JPH04280403A - Rare-earth magnet alloy and rare-earth permanent magnet - Google Patents

Rare-earth magnet alloy and rare-earth permanent magnet

Info

Publication number
JPH04280403A
JPH04280403A JP3068069A JP6806991A JPH04280403A JP H04280403 A JPH04280403 A JP H04280403A JP 3068069 A JP3068069 A JP 3068069A JP 6806991 A JP6806991 A JP 6806991A JP H04280403 A JPH04280403 A JP H04280403A
Authority
JP
Japan
Prior art keywords
rare
alloy
earth
magnet
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3068069A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Sukehito Yoneda
米田 祐仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3068069A priority Critical patent/JPH04280403A/en
Publication of JPH04280403A publication Critical patent/JPH04280403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Abstract

PURPOSE:To obtain a rare-earth magnet alloy and a rare-earth permanent magnet with high magnetic characteristics by allowing an alloy composition to consist of a specific expression, its main phase to be in centroid tetragonal ThMn12 structure, and an intrusion atom between grids to be provided. CONSTITUTION:An Sm metal with a purity of 99.9% and Fe, Co, and C with a purity of 99.9% are weighed, they are melted by high frequency within an inactive gas, and then the melt is cooled by the use of a copper mold. After this ingot is roughly ground, it is crushed into a fine powder of 3-5mum in diameter by a jet mill of N2 gas. While this fine powder is oriented in a static magnetic field of 15kOe, press formation is performed with a pressure of 1ton/cm<2>, this formed body is sintered at a temperature of 1050-1250 deg.C within the inert gas for 1-2 hours, and then it is subjected to heat treatment for 1 hour or longer at a temperature range of 500-900 deg.C before it is rapidly cooled, thus enabling R(Fe, Co)12 magnetic body in ThMn12 structure to be stabilized by introducing C and N.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ThMn12構造をも
つ新規でかつ高い磁気特性を有する希土類磁石合金およ
び希土類磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel rare earth magnet alloy having a ThMn12 structure and having high magnetic properties, and a rare earth magnet.

【0002】0002

【従来の技術】体心正方晶ThMn12型の希土類−遷
移金属化合物において、高Fe量の3元化合物が本発明
者らによって以前に発明された。ThMn12型のRF
e12化合物は存在せず、第3元素の導入により初めて
高Fe領域の化合物が安定化したものである。典型的な
化学量論比としてはSmTiFe11、SmV2Fe1
0,SmCr2Fe10,SmMo2Fe10,SmW
Fe11,SmSi2Fe10,SmReFe11など
が知られている。もちろんSmに限定されるものではな
く、殆どすべての希土類元素(R)について同じ化学量
論比を有する化合物が存在する。このような高Fe領域
のThMn12構造を有する化合物を、R( MFe)
12 と表わすとき、これらの化合物はほとんどのもの
が 300℃以上のキュリー温度(Tc)を有し、しか
も高Fe量であるため高い飽和磁束密度(Ms)を有し
ている。また、中でもSm系化合物は著しく高い異方性
磁場を有しており、永久磁石材料として最適であり、実
際に液体超急冷磁石では10KOe 以上の高い保磁力
が得られている。このような高Fe領域での3元化合物
としては、他にNd2Fe14Bが知られているのみで
ある。
BACKGROUND OF THE INVENTION Among body-centered tetragonal ThMn12 type rare earth-transition metal compounds, high Fe content ternary compounds were previously invented by the present inventors. ThMn12 type RF
There is no e12 compound, and the compound in the high Fe region is stabilized for the first time by introducing a third element. Typical stoichiometry is SmTiFe11, SmV2Fe1
0, SmCr2Fe10, SmMo2Fe10, SmW
Fe11, SmSi2Fe10, SmReFe11, etc. are known. Of course, it is not limited to Sm, and there are compounds having the same stoichiometric ratio for almost all rare earth elements (R). A compound having such a ThMn12 structure in a high Fe region is converted into R(MFe)
12 Most of these compounds have a Curie temperature (Tc) of 300° C. or higher, and also have a high saturation magnetic flux density (Ms) due to the high content of Fe. Moreover, among these, Sm-based compounds have a significantly high anisotropic magnetic field and are optimal as permanent magnet materials, and in fact, high coercive forces of 10 KOe or more have been obtained in liquid super-quenched magnets. Nd2Fe14B is the only other known ternary compound in such a high Fe region.

