JPH04322405A - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet

Info

Publication number
JPH04322405A
JPH04322405A JP3118081A JP11808191A JPH04322405A JP H04322405 A JPH04322405 A JP H04322405A JP 3118081 A JP3118081 A JP 3118081A JP 11808191 A JP11808191 A JP 11808191A JP H04322405 A JPH04322405 A JP H04322405A
Authority
JP
Japan
Prior art keywords
rare earth
thmn12
atom
permanent magnet
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3118081A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Sukehito Yoneda
米田 祐仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3118081A priority Critical patent/JPH04322405A/en
Priority to EP19920106791 priority patent/EP0510578A3/en
Publication of JPH04322405A publication Critical patent/JPH04322405A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Abstract

PURPOSE:To obtain a magnet having high magnetic characteristic by stabilizing a structure of ThMn12 through substitution of R of RFe12 compounds with a third element M without substitution of Fe. CONSTITUTION:A rare earth permanent magnet has a structure of alloy expressed by (R1-XMX) (Fe1-YCOY)Z (where, R is a kind or two kinds or more of rare earth elements mainly composed of Y, Th and Sm; M is a kind or two kinds of elements selected from Zr, Hf, Bi, Sn, In, Pb; 0.01<=X<=0.4, 0 <=Y<=0.5, 10<=Z<=13). The main phase thereof has the Body-centered tetragonal crystal ThMn12 structure and M atom is substituted by R atom.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ThMn12構造をも
つ新規でかつ高い磁気特性を有する希土類永久磁石に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new rare earth permanent magnet having a ThMn12 structure and having high magnetic properties.

【0002】0002

【従来の技術】体心正方晶ThMn12型の希土類−遷
移金属化合物において、高Fe量の3元化合物が本発明
者らによって以前に発明された(特許出願番号昭61−
84723、61−84724、61−84725、6
2−82398、62−82399、62−10821
8、62−108219、62−211194、62−
224764参照)。しかしThMn12型のRFe1
2化合物は存在せず、第3元素の導入により初めて高F
e領域の化合物が安定化したものである。典型的な化学
量論比としてはSmTiFe11、SmV2Fe10,
SmCr2Fe10,SmMo2Fe10,SmWFe
11,SmSi2Fe10,SmReFe11などが知
られている。もちろんSmに限定されるものではなく、
殆どすべての希土類元素(R)について同じ化学量論比
を有する化合物が存在する。このような高Fe領域のT
hMn12構造を有する化合物を、R( MFe)12
 と表わすとき、これらの化合物はほとんどのものが 
300℃以上のキュリー温度(Tc)を有し、しかも高
Fe量であるため高い飽和磁束密度(Ms)を有してい
る。また、中でもSm系化合物は著しく高い異方性磁場
を有しており、永久磁石材料として最適であり、実際に
液体超急冷磁石では10KOe以上の高い保磁力が得ら
れている。このような高Fe領域での3元化合物として
は、他にNd2Fe14Bが知られているのみである。
BACKGROUND OF THE INVENTION Among body-centered tetragonal ThMn12 type rare earth-transition metal compounds, a ternary compound with a high Fe content was previously invented by the present inventors (Patent Application No. 1983-
84723, 61-84724, 61-84725, 6
2-82398, 62-82399, 62-10821
8, 62-108219, 62-211194, 62-
224764). However, ThMn12-type RFe1
2 compounds do not exist, and high F is achieved only by introducing a 3rd element.
The compound in the e region is stabilized. Typical stoichiometric ratios include SmTiFe11, SmV2Fe10,
SmCr2Fe10, SmMo2Fe10, SmWFe
No. 11, SmSi2Fe10, SmReFe11, etc. are known. Of course, it is not limited to Sm,
Compounds exist that have the same stoichiometry for almost all rare earth elements (R). T in such a high Fe region
A compound with hMn12 structure is called R(MFe)12
When expressed as , most of these compounds are
It has a Curie temperature (Tc) of 300° C. or higher, and also has a high saturation magnetic flux density (Ms) due to the high content of Fe. Among them, Sm-based compounds have a significantly high anisotropic magnetic field and are optimal as permanent magnet materials, and in fact, high coercive forces of 10 KOe or more have been obtained in liquid super-quenched magnets. Nd2Fe14B is the only other known ternary compound in such a high Fe region.

