JPH01184244A - Permanent magnetic material and its manufacture - Google Patents

Permanent magnetic material and its manufacture

Info

Publication number
JPH01184244A
JPH01184244A JP63006192A JP619288A JPH01184244A JP H01184244 A JPH01184244 A JP H01184244A JP 63006192 A JP63006192 A JP 63006192A JP 619288 A JP619288 A JP 619288A JP H01184244 A JPH01184244 A JP H01184244A
Authority
JP
Japan
Prior art keywords
alloy
coercive force
added
rare earth
earth elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63006192A
Other languages
Japanese (ja)
Other versions
JPH0514020B2 (en
Inventor
Toshio Mukai
俊夫 向井
Tatsuo Fujimoto
辰雄 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63006192A priority Critical patent/JPH01184244A/en
Publication of JPH01184244A publication Critical patent/JPH01184244A/en
Publication of JPH0514020B2 publication Critical patent/JPH0514020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the coercive force of the title material while retaining its high residual magnetic flux density by sintering the mold body of the alloy powder in which rare earth elements, Cu, Fe, Zr and Co are specified and the alloy powder in which B is added to said alloy. CONSTITUTION:The alloy consisting of, by weight, 23-28% R (where R denotes one or more kinds among rare earth elements), 4-10% Cu, 15-25% Fe and 0.2-5% Zr and the balance constituted of Co is refined and is pulverized. The alloy to which 0.005-0.06% B is added to the above alloy is furthermore refined and is pulverized. Those alloy powders are then mixed. The mixed alloy powder is then subjected to pressure molding and is thereafter sintered. In this way, the permanent magnetic material contg. <0.005% B and essentially consisting of an R2Co17 intermetallic compound can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、R2Co+v金属間化合物(ただし、Rは希
土類元素の1種又は2種以上)を主体とする永久磁石材
料において、極く微量のBを添加することによって磁気
特性が改善されたSm −Co −Cu −’Fe−Z
r−B系永久磁石材料反永久磁石材料法に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a permanent magnet material mainly consisting of an R2Co+v intermetallic compound (where R is one or more rare earth elements). Sm-Co-Cu-'Fe-Z with improved magnetic properties by adding B
The present invention relates to an r-B permanent magnet material anti-permanent magnet material method.

本系磁石はR2C0I7型と総称されるが、その代表で
あるSm2CO+7型磁石は高い磁気特性とすぐれた熱
安定性を示すために、小型で高性能を要求される電磁変
換機器(モーター等)を中心に広範に使用されている。
This series of magnets is collectively called the R2C0I7 type, and the representative Sm2CO+7 type magnet exhibits high magnetic properties and excellent thermal stability, so it is suitable for use in electromagnetic conversion equipment (motors, etc.) that requires small size and high performance. Centrally and widely used.

〔従来の技術〕[Conventional technology]

SmzCo+=型のSm −Co −Cu −Fe −
Zr系永久磁石は少量のZr添加によって高性能化が達
成された磁石である(特公昭55−48094号公報、
特公昭55−47097号公報)。本系磁石の高性能化
のためにはFeの含有量を増し、主相であるSmz(C
o、 Fe) +7相の飽和磁化の値を高める必要があ
る。特公昭55−48094号公報により公知のごとく
、一般にZr添加系においてもFe含有量を15畔%以
上にすると、残留磁束密度Brが大きくなる反面、保磁
力11(cが減少する。
SmzCo+=type Sm −Co −Cu −Fe −
Zr-based permanent magnets are magnets whose performance has been improved by adding a small amount of Zr (Japanese Patent Publication No. 55-48094,
(Special Publication No. 55-47097). In order to improve the performance of this system magnet, the content of Fe should be increased and the main phase Smz (C
o, Fe) It is necessary to increase the saturation magnetization value of the +7 phase. As is known from Japanese Patent Publication No. 55-48094, in general, even in a Zr-added system, when the Fe content is increased to 15% or more, the residual magnetic flux density Br increases, but the coercive force 11 (c) decreases.

この保磁力の減少のために、従来の実用に供されている
永久磁石においてはFeの含有量をそれほど高くしてい
ないのが現状であった。
Due to this decrease in coercive force, the Fe content in conventional permanent magnets used in practical use is not so high.

