JP3199506B2 - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet

Info

Publication number
JP3199506B2
JP3199506B2 JP04044793A JP4044793A JP3199506B2 JP 3199506 B2 JP3199506 B2 JP 3199506B2 JP 04044793 A JP04044793 A JP 04044793A JP 4044793 A JP4044793 A JP 4044793A JP 3199506 B2 JP3199506 B2 JP 3199506B2
Authority
JP
Japan
Prior art keywords
rare earth
phase
type
magnet
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04044793A
Other languages
Japanese (ja)
Other versions
JPH06231920A (en
Inventor
孝治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP04044793A priority Critical patent/JP3199506B2/en
Publication of JPH06231920A publication Critical patent/JPH06231920A/en
Application granted granted Critical
Publication of JP3199506B2 publication Critical patent/JP3199506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は各種電機、電子機器材料
として有用な磁気特性に優れた希土類永久磁石に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth permanent magnet having excellent magnetic properties and useful as a material for various electric and electronic devices.

【0002】[0002]

【従来の技術】電子機器関連のモーターの小型化、高性
能化に伴い、希土類永久磁石の需要がフェライト磁石を
凌ぐ勢いで拡大している。この中で従来からよく知られ
量産化されている希土類永久磁石には Sm-Co系磁石があ
り、スピーカー、モーター、計測器等に広く用いられて
いる。しかし高価なSmCo系合金を使用するためコスト面
で問題があり、Coを安価なFeで置換することが開発課題
である。これに対し資源的に豊富なNd、Feを主原料と
し、 Sm-Co系磁石よりさらに高性能のNd-Fe-B系磁石が
開発された(特開昭59-46008号参照)。しかしこのNd-F
e-B系磁石は大変錆易く、何らかのコーティングが必要
であり、Niメッキをはじめとする安価でかつ確実な防錆
法の開発によりはじめて実用化された。
2. Description of the Related Art With the miniaturization and high performance of motors related to electronic equipment, the demand for rare earth permanent magnets is expanding at a rate exceeding that of ferrite magnets. Among these, rare earth permanent magnets that are well known and mass-produced include Sm-Co magnets, which are widely used in speakers, motors, measuring instruments, and the like. However, since an expensive SmCo-based alloy is used, there is a problem in cost, and replacing Co with inexpensive Fe is a development issue. On the other hand, Nd-Fe-B magnets have been developed that use Nd and Fe, which are abundant in resources, as main raw materials and have higher performance than Sm-Co magnets (see JP-A-59-46008). But this Nd-F
e-B magnets are very easy to rust, require some kind of coating, and have been put into practical use for the first time by the development of inexpensive and reliable rust prevention methods such as Ni plating.

【0003】ところで最近、安価なFeを主原料とし Sm-
Co系磁石と同等あるいはそれ以上の磁気特性を有するTh
Mn12型体心正方晶構造(以下これを1-12型構造とい
う。)を持つ磁石が発見された(特開平1-175205号参
照)。この磁石の主相である1-12型化合物は R-Fe-M
(RはYを含む希土類、MはTi,V,Si,Cr,Mn,W,
Mo,Al等からなる)の3元系からなるもので、R-Fe(Co)
の2元系では安定的に存在できないが、第3元素の導入
によりはじめて1-12型構造が安定化される。この化合物
は高価なCoを含まずとも安定であり、飽和磁化、異方性
磁界、キュリー温度等もNd2Fe14B化合物とほぼ同等の
特性を有し、加えてFeを主体とするものでありながら高
い耐食性を有している。
Recently, inexpensive Fe has been used as a main raw material and Sm-
Th with magnetic properties equivalent to or better than Co-based magnets
A magnet having an Mn 12- type body-centered tetragonal structure (hereinafter referred to as a 1-12-type structure) has been discovered (see JP-A-1-175205). The 1-12 type compound which is the main phase of this magnet is R-Fe-M
(R is a rare earth containing Y, M is Ti, V, Si, Cr, Mn, W,
R-Fe (Co)
Although the binary system cannot exist stably, the introduction of the third element only stabilizes the 1-12 type structure. This compound is stable even without expensive Co, and has almost the same properties as the Nd 2 Fe 14 B compound in saturation magnetization, anisotropic magnetic field, Curie temperature, etc. Despite having high corrosion resistance.