【0003】R( MFe)12 化合物は前述のごと
くたいへん高い磁気特性を有しているが、第3元素(M
)は非磁性元素であり、その量に比例して磁性を薄める
のみならず、M元素に由来する伝導電子がFe原子の磁
気モーメントを薄めてしまうために、Feの平均磁気モ
ーメントが大幅に低下している。従って、例えばNd2
Fe14BとSmTiFe11化合物を比較すると、F
e原子の原子百分比はほぼ同等であるのに飽和磁化の大
きさは後者の方がかなり低い。このためR( MFe)
12 系で第3元素Mの比率をできるだけ低下させ、で
きれば零に近づけて飽和磁化を高める努力が続けられて
いる。しかし、RTiFe11化合物等におけるM元素
の比率より更に下げることには成功していない。
[0003] The R(MFe)12 compound has very high magnetic properties as mentioned above, but it
) is a non-magnetic element, and not only does it dilute the magnetism in proportion to its amount, but also the conduction electrons derived from the M element dilute the magnetic moment of the Fe atom, resulting in a significant decrease in the average magnetic moment of Fe. are doing. Therefore, for example, Nd2
Comparing Fe14B and SmTiFe11 compounds, F
Although the atomic percentages of e atoms are almost the same, the magnitude of saturation magnetization is considerably lower in the latter. For this reason R(MFe)
Efforts are being continued to reduce the ratio of the third element M in the 12 series as much as possible, and if possible, to bring it close to zero to increase the saturation magnetization. However, no success has been achieved in lowering the ratio of M element further than in RTiFe11 compounds and the like.

【0004】一方、菱面体晶Th2Zn17 (または
六方晶Th2Ni17)構造のR2Fe17 化合物は
キュリー温度が低く、結晶磁気異方性定数も負であるた
め、永久磁石素材としては不適であった。しかし、最近
になり炭素Cまたは窒素Nを原子間位置に導入すること
が可能であることがわかった。侵入型で導入することに
より格子が広がるため、キュリー温度が大幅に上昇し、
しかも結晶磁気異方性もまた大幅な上昇を示すことがわ
かった。この結果、特に Sm2Fe17Ax(A=C
またはN)は磁石素材として、SmCo17やNd2F
e14Bに匹敵する非常に高い値を示すことがわかった
。しかしSm2Fe17 は良好な磁気特性を示すが、
錆び易く耐酸化性の面で問題があった。(X.P.ZH
ONG,et al.,J.Magn.Magn.Ma
ter.86,333(1990)., J.M.D.
Coey and HongSUN,J.Magn.M
agn.Mater.87,L251(1990).参
照)
On the other hand, the R2Fe17 compound having a rhombohedral Th2Zn17 (or hexagonal Th2Ni17) structure has a low Curie temperature and a negative crystal magnetic anisotropy constant, so it is not suitable as a permanent magnet material. However, it has recently been found that it is possible to introduce carbon C or nitrogen N at interatomic positions. By interstitial introduction, the lattice widens, resulting in a significant increase in the Curie temperature,
Furthermore, it was found that the magnetocrystalline anisotropy also showed a significant increase. As a result, especially Sm2Fe17Ax (A=C
Or N) is a magnet material such as SmCo17 or Nd2F.
It was found that it showed a very high value comparable to e14B. However, although Sm2Fe17 exhibits good magnetic properties,
It rusted easily and had problems in terms of oxidation resistance. (X.P.ZH
ONG, et al. , J. Magn. Magn. Ma
ter. 86, 333 (1990). , J. M. D.
Coey and HongSUN, J. Magn. M
agn. Mater. 87, L251 (1990). reference)

【0005】[0005]

【発明が解決しようとする課題】以上の観点から本発明
は、R( MFe)12 化合物の第3元素Mを導入し
なくてもThMn12構造を安定化できる高い磁気特性
を有する希土類磁石合金および希土類永久磁石を提供し
ようとするものである。
[Problems to be Solved by the Invention] From the above points of view, the present invention provides rare earth magnet alloys and rare earth magnetic The idea is to provide a permanent magnet.