上記問題点を解決するために、本発明者らは、特願昭6
2−57529号において開示したように、Fe含有量
の高いSm −Co −Cu −Fe−Zr系合金から
異方性ボンド磁石を作製し、それの磁気特性及びミクロ
組織を調べた。その結果、時効後のミクロ組織において
SmzCO7型の析出物(〜0.5μm)が出現してい
るのを見い出した。組成分析の結果、上記析出物にはZ
r及びCuが濃縮されていることが判明した。本系合金
は、時効によってSmz(Co、 Fe)+を相とSm
 (Co + Cu) s相とに微細にセル状に相分解
する一方、薄い板状のZrに冨む相が析出する。このよ
うな析出形態の形成によって保磁力が発生する。ここで
、同時にSmzCo7型の粗大な析出物が出現する場合
には、上記の析出形態に大きな変化を与え、その結果保
磁力が変化すると考えられた。特に本系合金の焼結磁石
においては、Sm2Co7型相の析出量が多く、そのた
めにセル状組織主体のマトリックスからZr及びCuが
著しく欠乏し、その結果保磁力が減少すると考えられた
。以上のような研究結果に基づき、高Fe含有合金の低
保磁力の原因は、SmzCo7型相の析出にあると断定
した。
In order to solve the above problems, the present inventors filed a patent application filed in
As disclosed in No. 2-57529, an anisotropic bonded magnet was prepared from a Sm-Co-Cu-Fe-Zr alloy with a high Fe content, and its magnetic properties and microstructure were investigated. As a result, it was found that SmzCO7 type precipitates (~0.5 μm) appeared in the microstructure after aging. As a result of compositional analysis, the above precipitate contains Z
It was found that r and Cu were enriched. This alloy undergoes aging to form Smz(Co, Fe)+ phase and Sm
(Co + Cu) phase decomposes into a fine cellular phase with the s phase, while a thin plate-like Zr-enriched phase precipitates. Coercive force is generated by the formation of such a precipitation form. Here, if SmzCo7-type coarse precipitates appeared at the same time, it was thought that the above-mentioned precipitation form would change significantly, and as a result, the coercive force would change. In particular, in the sintered magnet of this alloy, the amount of precipitated Sm2Co7 type phase is large, and therefore Zr and Cu are significantly depleted from the matrix mainly composed of cellular structure, which is thought to result in a decrease in coercive force. Based on the above research results, it was determined that the cause of the low coercive force of the high Fe-containing alloy is the precipitation of the SmzCo7 type phase.

本発明者らは、特願昭62−57529号においてBを
0.005〜0.06 wt%添加することによってS
mzCo7型相の析出の抑制を図ることを提供している
。上記のB添加においては、Bの添加量が0.005 
wt%未溝の場合はその効果の発現が不安定であった。
The present inventors disclosed in Japanese Patent Application No. 62-57529 that S by adding 0.005 to 0.06 wt% of B.
It is provided to suppress precipitation of mzCo7 type phase. In the above B addition, the amount of B added is 0.005
In the case of wt% ungrooved, the expression of the effect was unstable.

