JP3108946B2 - Manufacturing method of permanent magnet alloy powder - Google Patents

Manufacturing method of permanent magnet alloy powder

Info

Publication number
JP3108946B2
JP3108946B2 JP03274934A JP27493491A JP3108946B2 JP 3108946 B2 JP3108946 B2 JP 3108946B2 JP 03274934 A JP03274934 A JP 03274934A JP 27493491 A JP27493491 A JP 27493491A JP 3108946 B2 JP3108946 B2 JP 3108946B2
Authority
JP
Japan
Prior art keywords
permanent magnet
powder
alloy powder
nitrogen
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03274934A
Other languages
Japanese (ja)
Other versions
JPH0586402A (en
Inventor
章雄 長谷部
徹太郎 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP03274934A priority Critical patent/JP3108946B2/en
Publication of JPH0586402A publication Critical patent/JPH0586402A/en
Application granted granted Critical
Publication of JP3108946B2 publication Critical patent/JP3108946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はRxT(100−x−
y)Ny(RはYを含む希土類元素のうち少なくとも一
種であり、TはFe,Co,Niのうちの少なくとも一
種で、5≦x≦20、2≦y≦30)の式で表される磁
石特性に優れた磁性合金粉末を窒素プラズマ中で窒化す
ることにより広い温度範囲で得られる永久磁石合金粉末
の製造方法に関するものである。
The present invention relates to an RxT (100- x-
y) Ny (R is at least one of rare earth elements including Y, and T is at least one of Fe, Co, and Ni and is represented by the formula of 5 ≦ x ≦ 20, 2 ≦ y ≦ 30) The present invention relates to a method for producing a permanent magnet alloy powder obtained over a wide temperature range by nitriding a magnetic alloy powder having excellent magnet properties in a nitrogen plasma.

【0002】[0002]

【従来の技術】永久磁石材料は自動車部品、コンピュー
タ周辺機器、スピーカ、家庭用電化製品に至まで幅広
く、かつ大量に使用される電気・電子部品である。
2. Description of the Related Art Permanent magnet materials are electric and electronic components that are widely used in large quantities, such as automobile parts, computer peripherals, speakers, and household appliances.

【0003】[0003]

【発明が解決しようとする課題】一般にSmCo5,S
m2Co17およびNd2Fe14B等の金属間化合物
を有し、優れた磁性特性を有するSm−Co系、Nd−
Fe−B系永久磁石材料は、スピーカー,モータなどに
おおく使用されており、また、電気・電子機器の軽量小
型化大きく寄与している。
In general, SmCo5, Sm
Sm-Co-based and Nd- containing intermetallic compounds such as m2Co17 and Nd2Fe14B and having excellent magnetic properties
Fe-B based permanent magnet materials, speaker, are often used such as a motor, also contributes weight reduction in size increases the electrical and electronic equipment.

【0004】ところで、Nd−Fe−B系永久磁石材料
は、Sm−Co系永久磁石材料と比較し、高い飽和磁化
と最大エネルギー積を有し、また、比較的安価なNd、
Feを用いていることからSm−Co系永久磁石より広
く用いられている。しかし、Nd−Fe−B系永久磁石
材料も磁石特性の熱的安定性と耐食性に劣る欠点を有す
るため、広範な用途に供されていないのも現実である。
By the way, Nd—Fe—B permanent magnet materials have higher saturation magnetization and maximum energy product than Sm—Co permanent magnet materials, and are relatively inexpensive Nd,
Since Fe is used, it is more widely used than Sm-Co permanent magnets. However, since Nd-Fe-B permanent magnet materials also have disadvantages inferior in thermal stability and corrosion resistance of magnet properties, they are not actually used for a wide range of applications.

【0005】前記したように、永久磁石材料は多くの電
気・電子機器に使用され、その小型軽量化に対する永久
磁石材料の高性能化の要求は近年増大する一方であり、
ポストNd−Fe−B系永久磁石材料の出現が強く期待
されている。
As described above, permanent magnet materials are used in many electric and electronic devices, and the demand for higher performance of permanent magnet materials for their reduction in size and weight has been increasing in recent years.
The appearance of post-Nd-Fe-B permanent magnet materials is strongly expected.