【0003】R( MFe)12 化合物は前述のごと
くたいへん高い磁気特性を有しているが、第3元素(M
)は非磁性元素でFeを置換するため、例えばNd2F
e14BとSmTiFe11化合物を比較すると、Fe
原子の原子百分比はほぼ同等であるのに飽和磁化の大き
さは後者の方がかなり低い。このためR( MFe)1
2 系で第3元素Mの比率をできるだけ低下させ、でき
れば零に近づけて飽和磁化を高める努力が続けられてい
る。しかし、RTiFe11化合物等におけるM元素の
比率より更に下げることには成功していない。
[0003] The R(MFe)12 compound has very high magnetic properties as mentioned above, but it
) replaces Fe with a non-magnetic element, such as Nd2F
Comparing e14B and SmTiFe11 compounds, Fe
Although the atomic percentages of the atoms are almost the same, the magnitude of saturation magnetization is considerably lower in the latter. Therefore, R(MFe)1
Efforts are being continued to increase the saturation magnetization by lowering the ratio of the third element M in the 2-system as much as possible, preferably approaching zero. However, no success has been achieved in lowering the ratio of M element further than in RTiFe11 compounds and the like.

【0004】0004

【発明が解決しようとする課題】以上の観点から本発明
では、RFe12系化合物のFeを置換するのではなく
、Rを第3元素Mで置換することによりThMn12構
造を安定化して磁気特性の向上を図ろうとするものであ
る。
[Problems to be Solved by the Invention] From the above points of view, the present invention does not replace Fe in RFe12-based compounds, but substitutes R with a third element M to stabilize the ThMn12 structure and improve magnetic properties. This is what we are trying to achieve.

【0005】[0005]

【課題を解決するための手段】本発明者らはR( MF
e)12 化合物におけるM元素の役割について研究を
重ねた結果、第3元素MでFeを置換するのではなく、
Rを置換すればTh2Mn12 構造を安定化さ得るこ
とを見出し、諸条件を充分検討して本発明を完成させた
もので、合金組成が式 (R1−X MX)(Fe1−
YCoY)Z (但し、RはY,Th およびSmを主
体とした希土類元素の1種もしくは2種以上、MはZr
,Hf,Bi,Sn,In,Pb から選らばれた1種
または2種以上の元素、0.01≦X ≦0.4、0≦
Y ≦0.5、10≦Z ≦13)からなり、その主相
が体心正方晶ThMn12構造でかつM原子がR原子を
置換していることを特徴とする希土類永久磁石を要旨と
するものである。
[Means for solving the problem] The present inventors have developed R(MF
e) 12 As a result of repeated research on the role of M element in compounds, instead of replacing Fe with a third element M,
It was discovered that the Th2Mn12 structure could be stabilized by substituting R, and after thorough consideration of various conditions, the present invention was completed.
YCoY)Z (However, R is one or more rare earth elements mainly consisting of Y, Th and Sm, and M is Zr.
, Hf, Bi, Sn, In, Pb, 0.01≦X≦0.4, 0≦
Y ≦ 0.5, 10 ≦ Z ≦ 13), the main phase thereof is a body-centered tetragonal ThMn12 structure, and M atoms substitute R atoms. It is.

【0006】以下、本発明を詳細に説明する。M元素は
その格子がFeより少し大きい場合には、Feを置換し
て格子を押し広げ、ThMn12構造を安定化すると考
えられる。 M元素が広い固溶限をもっているバナジュウムV元素の
場合には、V量の減少とともに格子が縮小することがわ
かっている。つまり、M元素無しでは格子が小さくなり
、Fe原子が本来入るべき空間が小さくなり過ぎる。し
かしまた、M原子がFe原子よりかなり大きい場合は、
格子を大幅に押し広げなければならないため、ThMn
12構造を安定化できない。このような理由でR( M
Fe)12 化合物を安定化する元素が限定され、しか
も置換量も狭い幅の中に制限されるものと考えられる。
The present invention will be explained in detail below. When the lattice of the M element is slightly larger than that of Fe, it is thought that the M element replaces Fe, expands the lattice, and stabilizes the ThMn12 structure. It is known that when the M element is vanadium V, which has a wide solid solubility limit, the lattice shrinks as the V amount decreases. In other words, without the M element, the lattice becomes small, and the space in which Fe atoms should originally enter becomes too small. But also, if the M atom is much larger than the Fe atom,
Since the lattice must be expanded significantly, ThMn
12 structure cannot be stabilized. For this reason, R( M
It is thought that the elements that stabilize the Fe)12 compound are limited and the amount of substitution is also limited within a narrow range.

