JPS619551A - Rare earth element-iron type permanent magnet alloy - Google Patents

Rare earth element-iron type permanent magnet alloy

Info

Publication number
JPS619551A
JPS619551A JP59130098A JP13009884A JPS619551A JP S619551 A JPS619551 A JP S619551A JP 59130098 A JP59130098 A JP 59130098A JP 13009884 A JP13009884 A JP 13009884A JP S619551 A JPS619551 A JP S619551A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
magnet alloy
earth element
type permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59130098A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Mizoguchi
徹彦 溝口
Toru Higuchi
徹 樋口
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59130098A priority Critical patent/JPS619551A/en
Publication of JPS619551A publication Critical patent/JPS619551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a rare earth element-iron type permanent magnet alloy having high magnetic flux density and high coercive force even in the form of a bulk material formed by a sintering method by which a material is easily worked into a desired shape by providing a specified composition. CONSTITUTION:This rare earth element-iron type permanent magnet alloy has a composition represented by the formula, wherein alpha, beta and gamma are atomic ratio, R is at least one kind of element selected among Y and rare earth elements, X is one or more among B, C, N, O, P, H, S, Al and Si, M is one or more among Ag, Pt, Pd, Rh, Re, Ge and Ru, 0.001<=alpha<=0.5, 0.5<=beta<=0.95, 0.001<=gamma<=0.1, and alpha+beta+gamma<1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、希土類鉄系永久磁石合金に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a rare earth iron-based permanent magnet alloy.

[発明の技術的背景とその問題点〕 希土類金属(R)と鉄(Fe)  とからなる金属間化
合物は大ぎな結晶磁気異方性と高い飽和磁化を有し、高
保磁力、および高エネルギー積を有する永久磁石合金と
して有望であり、更に従来の希土類コバルト磁石に比べ
て原料が安価であるなどの利点がある。特に、几・Fe
  に第3成分を加えることで高性能化を回ることが研
究されている( 8.58゜金属学会秋期大会予稿集P
、681、特開昭59−46008号等)。
[Technical background of the invention and its problems] Intermetallic compounds consisting of rare earth metals (R) and iron (Fe) have large crystal magnetic anisotropy and high saturation magnetization, and have high coercive force and high energy product. It is promising as a permanent magnet alloy having the following characteristics, and has the advantage that the raw material is cheaper than conventional rare earth cobalt magnets. In particular, 几・Fe
Research is being done on improving performance by adding a third component to (8.58゜ Japan Institute of Metals Autumn Conference Proceedings P
, 681, JP-A-59-46008, etc.).

しかしながら従来の希土類鉄系の永久磁石合金は、通常
の熔解、粉砕後、焼結してバルク状に形成した場合、最
適な熱処理を施しても、低い保磁力しか得られず、実用
的な永久磁石としては不十分であった。
However, when conventional rare earth iron-based permanent magnet alloys are melted, crushed, and then sintered to form a bulk shape, even after optimal heat treatment, only a low coercive force can be obtained, making it difficult to obtain practical permanent magnets. It was insufficient as a magnet.

特にキュリ一点が実用性を考えた場合十分とはいえず、
問題が残る。
In particular, one cucumber is not enough when considering practicality.
Problems remain.

〔発明の目的〕[Purpose of the invention]

本発明は前記問題点を考慮して滌されたもので、任意の
形状加工が容易な焼結法によってバルク材を形成しても
、高磁束密度、高保磁力を有し、高いエネルギー積を保
持し、かつ温度条件に優れた希土類鉄系永久磁石合金を
提供することを目的とするものである。
The present invention has been developed in consideration of the above-mentioned problems, and even if a bulk material is formed by a sintering method that allows easy processing into arbitrary shapes, it has high magnetic flux density, high coercive force, and maintains a high energy product. It is an object of the present invention to provide a rare earth iron-based permanent magnet alloy that has excellent temperature conditions.