これはこのような低いBの添加の場合は均一にBを分散
させることが困難なためであった。
This is because it is difficult to uniformly disperse B when such a low B content is added.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、RZGO+?型のSm −Co −Cu −
Fe −Zr系永久磁石合金に、0.00!5 wt%
未満のBを添加し、高い残留磁束密度と高い保磁力を合
せ持つ永久磁石材料を提供すると同時に、それを安定し
て製造する方法を提供しようとするものである。
The present invention is based on RZGO+? Type Sm -Co -Cu -
0.00!5 wt% in Fe-Zr permanent magnet alloy
The purpose of the present invention is to provide a permanent magnet material that has both a high residual magnetic flux density and a high coercive force by adding less than 100% of B, and at the same time, to provide a method for stably manufacturing it.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の永久磁石材料は、重量百分率(wt%)で、2
3〜28%のR(ただしRは希土類元素の1種又は2種
以上)、4〜10%のCq、15〜25%のFe、0.
2〜5%のZr、及び残部がCo並びに不可避的不純物
からなる合金において、0.005%未満のBを含有さ
せることを特徴とする。この永久磁石材料の製造方法は
、重量百分率(wt%)で、23〜28%のR(ただし
Rは希土類元素の1種又は2種以上)、4〜10%のC
u、15〜25%のFe、0.2〜5%のZr、および
残部がCOからなる合金粉末と、23〜2B%のR(た
だしRは希土類元素の1種又は2種以上)、4〜10%
のCu、15〜25%のFe、 0.2〜5%のZr、
 0.005〜0.06%のB、及び残部がCoからな
る合金粉末とを混合し、加圧成形後に焼結することを特
徴とする。
The permanent magnet material of the present invention has a weight percentage (wt%) of 2
3 to 28% R (R is one or more rare earth elements), 4 to 10% Cq, 15 to 25% Fe, 0.
The alloy is characterized by containing less than 0.005% of B in an alloy consisting of 2 to 5% of Zr and the balance being Co and unavoidable impurities. The manufacturing method of this permanent magnet material consists of 23 to 28% R (however, R is one or more rare earth elements) and 4 to 10% C in terms of weight percentage (wt%).
u, 15-25% Fe, 0.2-5% Zr, and the balance is CO, and 23-2B% R (however, R is one or more rare earth elements), 4 ~10%
Cu, 15-25% Fe, 0.2-5% Zr,
It is characterized by mixing an alloy powder consisting of 0.005 to 0.06% B and the balance being Co, and sintering the mixture after pressure forming.

〔作 用〕[For production]

合金中の析出は微量元素の添加によって影響を受けるこ
とが多い。例えば低炭素鋼におけるベイナイト変態はわ
ずかO,0QO1vit%のBの添加によって著しく遅
らされる(M、 UenoとT、 Inoue 。
Precipitation in alloys is often influenced by the addition of trace elements. For example, the bainite transformation in low carbon steels is significantly retarded by the addition of only 1 bit% of B (M, Ueno and T, Inoue).

Trans、l5IJ、 Vol、13.1973. 
 P210 ) 、本発明者らは、新たに、0.005
 wt%未溝の微量のBをSm −Co −Cu −P
e −Zr系合金に添加しても、Bを均一に分散させる
ことが出来れば磁気特性に有害なSm、Co7型相の析
出を抑制できることを見い出した。
Trans, l5IJ, Vol, 13.1973.
P210 ), the present inventors newly calculated 0.005
wt% ungrooved trace amount of B is Sm-Co-Cu-P
It has been found that even if B is added to an e-Zr alloy, if B can be uniformly dispersed, precipitation of Sm and Co7 type phases, which are harmful to magnetic properties, can be suppressed.

ここで、Bの添加量は微量であるので、飽和磁化の低下
はほとんどない。したがって、B添加によって高い残留
磁束密度を保ったまま保磁力を向上させることができる
Here, since the amount of B added is very small, there is almost no decrease in saturation magnetization. Therefore, by adding B, the coercive force can be improved while maintaining a high residual magnetic flux density.

以下、本発明の磁石合金R−Co−Cu−Fe−Zr 
−B系の成分について言及する。
Below, the magnet alloy R-Co-Cu-Fe-Zr of the present invention
- The components of the B system will be mentioned.

本発明のR−Co−Cu−Fe−Zr −B系において
RはSmを主体とする希土類元素であるが、それが23
wt%未満では十分な保磁力が得られず、28wt%超
では飽和磁化が低い。Cuは4ivt%未満では十分な
保磁力が得られず、10wt%超では飽和磁化が低くな
る。Reは15wt%未満では飽和磁化の十分に高いも
のが得られず、25wt%超では保磁力が低い。Zrは
特公昭55−48094号公報により公知のごとく低C
uで高Feの木系磁石合金においては0.2〜5吋%の
範囲で添加する必要がある。すなわち、Zrが0.2w
t%未満では十分な保磁力が得られず、5wt%超では
飽和磁化の低下が著しい。本発明の主眼となるBは、均
一分散により0.005 ivt%未満の極く微量で保
磁力を向上させる。また、Bは非磁性元素であるので、
多すぎるBの添加は飽和磁化の低下を招くので好ましく
ない。
In the R-Co-Cu-Fe-Zr-B system of the present invention, R is a rare earth element mainly composed of Sm;
If it is less than 28 wt%, sufficient coercive force cannot be obtained, and if it exceeds 28 wt%, the saturation magnetization is low. If Cu is less than 4 ivt%, a sufficient coercive force cannot be obtained, and if it exceeds 10 wt%, the saturation magnetization becomes low. If Re is less than 15 wt%, a sufficiently high saturation magnetization cannot be obtained, and if it is more than 25 wt%, the coercive force is low. Zr has a low C content as known from Japanese Patent Publication No. 55-48094.
In a wood-based magnetic alloy with a high Fe content, it is necessary to add it in a range of 0.2 to 5 %. That is, Zr is 0.2w
If it is less than t%, a sufficient coercive force cannot be obtained, and if it exceeds 5wt%, the saturation magnetization decreases significantly. B, which is the main focus of the present invention, improves the coercive force in an extremely small amount of less than 0.005 ivt% by uniform dispersion. Also, since B is a non-magnetic element,
Addition of too much B is not preferable because it causes a decrease in saturation magnetization.

