having a purity of 99.9%, and then the molten metal was poured into a mold, cooled, and further cooled in an argon atmosphere.
By annealing at 1100 ° C for 6 hours, the mole percentage becomes Sm1
An alloy consisting of 0.5% and 89.5% Fe was prepared.

この合金を窒素雰囲気中、ジョークラッシャーで粉砕
した後、さらにコーヒーミルによって平均粒径50μmに
まで粗粉砕した。
This alloy was pulverized with a jaw crusher in a nitrogen atmosphere, and then coarsely pulverized by a coffee mill to an average particle size of 50 μm.

得られた合金粉末を管状炉中に入れ、450℃におい
て、アンモニアガス0.4atmおよび水素ガス0.6atmの混合
ガス流を該管状炉中に流して、2時間該合金粉末中に窒
素と水素を侵入せしめ、次いでアルゴン気流中450℃で
2.5時間焼鈍した。
The obtained alloy powder is placed in a tubular furnace, and at 450 ° C., a mixed gas flow of ammonia gas 0.4 atm and hydrogen gas 0.6 atm is flowed into the tubular furnace, and nitrogen and hydrogen enter the alloy powder for 2 hours. At 450 ° C in a stream of argon
Annealed for 2.5 hours.

続いて上記雰囲気中で室温まで徐冷することによりSm
8.9Fe75.415.50.2組成の合金粉末を得た。
Subsequently, Sm was gradually cooled to room temperature in the above atmosphere.
An alloy powder having a composition of 8.9 Fe 75.4 N 15.5 H 0.2 was obtained.

この合金粉末に第6表に示す添加剤Mを第6表に示す
量だけ添加混合し、遊星ボールミルで25分間微粉砕し
た。この粉体を1軸磁場プレスを用いて1ton/cm2、15kO
eの条件で5×10×2mmの板状に磁場成形し、これを窒素
ガス気流中、200℃で30分間焼結した。ただし、焼結時1
2ton/cm2の圧力を加え続けた。次いで、実施例1と同様
に着磁して得られた焼結磁石の残留磁束密度[Br(k
G)]、保磁力[iHc(kOe)]、(BH)max(MGOe)、角
形比(Br/4πIs)を第6表に示す。
Additive M shown in Table 6 was added to this alloy powder in an amount shown in Table 6, and the mixture was finely pulverized with a planetary ball mill for 25 minutes. This powder is 1ton / cm 2 , 15kO using a uniaxial magnetic field press.
A magnetic field was formed into a plate of 5 × 10 × 2 mm under the conditions of e, and this was sintered at 200 ° C. for 30 minutes in a nitrogen gas stream. However, when sintering 1
The pressure of 2 ton / cm 2 was continuously applied. Next, the residual magnetic flux density [Br (k) of the sintered magnet obtained by magnetizing in the same manner as in Example 1 was obtained.
G)], coercive force [iHc (kOe)], (BH) max (MGOe), and squareness ratio (Br / 4πIs) are shown in Table 6.

実施例72 純度99.9%のSm、Fe、Znを用いてアルゴン雰囲気中高
周波溶解炉で溶解混合し、次いで溶湯を鋳型中に流し込
んで冷却し、さらにアルゴン雰囲気中において900℃24
時間焼鈍することにより、モル百分率がSm10.6%、Fe7
7.8%、Zn11.6%からなる合金を調製した。
Example 72 Sm, Fe, and Zn having a purity of 99.9% were melted and mixed in a high-frequency melting furnace in an argon atmosphere, and then the molten metal was poured into a mold and cooled.
By annealing for a time, the mole percentage becomes Sm10.6%, Fe7
An alloy consisting of 7.8% and Zn 11.6% was prepared.

この合金を実施例1と同様に粒径約100μmまで粗粉
砕した後、窒素化・水素化し、振動ボールミルで粒径6
μmまで微粉砕して、Sm8.7Fe63.8Zn9.515.32.7
微粉末を得た。
This alloy was roughly pulverized to a particle size of about 100 μm in the same manner as in Example 1, then nitrogenated and hydrogenated, and then subjected to a vibration ball mill to obtain a particle size of 6 μm.
It was pulverized to a micron size to obtain a fine powder of Sm 8.7 Fe 63.8 Zn 9.5 N 15.3 H 2.7 .