【0006】最近ポストNd−Fe−B系永久磁石材料
となる可能性を持ったR2 T17NX系磁性化合物が
アイルランド国のJ.M.D.Coeyらによって発見
された。特に、Sm2Fe17磁性化合物は、一軸結
晶磁気異方性を有し、飽和磁化は15.4KGとNd2
Fe14B磁性化合物の16.2KGより劣るものの、
キュリー温度は約470℃(Nd2Fe14Bは約30
0℃)であり、異方性磁場は約140KOe(Nd2F
e14Bは約70KOe)とNd2Fe14B磁性化合
物より優れた磁気特性を有する。
[0006] Recently, an R2T17NX-based magnetic compound which has a possibility of becoming a post-Nd-Fe-B-based permanent magnet material is disclosed in J. Irish. M. D. Discovered by Coey et al. In particular, Sm2 Fe17 x magnetic compound has a uniaxial crystalline anisotropy, saturation magnetization 15.4KG and Nd2
Although inferior to 16.2KG of the Fe14B magnetic compound,
Curie temperature is about 470 ° C (Nd2Fe14B is about 30
0 ° C.) and an anisotropic magnetic field of about 140 KOe (Nd2F
e14B has a magnetic property of about 70 KOe) which is superior to that of the Nd2Fe14B magnetic compound.

【0007】また、R2T17NX磁性化合物は母合金
R2T17合金粉末の窒化によって合成するため、バル
ク状ではなく粉末状でのみ得られる。また、低温の窒化
では反応速度が遅いため、R2T17Nxの合成が困難
であり、約600℃の温度ではR2T17NxはRNと
Tに分解するため、狭い窒化温度範囲でしか良好な特性
のR2T17Nxは合成されない。
[0007] Further, since the R2T17NX magnetic compound is synthesized by nitriding the mother alloy R2T17 alloy powder, it can be obtained only in powder form, not in bulk form. Further, the synthesis rate of R2T17Nx is difficult due to the low reaction rate in low-temperature nitriding. At a temperature of about 600 ° C., R2T17Nx decomposes into RN and T, so that R2T17Nx having good characteristics is synthesized only in a narrow nitriding temperature range. .

【0008】このため、焼結などの従来方法によるR2
T17Nx磁性化合物のバルク化は非常に困難であり、
粉末状での用途に限定されるものと予想され、分解温度
を高め、高温安定化することと、より広い窒化温度範囲
での合成が用途拡大の方策として望まれていた。
For this reason, R2 by a conventional method such as sintering is used.
It is very difficult to make a T17Nx magnetic compound into a bulk,
It is expected to be limited to applications in powder form, and it has been desired to increase decomposition temperature, stabilize at high temperature, and synthesize in a wider nitriding temperature range as a way to expand applications.

【0009】そこで、本発明者らはR2T17系磁性化
合物を含むR−T母合金を窒素プラズマ中において広い
窒化温度範囲で窒化し得たRxT(100−x−y)
yの式で表される磁性材料に対し良好な結果を得た。即
ち、本発明はR−T母合金を窒素プラズマ中で窒化する
ことにより、200〜700℃のひろい範囲で優れた磁
気特性を有するRxT(100−x−y)Nyの式で表
される磁性材料が得られることを見出だした。窒素プラ
ズマ中においては、低温ではR2T17Nx磁性化合物
の窒化反応が促進され、高温では生成エネルギーが変化
しているのかもしれない。
Therefore, the present inventors have obtained RxT (100 -xy) N obtained by nitriding an RT master alloy containing an R2T17-based magnetic compound in a wide range of nitriding temperature in nitrogen plasma.
Good results were obtained for the magnetic material represented by the equation y. That is, according to the present invention, by nitriding the RT master alloy in a nitrogen plasma, the magnetic properties represented by the formula of RxT (100 -xy) Ny having excellent magnetic properties in a wide range of 200 to 700 ° C. It has been found that a material can be obtained. In the nitrogen plasma, the nitridation reaction of the R2T17Nx magnetic compound may be promoted at a low temperature, and the generated energy may be changed at a high temperature.