【0006】[0006]

【課題を解決するための手段】本発明者らはR( MF
e)12 化合物におけるM元素の役割について研究を
重ねた結果、本発明を完成させたもので、合金組成が式
  R(Fe1−XCoX)Y AZ (但し、RはS
mを主体とした希土類元素の1種もしくは2種以上、A
はCまたはNの1種以上、0≦X ≦0.5、10≦Y
 ≦13、0.1≦Z ≦2)からなり、その主相が体
心正方晶ThMn12構造でかつ格子間侵入原子を持つ
ことを特徴とする希土類磁石合金及び希土類永久磁石を
要旨とするものである。
[Means for solving the problem] The present inventors have developed R(MF
e) 12 As a result of repeated research on the role of the M element in compounds, the present invention was completed, and the alloy composition is of the formula R(Fe1-XCoX)Y AZ (However, R is S
One or more rare earth elements mainly consisting of m, A
is one or more of C or N, 0≦X≦0.5, 10≦Y
≦13, 0.1≦Z≦2), the main phase of which has a body-centered tetragonal ThMn12 structure and has interstitial atoms, and rare earth permanent magnets. be.

【0007】以下、本発明を詳細に説明する。M元素は
その格子がFeより少し大きい場合には、Feを置換し
て格子を押し広げ、ThMn12構造を安定化すると考
えられる。 M元素が広い固溶限をもっているバナジュウムV元素の
場合には、V量の減少とともに格子が縮小することがわ
かっている。つまり、M元素無しでは格子が小さくなり
、Fe原子が本来入るべき空間が小さくなり過ぎる。し
かしまた、M原子がFe原子よりかなり大きい場合は、
格子を大幅に押し広げなければならないため、ThMn
12構造を安定化できない。このような理由でR( M
Fe)12 化合物を安定化する元素が限定され、しか
も置換量も狭い幅の中に制限されるものと考えられる。
The present invention will be explained in detail below. When the lattice of the M element is slightly larger than that of Fe, it is thought that the M element replaces Fe, expands the lattice, and stabilizes the ThMn12 structure. It is known that when the M element is vanadium V, which has a wide solid solubility limit, the lattice shrinks as the V amount decreases. In other words, without the M element, the lattice becomes small, and the space in which Fe atoms should originally enter becomes too small. But also, if the M atom is much larger than the Fe atom,
Since the lattice must be expanded significantly, ThMn
12 structure cannot be stabilized. For this reason, R( M
It is thought that the elements that stabilize the Fe)12 compound are limited and the amount of substitution is also limited within a narrow range.

【0008】以上の考察から、原子間に侵入型で入り、
結晶格子を押し広げるような元素が存在すれば、Fe原
子の入るべき空間の制限が緩和され、M元素の置換量を
少なくもしくは無くしてしまうことが可能と考えられる
。 R2Fe17 化合物において、CやNが侵入型で入る
ことがわかっているので、RFe12もしくは、R( 
MFe)12 においてCやNによるThMn12構造
の安定化を調べた結果、可能であることがわかった。
[0008] From the above considerations, it is clear that
It is considered that if an element that expands the crystal lattice exists, the restrictions on the space in which the Fe atom should enter are relaxed, and it is possible to reduce or eliminate the amount of substitution of the M element. In R2Fe17 compounds, it is known that C and N enter in the interstitial form, so RFe12 or R(
As a result of investigating the stabilization of the ThMn12 structure by C and N in MFe)12, it was found that it is possible.