【0004】[0004]

【発明が解決しようとする課題】前記のように優れた磁
気特性を有する1-12型化合物は、化合物単相を得るのが
非常に難しく、数日間の長時間の熱処理を必要とする。
Nd-Fe-B系磁石に代表される液相燒結法を用いた核生成
型磁石を作成する場合、主相のほかに希土類リッチ相
(希土類を多く含み、燒結時に融解し高密度化に寄与す
る)が必要であるが、1-12型磁石の場合、希土類量を化
合物の化学量論組成以上にすると逆磁区発生源となるR2
Fe17型化合物(2-17型化合物)が晶出し易く、これが保
磁力低下の原因となる。1-12型磁石はこれらのことが障
害となり未だ工業化されていない。本発明は、このよう
な障害を解決して優れた磁気特性を有する1-12型化合物
を組成の面から究明し、比較的容易な製造方法を提供し
ようとするものである。
The 1-12 type compound having excellent magnetic properties as described above is very difficult to obtain a single phase of the compound, and requires a long heat treatment for several days.
When making a nucleation type magnet using a liquid phase sintering method typified by Nd-Fe-B magnets, in addition to the main phase, a rare earth rich phase (contains a large amount of rare earth elements, melts during sintering and contributes to higher density) However, in the case of a 1-12 type magnet, if the amount of rare earth is greater than the stoichiometric composition of the compound, R 2 , which is a reverse magnetic domain generation source,
An Fe 17 type compound (2-17 type compound) is easily crystallized, which causes a decrease in coercive force. For these reasons, the 1-12 type magnet has not been industrialized yet. An object of the present invention is to solve the above-mentioned obstacles, to find a 1-12 type compound having excellent magnetic properties from the aspect of composition, and to provide a relatively easy production method.

【0005】[0005]

【課題を解決するための手段】本発明者等はかかる課題
を解決するためには1-12型磁石の溶解インゴットが短時
間で主相とリッチ相からなる合金に溶体化されなければ
ならないことを見出し、これを磁石合金組成面から解決
して本発明を完成したもので、その要旨は、 組成式RxFe100-x-y(V1-aSia)y(式中RはYを含む希
土類元素の1種または2種以上、x= 5.5〜18%、y=
8〜20%(%は原子百分率)、a=0.05〜 0.7(原子
比)で示され、主相がThMn12型体心正方晶構造を有する
ことを特徴とする希土類永久磁石にある。
In order to solve the above problems, the present inventors have found that a molten ingot of a 1-12 type magnet must be solutionized in a short time to an alloy composed of a main phase and a rich phase. The present invention was completed by solving this from the aspect of magnet alloy composition, and the gist of the invention is that the composition formula is R x Fe 100-xy (V 1 -a Si a ) y (where R includes Y One or more rare earth elements, x = 5.5-18%, y =
A rare-earth permanent magnet represented by 8 to 20% (% is an atomic percentage) and a = 0.05 to 0.7 (atomic ratio), wherein the main phase has a ThMn 12- type body-centered tetragonal structure.

【0006】以下、本発明を詳細に説明する。本発明の
最大の特徴は、体心正方晶ThMn12型構造をR-Fe系におい
て実現するための第3元素(Ti,V,Si,Cr,Mn,W,
Mo,Al等)の様々な組み合わせの内、特にV、Si2元素
の複合添加が主相の1-12型体心正方晶構造を安定化し、
短時間の熱処理により、容易に主相と希土類リッチ相と
からなる合金を得ることを見出したことにある。
Hereinafter, the present invention will be described in detail. The most important feature of the present invention is that a third element (Ti, V, Si, Cr, Mn, W, W) for realizing a body-centered tetragonal ThMn 12 type structure in an R-Fe system.
Of the various combinations of Mo, Al, etc., the composite addition of two elements, especially V and Si, stabilizes the 1-12 type body-centered tetragonal structure of the main phase,
It has been found that an alloy composed of a main phase and a rare earth-rich phase can be easily obtained by a short-time heat treatment.