BをSm2GO+を系磁石合金に添加した例は特開昭5
5−115304号公報、特開昭56−44741号公
報、特公昭59−10562号公報、特開昭60−23
8436号公報、特開昭60〜238437号公報記載
のものなどがあるが、いずれもBの添加量が極めて多く
、これらの手段によっては目的とする高い残留磁束密度
で高保磁力の永久磁石材料を得ることはできない。本発
明者らが特願昭62−57529号において開示したよ
うに、0.06wt%以下のBの添加が適切である。
An example of adding B to Sm2GO+ system magnet alloy is disclosed in Japanese Patent Application Laid-Open No.
5-115304, JP 56-44741, JP 59-10562, JP 60-23
There are those described in Japanese Patent Application Laid-Open No. 8436 and Japanese Patent Application Laid-Open No. 1984-238437, but both of them contain an extremely large amount of B, and these methods cannot produce the desired permanent magnet material with high residual magnetic flux density and high coercive force. You can't get it. As disclosed by the present inventors in Japanese Patent Application No. 62-57529, it is appropriate to add B in an amount of 0.06 wt% or less.

次に本発明の構成であるごく微量のBを均一に分散させ
る手段について述べる。
Next, the means for uniformly dispersing a very small amount of B, which is the structure of the present invention, will be described.

粉末冶金法によって異方性焼結磁石を作製する場合には
、2種以上の合金粉末を混合して目的の組成の合金磁石
を得ることができる。本発明者らの経験によれば、高周
波誘導溶解等の通常の合金製造によっては0.005 
wt%未溝の微量のBを合金中に均一に含有させること
は極めて困難である。
When producing an anisotropic sintered magnet using a powder metallurgy method, an alloy magnet having a desired composition can be obtained by mixing two or more types of alloy powders. According to the experience of the present inventors, 0.005
It is extremely difficult to uniformly contain a trace amount of wt% ungrooved B in an alloy.

本発明者らは、それに変る方法として、B無添加の合金
粉末と0.005〜0.06iyt%のBを添加した合
金粉末を所定の割合で混合し、加圧成形後に焼結する方
法が有効であることを見い出した。この方法によって本
発明のような微量のBの添加が可能になった。Bを0.
005〜0.06wt%添加した合金は、R2C0,7
相を主相として保ったまま、その融点がB無添加合金の
融点に比較して10〜30″C低い。したがって、B無
添加合金の粉末にB添加合金の粉末を混入させて焼結す
る場合には、B添加合金粉末が焼結助材として働くため
に低温度ご短時間に良好な焼結を行うことができる。こ
の方法によって焼結晶の変形は大幅に軽減された。
As an alternative method, the present inventors have proposed a method in which an alloy powder without B additives and an alloy powder with 0.005 to 0.06 iyt% B added are mixed in a predetermined ratio, and the mixture is press-formed and then sintered. found it to be effective. This method made it possible to add a trace amount of B as in the present invention. B is 0.
The alloy containing 005 to 0.06 wt% is R2C0,7
While keeping the phase as the main phase, its melting point is 10 to 30"C lower than the melting point of the B-free alloy. Therefore, the B-added alloy powder is mixed with the B-added alloy powder and sintered. In this case, since the B-added alloy powder acts as a sintering aid, good sintering can be achieved at low temperatures and in a short time.This method significantly reduces deformation of the sintered crystal.