【0009】CやNは組成式( RFe12A3)で最
大3原子まで侵入可能であるが、実際には3原子侵入は
できず、高々2原子までである。侵入量が少なすぎると
格子の広がりが小さすぎてThMn12構造が安定化で
きなくなるため、 0.1原子以上の侵入が必要である
。Fe原子はCo原子で置換することが可能で、Co置
換によりキュリー温度が向上し、磁気特性の温度安定性
が改善される。また、Co置換により飽和磁化も少し上
昇するが、逆に結晶磁気異方性は減少するのでCo置換
量は X≦0.5 以下がよい。遷移金属の量は Y<
10ではR2Fe17 Ax が安定化され、 Y<1
3ではFeが主相となりThMn12構造が安定化され
ないため、この範囲内であることが必要である。ここで
、RはSmを主体とする希土類元素で、好ましくはSm
,Ce,Pr,Nd からなる群から選択される1種ま
たは2種以上の元素に適用される。
[0009] C and N can penetrate up to three atoms according to the compositional formula (RFe12A3), but in reality, three atoms cannot penetrate, and only two atoms at most. If the amount of penetration is too small, the spread of the lattice is too small and the ThMn12 structure cannot be stabilized, so it is necessary to penetrate 0.1 atoms or more. Fe atoms can be replaced with Co atoms, and Co substitution improves the Curie temperature and improves the temperature stability of magnetic properties. Further, although the saturation magnetization increases slightly due to Co substitution, the crystal magnetic anisotropy decreases on the contrary, so the amount of Co substitution is preferably X≦0.5 or less. The amount of transition metal is Y<
10, R2Fe17 Ax is stabilized and Y<1
3, Fe becomes the main phase and the ThMn12 structure is not stabilized, so it is necessary to be within this range. Here, R is a rare earth element mainly composed of Sm, preferably Sm
, Ce, Pr, and Nd.

【0010】本発明の磁石合金の作製において、 RF
e12Cx とRFe12Nx 及びRFe12Cx 
NY の場合では作製方法が少し異なる。C系では、構
成金属とCを所定比に秤量後、高周波炉やアーク炉等で
混合して溶解し合金を作製する。Cの形態としては、純
Cの粉末や塊もしくは Fe−CやR− Cのような炭
化物を用いても良い。一方、N系では構成金属を秤量・
溶解後に、合金を粉砕し、 100℃以上の高温に保持
した状態で窒素ガス雰囲気もしくはアンモニアガス雰囲
気中で窒化処理して合金中に窒素を導入する。使用する
ガス圧は高ければ高いほどよいが、好ましくは1気圧以
上あればよく、またそのときの温度は 700℃以下で
ないと侵入したNが安定化しなくなる。 また、窒化処理はCを導入したC系にさらに付加しても
よい。
[0010] In producing the magnetic alloy of the present invention, RF
e12Cx and RFe12Nx and RFe12Cx
In the case of NY, the manufacturing method is slightly different. In the case of C-based metals, the constituent metals and C are weighed in a predetermined ratio, and then mixed and melted in a high-frequency furnace, arc furnace, etc. to produce an alloy. As the form of C, powder or lump of pure C, or carbide such as Fe-C or R-C may be used. On the other hand, for N-based, the constituent metals are weighed and
After melting, the alloy is crushed and nitrided in a nitrogen gas atmosphere or an ammonia gas atmosphere while being maintained at a high temperature of 100° C. or higher to introduce nitrogen into the alloy. The higher the gas pressure used, the better, but it is preferably 1 atm or higher, and the temperature at that time must be 700° C. or lower, otherwise the intruded N will not be stabilized. Further, nitriding treatment may be further added to the C-based material into which C is introduced.

【0011】本発明の磁石合金の磁石化は種々の手段に
よって可能である。典型的な手段としては、焼結磁石ま
たはボンド磁石化が挙げられる。得られた合金はジェッ
トミル等で微粉砕して磁石合金粉末を作製する。この微
粉砕には液体超急冷法、メカニカルアロイング法やガス
アトマイズ法等を使用してもよい。焼結磁石については
磁石合金粉末を磁場中で配向させながら成形し、これを
1,000 〜 1,300℃の温度範囲で焼結し、そ
の後500 〜900 ℃で時効処理を行う。ボンド磁
石については磁石合金粉末を有機バインダーと混合し、
磁場中で配向させた後、有機バインダーを硬化させてボ
ンド磁石とすれば良い。
The magnetic alloy of the present invention can be magnetized by various means. Typical means include sintered magnets or bonded magnetization. The obtained alloy is finely pulverized using a jet mill or the like to produce a magnet alloy powder. For this fine pulverization, a liquid super-quenching method, a mechanical alloying method, a gas atomization method, or the like may be used. For sintered magnets, magnet alloy powder is formed while being oriented in a magnetic field, sintered at a temperature in the range of 1,000 to 1,300°C, and then aged at 500 to 900°C. For bonded magnets, magnet alloy powder is mixed with an organic binder,
After orientation in a magnetic field, the organic binder may be cured to form a bonded magnet.