次いでこの微粉体を実施例1と同様に磁場配向し、ア
ンモニアガス0.2atmおよび水素ガス0.8atmの混合ガス流
中470℃、12ton/cm2の条件で90分間焼結した。
Next, this fine powder was magnetically oriented in the same manner as in Example 1, and sintered in a mixed gas flow of ammonia gas 0.2 atm and hydrogen gas 0.8 atm at 470 ° C. and 12 ton / cm 2 for 90 minutes.

得られた焼結磁石の残留磁束密度(Br)は8.4kG、保
磁力(iHc)は4.2kOe、(BH)maxは10.3MGOe、角形比
(Br/4πIs)は0.880であった。
The obtained sintered magnet had a residual magnetic flux density (Br) of 8.4 kG, a coercive force (iHc) of 4.2 kOe, a (BH) max of 10.3 MGOe, and a squareness ratio (Br / 4πIs) of 0.880.

実施例73及び比較例7 実施例1で得たSm8.5Fe72.417.02.1組成の合金粉
末を管状炉中に入れ、水素ガス気流中450℃で30分間、
次いでアルゴンガス気流中150℃で12時間焼鈍した。次
いで上記雰囲気中で室温まで冷却することによりSm8.7F
e73.617.30.4組成の合金粉末を得た。
Example 73 and Comparative Example 7 The alloy powder having the composition of Sm 8.5 Fe 72.4 N 17.0 H 2.1 obtained in Example 1 was placed in a tubular furnace, and was placed in a hydrogen gas stream at 450 ° C. for 30 minutes.
Next, annealing was performed at 150 ° C. for 12 hours in a stream of argon gas. Then, by cooling to room temperature in the above atmosphere, Sm 8.7 F
e An alloy powder having a composition of 73.6 N 17.3 H 0.4 was obtained.

この合金粉末にZnを8モル%添加し、振動ボールミル
を30分施して微粉体を得た。次いでこの微粉体を管状炉
中に入れ、水素ガス気流中350℃で2.5時間焼鈍し、徐冷
することによりSm8.0Fe67.715.90.4Zn8.0組成の微
粉体Aを得た。
8 mol% of Zn was added to this alloy powder, and a vibrating ball mill was applied for 30 minutes to obtain a fine powder. Next, the fine powder was placed in a tubular furnace, annealed in a hydrogen gas stream at 350 ° C. for 2.5 hours, and gradually cooled to obtain fine powder A having a composition of Sm 8.0 Fe 67.7 N 15.9 H 0.4 Zn 8.0 .

この粉体を1軸プレスを用いて1ton/cm2、15kOeの条
件で5×10×2mmの板状に成形し、この成形体にポリイ
ソプレンゴムのトルエン溶液を含浸させ、十分に乾燥さ
せた。
This powder was formed into a plate of 5 × 10 × 2 mm using a uniaxial press under the conditions of 1 ton / cm 2 and 15 kOe, and the formed product was impregnated with a toluene solution of polyisoprene rubber and dried sufficiently. .

このボンド磁石の残留磁束密度[Br(kG)]、保磁力
[iHc(kOe)]、(BH)max(MGOe)、角形比(Br/4πI
s)を第7表に示す。
Residual magnetic flux density [Br (kG)], coercive force [iHc (kOe)], (BH) max (MGOe), squareness ratio (Br / 4πI) of this bonded magnet
s) is shown in Table 7.

なお、第7表にはZnは添加せず、上記微粉体Aと同様
に微粉砕して得た微粉体Bを用いて、同様に磁場成形
し、ボンド磁石としたものの磁気物性値も示した。
Table 7 also shows the magnetic properties of a bonded magnet obtained by subjecting a fine powder B obtained by pulverizing in the same manner as the fine powder A described above to a bonded magnet without adding Zn. .

実施例74及び比較例8 純度99.9%のSmおよび純度99.9%のFeを用いてアルゴ
ン雰囲気中高周波炉で溶解混合し、次いで溶湯を3mm幅
の鋳型中に流し込んで冷却し、さらにアルゴン雰囲気中
において950℃、32時間焼鈍することにより、モル百分
率がSm10.5%およびFe89.5%からなる合金を調製した。
Example 74 and Comparative Example 8 Melting and mixing were performed using a high-frequency furnace in an argon atmosphere using Sm having a purity of 99.9% and Fe having a purity of 99.9%, and then the molten metal was poured into a mold having a width of 3 mm, cooled, and further cooled in an argon atmosphere. By annealing at 950 ° C. for 32 hours, an alloy having a molar percentage of Sm10.5% and Fe89.5% was prepared.