〔発明の概要〕[Summary of the invention]

本発明は希土類鉄系のR−X−Fe 系に第4元素を添
加して、通常の焼結法によってバルク材を形成しても優
れた磁気特性を有する希土類鉄系永久磁石合金であり、
次式 %式% ただし α、β、rは原子比 RAM及び希土類元素の少なくとも一 種 X:B、C,N、0.P、H,8,A/及び81から選
ばれた少なくとも一種 M;人g、Pt、Pd、Rh、Re、Ge及(JRuか
ら選ばれた少なくとも一種 0.0001≦α≦0.5 0.5   ≦β≦0.95 0.001≦γ≦0.1 α+β+r(1,0 で表わされる組成を有することを特徴とするものである
The present invention is a rare earth iron-based permanent magnet alloy that has excellent magnetic properties even when a fourth element is added to a rare earth iron-based R-X-Fe system and a bulk material is formed by a normal sintering method.
The following formula % formula % where α, β, r are the atomic ratio RAM and at least one rare earth element X: B, C, N, 0. At least one type M selected from P, H, 8, A/, and 81; At least one type selected from Person g, Pt, Pd, Rh, Re, Ge, and (JRu 0.0001≦α≦0.5 0. 5≦β≦0.95 0.001≦γ≦0.1 α+β+r(1,0).

本発明においてR−Fe系に添加する第三元素Xとして
はBe C+ N* Os P+ Hr 8.IJH8
i等″が挙げられる。これら第三元素Xを添加すること
によりR−X−Feの三元系で安定な正方晶系の結晶構
造が得られると共に、正方晶のC軸に沿って磁気的な異
方性を持たせて保磁力が向上するものである。
In the present invention, the third element X added to the R-Fe system is Be C+ N* Os P+ Hr 8. IJH8
By adding these third elements X, a stable tetragonal crystal structure is obtained in the ternary system of R-X-Fe, and magnetic The coercive force is improved by imparting a certain anisotropy.

Xとしては、特にB及びCが有効である。As X, B and C are particularly effective.

この場合Xの添加量αの原子数比が0.001未満の場
合には焼結性が悪く、保磁力の上昇が認められず永久磁
石合金としては実用的ではなく、またαが0.5を越え
てXを多量に添加すると磁束密度が低下するので、Xの
添加量αを上記範囲に規定した。なお好ましくは0.0
4≦α≦0.20の範囲である。
In this case, if the atomic ratio of the addition amount α of If a large amount of X is added exceeding the above range, the magnetic flux density will decrease, so the amount α of X to be added is defined in the above range. Preferably 0.0
The range is 4≦α≦0.20.

tた第4元素Mとしテハ、Ag、Pt、Pd、fLh、
Re、Ge及びRuが挙げられる。このMを添加するこ
とによりキュリ一点が上昇する。これはFeの原子間距
離が大きくなるために考えられる。このMの添加量は0
.001未満ではキュリ一点上昇の効果が得られず、0
.1を越えると磁束密度、保磁力が低下してしまう他に
、キュリ一点も上昇しない。好ましくは0.005≦r
≦0.04で特に効果がある。
The fourth element M is T, Ag, Pt, Pd, fLh,
Mention may be made of Re, Ge and Ru. By adding this M, the Curie point increases by one point. This is thought to be due to the increased interatomic distance of Fe. The amount of M added is 0
.. If it is less than 001, the effect of raising Curie by one point cannot be obtained, and 0
.. If it exceeds 1, the magnetic flux density and coercive force will not only decrease, but will not increase by a single point. Preferably 0.005≦r
Particularly effective is ≦0.04.

Feは本発明磁石合金において磁束密度を向上させるの
に有効な作用をなし、その添加量βが、0.5未満であ
ると、十分な正方晶形結晶構造が得られず、磁束密度も
低下する。また0、95を越えてFeの添加量が多くな
ると保磁力が低下するので、上記範囲に規定する必要が
あり、特に0.6≦β≦0.86の範囲が好ましい。
Fe has an effective effect in improving the magnetic flux density in the magnet alloy of the present invention, and if the added amount β is less than 0.5, a sufficient tetragonal crystal structure cannot be obtained and the magnetic flux density also decreases. . Further, if the amount of Fe added exceeds 0.95 and the coercive force decreases, it is necessary to specify the above range, and the range of 0.6≦β≦0.86 is particularly preferable.

希土類元素Rとしては、Ce、 Pr、 Nd、 8m
、 M、M(ミツシュメタル)などが挙げられ、これら
Y及びRは保磁力を向上させるのに必須の元素であり、
その添加量が少ないと保磁力が極端に低下するので、O
,OS〜O,aOの範囲が好ましい。
Rare earth elements R include Ce, Pr, Nd, 8m
, M, M (mitshu metal), etc., these Y and R are essential elements to improve coercive force,
If the amount added is small, the coercive force will be extremely reduced, so O
, OS to O, aO is preferable.