【0012】0012

【実施例】以下、本発明の実施態様を実施例、比較例を
挙げて具体的に説明するが、本発明はこれらに限定され
るものではない。 (実施例1)純度99%のSmメタル、純度99.9%
のFe、Co及びCを各々表1(合金No. 2、4、
6、8、10 )のように秤量し、不活性ガス中で高周
波溶解を行い、溶湯を銅鋳型で冷却した。該インゴット
を粗粉砕後、N2ガスによるジェットミルで3〜5μm
径に微粉砕を行なった。該微粉を15KOe の静磁場
中で配向させた状態で、1ton/cm2 の圧力でプ
レス成形を行なった後、該成形体を不活性ガス中1,0
50 〜1,250 ℃の温度で1〜2時間焼結を行い
、引続き 500〜 900℃の温度範囲で1時間以上
熱処理を行なった後急冷した。該焼結体の磁気特性 i
Hcを自記磁束計で測定した結果を表1に示した。比較
例としてCを添加しない合金を合金No. 1、3、5
、7、9として作製し、表1に併記した。  表1に示
したように、Cを添加しないものはThMn12構造を
とらずTh2Zn17 構造の2−17相とFe及びC
oの相に分離してしまうため、良好な磁気特性を示して
いない。
[Examples] Hereinafter, embodiments of the present invention will be explained in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. (Example 1) 99% purity Sm metal, 99.9% purity
Table 1 (Alloy No. 2, 4,
6, 8, 10), high-frequency melting was performed in an inert gas, and the molten metal was cooled in a copper mold. After coarsely pulverizing the ingot, use a jet mill using N2 gas to grind the ingot to 3 to 5 μm.
It was finely pulverized to a diameter. The fine powder was oriented in a static magnetic field of 15 KOe and press-molded at a pressure of 1 ton/cm2, and then the molded body was placed in an inert gas at 1.0
Sintering was performed at a temperature of 50 to 1,250°C for 1 to 2 hours, followed by heat treatment at a temperature of 500 to 900°C for 1 hour or more, and then rapidly cooled. Magnetic properties of the sintered body i
Table 1 shows the results of measuring Hc using a self-recording magnetometer. As a comparative example, an alloy without C added was alloy No. 1, 3, 5
, 7, and 9, and are also listed in Table 1. As shown in Table 1, those without C do not have a ThMn12 structure but a 2-17 phase with a Th2Zn17 structure and Fe and C
Since it separates into the o phase, it does not exhibit good magnetic properties.

【0013】[0013]

【表 1】[Table 1]

【0014】(実施例2)純度99%のSmメタル、純
度99.9%のFe、Co及びCを表2(合金No. 
2、4、6、8、10)のように秤量し、不活性ガス中
で高周波溶解を行い、溶融を銅鋳型で冷却した。該イン
ゴットを不活性ガス中 500〜 900℃の温度範囲
で1時間以上熱処理を行なった後、粉砕後、さらにN2
ガスによるジェットミルで3〜5μmに微粉砕し、それ
をさらにN2ガス中 400〜 550℃の温度範囲で
窒化処理を行なった。その粉末をエポキシ樹脂中に分散
させた後、15KOe の静磁場中で磁場配向させ樹脂
を硬化させてボンド磁石を作製し、その磁気特性 iH
cを測定して表2に示した。比較例(合金No. 1、
3、5、7、9)として微粉砕後窒化処理を行なわずに
磁石化したものを表2に併記した。表2に示したように
窒化処理を行なったものは行なわなかったものに較べて
磁気特性が向上している。
(Example 2) Sm metal with a purity of 99%, Fe, Co and C with a purity of 99.9% were prepared in Table 2 (Alloy No.
2, 4, 6, 8, 10), high-frequency melting was performed in an inert gas, and the melt was cooled in a copper mold. The ingot was heat-treated in an inert gas at a temperature range of 500 to 900°C for 1 hour or more, and then crushed and further heated with N2.
The powder was pulverized to 3 to 5 μm using a gas jet mill, and then nitrided in N2 gas at a temperature of 400 to 550°C. After dispersing the powder in an epoxy resin, the resin was hardened by magnetic orientation in a static magnetic field of 15 KOe to produce a bonded magnet, and its magnetic properties were investigated iH
c was measured and shown in Table 2. Comparative example (Alloy No. 1,
3, 5, 7, and 9), which were magnetized without nitriding after pulverization, are also listed in Table 2. As shown in Table 2, those subjected to nitriding have improved magnetic properties compared to those not subjected to nitriding.