【0010】[0010]

【課題を解決するための手段】この発明は、希土類元素
−遷移金属粉末を窒素プラズマ中で窒化し、RxT(1
00−x−y)Ny(RはYを含む希土類元素のうち少
なくとも一種であり、TはFe,Co,Niのうちの少
なくとも一種で、5≦x≦20、2≦≦30)の式で
表されることを特徴とする。
According to the present invention, a rare earth element-transition metal powder is nitrided in a nitrogen plasma to form an RxT (1
00 -xy) Ny (R is at least one of rare earth elements including Y, T is at least one of Fe, Co, and Ni and 5 ≦ x ≦ 20, 2 ≦ y ≦ 30) It is characterized by being represented by

【0011】なお、上記式中xが5より小さい場合は保
磁力が得にくく、20より大きい場合は飽和磁化が低下
し、好ましくない。また、yは2より小さい場合及び3
0より大きい場合は保磁力が得にくいものとなる。
If x in the above formula is smaller than 5, it is difficult to obtain a coercive force, and if x is larger than 20, the saturation magnetization is undesirably reduced. Y is smaller than 2 and 3
If it is larger than 0, it becomes difficult to obtain a coercive force.

【0012】[0012]

【実施例】(第1実施例) 原子百分率でSm10.8Fe89.2の組成の合金を
融解することにより得た。融解中の蒸発損失を補償する
ため、融解開始時、若干過剰のSmを存在させた。
EXAMPLES (First Example) It was obtained by melting an alloy having a composition of Sm10.8Fe89.2 in atomic percentage. To compensate for evaporation loss during melting, there was a slight excess of Sm at the start of melting.

【0013】得られたSm10.8Fe89.2の組成
の合金をAr雰囲気下で1,100℃で24時間焼鈍し
た。得られた合金をディスクミルで粗粉砕した後、さら
にボールミルにより平均粒度30μmにまで粉砕した。
さらに、得られた粉末を窒素圧力500Pa,電極間電
圧400Vで放電させた窒索プラズマ中200℃〜70
0℃の温度で1時間窒素を侵入せしめた。
The obtained alloy having the composition of Sm10.8Fe89.2 was annealed at 1,100 ° C. for 24 hours in an Ar atmosphere. The obtained alloy was roughly pulverized by a disk mill, and further pulverized by a ball mill to an average particle size of 30 μm.
Furthermore, the obtained powder was discharged at a nitrogen pressure of 500 Pa and a voltage between electrodes of 400 V in a nitriding plasma at 200 ° C. to 70 ° C.
Nitrogen was allowed to enter for 1 hour at a temperature of 0 ° C.

【0014】また、比較例として、同じ粉末に200℃
〜700℃、窒素1atm中で1時間窒素を侵入せしめ
た。
As a comparative example, the same powder was added at 200 ° C.
Nitrogen was allowed to enter for 1 hour at ~ 700 ° C and 1 atm of nitrogen.

【0015】このようにして得られた各窒化合金粉末の
磁気特性を振動試料型磁力計(V、S、M)を用いて測
定した。その結果を表1に示す。
The magnetic properties of each of the nitrided alloy powders thus obtained were measured using a vibrating sample magnetometer (V, S, M). Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】(第2実施例) 上記第1実施例と同様の方法によりSm5.9Fe9
4,1、Sm20.7Fe79.3の組成の合金粉末を
得た。得られた粉末に窒素圧力500Pa、電極間電圧
400Vで放電させた窒素プラズマ中、500℃の温度
で1時間窒素を侵入せしめ、Sm5.3Fe84.0N
10.7、Sm19.2Fe73.4N7.4の組成の
窒化合金粉末を得た。
(Second Embodiment) Sm5.9Fe9 is obtained by the same method as in the first embodiment.
An alloy powder having a composition of 4,1, Sm20.7Fe79.3 was obtained. Nitrogen was introduced into the obtained powder at a temperature of 500 ° C. for 1 hour in a nitrogen plasma discharged at a nitrogen pressure of 500 Pa and a voltage between electrodes of 400 V, and Sm5.3Fe84.0N was used.
A nitrided alloy powder having a composition of 10.7 and Sm19.2Fe73.4N7.4 was obtained.