【0007】[0007]

【作用】Nd-Fe-B系磁石に代表される核生成型磁石で
は、粉末冶金法における燒結工程の際に希土類リッチ相
が主相の溶解温度より低温で溶融し、この希土類リッチ
な液相が主相をくるみながら密度化する。これにより個
々の孤立化された主相は肥大化することなく、均一微細
な組織を得ることができる。このような組織を持つ核生
成型磁石では、熱消磁状態からの初磁化曲線の立ち上が
りが急峻であることが特徴であり、主相の粒内で磁壁は
非常に動き易い。従って結晶粒内に逆磁区の芽が発生す
ると、それは素早く結晶粒内全体に拡がり磁化反転が起
きる。核生成型磁石における高い保磁力は、主相を囲む
希土類リッチ相が粒界の逆磁区発生源を消失させ、主相
以外の相で発生した磁壁が主相内に侵入し難くなり、磁
化反転が起こり難くくなることに起因する。保磁力の大
小は、粒界付近の磁壁エネルギーに対応するので、主相
とこれを囲む希土類リッチ相の磁壁エネルギーの大きな
差が高い保磁力を発現させる。このためこの種の燒結磁
石では、主相を如何に均一にリッチ相が包むかが保磁力
の大きさを決定する。
In the nucleation magnet represented by the Nd-Fe-B magnet, the rare-earth-rich phase melts at a temperature lower than the melting temperature of the main phase during the sintering process in powder metallurgy, and the rare-earth-rich liquid phase Becomes dense while wrapping around the main phase. This makes it possible to obtain a uniform and fine structure without enlarging each isolated main phase. The nucleation type magnet having such a structure is characterized in that the initial magnetization curve rises steeply from the thermal demagnetization state, and the domain wall is very easy to move within the grains of the main phase. Therefore, when a reverse magnetic domain bud occurs in a crystal grain, it spreads quickly throughout the crystal grain and magnetization reversal occurs. The high coercive force of the nucleation-type magnet means that the rare earth rich phase surrounding the main phase disappears the reverse domain generation source at the grain boundary, and the domain walls generated in the phases other than the main phase are less likely to enter the main phase, and the magnetization reversal Is less likely to occur. Since the magnitude of the coercive force corresponds to the domain wall energy near the grain boundary, a large difference in the domain wall energy between the main phase and the rare earth-rich phase surrounding it causes a high coercive force. Therefore, in this type of sintered magnet, the magnitude of the coercive force is determined by how uniformly the rich phase covers the main phase.

【0008】前記組成式の組成で溶解されたインゴット
は 800〜1,100 ℃で2〜10時間熱処理することにより、
1-12型構造を有する主相と希土類リッチ相からなる合金
を容易に得ることができる。希土類リッチ相は燒結時に
前記のNd-Fe-B系磁石と同様、主相の1-12相を包みなが
ら高密度化し、逆磁区発生源は希土類リッチ相に取り込
まれ、かつ主相とリッチ相の間の磁壁エネルギーの大き
な差により高い保磁力を得ることができる。
The ingot dissolved by the composition of the above formula is heat-treated at 800 to 1,100 ° C. for 2 to 10 hours,
An alloy comprising a main phase having a 1-12 type structure and a rare earth rich phase can be easily obtained. During sintering, the rare earth-rich phase becomes dense while wrapping around the main phase 1-12 phase, as in the case of the Nd-Fe-B-based magnet described above. , A high coercive force can be obtained due to a large difference in domain wall energy.