この合金を窒素雰囲気中、コーヒーミルを用いて平均
粒径30μmまで粗粉砕した。
This alloy was roughly pulverized in a nitrogen atmosphere using a coffee mill to an average particle size of 30 μm.

得られた合金粉末を管状炉中に入れ、実施例64〜71と
同様にして窒化・水素化し、次いで同様にアルゴン気流
中で焼鈍し、徐冷することによりSm8.9Fe75.415.5
0.2組成の合金粉末を得た。
The obtained alloy powder was placed in a tube furnace, nitrided and hydrogenated in the same manner as in Examples 64 to 71, and then annealed in an argon gas stream and gradually cooled to obtain Sm 8.9 Fe 75.4 N 15.5 H
An alloy powder having a 0.2 composition was obtained.

この合金粉末を分級して粒径20〜38μmに調製した
後、これにZnを8モル%添加し、回転ボールミルを4時
間施して微粉体を得た。次いでこの微粉体を管状炉中に
入れ、アルゴンガス気流中430℃で1.5時間焼鈍し、徐冷
することによりSm8.2Fe69.514.30.05Zn8.0組成の微
粉体Cを得た。
This alloy powder was classified and adjusted to a particle size of 20 to 38 μm, Zn was added to the alloy powder in an amount of 8 mol%, and a rotary ball mill was applied for 4 hours to obtain a fine powder. Next, the fine powder was placed in a tubular furnace, annealed in an argon gas stream at 430 ° C. for 1.5 hours, and gradually cooled to obtain fine powder C having a composition of Sm 8.2 Fe 69.5 N 14.3 H 0.05 Zn 8.0 .

この粉体を1軸プレスを用いて1ton/cm2、15kOeの条
件で5×10×2mmの板状に成形し、この成形体にポリイ
ソプレンゴムのトルエン溶液を含浸させ、十分に乾燥さ
せた。次いでこの成形体に14ton/cm2の圧力を加え、圧
縮粉体成形ボンド磁石を得た。
This powder was formed into a plate of 5 × 10 × 2 mm using a uniaxial press under the conditions of 1 ton / cm 2 and 15 kOe, and the formed product was impregnated with a toluene solution of polyisoprene rubber and dried sufficiently. . Next, a pressure of 14 ton / cm 2 was applied to this compact to obtain a compacted powder compact bonded magnet.

このボンド磁石の残留磁束密度[Br(kG)]、保磁力
[iHc(kOe)]、(BH)max(MGOe)、角形比(Br/4πI
s)を第8表に示す。
Residual magnetic flux density [Br (kG)], coercive force [iHc (kOe)], (BH) max (MGOe), squareness ratio (Br / 4πI) of this bonded magnet
s) is shown in Table 8.

なお、第8表にはZnは添加せず、上記微粉体Cと同様
に微粉砕して得た微粉体Dを用いて、同様に磁場成形
し、ボンド磁石としたものの磁気物性値も示した。
Table 8 also shows the magnetic properties of a bonded magnet obtained by subjecting a fine powder D obtained by pulverization in the same manner as the fine powder C described above to a bonded magnet without adding Zn. .

実施例75 実施例74で得た微粉体Cと、メタノール−クロロホル
ム混合溶媒に溶かした10重量%濃度のポリアミドエステ
ルエーテルエラストマー溶液を8:2の重量比で混練し、5
kOeの磁場中に置いた金型に仕込んで、溶媒を回収し、
ペレットを作製した。
Example 75 The fine powder C obtained in Example 74 and a polyamide ester ether elastomer solution having a concentration of 10% by weight dissolved in a mixed solvent of methanol and chloroform were kneaded at a weight ratio of 8: 2.
In a mold placed in a kOe magnetic field, the solvent was recovered,
Pellets were made.