【0018】上記各窒化合金粉末の磁気特性を測定した
結果、Sm5.3Fe84.0N10.7の組成の粉末
は4πIs=16.8KG、IHc=2.3KOeであ
り、Sm19.2Fe73.4N7.4の組成の粉末は
4μIs=11.0KG、IHc=3.1KOeであ
り、両者とも優れた磁気特性を示すものである。
As a result of measuring the magnetic properties of each nitride alloy powder, the powder having a composition of Sm5.3Fe84.0N10.7 had 4πIs = 16.8KG, IHc = 2.3KOe, and Sm19.2Fe73.4N7.4. The powder of the composition had 4 μIs = 11.0 KG and IHc = 3.1 KOe, and both exhibited excellent magnetic properties.

【0019】(第3実施例) 上記第1実施例において得たSm10.8Fe89.2
の組成の合金粉末に窒素圧力500Pa、電極間電圧4
00Vで放電させた窒素プラズマ中にて550℃にて1
0〜120分間窒素を侵入せしめた。得られた各窒化合
金粉末の磁気特性を測定した結果を表2に示す。
(Third Embodiment) Sm10.8Fe89.2 obtained in the first embodiment.
Nitrogen pressure 500 Pa, interelectrode voltage 4
1 at 550 ° C. in nitrogen plasma discharged at 00V
Nitrogen was allowed to enter for 0 to 120 minutes. Table 2 shows the results of measuring the magnetic properties of each of the obtained nitrided alloy powders.

【0020】[0020]

【表2】 [Table 2]

【0021】(第4実施例) 純度99.9%のSm、Ce、Pr、Gd、Dyおよび
Feを用い、第1実施例と同様の方法により原料合金粉
末を得た。さらに、第1実施例と同条件の下での窒素プ
ラズマ中で粉末に窒素を侵入せしめた。得られた各組成
の窒化合金粉末の磁気特性を測定した結果を表3に示
す。
Fourth Embodiment A raw material alloy powder was obtained in the same manner as in the first embodiment, using Sm, Ce, Pr, Gd, Dy and Fe having a purity of 99.9%. Further, nitrogen was allowed to penetrate the powder in a nitrogen plasma under the same conditions as in the first embodiment. Table 3 shows the results of measuring the magnetic properties of the obtained nitrided alloy powders of each composition.

【0022】[0022]

【表3】 [Table 3]

【0023】(第5実施例) 純度99.9%のSm、Fe、CoおよびNiを用い、
第1実施例と同様の方法によりSm10.6Fe70.
6Co18.8、Sm10.3Fe79.9Ni9.8
の組成の合金粉末を得た。得られた粉末に窒素圧力50
0Pa、電極間電圧400Vで放電させた窒素プラズマ
中において550℃で1時間窒素を侵入せしめ、Sm
9.3Fe61.9Co16.5N12.3、Sm9.
1Fe70.7Ni8.7N11.5の組成の窒化合金
粉末を得た。各窒化合金粉末の磁気特性を測定した結
果、Sm9.3Fe61.9Co16.5N12.3の
組成の粉末は4πIs=15.5KG、IHc=3.5
KOeであり、Sm9.1Fe70.7Ni8.7N1
1.5の組成の粉末は4πIs=13.9KG、IHc
=2.6KOeといった優れた磁気特性を示す。
Fifth Embodiment Using Sm, Fe , Co and Ni having a purity of 99.9%,
In the same manner as in the first embodiment, Sm10.6Fe70.
6Co18.8, Sm10.3Fe79.9Ni9.8
An alloy powder having the following composition was obtained. A nitrogen pressure of 50 is applied to the obtained powder.
Nitrogen was introduced at 550 ° C. for 1 hour in nitrogen plasma discharged at 0 Pa and a voltage between electrodes of 400 V, and Sm
9.3Fe61.9Co16.5N12.3, Sm9.
A nitrided alloy powder having a composition of 1Fe70.7Ni8.7N11.5 was obtained. As a result of measuring the magnetic properties of each nitrided alloy powder, the powder having the composition of Sm9.3Fe61.9Co16.5N12.3 was 4πIs = 15.5KG and IHc = 3.5.
KOe, Sm9.1Fe70.7Ni8.7N1
The powder having a composition of 1.5 is 4πIs = 13.9KG, IHc
= 2.6 KOe.