上記組成の合金は、例えば溶解、粉砕後、圧粉成形し、
得られた圧粉成形体を焼結した後、熱処理を行って永久
磁石とする等の一般に知られている方法で形成すること
ができる。
The alloy having the above composition is, for example, melted, crushed, and then compacted.
After the obtained green compact is sintered, it can be formed by a generally known method such as performing heat treatment to form a permanent magnet.

〔発明の効果〕〔Effect of the invention〕

本発明に係る希土類鉄系永久磁石合金によれば、任意の
形状加工が容易な焼結法によってバルク材を形成しても
、高磁束密度、高保磁力を有し、高いエネルギー積を有
し、かつキュリ一点が高く温度特性に優れるなど、顕著
な効果を得ることができる。
According to the rare earth iron-based permanent magnet alloy according to the present invention, even if a bulk material is formed by a sintering method that allows easy processing into any shape, it has a high magnetic flux density, a high coercive force, and a high energy product. It also has remarkable effects such as a high curri point and excellent temperature characteristics.

〔発明の実施例〕[Embodiments of the invention]

(実施例) 第1表に示す組成の合金試料を高周波溶解し、ジョーク
2ツシヤーブラウンミルを用いて粗粉砕後、ジェットミ
ルによる微粉砕を行った。この場合、粉砕媒体はN、ガ
スを用い、得られた粒子の平均粒径は5μmである。こ
の微粉末を15KOeの磁場中で配向後、2トl−の圧
力で磁場印加方向と直角にプレスして圧縮成形し、縦l
Q、m、横IQax厚さ83El+の板状圧粉成形体を
得た。
(Example) Alloy samples having the composition shown in Table 1 were high-frequency melted, coarsely pulverized using a Joke 2 Tsushear Brown mill, and then finely pulverized using a jet mill. In this case, N gas is used as the grinding medium, and the average particle size of the obtained particles is 5 μm. After orienting this fine powder in a magnetic field of 15 KOe, it was compressed and molded by pressing at a pressure of 2 torr perpendicular to the direction of magnetic field application.
A plate-shaped powder compact having Q, m, lateral IQax and thickness of 83El+ was obtained.

次にとの圧粉成形体を焼結した後ミ熱処理を施して永久
磁石を形成し、その残留磁束密度:Br。
Next, the powder compact is sintered and then subjected to heat treatment to form a permanent magnet, the residual magnetic flux density of which is Br.

保磁カニzHc、および最大エネルギー積: (BH)
maxを測定し、その結果を第1表に示した。
Coercion crab zHc and maximum energy product: (BH)
max was measured and the results are shown in Table 1.

なお圧粉成形体の焼結条件、および熱処理条件は、次の
A、B、Cの倒れか一つの条件を用いたA:圧粉成形体
を1100℃×1時間、アルゴン雰囲気中で焼結した後
、600℃×2時間の時効処理を行う。
The sintering conditions and heat treatment conditions for the compacted compact are as follows: A, the compacted compact is sintered at 1100°C for 1 hour in an argon atmosphere. After that, aging treatment is performed at 600°C for 2 hours.

B:圧粉成形体を1080℃×1 時間アルゴン雰囲気
中で焼結した後、650℃×1時間と550℃×2時間
の二段の時効処理を行う。
B: After sintering the powder compact in an argon atmosphere at 1080°C for 1 hour, it is subjected to two-step aging treatment at 650°C for 1 hour and 550°C for 2 hours.

C:圧粉成形体を1050℃×1時間アルゴン雰囲気中
で焼結した後、550℃×2時間の時効処理を行い、そ
の後、室温まで1℃/minの冷却速度で制御冷却を行
う。
C: After sintering the compacted powder in an argon atmosphere at 1050° C. for 1 hour, aging treatment is performed at 550° C. for 2 hours, and then controlled cooling is performed at a cooling rate of 1° C./min to room temperature.

(ただし焼結温度は±10℃の範囲内)(比較例) 本発明磁石合金と比較するために、従来の几−B−Fe
合金、本発明の規定を外れる範囲の合金Iこついても、
上記実施例と同様に永久磁石を製造した。
(However, the sintering temperature is within the range of ±10°C) (Comparative example) In order to compare with the present invention magnet alloy, the conventional 几-B-Fe
Alloy, even if alloy I falls outside the scope of the present invention,
A permanent magnet was manufactured in the same manner as in the above example.

この磁気特性についても同様に測定し、その結果を第2
表に併記した。
This magnetic property was also measured in the same way, and the results were used as a second
Also listed in the table.