【0015】[0015]

【表2】[Table 2]

【0016】[0016]

【発明の効果】本発明により、従来遷移金属側にTi等
の金属を導入しなければ安定化できなかったThMn1
2構造のR(Fe,Co)12 系磁性体がC及びNの
導入により安定化できたのみならず、これを用いて従来
のSmCo系磁石に較べCo量を減らし、Feで置換す
ることによってより低コストの磁石合金を実現したこと
から、産業上その利用価値は極めて大きい。
[Effect of the invention] The present invention enables ThMn1 to be stabilized, which conventionally could not be stabilized without introducing a metal such as Ti to the transition metal side.
Not only was the R(Fe,Co)12-based magnetic material with a two-structure structure stabilized by the introduction of C and N, but by using this to reduce the amount of Co compared to conventional SmCo-based magnets and replacing it with Fe. Since a lower-cost magnetic alloy has been realized, its utility value in industry is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】合金組成が式  R(Fe1−XCoX)
Y AZ (但し、RはSmを主体とした希土類元素の
1種もしくは2種以上、AはCまたはNの1種以上、0
≦X ≦0.5、10≦Y ≦13、0.1≦Z ≦2
)からなり、その主相が体心正方晶ThMn12構造で
かつ格子間侵入原子を持つことを特徴とする希土類磁石
合金及び希土類永久磁石。
[Claim 1] The alloy composition has the formula R(Fe1-XCoX)
Y AZ (However, R is one or more rare earth elements mainly composed of Sm, A is one or more of C or N, 0
≦X ≦0.5, 10≦Y ≦13, 0.1≦Z ≦2
), the main phase of which has a body-centered tetragonal ThMn12 structure and has interstitial atoms, and a rare earth permanent magnet.
JP3068069A 1991-03-07 1991-03-07 Rare-earth magnet alloy and rare-earth permanent magnet Pending JPH04280403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068069A JPH04280403A (en) 1991-03-07 1991-03-07 Rare-earth magnet alloy and rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3068069A JPH04280403A (en) 1991-03-07 1991-03-07 Rare-earth magnet alloy and rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH04280403A true JPH04280403A (en) 1992-10-06

Family

ID=13363120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068069A Pending JPH04280403A (en) 1991-03-07 1991-03-07 Rare-earth magnet alloy and rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH04280403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042527A (en) * 2014-08-18 2016-03-31 国立研究開発法人物質・材料研究機構 Rare earth anisotropic magnet material and method for producing the same, and rare earth magnet precursor material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042527A (en) * 2014-08-18 2016-03-31 国立研究開発法人物質・材料研究機構 Rare earth anisotropic magnet material and method for producing the same, and rare earth magnet precursor material and method for producing the same

Similar Documents

Publication Publication Date Title
US4684406A (en) Permanent magnet materials
US4597938A (en) Process for producing permanent magnet materials
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
Kaneko et al. Recent developments of high-performance NEOMAX magnets
JPH0531807B2 (en)
JPS6110209A (en) Permanent magnet
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
Burzo et al. Magnetic properties of Nd2Fe14− x− yCoxAlyB alloys
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
US5230749A (en) Permanent magnets
US5055129A (en) Rare earth-iron-boron sintered magnets
JPH04322406A (en) Rare earth permanent magnet
JPS60244003A (en) Permanent magnet
JPH04322405A (en) Rare earth permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPS62241304A (en) Rare earth permanent magnet
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JPH04280403A (en) Rare-earth magnet alloy and rare-earth permanent magnet
US4981513A (en) Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
Yang et al. Study of permanent magnetic properties of the 1‐12 nitrides with Nd and Pr
JP3199506B2 (en) Rare earth permanent magnet
JPH0562815A (en) Permanent magnet and manufacturing method thereof
JPH06112019A (en) Nitride magnetic material
US5015306A (en) Method for preparing rare earth-iron-boron sintered magnets
JPH04308063A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element