次いで窒素気流中、200℃で30分間このペレットに10t
on/cm2の圧力を加え、圧縮成形ボンド磁石を作製した。
Then, in a nitrogen stream at 200 ° C for 30 minutes, add 10 t
A pressure of on / cm 2 was applied to produce a compression-molded bonded magnet.

得られた圧縮成形ボンド磁石の残留磁束密度(Br)は
8.6kG、保磁力は8.0kOe、(BH)maxは15.6MGOe、角形比
(Br/4πIs)は0.950であった。
The residual magnetic flux density (Br) of the obtained compression-molded bonded magnet is
8.6 kG, coercive force was 8.0 kOe, (BH) max was 15.6 MGOe, and squareness ratio (Br / 4πIs) was 0.950.

実施例76 実施例74で得た微粉体Cと6−ナイロンを9:1の重量
比で、窒素雰囲気中、280℃で、混練し、3〜5mm長のペ
レットに裁断した。
Example 76 Fine powder C and 6-nylon obtained in Example 74 were kneaded at a weight ratio of 9: 1 in a nitrogen atmosphere at 280 ° C., and cut into pellets having a length of 3 to 5 mm.

2mmのノズル径を有する12mm径のシリンダーに該ペレ
ットを充填し、次いでアルゴン雰囲気中290℃で融解さ
せた後、75kg/cm2の圧で10mm×5mmの断面を有する金型
に打ち込んだ。この時、金型には4.5〜6kOeの磁場を与
え続けた。
The pellets were filled in a 12 mm diameter cylinder having a 2 mm nozzle diameter, then melted at 290 ° C. in an argon atmosphere, and then punched into a mold having a cross section of 10 mm × 5 mm at a pressure of 75 kg / cm 2 . At this time, a magnetic field of 4.5 to 6 kOe was continuously applied to the mold.

得られた射出成形ボンド磁石の残留磁束密度(Br)は
5.6kG、保磁力は6.5kOe、(BH)maxは5.5MGOe、角形比
(Br/4πIs)は0.798であった。
The residual magnetic flux density (Br) of the obtained injection-molded bonded magnet is
5.6 kG, coercive force was 6.5 kOe, (BH) max was 5.5 MGOe, and squareness ratio (Br / 4πIs) was 0.798.

実施例77〜100及び比較例8 純度99.9%のSm、Fe及び第9表及び第10表に示したM
成分を用いてアルゴン雰囲気中高周波炉で溶解混合し、
次いで溶湯を鋳型中に流し込んで冷却し、さらにアルゴ
ン雰囲気中において1100℃で24時間焼鈍することによ
り、モル百分率でほぼSm10.6%、Fe84.9%、M成分4.5
%の組成を有する母合金を調製した。
Examples 77 to 100 and Comparative Example 8 Sm and Fe having a purity of 99.9% and M shown in Tables 9 and 10
Dissolve and mix in a high frequency furnace in an argon atmosphere using the components,
Subsequently, the molten metal was poured into a mold, cooled, and further annealed at 1100 ° C. for 24 hours in an argon atmosphere, whereby, in terms of mole percentage, almost Sm 10.6%, Fe 84.9%, M component 4.5
% Of a mother alloy was prepared.

これらのSm−Fe−M系母合金を実施例72と同様にして
窒素化・水素化、微粉砕処理し、粒径4μmの微粉体を
得た。この粉体を実施例74と同様にして成形した。この
ボンド磁石の磁気特性を第9表及び第10表に示した。
These Sm-Fe-M base alloys were subjected to nitrogenation / hydrogenation and pulverization treatment in the same manner as in Example 72 to obtain fine powder having a particle size of 4 µm. This powder was molded in the same manner as in Example 74. Tables 9 and 10 show the magnetic properties of the bonded magnet.

なお、M成分の代わりに同モル数のFeを加えて調製し
たSm−Fe合金を用いて、上記と同様な成形体を作製した
結果についても、第10表に併せて示す。
In addition, Table 10 also shows the results of forming a compact similar to the above using an Sm-Fe alloy prepared by adding the same mole number of Fe instead of the M component.

比較例9 窒化温度を700℃とする以外は、実施例72と同様にし
てSm−Fe−N−H−M系焼結磁石を得た。
Comparative Example 9 An Sm-Fe-NHM-based sintered magnet was obtained in the same manner as in Example 72 except that the nitriding temperature was changed to 700 ° C.