第  1  表 以下余色 第  2  表 上表の結果から明らかな如く、本発明に係る希土類鉄系
永久磁石合金は、任意の形状加工が容易な焼結法によっ
てバルク材を形成しても、高磁束密度、高保磁力、を高
いエネルギー積を有するとともにキュリ一点が高く顕著
な効果を有するものである。
As is clear from the results shown in Table 1 and Table 2 above, the rare earth iron-based permanent magnet alloy according to the present invention has high performance even when a bulk material is formed by a sintering method that allows easy processing into any shape. It has a high magnetic flux density, high coercive force, high energy product, and has a remarkable effect with a high Curie point.

又、耐食性向上のため、Ni、 Mg 、 Cr + 
Ti+ kl ’系を0,1〜lQatm%程度含有さ
せても良い。(隠4)。
In addition, to improve corrosion resistance, Ni, Mg, Cr +
Ti+kl' system may be contained in an amount of about 0.1 to 1Qatm%. (Hidden 4).

Claims (1)

【特許請求の範囲】 次式 R_1_−_α_−_β_−_γXαFe_βMγただ
しα、β、γは原子比 R;Y及び希土類元素の少なくとも一 種 X;B、C、N、O、P、H、S、Al及びSiから選
ばれた少なくとも一種 M;Ag、Pt、Pd、Rh、Re、Ge及びRuから
選ばれた少なくとも一種 0.001≦α≦0.5 0.5≦β≦0.95 0.001≦γ≦0.1 α+β+γ<1.0 で表わされる組成を有することを特徴とした希土類鉄系
永久磁石合金。
[Claims] The following formula R_1_-_α_-_β_-_γXαFe_βMγ where α, β, and γ are the atomic ratio R; Y and at least one rare earth element X; B, C, N, O, P, H, S, Al and at least one selected from Si; at least one selected from Ag, Pt, Pd, Rh, Re, Ge, and Ru 0.001≦α≦0.5 0.5≦β≦0.95 0.001 A rare earth iron-based permanent magnet alloy having a composition expressed by ≦γ≦0.1 α+β+γ<1.0.
JP59130098A 1984-06-26 1984-06-26 Rare earth element-iron type permanent magnet alloy Pending JPS619551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130098A JPS619551A (en) 1984-06-26 1984-06-26 Rare earth element-iron type permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130098A JPS619551A (en) 1984-06-26 1984-06-26 Rare earth element-iron type permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS619551A true JPS619551A (en) 1986-01-17

Family

ID=15025897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130098A Pending JPS619551A (en) 1984-06-26 1984-06-26 Rare earth element-iron type permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS619551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023206A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Rare earth-iron system permanent magnet
JPH0316102A (en) * 1988-11-14 1991-01-24 Asahi Chem Ind Co Ltd Magnetic material and magnet consisting thereof, and manufacture of them
JPH03153852A (en) * 1989-11-13 1991-07-01 Asahi Chem Ind Co Ltd Magnetic material, magnet composed of the same, and their production
US5217541A (en) * 1990-05-03 1993-06-08 High End Metals Corp. Permanent magnet and the method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023206A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Rare earth-iron system permanent magnet
JPH0316102A (en) * 1988-11-14 1991-01-24 Asahi Chem Ind Co Ltd Magnetic material and magnet consisting thereof, and manufacture of them
JPH03153852A (en) * 1989-11-13 1991-07-01 Asahi Chem Ind Co Ltd Magnetic material, magnet composed of the same, and their production
US5217541A (en) * 1990-05-03 1993-06-08 High End Metals Corp. Permanent magnet and the method for producing the same

Similar Documents

Publication Publication Date Title
JP2904667B2 (en) Rare earth permanent magnet alloy
JPH03236202A (en) Sintered permanent magnet
US4857118A (en) Method of manufacturing a permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS6181606A (en) Preparation of rare earth magnet
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPH1092617A (en) Permanent magnet and its manufacture
JPH0146575B2 (en)
JPH0146574B2 (en)
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS61147503A (en) Rare earth magnet
JPS6037602B2 (en) Permanent magnet material and its manufacturing method
JPS5848650A (en) Permanent magnet alloy
JP2577373B2 (en) Sintered permanent magnet
JPS62257704A (en) Permanent magnet
JPS6119084B2 (en)
JPS6077952A (en) Samarium-cobalt magnetic alloy containing praseodymium and neodymium
JPS63216307A (en) Alloy powder for magnet
JPH0252413B2 (en)
JPH063763B2 (en) Rare earth permanent magnet manufacturing method
JPH056321B2 (en)