【0007】以上の考察から、Feを大きめの原子で置
換するのでなく、逆にRを小さめの原子で置換すること
により、格子にFe原子が入ることができるような空間
的な余裕を与えることにより、ThMn12構造を安定
化出来るものと考えられる。Rサイトの置換原子として
、一般的な希土類元素よりも小さめであり、かつFeサ
イトを置換するには大き過ぎるZrやHf等によりTh
Mn12構造を安定化出来ることが判った。
[0007] From the above considerations, instead of replacing Fe with a larger atom, conversely, by replacing R with a smaller atom, it is possible to provide a spatial margin that allows the Fe atom to enter the lattice. It is considered that the ThMn12 structure can be stabilized by this. As a substituent atom at the R site, Zr, Hf, etc., which are smaller than general rare earth elements and too large to replace the Fe site, cause Th.
It was found that the Mn12 structure can be stabilized.

【0008】添加元素Mの量X は、0.01以上、0
.4以下が好ましい。0.01未満ではThMn12構
造を安定化させることが出来ず、R2Fe17 相とF
eの相に分離してしまい、また、Rを置換する量が0.
4 よりも多いとRFe12系磁性合金の磁気異方性が
主にR元素に依存していることから、磁石材料として満
足出来る磁気特性が得られなくなってしまう。M置換元
素は希土類元素とFe原子の中間の大きさを持つものが
良く、かつTi原子より大きい元素が好ましいことかが
実験的に判った。M元素はZr,Hf,Bi,Sn,I
n,Pb がThMn12構造を安定化出来る。
The amount X of the additive element M is 0.01 or more, 0
.. 4 or less is preferable. If it is less than 0.01, the ThMn12 structure cannot be stabilized, and the R2Fe17 phase and F
If the amount of R to be substituted is 0.
If the amount is more than 4, the magnetic anisotropy of the RFe12 magnetic alloy mainly depends on the R element, making it impossible to obtain satisfactory magnetic properties as a magnet material. It has been experimentally found that the M substituent element preferably has a size between that of a rare earth element and a Fe atom, and is preferably an element larger than a Ti atom. M elements are Zr, Hf, Bi, Sn, I
n,Pb can stabilize the ThMn12 structure.

【0009】Fe原子はCo原子で置換することが可能
で、Co置換によりキュリー温度が向上し、磁気特性の
温度安定性が改善される。また、Co置換により飽和磁
化も少し上昇するが、逆に結晶磁気異方性は減少するの
でCo置換量は Y≦0.5 以下がよい。遷移金属の
量は Z<10ではR2Fe17 が安定化され、Z>
13ではFeが主相となりThMn12構造が安定化さ
れないため、この範囲内であることが必要である。
[0009] Fe atoms can be replaced with Co atoms, and Co substitution improves the Curie temperature and improves the temperature stability of magnetic properties. Further, although the saturation magnetization increases slightly due to Co substitution, the crystal magnetic anisotropy decreases on the contrary, so the amount of Co substitution is preferably Y≦0.5 or less. The amount of transition metal is as follows: When Z<10, R2Fe17 is stabilized, and when Z>
In No. 13, Fe becomes the main phase and the ThMn12 structure is not stabilized, so it is necessary to fall within this range.

【0010】ここで、RはY、Th、Sm を主体とす
る希土類元素からなる群から選択される1種または2種
以上の元素に適用される。
[0010] Here, R is applied to one or more elements selected from the group consisting of rare earth elements mainly consisting of Y, Th, and Sm.

【0011】本発明の化合物の磁石化は種々の手段によ
って可能である。典型的な手段としては、焼結磁石また
はボンド磁石化が挙げられる。得られた合金はジェット
ミル等で微粉砕して磁石合金粉末を作製する。この微粉
砕には液体超急冷法、メカニカルアロイング法やガスア
トマイズ法等を使用してもよい。焼結磁石については磁
石合金粉末を磁場中で配向させながら成形し、これを1
,000〜 1,300℃の温度範囲で焼結し、その後
500 〜900 ℃で時効処理を行う。ボンド磁石に
ついては磁石合金粉末を有機バインダーと混合し、磁場
中で配向させた後、有機バインダーを硬化させてボンド
磁石とすれば良い。
Magnetization of the compounds of the invention is possible by various means. Typical means include sintered magnets or bonded magnetization. The obtained alloy is finely pulverized using a jet mill or the like to produce a magnet alloy powder. For this fine pulverization, a liquid super-quenching method, a mechanical alloying method, a gas atomization method, or the like may be used. For sintered magnets, magnet alloy powder is molded while being oriented in a magnetic field, and this is
Sintering is performed at a temperature range of 1,000 to 1,300°C, followed by aging treatment at a temperature of 500 to 900°C. For a bonded magnet, a magnet alloy powder may be mixed with an organic binder, oriented in a magnetic field, and then the organic binder may be hardened to form a bonded magnet.