【0009】主相である体心正方晶ThMn12構造を安定化
する第3元素としてはV,Siの他に、Ti,Cr,Mn,W,
Mo,Alがあるが、特にVとSiの組み合わせで容易に主相
と希土類リッチ相からなる合金を得ることができる。こ
の理由として、溶解、鋳造ままの合金の組織が微細で
あり、このため短時間の熱処理(短距離の拡散の意味)
で、α−Feの消失、ThMn12型正方晶の生成が起こる。加
えてV,Siを含む1-12型化合物は非常に安定で平衡状態
において優先的に生成するため、合金中のFeは殆ど1-12
型化合物中に含まれるため、希土類含有量が1-12型化合
物より多いR2Fe17化合物、RFe2化合物等は形成されず、
希土類リッチ相が形成されると考えられる。
As the third element for stabilizing the body-centered tetragonal ThMn 12 structure, which is the main phase, in addition to V and Si, Ti, Cr, Mn, W,
Although there are Mo and Al, an alloy composed of a main phase and a rare-earth-rich phase can be easily obtained particularly with a combination of V and Si. The reason for this dissolution, a structure of the alloy as-cast fine Therefore short-time heat treatment (meaning short range diffusion)
Then, disappearance of α-Fe and formation of ThMn 12 type tetragonal crystal occur. In addition, since 1-12 type compounds containing V and Si are very stable and are formed preferentially in an equilibrium state, the Fe in the alloy is almost 1-12 type.
Since it is contained in the type compound, the rare earth content is higher than the 1-12 type compound, R 2 Fe 17 compound, RFe 2 compound, etc. are not formed,
It is believed that a rare earth rich phase is formed.

【0010】本発明組成式RxFe100-x-y(V1-aSia)y
おいて、xが 5.5原子%未満であるとき、希土類は1-12
型化合物を形成することに消費され、希土類リッチ相は
現われ難く、また溶体化後もα- Feが残存し、十分な保
磁力が得られない。また、18原子%を越えると飽和磁化
が大きく低下するため前記範囲であることが必要であ
る。更にyが8〜20原子%の範囲外であるときは、体心
正方晶ThMn12構造が安定化せず、特に8原子%以下では
2-17相およびα-Fe 相が晶出し、大きな保磁力が望めな
い。また、aの値が0.05(原子比)未満では、α-Fe が
容易に消失せず、これが逆磁区の発生源となり保磁力が
低下する。またα-Fe を完全に消失させるには熱処理に
多大な時間を要し経済的でないばかりか、蒸気圧が高い
希土類元素は容易に蒸発し目的の組成が得られなくな
る。aの値が 0.7を越えると2-17相が晶出し易くなり、
保磁力が大きく低下する。
[0010] In the present invention the composition formula R x Fe 100-xy (V 1-a Si a) y, if x is less than 5.5 atomic%, the rare earth is 1-12
It is consumed to form the type compound, rare earth-rich phase hardly appears, and α-Fe remains even after solution treatment, and sufficient coercive force cannot be obtained. On the other hand, if it exceeds 18 atomic%, the saturation magnetization is greatly reduced. Further, when y is out of the range of 8 to 20 atomic%, the body-centered tetragonal ThMn 12 structure is not stabilized.
2-17 phase and α-Fe phase are crystallized, and large coercive force cannot be expected. When the value of a is less than 0.05 (atomic ratio), α-Fe does not easily disappear, and serves as a source of a reverse magnetic domain to decrease the coercive force. In addition, complete elimination of α-Fe requires a long time for heat treatment, which is not economical. In addition, rare earth elements having a high vapor pressure are easily evaporated, and a desired composition cannot be obtained. When the value of a exceeds 0.7, the 2-17 phase is easily crystallized,
Coercive force is greatly reduced.

【0011】本発明はR-Fe-V-Si 系を基本とするが、
VおよびSiの一部をTi,Cr,Mn,W,Nb, Mo,Ta,Al,
Sn,Zr,Hf,Geで置換することもできる。しかしあまり
多量の添加は磁気特性劣化の要因となるため置換量は5
原子%程度までである。また、本発明の適応される希土
類元素は、Yを含む La,Ce,Pr,Nd,Pm,Sm,Eu,Gc,Tb,Dy,H
o,Er,Tm,YbおよびLuの内1種、または2種以上である。
Although the present invention is based on the R-Fe-V-Si system,
Part of V and Si is Ti, Cr, Mn, W, Nb, Mo, Ta, Al,
It can be replaced with Sn, Zr, Hf, Ge. However, an excessively large addition causes deterioration of magnetic properties, so the replacement amount is 5%.
It is up to about atomic%. The rare earth elements to which the present invention is applied include La, Ce, Pr, Nd, Pm, Sm, Eu, Gc, Tb, Dy, H containing Y.
One, two or more of o, Er, Tm, Yb and Lu.