この磁石の固有保磁力は0.05kOeであった。 The intrinsic coercivity of this magnet was 0.05 kOe.

また、この材料の結晶構造をX線回折法により解析し
た結果、α−鉄、窒化鉄に対応する回折線が主に検出さ
れ、Th2Zn17構造、Th2Ni17構造に対応した回折線は認め
られなかった。
Further, as a result of analyzing the crystal structure of this material by an X-ray diffraction method, diffraction lines corresponding to α-iron and iron nitride were mainly detected, and diffraction lines corresponding to the Th 2 Zn 17 structure and the Th 2 Ni 17 structure were detected. Was not found.

比較例10 実施例1で得られた、平均粒径約7μmのSm−Fe−N
−H−M系粉体を、2ton/cm2、15kOeの条件で磁場成形
した後、アルゴン雰囲気下、1100℃、1時間の条件で熱
処理した。これを急冷した後の成形体の固有保磁力は0.
02kOeであった。
Comparative Example 10 Sm-Fe-N having an average particle size of about 7 μm obtained in Example 1
The -HM powder was magnetically molded under the conditions of 2 ton / cm 2 and 15 kOe, and then heat-treated at 1100 ° C for 1 hour in an argon atmosphere. After quenching this, the specific coercive force of the compact is 0.
02kOe.

また、この材料の結晶構造をX線回折法により解析し
た結果、α−鉄、窒化鉄に対応する回折線が主に検出さ
れ、Th2Zn17構造、Th2Ni17構造に対応した回折線は認め
られなかった。
Further, as a result of analyzing the crystal structure of this material by an X-ray diffraction method, diffraction lines corresponding to α-iron and iron nitride were mainly detected, and diffraction lines corresponding to the Th 2 Zn 17 structure and the Th 2 Ni 17 structure were detected. Was not found.