【0024】[0024]

【発明の効果】上記したように、本発明によれば、希土
類元素―遷移金属材料を窒素プラズマ中で窒化する方法
用いることにより、低温から高温まで広い窒化温度範囲
において磁気特性に優れた希土類−遷移金属−窒素永久
磁石を得ることができ、電気・電子機器の軽量小型化に
大きく寄与し得ることになった。
As described above, according to the present invention, by using a method of nitriding a rare earth element-transition metal material in a nitrogen plasma, a rare earth element having excellent magnetic properties in a wide nitriding temperature range from a low temperature to a high temperature can be obtained. A transition metal-nitrogen permanent magnet can be obtained, which can greatly contribute to reduction in size and weight of electric and electronic devices.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類元素−遷移金属粉末を窒素プラズ
マ中で窒化することを特徴とするRxT(100−x−
yy)Ny(RはYを含む希土類元素のうち少なくとも
一種であり、TはFe,Co,Niのうちの少なくとも
一種で、5≦x≦20、2≦y≦30)の式で表される
永久磁石合金粉末の製造方法。
An RxT (100 -x-) is characterized in that a rare earth-transition metal powder is nitrided in a nitrogen plasma.
yy) Ny (R is at least one of rare earth elements including Y, and T is at least one of Fe, Co, and Ni and is represented by the formula of 5 ≦ x ≦ 20, 2 ≦ y ≦ 30) Manufacturing method of permanent magnet alloy powder.
JP03274934A 1991-09-27 1991-09-27 Manufacturing method of permanent magnet alloy powder Expired - Fee Related JP3108946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03274934A JP3108946B2 (en) 1991-09-27 1991-09-27 Manufacturing method of permanent magnet alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03274934A JP3108946B2 (en) 1991-09-27 1991-09-27 Manufacturing method of permanent magnet alloy powder

Publications (2)

Publication Number Publication Date
JPH0586402A JPH0586402A (en) 1993-04-06
JP3108946B2 true JP3108946B2 (en) 2000-11-13

Family

ID=17548584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03274934A Expired - Fee Related JP3108946B2 (en) 1991-09-27 1991-09-27 Manufacturing method of permanent magnet alloy powder

Country Status (1)

Country Link
JP (1) JP3108946B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249682A (en) * 2008-04-04 2009-10-29 Nec Tokin Corp Hard magnetic alloy and method for producing the same
CN112872348B (en) * 2020-12-31 2021-11-30 广东省科学院稀有金属研究所 Method for improving nitriding efficiency of rare earth-iron alloy

Also Published As

Publication number Publication date
JPH0586402A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
EP0134304B1 (en) Permanent magnets
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JP2001189206A (en) Permanent magnet
JP2000114017A (en) Permanent magnet and material thereof
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP4170468B2 (en) permanent magnet
JP3222482B2 (en) Manufacturing method of permanent magnet
JPS62136551A (en) Permanent magnet material
US5230749A (en) Permanent magnets
JP3108946B2 (en) Manufacturing method of permanent magnet alloy powder
JP2002294413A (en) Magnet material and manufacturing method therefor
JPH0732090B2 (en) permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP3178848B2 (en) Manufacturing method of permanent magnet
JP3199506B2 (en) Rare earth permanent magnet
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JPH0570900A (en) Magnetic material
JPS6144155A (en) Permanent magnet alloy
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet
JPH07245206A (en) Powder for rare-earth permanent magnet and its manufacturing method
JPH10289812A (en) Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000816

LAPS Cancellation because of no payment of annual fees