【0012】本発明に係る永久磁石合金は、前記合金組
成よりなる化合物を通常の粉末冶金法により、溶解、鋳
造、溶体化、粉砕、磁場中成型、燒結、時効を行なうこ
とにより優れた磁気特性を実現できる。
The permanent magnet alloy according to the present invention has excellent magnetic properties by subjecting a compound having the above alloy composition to melting, casting, solution treatment, pulverization, molding in a magnetic field, sintering, and aging by ordinary powder metallurgy. Can be realized.

【0013】[0013]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実機例1)純度99.9重量%のSmメタル、純度99.9重量
%のM=Si,V,Cr,Ti,Moの各メタルとFeを、Sm 11.
0 、Fe 76.0 、M 15.0 各原子%(Mが2種以上の場合
は合計で15.0原子%)になるように秤量し、不活性ガス
中で高周波溶解を行ない、溶湯をCu鋳型で冷却し、1,10
0 ℃で2時間溶体化し、試料No. 2とした。この試料の
X線回折およびEPMAによる観察の結果、金属相を同定し
た。V+Siを含むもの・・・1-12相、希土類リッチ相か
ら成る。それ以外のもの・・・α−Fe相、1-12相、2-17
相、希土類リッチ相から成る。図1にSm 11.0 、Fe 76.
0 、M 15.0 (V 10.0 、Si 5.0)各原子%の組成の化
合物(試料No. 2)に前記熱処理を施して得られた電子
プローブX線マイクロアナライザー(以下EPMAと略記す
る)による組成像を示す。図中灰色部分がThMn12型体心
正方晶化合物、その周りの白色部分がSmリッチ相であ
る。別に焼結体の磁気特性(保磁力)を自己記録磁束計
で測定した結果を表1に示す。
EXAMPLES Hereinafter, embodiments of the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. (Example 1 of actual machine) 99.9% by weight of Sm metal, 99.9% by weight of M = Si, V, Cr, Ti, Mo each metal and Fe, Sm 11.
0, Fe 76.0, M 15.0 Atomic% (15.0 atomic% in total when M is 2 or more), weighed so as to perform high frequency melting in inert gas, cooled the molten metal with Cu mold, 1,10
A solution was formed at 0 ° C. for 2 hours to obtain Sample No. 2. As a result of observation of this sample by X-ray diffraction and EPMA, a metal phase was identified. Containing V + Si: 1-12 phase, composed of rare earth rich phase. Others: α-Fe phase, 1-12 phase, 2-17
Phase, consisting of a rare earth rich phase. Figure 1 shows Sm 11.0, Fe 76.
0, M 15.0 (V 10.0, Si 5.0) A composition image by an electron probe X-ray microanalyzer (hereinafter abbreviated as EPMA) obtained by subjecting the compound (sample No. 2) having a composition of each atomic% to the above-mentioned heat treatment. Show. In the figure, the gray part is the ThMn 12- type body-centered tetragonal compound, and the surrounding white part is the Sm-rich phase. Table 1 shows the results of separately measuring the magnetic properties (coercive force) of the sintered body using a self-recording magnetometer.

【0014】(実施例2)純度99.9重量%のSmメタル、
純度99.9重量%のSi、Feを45%含むフェロバナジウムと
Feを各々表1(試料No. 1〜5)のように秤量し、不活
性ガス中で高周波溶解を行ない、溶湯をCu鋳型で冷却
し、その後1,100 ℃で2時間溶体化した。そのインゴッ
トを粗粉砕後、N2ガスによるジェットミルで平均粒径が
3〜5μm径に微粉砕を行なった。この微粉を 12kOeの
静磁場中で配向させた状態で1t/cm2の圧力でプレス成形
を行なった後、成形体を不活性ガス中1,150 ℃の温度で
1時間燒結を行ない、引続き 600℃の温度で1時間熱処
理を行なった後急冷した。焼結体の磁気特性を自己記録
磁束計で測定した結果を表1に示す。
Example 2 Sm metal having a purity of 99.9% by weight,
Ferrovanadium containing 99.9% by weight of Si and 45% of Fe
Fe was weighed as shown in Table 1 (Sample Nos. 1 to 5), subjected to high frequency melting in an inert gas, cooled with a Cu mold, and then solution-solutioned at 1,100 ° C. for 2 hours. After coarsely pulverizing the ingot, it was finely pulverized by a jet mill using N 2 gas to an average particle diameter of 3 to 5 μm. After the fine powder is oriented in a static magnetic field of 12 kOe and press-molded at a pressure of 1 t / cm 2 , the compact is sintered in an inert gas at a temperature of 1,150 ° C. for 1 hour, and subsequently heated at 600 ° C. After a heat treatment at a temperature for one hour, it was rapidly cooled. Table 1 shows the results of measuring the magnetic properties of the sintered body with a self-recording magnetometer.