R2Co、7型磁石合金において添加された微量のBは
原子状に結晶粒界及び亜粒界等に偏析し、粒界エネルギ
ーを下げることによりR2CO7型相の粒界析出を抑制
する。これによって前述のごとく保磁力が向上する。
A small amount of B added in the R2Co, type 7 magnet alloy segregates in atomic form at grain boundaries, sub-grain boundaries, etc., and suppresses grain boundary precipitation of the R2CO7 type phase by lowering grain boundary energy. This improves the coercive force as described above.

〔実施例〕〔Example〕

実施例1 合金組成がCo  24.8wt%Sm  6.0wt
%Cu −19,0wt%Fe−2,5wt%Zrの合
金とCo  24.9Hj%Sm  6.0wt%Cu
  18.9wt%Fe  2.6wt%Zr −0,
023wt%Bの合金とを高周波誘導溶解によって溶製
した。これら2種の合金鋳片を粒径500μm以下に粉
砕し、種々の割合で混合した。これにより数種類のBの
含有量の異る混合合金粉を得、引き続いてボールミルに
よって混合合金粉の微粉砕を行った。微粉砕後の粉末を
16kOeの磁場中にて2ton/cTNの圧力で圧縮
成形した。次に、成形体を1180°C〜1210°C
の範囲の最適の温度で1時間焼結し、引き続き1130
°C〜1160°Cの範囲の最適の温度で16時間溶体
化した。溶体化後の時効処理として、850°Cで1時
間保持し、その後1°C/minで400°Cまで冷却
した。時効後の試料にたいして60kOeのパルス着磁
を行い、自記磁束計により磁気特性を測定した。
Example 1 Alloy composition is Co 24.8wt%Sm 6.0wt
%Cu-19,0wt%Fe-2,5wt%Zr alloy and Co 24.9Hj%Sm 6.0wt%Cu
18.9wt%Fe 2.6wt%Zr -0,
An alloy containing 0.023 wt% B was produced by high frequency induction melting. These two types of alloy slabs were crushed to a particle size of 500 μm or less and mixed in various proportions. As a result, several types of mixed alloy powders having different B contents were obtained, and subsequently, the mixed alloy powders were finely pulverized using a ball mill. The finely pulverized powder was compression molded under a pressure of 2 tons/cTN in a magnetic field of 16 kOe. Next, the molded body was heated to 1180°C to 1210°C.
Sinter for 1 hour at an optimal temperature in the range of 1130
Solution treatment was carried out for 16 hours at an optimal temperature ranging from °C to 1160 °C. As an aging treatment after solution treatment, it was held at 850°C for 1 hour, and then cooled to 400°C at a rate of 1°C/min. The aged sample was subjected to pulse magnetization of 60 kOe, and its magnetic properties were measured using a self-recording magnetometer.

第1図に、B無添加の場合、0.005 wt%未溝の
微量のBを添加した場合、及び0.038 wt%のB
を添加した場合の磁気特性を示す。図から明らかなよう
に、ごく微量のBの添加によって保磁力iHcは著しく
向上する。この保磁力の増加によって、最大エネルギー
積(BH)□8はB無添加の場合の24、6 M GO
eから0.005 wt%未満のB添加の場合の28.
1〜2 B、’6 MGOeに改善された。Bの多量添
加は保磁力を減少させる傾向にある。
Figure 1 shows the cases in which no B is added, the cases in which 0.005 wt% of ungrooved trace amount of B is added, and the cases in which 0.038 wt% of B is added.
This shows the magnetic properties when adding . As is clear from the figure, the addition of a very small amount of B significantly improves the coercive force iHc. Due to this increase in coercive force, the maximum energy product (BH) □8 is 24 in the case without B addition, and 6 M GO
28. in the case of B addition of less than 0.005 wt% from e.
Improved to 1-2 B, '6 MGOe. Addition of a large amount of B tends to reduce coercive force.