[発明の効果] 以上説明したように、本発明によれば特別な工程を付
加しないでも十分な保磁力、角形比および飽和磁束密度
を有する2相分離型のバルク磁石ならびにボンド磁石材
料を作製することができる。
[Effects of the Invention] As described above, according to the present invention, a two-phase-separated bulk magnet and a bonded magnet material having a sufficient coercive force, squareness ratio and saturation magnetic flux density can be produced without adding a special step. be able to.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の焼結磁石を作製するための一方法を例
示した工程図、 第2図(a)乃至(d)は本発明の焼結磁石の結晶構造
の顕微鏡写真、 第3図はN、Hの含有量と(BH)max値との相関関係を
示すグラフである。
FIG. 1 is a process diagram illustrating one method for producing the sintered magnet of the present invention, FIGS. 2 (a) to 2 (d) are micrographs of the crystal structure of the sintered magnet of the present invention, FIG. 3 is a graph showing a correlation between N and H contents and (BH) max value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須藤 昭信 静岡県富士市鮫島2番地の1 旭化成工 業株式会社内 (56)参考文献 特開 昭61−9551(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akinobu Sudo 2-1, Samejima, Fuji City, Shizuoka Prefecture Asahi Kasei Kogyo Co., Ltd.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式RαFe(100−α−β−γ−δ)
βγ・Mδで表わされる磁性材料であり、 Rはサマリウムを主成分とする希土類元素、 MはLi、Na、K、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、N
b、Ta、Cr、Mo、W、Mn、Pd、Cu、Ag、Zn、B、Al、G
a、In、C、Si、Ge、Sn、Pb、Biの元素及びこれらの元
素ならびにRの酸化物、フッ化物、炭化物、窒化物、水
素化物、炭酸塩、硫酸塩、ケイ酸塩、塩化物、硝酸塩の
うち少なくとも一種、 α、β、γ、δはそれぞれモル百分率で 5≦α≦20 5≦β≦30 0.01≦γ≦10 0.1≦δ≦40 であって、かつその少なくともR、Fe及びNを含んだ相
が、実質的に2−17構造からなることを特徴とする磁性
材料。
1. A compound of the general formula R α Fe (100-α-β-γ-δ) N
is a magnetic material represented by β H γ · M δ , R is a rare earth element mainly composed of samarium, M is Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, N
b, Ta, Cr, Mo, W, Mn, Pd, Cu, Ag, Zn, B, Al, G
a, In, C, Si, Ge, Sn, Pb, Bi and these elements and R oxides, fluorides, carbides, nitrides, hydrides, carbonates, sulfates, silicates, chlorides , At least one of nitrates, α, β, γ, and δ are each represented by a molar percentage of 5 ≦ α ≦ 205 ≦ β ≦ 30 0.01 ≦ γ ≦ 10 0.1 ≦ δ ≦ 40, and at least R, Fe and A magnetic material, wherein the phase containing N substantially has a 2-17 structure.
【請求項2】上記請求項(1)に記載の磁性材料の成分
であるFeの0.01〜50モル%をCoで置換した組成を有する
ことを特徴とする磁性材料。
2. A magnetic material having a composition in which 0.01 to 50 mol% of Fe which is a component of the magnetic material according to claim 1 is substituted with Co.
【請求項3】上記請求項(1)または(2)に記載の磁
性材料から成り、その組織の微構造の粒子境界部に上記
一般式で示した成分のうちMの含有量が多い相を有し、
粒子中心部にはMの含有量が少ないか、または、Mを含
有しない相を有することを特徴とする2相分離型のバル
ク磁石。
3. A phase comprising the magnetic material according to claim 1 or 2 and having a high content of M among the components represented by the general formula at a grain boundary of the microstructure of the structure. Have
A two-phase-separated bulk magnet, characterized in that the content of M is low or the phase does not contain M in the center of the particle.
【請求項4】上記請求項(1)または(2)に記載の磁
性材料を含有することを特徴とするボンド磁石。
4. A bonded magnet comprising the magnetic material according to claim 1 or 2.
【請求項5】上記請求項(3)に記載のバルク磁石を含
有することを特徴とするボンド磁石。
5. A bonded magnet comprising the bulk magnet according to the above (3).
【請求項6】R、Fe、N、Hからなる磁性材料、または
Feの0.01〜50モル%をCoで置換した材料に、M成分を添
加し微粉砕するか、微粉砕してからM成分を添加して、
それを焼結することによって、このM成分を主に粒子境
界部に拡散させ、反応させることを特徴とする上記請求
項(3)に記載の2相分離型のバルク磁石の製造方法。
6. A magnetic material comprising R, Fe, N, H, or
To a material in which 0.01 to 50 mol% of Fe is replaced by Co, add the M component and pulverize, or pulverize and then add the M component,
The method for producing a two-phase-separated bulk magnet according to claim (3), wherein the M component is diffused and reacted mainly at the grain boundaries by sintering it.
【請求項7】母合金合成時に、M成分を混合添加するこ
とを特徴とする上記請求項(1),(2)に記載の磁性
材料の製造方法。
7. The method for producing a magnetic material according to claim 1, wherein the M component is mixed and added during the synthesis of the master alloy.
【請求項8】母合金合成時に、M成分を混合添加するこ
とを特徴とする上記請求項(3)に記載のバルク磁石の
製造方法。
8. The method for manufacturing a bulk magnet according to claim 3, wherein the M component is mixed and added during the synthesis of the master alloy.
【請求項9】母合金合成時に、M成分を混合添加するこ
とを特徴とする上記請求項(4),(5)に記載のボン
ド磁石の製造方法。
9. The method for producing a bonded magnet according to claim 4, wherein the M component is mixed and added during the synthesis of the master alloy.
JP1229238A 1988-11-14 1989-09-06 MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM Expired - Lifetime JP2705985B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28574188 1988-11-14
JP63-285741 1988-11-14
JP1-66237 1989-03-20
JP6623789 1989-03-20

Publications (2)

Publication Number Publication Date
JPH0316102A JPH0316102A (en) 1991-01-24
JP2705985B2 true JP2705985B2 (en) 1998-01-28

Family

ID=26407407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229238A Expired - Lifetime JP2705985B2 (en) 1988-11-14 1989-09-06 MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM

Country Status (1)