【0012】0012

【実施例】以下、本発明の実施態様を実施例、比較例を
挙げて具体的に説明するが、本発明はこれらに限定され
るものではない。 (実施例1)純度99%のSmメタル、純度99.9%
のFe、CoおよびZr等の添加金属元素を各々表1(
合金番号2〜9)のように秤量し、不活性ガス中で高周
波溶解を行い、溶湯を銅鋳型で冷却した。該インゴット
を粗粉砕後、N2ガスによるジェットミルで3〜5μm
径に微粉砕を行なった。該微粉を15KOe の静磁場
中で配向させた状態で、1ton/cm2 の圧力でプ
レス成形を行なった後、該成形体を不活性ガス中1,0
50〜1,250 ℃の温度で1〜2時間焼結を行い、
引続き 500〜 900℃の温度範囲で1時間以上熱
処理を行なった後急冷した。該焼結体の磁気特性 iH
cを自記磁束計で測定した結果を表1に示した。比較例
としてMを添加しない合金を合金No. 1として作製
し、表1に併記した。  表1に示したように、Zr等
のM元素を添加しなかったものは、ThMn12構造を
とることが出来ず、Th2Zn17 構造の2−17相
とFeおよびCoの相に分離してしまうため、満足出来
る磁気特性が得られていない。またM元素の量がRサイ
トの置換率10%を越えると磁気特性が急激に悪くなっ
ていることが判る。
[Examples] Hereinafter, embodiments of the present invention will be explained in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. (Example 1) 99% purity Sm metal, 99.9% purity
The additive metal elements such as Fe, Co and Zr are shown in Table 1 (
Alloy Nos. 2 to 9) were weighed, high-frequency melting was performed in an inert gas, and the molten metal was cooled in a copper mold. After coarsely pulverizing the ingot, use a jet mill using N2 gas to grind the ingot to 3 to 5 μm.
It was finely pulverized to a diameter. The fine powder was oriented in a static magnetic field of 15 KOe and press-molded at a pressure of 1 ton/cm2, and then the molded body was placed in an inert gas at 1.0
Sintering is carried out at a temperature of 50 to 1,250 °C for 1 to 2 hours,
Subsequently, heat treatment was performed in a temperature range of 500 to 900°C for 1 hour or more, and then quenched. Magnetic properties of the sintered body iH
Table 1 shows the results of measuring c using a self-recording magnetometer. As a comparative example, an alloy without M added was alloy No. 1 and are also listed in Table 1. As shown in Table 1, when no M element such as Zr is added, the ThMn12 structure cannot be formed and the material separates into the 2-17 phase of the Th2Zn17 structure and the Fe and Co phases. Satisfactory magnetic properties have not been obtained. It is also seen that when the amount of M element exceeds the R site substitution rate of 10%, the magnetic properties deteriorate rapidly.

【0013】[0013]

【表 1】[Table 1]

【0014】[0014]

【発明の効果】本発明によれば、従来遷移金属サイトに
Ti等を導入しなければ安定化出来ないとされていたT
hMn12構造を持つR(Fe,Co)12 系磁性体
が希土類サイトをZr,Hf 等で置換することで安定
化でき、さらに従来1−12系磁性体の持つ問題点であ
る飽和磁束密度の低さを主にそれを担う遷移金属サイト
をTi等の非磁性金属で希釈する必要がなくなったため
、克服することができただけでなく、それを用いて高特
性の磁石を作製出来るようになった。またこの1−12
系磁石はFeを主成分とするため、高価なCoを多く使
用する必要がなく、資源や供給安定性およびコストの面
で利点が大きく、産業上その利用価値は極めて高い。
[Effects of the Invention] According to the present invention, T
The R(Fe,Co)12-based magnetic material with the hMn12 structure can be stabilized by substituting rare earth sites with Zr, Hf, etc., and it also solves the problem of low saturation magnetic flux density, which is the problem with conventional 1-12-based magnetic materials. Since there is no longer a need to dilute the transition metal sites that mainly play a role in this with non-magnetic metals such as Ti, we have not only been able to overcome this problem, but also made it possible to use it to create magnets with high characteristics. . Also this 1-12
Since the system magnet has Fe as its main component, there is no need to use a large amount of expensive Co, and it has great advantages in terms of resources, supply stability, and cost, and has extremely high industrial utility value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】合金組成が式 (R1−X MX)(Fe
1−YCoY)Z (但し、RはY,Th およびSm
を主体とした希土類元素の1種もしくは2種以上、Mは
Zr,Hf,Bi,Sn,In,Pbから選らばれた1
種または2種以上の元素、0.01≦X ≦0.4、0
≦Y ≦0.5、10≦Z≦13)からなり、その主相
が体心正方晶ThMn12構造でかつM原子がR原子を
置換していることを特徴とする希土類永久磁石。
Claim 1: The alloy composition has the formula (R1-X MX) (Fe
1-YCoY)Z (However, R is Y, Th and Sm
one or more rare earth elements mainly consisting of 1 or more, M selected from Zr, Hf, Bi, Sn, In, and Pb;
species or two or more elements, 0.01≦X≦0.4, 0
≦Y≦0.5, 10≦Z≦13), the main phase thereof has a body-centered tetragonal ThMn12 structure, and M atoms substitute R atoms.
JP3118081A 1991-04-22 1991-04-22 Rare earth permanent magnet Pending JPH04322405A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3118081A JPH04322405A (en) 1991-04-22 1991-04-22 Rare earth permanent magnet
EP19920106791 EP0510578A3 (en) 1991-04-22 1992-04-21 Rare earth-based alloy for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3118081A JPH04322405A (en) 1991-04-22 1991-04-22 Rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH04322405A true JPH04322405A (en) 1992-11-12