第2図(a)はB無添加合金、同(b)は0.0038
wt%f71Bを添加した合金の時効処理後の光学顕微
鏡による組織写真である。B無添加合金においては、保
磁力低下の原因となる0、5μm前後のSmzCo7型
の析出物が多量に析出しているが、0.0038wt%
のBを添加した合金ではそれがほとんど見られない。
Figure 2 (a) is an alloy without B additive, and (b) is 0.0038
It is a microstructure photograph taken by an optical microscope after aging treatment of an alloy to which wt% f71B is added. In the B-free alloy, a large amount of SmzCo7 type precipitates of around 0.5 μm are precipitated, which causes a decrease in coercive force, but the amount is 0.0038 wt%.
This is hardly seen in alloys containing B.

このB添加によるSm2Co7相の析出の抑制が、上述
の保磁力向上の原因である。
This suppression of precipitation of the Sm2Co7 phase by the addition of B is the cause of the above-mentioned improvement in coercive force.

実施例2 組成がCo −15,0ivt%Sm−10,2wt%
Nd−8,1−t%Cu −15,5wt%Fe−1,
9wt%Zr (合金S)とCo−15,0wt%Sm
 −10,2wt%Nd  8.1wt%Cu −15
,5wt%Fe −1,9iyt%Zr−0,0019
wt%B(合金T)である合金磁石を実施例1と同様の
方法で作製した。第1表にそれらの磁気特性を示す。表
から明らかなように、希土類元素RをSmとNdの混合
にした場合でも、ごく微量のBの添加によって保磁力が
著しく向上し、実用上使用可能な磁石が得られた。
Example 2 Composition is Co-15.0 ivt% Sm-10.2 wt%
Nd-8, 1-t%Cu-15, 5wt%Fe-1,
9wt%Zr (alloy S) and Co-15,0wt%Sm
-10.2wt%Nd 8.1wt%Cu -15
,5wt%Fe-1,9iyt%Zr-0,0019
An alloy magnet having wt% B (alloy T) was produced in the same manner as in Example 1. Table 1 shows their magnetic properties. As is clear from the table, even when the rare earth element R was a mixture of Sm and Nd, the coercive force was significantly improved by adding a very small amount of B, and a practically usable magnet was obtained.

第1表 〔発明の効果〕 本発明によるごく微量のBの均一添加によってRzCo
+q型磁石の保磁力は著しく向上した。これによって高
いFe含有量の合金においても高保磁力が得られ、その
合金の持つ大きな飽和磁化との相乗効果によって高い最
大エネルギー積が得られた。
Table 1 [Effects of the invention] By uniformly adding a very small amount of B according to the present invention, RzCo
The coercive force of the +q type magnet has been significantly improved. As a result, a high coercive force was obtained even in an alloy with a high Fe content, and a high maximum energy product was obtained due to the synergistic effect with the large saturation magnetization of the alloy.

近年、磁石応用機器は小型・薄肉化の傾向にあるために
、それに使用する磁石も薄肉のものが増加してきた。厚
さの小さい磁石を厚さ方向に着磁して機器に組み込む場
合には、自己減磁をさせないために高保磁力が要求され
る。本発明の高保磁力で高残留磁束密度の磁石の提供に
よって、より効率のよい小型で薄肉の磁石応用機器をつ
くることができる。
In recent years, magnet-applied devices have tended to be smaller and thinner, so the magnets used there have also been increasingly thin-walled. When a small-thick magnet is magnetized in the thickness direction and incorporated into a device, a high coercive force is required to prevent self-demagnetization. By providing a magnet with a high coercive force and a high residual magnetic flux density according to the present invention, more efficient small-sized and thin-walled magnet-applied devices can be manufactured.

また、B無添加合金の粉末とB添加合金の粉末とを混合
して焼結するという方法の適用により、著しく焼結晶の
変形が軽減され、製品歩留りが大幅に向上した。
Furthermore, by applying a method of mixing and sintering the powder of the B-free alloy and the powder of the B-added alloy, the deformation of the sintered crystals was significantly reduced, and the product yield was significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はBの含有量に対する磁気特性を示す図、第2図
(a)、 (b)はB添加によってSm2Co7相の析
出が抑制されることを示す光学顕微鏡による金属組織写
真である。
FIG. 1 is a diagram showing the magnetic properties as a function of the B content, and FIGS. 2(a) and 2(b) are photographs of the metallographic structure taken by an optical microscope showing that the precipitation of the Sm2Co7 phase is suppressed by the addition of B.

Claims (2)

【特許請求の範囲】[Claims] (1)重量百分率(wt%)で、23〜28%のR(た
だしRは希土類元素の1種又は2種以上)、4〜10%
のCu、15〜25%のFe、0.2〜5%のZr、及
び残部がCo並びに不可避的不純物からなる合金におい
て、0.005%未満のBを含有することを特徴とする
永久磁石材料。
(1) Weight percentage (wt%): 23-28% R (R is one or more rare earth elements), 4-10%
of Cu, 15 to 25% of Fe, 0.2 to 5% of Zr, and the balance being Co and unavoidable impurities, which is characterized by containing less than 0.005% of B. .
(2)重量百分率(wt%)で、23〜28%のR(た
だしRは希土類元素の1種又は2種以上)、4〜10%
のCu、15〜25%のFe、0.2〜5%のZr、及
び残部がCoからなる合金粉末と、23〜28%のR(
ただしRは希土類元素の1種又は2種以上)、4〜10
%のCu、15〜25%のFe、0.2〜5%のZr、
0.005〜0.06%のB、及び残部がCoからなる
合金粉末とを混合し、該混合合金粉末を加圧成形後に焼
結することを特徴とする特許請求範囲第1項記載の永久
磁石材料の製造方法。
(2) Weight percentage (wt%): 23-28% R (R is one or more rare earth elements), 4-10%
of Cu, 15 to 25% of Fe, 0.2 to 5% of Zr, and the balance of Co, and 23 to 28% of R(
However, R is one or more rare earth elements), 4 to 10
% Cu, 15-25% Fe, 0.2-5% Zr,
The permanent material according to claim 1, characterized in that an alloy powder consisting of 0.005 to 0.06% B and the balance Co is mixed, and the mixed alloy powder is sintered after pressure molding. Method of manufacturing magnetic materials.
JP63006192A 1988-01-14 1988-01-14 Permanent magnetic material and its manufacture Granted JPH01184244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006192A JPH01184244A (en) 1988-01-14 1988-01-14 Permanent magnetic material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006192A JPH01184244A (en) 1988-01-14 1988-01-14 Permanent magnetic material and its manufacture

Publications (2)

Publication Number Publication Date
JPH01184244A true JPH01184244A (en) 1989-07-21
JPH0514020B2 JPH0514020B2 (en) 1993-02-24

Family

ID=11631689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006192A Granted JPH01184244A (en) 1988-01-14 1988-01-14 Permanent magnetic material and its manufacture

Country Status (1)

Country Link
JP (1) JPH01184244A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252103A (en) * 1990-03-01 1991-11-11 Tokin Corp Manufacture of rare earth cobalt magnet
US5985050A (en) * 1996-09-30 1999-11-16 Honda Giken Kogyo Kabushiki Kaisha SmFe-based magnetostrictive material
US9773592B2 (en) 2013-09-13 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, and motor and generator using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252103A (en) * 1990-03-01 1991-11-11 Tokin Corp Manufacture of rare earth cobalt magnet
US5985050A (en) * 1996-09-30 1999-11-16 Honda Giken Kogyo Kabushiki Kaisha SmFe-based magnetostrictive material
US9773592B2 (en) 2013-09-13 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, and motor and generator using the same

Also Published As

Publication number Publication date
JPH0514020B2 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
US4898625A (en) Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPS61174364A (en) Permanent magnet
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH06207203A (en) Production of rare earth permanent magnet
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JPH1070023A (en) Permanent magnet and manufacture thereof
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH01100242A (en) Permanent magnetic material
JPH06207204A (en) Production of rare earth permanent magnet
JPH01184244A (en) Permanent magnetic material and its manufacture
JPH0146575B2 (en)
JPH0851007A (en) Permanent magnet and production thereof
RU2174261C1 (en) Material for rare-earth permanent magnets and its production process
JPH04322405A (en) Rare earth permanent magnet
JPH0146574B2 (en)
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JPS62101004A (en) Rare earth-iron group permanent magnet
JP7446600B2 (en) Manufacturing method of Cu-Mn-Al magnet
JPH0521216A (en) Permanent magnet alloy and its production
JPH0533095A (en) Permanent magnet alloy and its production
JPH02201902A (en) Permanent magnet
JPS60211032A (en) Sm2co17 alloy suitable for use as permanent magnet