Country Link
JP (1) JP2705985B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089153A1 (en) * 2001-04-24 2002-11-07 Asahi Kasei Kabushiki Kaisha Solid material for magnet
JP2014007278A (en) * 2012-06-25 2014-01-16 Jtekt Corp Method for producing magnet, and magnet
WO2023181547A1 (en) * 2022-03-25 2023-09-28 Tdk株式会社 Samarium-iron-nitrogen based magnet powder and samarium-iron-nitrogen based magnet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69200130T2 (en) * 1991-03-27 1994-09-22 Toshiba Kawasaki Kk Magnetic material.
EP0538058B1 (en) * 1991-10-16 1997-07-16 Kabushiki Kaisha Toshiba Magnetic material
US5456769A (en) * 1993-03-10 1995-10-10 Kabushiki Kaisha Toshiba Magnetic material
US5549766A (en) * 1993-08-31 1996-08-27 Kabushiki Kaisha Toshiba Magnetic material
FR2717002B1 (en) * 1994-03-02 1996-04-26 Alsthom Cge Alcatel Process for the preparation of a magnetic material in solid form from an intermetallic nitride powder of the Sm2 Fe17 N3-x type.
US5750044A (en) * 1994-07-12 1998-05-12 Tdk Corporation Magnet and bonded magnet
JP3304726B2 (en) * 1995-11-28 2002-07-22 住友金属鉱山株式会社 Rare earth-iron-nitrogen magnet alloy
WO1999050857A1 (en) 1998-03-27 1999-10-07 Kabushiki Kaisha Toshiba Magnet powder and method for producing the same, and bonded magnet using the same
JP5165785B2 (en) * 2011-10-19 2013-03-21 旭化成ケミカルズ株式会社 Solid material for magnet
DE112018000214T5 (en) * 2017-03-10 2019-09-05 Murata Manufacturing Co., Ltd. Magnetic powder containing SM-Fe-N-based crystal particles, sintered magnet made thereof, process for producing the magnetic powder; and method for producing the sintered magnet
JP7318885B2 (en) * 2018-09-28 2023-08-01 Tdk株式会社 Samarium-Iron-Bismuth-Nitrogen Magnet Powder and Samarium-Iron-Bismuth-Nitrogen Sintered Magnet
CN112481543B (en) * 2020-10-20 2022-03-01 东阳市科力达电子器材有限公司 High-performance neodymium iron boron material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619551A (en) * 1984-06-26 1986-01-17 Toshiba Corp Rare earth element-iron type permanent magnet alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089153A1 (en) * 2001-04-24 2002-11-07 Asahi Kasei Kabushiki Kaisha Solid material for magnet
US7364628B2 (en) 2001-04-24 2008-04-29 Asahi Kasei Kabushiki Kaisha Solid material for magnet
CN100501881C (en) * 2001-04-24 2009-06-17 旭化成株式会社 Solid material for magnet
JP2014007278A (en) * 2012-06-25 2014-01-16 Jtekt Corp Method for producing magnet, and magnet
WO2023181547A1 (en) * 2022-03-25 2023-09-28 Tdk株式会社 Samarium-iron-nitrogen based magnet powder and samarium-iron-nitrogen based magnet

Also Published As

Publication number Publication date
JPH0316102A (en) 1991-01-24

Similar Documents

Publication Publication Date Title
KR101855530B1 (en) Rare earth permanent magnet and their preparation
JP3171558B2 (en) Magnetic materials and bonded magnets
US5750044A (en) Magnet and bonded magnet
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP2001189206A (en) Permanent magnet
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
JP2002270416A (en) Bulk anisotropic rare earth permanent magnet and its manufacturing method
JP3560387B2 (en) Magnetic material and its manufacturing method
JP2898229B2 (en) Magnet, manufacturing method thereof, and bonded magnet
JP2000003808A (en) Hard magnetic material
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3856869B2 (en) Resin-containing rolled sheet magnet and method for producing the same
JPH10312918A (en) Magnet and bonded magnet
JP2000294416A (en) Rare earth bonded magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP2005286175A (en) R-t-b-based sintered magnet and its manufacturing method
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3294645B2 (en) Nitride magnetic powder and its production method
JP2926161B2 (en) Manufacturing method of permanent magnet
JPH06112019A (en) Nitride magnetic material
JP2003221655A (en) Nanocomposite magnet
JP3795694B2 (en) Magnetic materials and bonded magnets
JPH0521219A (en) Production of rare-earth permanent magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

EXPY Cancellation because of completion of term