Family

ID=14727526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3118081A Pending JPH04322405A (en) 1991-04-22 1991-04-22 Rare earth permanent magnet

Country Status (2)

Country Link
EP (1) EP0510578A3 (en)
JP (1) JPH04322405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139183A (en) * 2019-02-27 2020-09-03 国立研究開発法人物質・材料研究機構 SmZrFeCo MAGNETIC COMPOUND AND METHOD FOR PRODUCING THE SAME
JPWO2021065254A1 (en) * 2019-10-02 2021-04-08

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145674A1 (en) * 2010-05-20 2011-11-24 独立行政法人物質・材料研究機構 Method for producing rare earth permanent magnets, and rare earth permanent magnets
US10250085B2 (en) 2016-08-24 2019-04-02 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, rotary electrical machine, and vehicle
EP3291250B1 (en) * 2016-08-24 2021-05-26 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle
US10490325B2 (en) 2016-08-24 2019-11-26 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732090B2 (en) * 1984-05-18 1995-04-10 株式会社東芝 permanent magnet
JPS62241304A (en) * 1986-04-12 1987-10-22 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2970809B2 (en) * 1987-12-28 1999-11-02 信越化学工業株式会社 Rare earth permanent magnet
JP3057448B2 (en) * 1988-05-26 2000-06-26 信越化学工業株式会社 Rare earth permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139183A (en) * 2019-02-27 2020-09-03 国立研究開発法人物質・材料研究機構 SmZrFeCo MAGNETIC COMPOUND AND METHOD FOR PRODUCING THE SAME
JPWO2021065254A1 (en) * 2019-10-02 2021-04-08
WO2021065254A1 (en) * 2019-10-02 2021-04-08 国立研究開発法人物質・材料研究機構 Magnet, membrane, laminate, motor, generator, and automobile

Also Published As

Publication number Publication date
EP0510578A3 (en) 1993-04-28
EP0510578A2 (en) 1992-10-28

Similar Documents

Publication Publication Date Title
CA1315571C (en) Magnetic materials and permanent magnets
US4971637A (en) Rare earth permanent magnet
Menth et al. New high-performance permanent magnets based on rare earth-transition metal compounds
US5800728A (en) Permanent magnetic material made of iron-rare earth metal alloy
JPS6110209A (en) Permanent magnet
JPH0316761B2 (en)
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH04322405A (en) Rare earth permanent magnet
JPH04322406A (en) Rare earth permanent magnet
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
US5230749A (en) Permanent magnets
US5055129A (en) Rare earth-iron-boron sintered magnets
JPH0474426B2 (en)
Tang et al. New YDy-based R2 (Fe, Co) 14B melt-spun magnets (R= Y+ Dy+ Nd)
US4981513A (en) Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
JPS61147503A (en) Rare earth magnet
JPS63241142A (en) Ferromagnetic alloy
JPH04280403A (en) Rare-earth magnet alloy and rare-earth permanent magnet
JPH052735B2 (en)
JPH0252412B2 (en)
JP3199506B2 (en) Rare earth permanent magnet
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JPH01184244A (en) Permanent magnetic material and its manufacture
US5015306A (en) Method for preparing rare earth-iron-boron sintered magnets