【0015】(比較例)試料No. 6をSi無添加、試料N
o. 7をV無添加とした以外は実施例1と同様に処理し
て焼結体を作製し、磁気特性を測定して表1に併記し
た。
Comparative Example Sample No. 6 was added without Si, and sample N was not added.
A sintered body was prepared in the same manner as in Example 1 except that V was not added to o.7, and the magnetic properties were measured.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明によれば、該組成の化合物は短時
間の熱処理により核生成型燒結磁石に有用な組織を容易
に形成し、通常の粉末冶金法により優れた磁気特性を有
する希土類永久磁石を得ることができ、産業上その利用
価値は極めて高い。
According to the present invention, a compound having the above composition easily forms a structure useful for a nucleation type sintered magnet by a short-time heat treatment, and is a rare earth permanent magnet having excellent magnetic properties by ordinary powder metallurgy. A magnet can be obtained, and its utility value is extremely high in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例1試料No. 2の組成のEPMAによる
金属組識を示す図面である。
FIG. 1 is a drawing showing a metal structure by EPMA of the composition of Sample No. 2 of Example 1 of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式RxFe100-x-y(V1-aSiay (式中
RはYを含む希土類元素の1種または2種以上、x=
5.5〜18%、y=8〜20%(%は原子百分率)、a=0.0
5〜 0.7(原子比)で示され、主相がThMn12型体心正方
晶構造を有することを特徴とする希土類永久磁石。
1. A composition formula R x Fe 100-xy (V 1-a Si a) y ( wherein R represents one or more rare earth elements including Y, x =
5.5-18%, y = 8-20% (% is atomic percentage), a = 0.0
A rare earth permanent magnet represented by 5 to 0.7 (atomic ratio), wherein the main phase has a ThMn 12- type body-centered tetragonal structure.
JP04044793A 1993-02-04 1993-02-04 Rare earth permanent magnet Expired - Fee Related JP3199506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04044793A JP3199506B2 (en) 1993-02-04 1993-02-04 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04044793A JP3199506B2 (en) 1993-02-04 1993-02-04 Rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH06231920A JPH06231920A (en) 1994-08-19
JP3199506B2 true JP3199506B2 (en) 2001-08-20

Family

ID=12580904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04044793A Expired - Fee Related JP3199506B2 (en) 1993-02-04 1993-02-04 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP3199506B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130300A4 (en) * 2020-03-26 2024-04-03 Shinetsu Chemical Co Anisotropic rare earth sintered magnet and method for producing same
CN115280435A (en) * 2020-03-26 2022-11-01 信越化学工业株式会社 Anisotropic rare earth sintered magnet and method for producing same

Also Published As

Publication number Publication date
JPH06231920A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
EP0134304B2 (en) Permanent magnets
US5096512A (en) Magnetic materials and permanent magnets
EP0134305B1 (en) Permanent magnet
JP3057448B2 (en) Rare earth permanent magnet
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP2513994B2 (en) permanent magnet
JPH0316761B2 (en)
JPH07122413A (en) Rare earth permanent magnet and manufacture thereof
US5194098A (en) Magnetic materials
US5230749A (en) Permanent magnets
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPH02101146A (en) Nd-fe-b-type sintered magnet excellent in heat treatment characteristic
JP3199506B2 (en) Rare earth permanent magnet
US5183516A (en) Magnetic materials and permanent magnets
JPH0851007A (en) Permanent magnet and production thereof
JPH0536495B2 (en)
JPH0325922B2 (en)
JPH0467324B2 (en)
JPH052735B2 (en)
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH0536494B2 (en)
JP3108946B2 (en) Manufacturing method of permanent magnet alloy powder
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JPH0521219A (en) Production of rare-earth permanent magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees